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Introduction 

 
A major goal of this study was to describe gating of 

gap junction (GJ) channels formed of connexin (Cx) 
protein by using a discrete Markov chain. Gap junctions 
provide a direct pathway for electrical and metabolic 
signaling between cells. Each GJ channel is composed of 
two hemichannels (connexons), which in turn are composed 
from 6 connexins forming a hexamer with the pore inside. 
Twenty one Cx genes have been identified in humans.  GJ 
channels vary highly in conductance, perm-selectivity and 
gating properties depending on Cx type. Mutations in Cxs 
have been shown to be responsible for several hereditary 
human diseases including the X-linked form of 
demyelinating disease, non-syndromic sensorineural 
deafness, erythrokeratodermia, congenital 
cataractogenesis, oculodentodigital displasia and more. A 
number of studies have also demonstrated a correlation 
between reduced GJ-mediated communication and cancer 
or cardiac arrhythmias. Conductance and permeability of 
GJ channels can be modulated by transjunctional voltage 
(Vj) which induces channels transitions between open and 
closed states and this process is called as Vj-dependent 
gating. Gating of GJ channels can be modulated by 
intracellular ionic composition, pH, Ca2+ and different 
pathological conditions, such as hypoxia, ischemia or 
epilepsy, causing significant dysregulation of electrical and 
metabolic cell-cell communication. In this study, we 
elaborated the algorithm for evaluation of gap junctional 
conductance dependence on Vj.  
 
Conceptual model  

 
Gap junctions form clusters of individual channels 

arranged in parallel in the junctional membrane of two 
adjacent cells. The GJ channel is composed of 2 
hemichannels (left and right) arranged in series. Each 
connexin can be in 2 states (open – “o” or closed – “c”) 

and operates/gates between these two states (Fig. 1). For 
simplicity reasons, we assumed that only connexin in the 
left hemichannel gate, while all Cxs in the right 
hemichannel are always open (Fig. 2). The GJ channel 
gates in response to Vj due to o↔c transitions of each 
connexin. As reported earlier [1–3] probabilities of 
transitions between open and closed states are described as 
follows  
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where poc is the probability of transitions from open to 
closed state. 
 

),,,(1 0VVPApp leftocoo  , (2) 
 

where poo is the probability to remain in an open state. 
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where pco is the probability of transitions from closed to 
open state. 
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where pcc is the probability to remain in the closed state 
(Fig. 2) and  
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where P is the polarity of the voltage (+1 or -1); A  is a 
coefficient characterizing gating sensitivity to voltage 
(1/mV); K is the constant of adjustment of states of 
connexins of left or right hemichannels (to modulate a 
probability of gating transitions; V0  is a voltage across the 
hemichannel  the half of a  maximal conductance (mV). 
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Attributed to each connexin is a conductance g, 
which depends on a voltage across it  ( rightleftV / ), can gate 

by changing stepwise between open state with conductance 
2og  arbitrary units in picosiemense (pS) and the closed 

state exhibiting some residual conductance 25.0rg  pS. 
In addition, it was assumed that og  and cg  values 

rectifies, i.e., depends on rightleftV / , exponentially: 
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where rightleftV /  is a voltage across the left or right 

hemichannel. 
The conductance of the left hemichannel can be 

described as follows 
 

       PnVgnPnVgng leftleftcleft ,6, 0 , (8) 
 

where n – number of closed connexins. 

The conductance of right hemichannel 
 

  PnVgg leftright ,6 0 .                      (9) 

The conductance of left side hemichannel at 
stationary time moment can be described as follows 
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where np  – stationary probability, when n connexins are 

closed and 6-n are open. For calculation of these 
probabilities Markov chain is created. 

The voltages on the left and right connexins, when n 
connexins are closed is as follows 
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Initially conductances of connexins are calculated 
at 0V . In the next iteration conductances of connexins 
are calculated at the voltage from a previous iteration, and 
so on. The calculation scheme is presented in Table 1, 
where i  is the number iterations. Calculation shows that 
after 3-4 iterations the value of voltage is settled with 

%1,0  accuracy. 
 
Table 1. Calculation of steady voltage at connexins 
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Fig. 1. The state graph of one connexin 

 

  
Fig. 2. Electrical scheme of GJ channel composed of two 
hemichannels each formed of 6 connexins 

The construction of the Markov chain  

The left hemichannel, which is composed of 6 
connexins, is divided into two groups: open connexins 
(group I) and closed connexins (group II).  

The set of states into which nc closed connexins can 
pass is as follows 

    kknnkNknnstatesnext cccc ,:,__ I    (12) 

and the set of states into which no opened connexins can 
pass is as follows 

    lnlnlNlnnstatesnext oooo  ,:,__ II .   (13) 

If the current state is  0, nnc  and during one step k 

closed connexins will open and l open conexins will close, 
then the hemichannel will pass into the state 
 lknlknc  0,  with probability, which is calculated 

using Bernoulli distribution 
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For example, for the_state (1,5): 

    kkkNkstatesnext ,11:1__ I ,            (15) 

   






  lllNlstatesnext 5,5:5__ II .           (16) 

Fig. 3 illustrates the process of transitions into new 
states for the state (1,5). 
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Fig. 3. Scheme illustrating transitions of the state (1,5) into six 
new states 
 

The probabilities of transitions from the state  5,1  to 

the remaining states are as follows: 
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Stationary probabilities were calculated using 
Kolmogorov_Chapman equations: 
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The system of equations (29) has been resolved using 
Greville method [4, 5]. 

The results of modeling 

To perform calculations of conductances according to 
(14) and (29) equations, we used the following values of 

parameters describing gating properties of connexins 
(Table 2): 

 

Table 2. Table of chosen values of parameters 
 

Parameters Values (units) 
A 0.1 (1/mV) 
P 1 (const.) 
V -100:10:100 (mV) 
V0 40 (mV) 
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K 0.1 (const.) 

 
Stationary probabilities of the gap junction channel at 

transjunctional voltages from -100 mV to 100 mV are 
shown in Fig. 4. 
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Fig. 4. Stationary probabilities of different states of the left 
hemichannel depending on transjunctional voltage in the range 
from -100 mV to 100 mV 

 

At 100U  mV, the probability for all connexins to 
be open is equal to 1. At 100U  mV, all 6 connexins are 
closed.At U values in between -100 and 100 mV, all 
intermediate states are probable. 

The results of conductance at different U obtained 
with the described model are compared with those 
obtained using the results of a simulation [3]. As illustrated 
in Table 3 and Fig. 5, both models produce  identical 
results. 

 
Table 3. Comparison of results obtained using a stochastic 
simulation and Markov model, used gating parameters are shown 
in Table 2 
 

Voltage, 
mV 

Conductance, pS 

The results of a 
simulation 

The results of  
Markov model 

-100 5,5736 5,6365 

-90 5,6082 5,6718 

-80 5,643 5,7074 

-70 5,6779 5,7431 

-60 5,7131 5,7791 

-50 5,7476 5,8153 

-40 5,7583 5,8515 

-30 5,7983 5,8876 
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Voltage, 
mV 

Conductance, pS 

The results of a 
simulation 

The results of  
Markov model 

-20 5,8018 5,9228 

-10 5,857 5,9556 

0 5,8276 5,9814 

10 5,7269 5,9899 

20 5,7916 5,9585 

30 5,6241 5,8447 

40 5,2061 5,5769 

50 5,1357 5,0158 

60 3,987 3,942 
70 2,4979 2,6196 
80 1,8875 1,906 
90 1,7121 1,7322 
100 1,5811 1,7277 
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Fig. 5. Superposition of Conductance–Voltage plots obtained 
using stochastic simulation and Markov model 
 

This Markov model will be further developed by 
allowing gating for both, left and right hemichannels, and, 

in addition, introducing a third state, so-called the deep 
closed (dc) state with a linear transition scheme: o↔c↔dc. 
This is stimulated by our latest experimental data 
demonstrating an existence of the dc state, which has the 
same conductance as the c state, but with the restriction for 
the o↔dc transitions. 
 
Conclusions 
 

The Markovian model allows evaluation of the 
conductance of the gap junction channel at steady-state 
conditions at different transjunctional voltages. 

The validity of the proposed Markovian model was 
verified by comparing it to results obtained using a 
stochastic simulation of voltage gating. 
 
References 

 
1. Vogel R., Valiunas V., and Weingart R. Subconductance 

States of Cx30 Gap Junction Channels: Data from 
Transfected HeLa Cells versus Data from a Mathematical 
Model // Biophysical Journal. – Elsevier, 2006. – No. 91. – P. 
2337–2348. 

2. Chen-Izu Ye, Alonso P., Moreno, Spangler Robert A. 
Opposing Gates Model for Voltage Gating for Gap Junction 
Channels // Am J Physiol Cell Physiol. – Elsevier, 2001 – No. 
281. – P. C1604-C1613. 

3. Paulauskas N., Pranevicius M., Pranevicius H. and 
Bukauskas F. A Stochastic Four-State Model of Contingent 
Gating of Gap Junction // Biophysical Journal. – Elsevier, 
2009. – No. 96. – P. 3936–3948. 

4. Pasquier S., Rousselie D. Method of Greville. The Moore-
Penrose Generalized Matrix Inverse. – 2003 – 11 p. Online: 
http://people.happycoders.org/dax/greville.pdf. 

5. Pranevicius H., Simaitis L., Pranevicius M., Pranevicius 
O. Piece-Linear Aggregates for Formal Specification and 
Simulation of Hybrid Systems: Pharmacokinetics Patient-
Controlled Analgesia // Electronics and Electrical 
Engineering. – Kaunas: Technologija, 2011. – No. 4(110). – 
P. 81–84. 

Received 2011 02 15 
 
A. Sakalauskaite, H. Pranevicius, M. Pranevicius, F. Bukauskas. Markovian Model of the Voltage Gating of Connexin-based 
Gap Junction Channels // Electronics and Electrical Engineering. – Kaunas: Technologija, 2011. – No. 5(111). – P. 103–106. 

Gap junction (GJ) channels, which are formed of a connexin (Cx) protein provide pathways through which ions and small molecules 
are exchanged between adjacent cells. GJs co-ordinate the cellular activity in tissues by synchronizing their electrical activity and 
allowing a direct cell-to-cell chemical signaling. Electrically gap junctions present nonlinear conductance that depends on 
transjunctional voltage and can be modulated by chemical reagents and ions, such as pH, Ca2+, etc. Here, we describe the model of the 
voltage gating of gap junctions using Markovian formalism. The results obtained using a stationary Markov model are well comparable 
with those obtained using a stochastic/imitational model of voltage gating. Ill. 5, bibl. 5, tabl. 3 (in English; abstracts in English and 
Lithuanian). 
 
 
A. Sakalauskaitė, H. Pranevičius, M. Pranevičius, F. Bukauskas. Plyšinės jungties savybių modeliavimas naudojant Markovo 
grandines // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2011. – Nr. 5(111). – P. 103–106. 

Plyšinės jungties (PJ) kanalai, sudaryti iš koneksinų (Cx) baltymų – tai keliai, kuriais gretimos ląstelės keičiasi jonais ir mažomis 
molekulėmis. PJ reguliuoja ląstelių veiklą audiniuose derinant jų elektrinį veikimą ir leidžiant tiesioginį cheminį srautą iš ląstelės į 
ląstelę. Fizikine prasme plyšinės jungtys atitinka netiesinį laidumą, kuris priklauso nuo kintančios įtampos ir gali būti reguliuojamas 
cheminiais reagentais ir jonais, tokiais kaip pH, Ca2+ ir t. t. Šiame straipsnyje, naudojantis Markovo formalizmu apibūdintos plyšinių 
jungčių, sudarytų iš kintančio individualių plyšinės jungties kanalų skaičiaus, įtampos kitimo modelis. Rezultatai, gauti naudojant 
stacionarų Markovo modelį, sutampa su rezultatais, gautais naudojant stochastinį ir imitacinį įtampos kitimo modelį. Il. 5, bibl. 5, lent. 3 
(anglų kalba; santraukos anglų ir lietuvių k.). 
 
 




