
71

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2011, Vol.40, No.1

AN APPROACH FOR THE METAMODEL OF THE FRAMEWORK FOR
A PARTIAL AGILE METHOD ADAPTATION

Gytenis Mikulėnas, Rimantas Butleris, Lina Nemuraitė
Kaunas University of Technology, Department of Information Systems

Studentu St. 50-308a, LT-51368 Kaunas, Lithuania
e-mail: gytenis.mikulenas@ktu.lt, rimantas.butleris@ktu.lt, lina.nemuraite@ktu.lt

Abstract. Today, such information system development methods as Extreme Programming, Scrum, Dynamic Sys-
tems Development Method, Crystal family, Agile modeling, OpenUP and others are being positioned as proven alter-
natives to the more traditional plan-driven approaches. However, although there are a variety of agile methods to
choose from, the formal methods for their partial adaptation and customization are lacking. The main aim of this paper
is to present a metamodel of the framework for a partial agile method adaptation. The paper presents the process of
metamodel construction from the concepts that are both direct and indirect solutions to the sub-problems of the partial
agile method adaptation. The presented paper extends some of our earlier and more fragmented findings that have been
described in our previous work.

Keywords: agile method, partial adaptation, framework, metamodel.

1. Introduction

Although only eight years have passed since the
first publishing of the Agile Manifesto [4], the concept
of Agile development has gained strong positions
within the field of Information Systems Development
(ISD). Such approaches as Extreme Programming
(XP) [9], Scrum [35], Dynamic Systems Development
Method (DSDM) [13], Crystal [14], Agile modeling
[6], OpenUP [22] and others are now being positioned
as proven alternatives to the more traditional plan-
driven approaches [3, 10].

According to the latest CHAOS Report published
by Standish Group, only about 32 % of software pro-
jects can be called successful, i.e. they reach their
goals within a planned budget and on time [25].
Despite the availability of numerous new approaches,
companies tend not to take drastic risks instantly
switching from their methodological know-how to the
agile methods. Instead, companies usually use their in-
house know-how based ISD methods that are combi-
nations of various methods and that evolved through
the lifetime of the company [11, 32]. This happens
because of the uniqueness of every ISD project and its
environment. Despite the promises of the benefits
from agile methods, practitioners are rarely faced with
the need to adapt an entire agile method. Companies
usually do not want to rebuild their methods and pro-
cesses from scratch. Instead, the current demand is to
extend their existing in-house methods by imple-
menting some useful parts of certain agile methods
[5]. The problem is that current agile methods are

often presented as monolithic solutions without a for-
mal roadmap how to customize and configure them
for a partial adaptation [3]. Also, although there are a
variety of agile methods to choose from, the formal
methods for their adaptation and customization are
lacking [30, 31, 37]. In order to resolve this problem,
we present a framework for a partial agile method
adaptation.

The paper builds on and extends some of the ideas
presented in our previous research [27, 28]. The main
aim of this paper is to present the metamodel of the
framework for a partial agile method adaptation. The
supplementary aims are to give an integral view of the
problem and to extend the scope of the adaptation of
agile methods.

The reminder of the paper is structured as follows.
Section 2 reveals how the main problem was decom-
posed into more specific sub-problems. Section 3 pre-
sents the framework as an integral solution. Sections 4
and 5 describe the process of construction and the
resulting metamodel. A case study of applying the
framework is presented in Section 6, followed by the
conclusions in Section 7.

2. The decomposition of a partial agile
method adaptation problem

Majority of researchers of agile method adaptation
and customization concentrate on presenting success
stories or lessons learned by organizations that have
partly adopted agile methodologies for specific

http://dx.doi.org/10.5755/j01.itc.40.1.194

G. Mikulėnas, R. Butleris, L. Nemuraitė

72

projects [15, 18, 23, 24]. Others propose adopting
individual Agile practices only [5, 21]. Finally, there is
a group of considerably more practical approaches [8,
12, 27, 28, 31] that could be described as techniques
for the partial agile method adaptation. The problem
with these approaches is that each of them proposes a
solution for different aspects of the partial agile me-
thod adaptation and does not cover the whole prob-
lem. For example, Cockburn proposes to choose agile
methods according to the number of people involved
and criticality criteria when selecting a project’s
methodology [12] but only from the Crystal family
methods, with no formal roadmap on how actual
decision making could be done. Attarzadeh and Hock
distinguish a dipole between Agile and traditional
plan-oriented methods with some directions for
method selection criterions [8] but without a guide for
selecting a method and assessing its suitability.
Though Mirakhorli et al. propose how to tailor an XP
method for partial adaptation [31], their idea is based
only on the informal brainstorming and expert judg-
ment decision making techniques while being tailored
for XP method only. Breaking and structuring agile
methods is a promising direction but there is a need
for defining the concepts and metamodel for this
purpose as well as a process guide.

Although we have addressed these issues to some
extent in our previous researches [27, 28] the further

analysis revealed the need for decomposing the prob-
lem. Therefore, we propose viewing the problem of
the partial agile method adaptation as a generalization
of six sub-problems (Figure 1). Such a decomposition
model serves as the basis for the possible solution that
is discussed in the remainder of this paper. It could
also be used by other researchers or practitioners
willing to address the problem of partial agile method
adaptation. The summarized results of the analysis of
these sub-problems are presented in Table 1.

Problems in
partial Agile

method
adaptation

2. How to
prepare Agile
methods for

partial
adaptation?

3. How to
facilitate the

initial process ,
what is a

starting point ?

4. Where is a
boundary

between the
possibility and
desirability?

1. How to
assess the
suitability of

the agile
method?

6. How to
integrate it

into an exis -
ting custom

method?

5. How to
make a

decision when
configuring

and selecting ?

Figure 1. The decomposition of a partial agile method

adaptation problem

Table 1. The sub-problems of a partial agile method adaptation problem

Sub-problem Description
1. How to asses the
suitability of the
agile method?

Agile methods are specific methods often being positioned as alternatives to the more traditional
plan-driven methods. There are both organizational and project level restrictions and requirements
that must be met in order to succeed using agile methods at IT company. There is a need for a formal
way to make an assessment of agile method suitability.

2. How to prepare
agile methods for
partial adaptation?

Companies usually have their own know-how and do not want to rebuild processes from scratch.
Current demand is to extend these existing methods by supplementing them with some useful parts of
certain agile methods. Existing agile methods are often presented as monolithic solutions without a
formal roadmap how to combine and configure the methods for their partial adaptation. Therefore,
there is a need for an approach for breaking down agile methods into a set of elements for their
partial adaptation.

3. How to facilitate
the initial process,
what is the starting
point?

IT market is very dynamic. Any additional method upgrade is a very costly activity for an IT
company due to the risk and efforts for their personnel training. In the world of non-stop competition
any approach needs to be presented in a way that facilitates and accelerates the process of learning
and adapting. That is why a need for a guiding wizard arise, especially during the initial steps.

4. Where is a
boundary between
the possibility and
desirability?

It is a well-known fact that ISD methods are not used as they ought to be in an actual ISD
development projects. The same is true for elements (practices, techniques, etc.) of these methods.
Done in ad-hoc manner this leads to a number of various modifications. There is a need to define the
levels for the adaptation of such method elements when balancing between the possibility and
desirability.

5. How to make the
decisions when
configuring and
selecting?

The problem of a partial agile method adaptation brings forward a related question of how to select
and construct fragments from the concrete agile methods. Moreover, this construction is a
customization of agile methods, it uses decision making when selecting appropriate elements for the
fragment. In most Agile adaptation approaches, researchers propose to perform the appropriate
decisions using expert judgment or brainstorming techniques. In our opinion, the actual user is left on
his own in such cases. There is a need for a guidance during the customization of the agile method.

6. How to integrate it
into the existing in-
house method?

Companies usually have their own know-how and do not want to rebuild processes from scratch.
Instead, the current demand is to extend these in-house methods by involving some useful parts of
certain agile methods. After customization and construction of the fragment of the agile method, the
next step is its implementation. There is a need for the process guidance for making this
implementation.

An Approach for the Metamodel of the Framework for a Partial Agile Method Adaptation

73

The sub-problems in Figure 1 reveal a wider pic-
ture surrounding the partial agile method adaptation at
the same time offering some outlook into a possible
solution. It becomes clear that due to the scope of this
problem, coming up with just an informal technique
would not be enough.

3. The framework for a partial agile method
adaptation

Existing agile methods are often presented as mo-
nolithic solutions without a formal roadmap of how to
configure a method for a partial adaptation. The basic

definition of the partial agile method adaptation imp-
lies that agile methods must be broken down into a set
of elements. An implementation of a subset of these
elements is a partial implementation of an agile me-
thod. Aiming to provide the comprehensive solution
for the partial adaptation, we have proposed general
guidelines and concepts for building such a frame-
work [28]. During the further research of the analysis
results, the scope of our framework has been extended
and classes for the metamodel were defined. The
illustration of applying the framework is presented in
Figure 2.

Independ. Elem.

A agile method
B agile method

B agile method

Elem Elem

Elem Elem Elem Elem

Elem

Elem Elem

Independ . Elem.
Elem

Elem Elem...

... ...

...

A agile method

Elem Elem

Elem Elem Elem Elem... ...

...

Elem Elem

Elem Elem Elem Elem... ...

...

Structuring ,
Classification

Merge,
Generalization

Pattern
Coupling

Custom improvement
needs for in -house

ISD method

Selection ,
Implementation

Decision making

Implementation Model
Phase 1

X set of Independ . Elements...

...

Phase 2
Y set of Independ . Elements...

Phase n
Z set of Independ . Elements...

Figure 2.The illustration for applying the framework

Different agile methods can be decomposed into
elements by using a common structure that is a part
of the metamodel of the framework for a partial agile
method adaptation. This common structure makes it
possible to merge and generalize similar elements
from different agile methods. This brings up the
possibility to combine the implementations of diffe-
rent agile methods by applying patterns − similarly as
in other areas of software engineering, e.g. in gene-
rating a program code [1, 2]. This process should be
performed by an agile method engineer who can
create different patterns by using decomposed ele-
ments. The pattern can be defined as a variant of
some unified agile method that combines elements
from different agile methods. Coupling is the process
of defining new independent elements from those
elements that are closely related to each other. It
gives the end user the possibility to facilitate the
element selection and composition when creating a

partial agile method implementation model. Finally,
those independent elements are prioritized according
to the appropriate criterions using the formal decision
making technique AHP (Analytic Hierarchy Process).
Those prioritized independent elements are used for
creating partial implementation of agile methods. The
implementation model can be described as a plan for
partial implementation. The process of using
proposed framework has been divided into 3 tiers
(Figure 3).

Each tier represents a process performed by an
agile method engineer or the end user. The first tier of
the framework is about managing the structure of the
metamodel. On the second tier, patterns are created
from the structured agile methods. The pattern con-
sists of elements that are derived by the process of
structuring agile methods. The structuring of the me-
tamodel and creating a pattern should be performed
by agile method engineers because they require the

G. Mikulėnas, R. Butleris, L. Nemuraitė

74

appropriate knowledge and skills. Finally, the usage
of such patterns is performed by the end user who
may have any role in the project. Most of the method
improvements at IT companies are initiated by

managers but most of the implementations of new
practices and techniques are performed by enthu-
siasts. That is why the usage of the tier 3 is wide
opened.

Framework

Extending the
metamodel

Construction of the
pattern

Construction of the
implementation

model

New demands Extended
metamodel

A agile method
B agile method

…

Pattern for A
& B agile
methods

Pattern for A
& B agile
methods

Partial
implementation

model

Agile Method
Engineer

User

Tier 1

Tier 2

Tier 3

Figure 3. The conceptual usage model of the framework

4. Construction of the metamodel for the
framework

The framework of the partial agile method adap-
tation requires a metamodel. This metamodel should
serve as the basis for creating and using patterns
during the partial agile method implementation. The

framework is an integral solution and covers all the
sub-problems defined in Section 2. By using the term
“concept”, we define a concrete direct or indirect
solution for the related sub-problem defined in
Section 2. Both groups of concepts are presented in
Tables 2 and 3.

Table 2. The concepts that are directly related to the sub-problems

Direct concept Related sub-problem
Agility requirements How to asses the suitability of the agile method?
Method decomposition How to prepare agile methods for partial adaptation?
Application areas How to facilitate the initial process, what is the starting point?
Element levels Where is a boundary between the possibility and desirability?
Criterions and prioritization How to make the decisions when configuring and selecting?
Implementation model How to integrate it into the existing in-house method?

Table 3. The concepts that are indirectly related to the sub-problems

Indirect concept Related problem
Abstraction levels How to split the metamodel into parts?
Structuring How to prepare a new agile method using the common structure?
Merge and generalization How to combine the elements from the different agile methods?
Coupling How to facilitate the process of element selection?
Pattern How to allow creating multiple preparations of agile methods?
Extensible metamodel How to create a flexible structure of the metamodel?

The need for direct concepts is described in our

previous research [28]. Indirect concepts were de-
fined during the construction of the metamodel
(Section 4.2). In this research, both direct and indirect
concepts were scrutinized. We also used classes from
existing metamodels from the domain of Situational
Method Engineering. As a result of this concept de-
velopment, we have got the classes that compose the
proposed metamodel of the framework of a partial
agile method adaptation. The initial results of deri-
ving classes from existing metamodels are presented

in Section 4.1. The final results (including proposed
concepts and derived classes) are presented in
Section 4.2.

4.1. Classes derived from existing metamodels

The concept of “Method decomposition” is the
key subject of research in the field of Situational
Method Engineering (SME) [19]. There are three
most used standard metamodels in this domain. They
are Open Process Framework (OPF) [16, 34],

An Approach for the Metamodel of the Framework for a Partial Agile Method Adaptation

75

Software Process Engineering Metamodel (SPEM)
[33] and Software Engineering Metamodel for De-
velopment Methodologies ISO/IEC 24744 [20]. Each
of them has both overlapping and unique parts. The
approach for the development of the concept “Me-

thod decomposition” was to define the core common
and unique classes of those three metamodels that
should be used in the proposed metamodel. The
results are shown in Figure 4.

Figure 4. The combination of used core element classes

Any ISD method, including agile methods, could
be decomposed into a set of related elements. The
main classes of OPF, ISO/IEC 24744 and SPEM
metamodels have the same purposes but their names
are different. We decided to use the names of the
most common classes from the OPF metamodel.
“Work Product” is a kind of method element that de-
fines anything valuable that is produced by the
“Producer” performing the “Work unit” activities du-
ring the “Stage” process. The “Language” is used
when the “Work product” is a code. Any additional
information that is related to an element is described
as the “Guidance”. The specific parts of agile me-
thods (philosophy, values, etc.) that do not fit to any
of these classes may be set to a kind of “Category”. A
group of closely related elements should be related to
a kind of “Independent element”. In addition, we
used a separation of the element from its kind accor-
ding ISO/IEC 24744 [20] and added the “Suitable
element” class that represents the usage of an element
in the lower level.

4.2. Proposed concepts and classes

Now we will describe the proposed concepts that
are directly or indirectly related to the sub-problems
defined in Section 3. Each concept was used deriving
the classes that are needed to implement that concept.
Notice that three different shading styles are used to
denote the tier the particular class belongs to.

Abstraction levels. The agile methods can be
structured into a set of elements using the predefined
structure of classification (element kinds and their
relation kinds). The classes that reflect the structured
agile methods are defined in the second tier. Hence,
using the predefined structure, it is possible to create
a plenty of patterns from structured agile methods,
and a plenty of partial implementation models using
these patterns (Figure 5).

Figure 5. Abstraction levels

Extensible metamodel. The metamodel is orien-
ted towards the structuring of so called “lightweight
ISD agile methods”. Therefore, the predefined struc-
ture must be straightforward and flexible enough to
extend the metamodel in a case of such a necessity.
This can be achieved by the hierarchy of “Element
Kind” and “Relation Kind Use” (Figure 6).

Figure 6. Elements allowing extensibility

Agility requirements. Due to the specific nature,
agile methods are not universally suitable [10, 17]. It
is possible to distinguish a set of the environment (or-
ganization, project) characteristics, where agile
methods are most suitable. We prefer calling these
characteristics “agility requirements”. The default set
of such agility requirements can be used to identify
an IT organization and its project environment’s suit-
ability for agile methods. Each agility requirement is
described by the pair of two kinds. “Measurement
Kind” class indicates whether the requirement is
quantitative or qualitative. “Content Kind” class
defines different types of requirements, such as

G. Mikulėnas, R. Butleris, L. Nemuraitė

76

technical, social, business, psychological, etc [36]
(Figure 7).

Figure 7. Agility requirements

Application areas. It is important to facilitate the
initial process of the partial implementation model
creation for the end user. Application areas can be
described as a set of domains and disciplines of ISD
engineering. Relating elements with these application
areas allows the end user to facilitate the process of
element selection (Figure 8).

Figure 8. Application areas

Element levels. Most elements (techniques, arti-
facts, practices, etc.) are presented with the complete
static content or dynamic usage descriptions in the
sources on agile methods. It is a well-known fact that
in actual development projects ISD methods are not
used as they ought to be. For each element we pro-
pose to define three levels of its implementation:
minimal, balanced, full. “Minimal” level represents
minimal steps needed for using that element. “Ba-
lanced level” is an intermediate level between
“Minimal” and “Full” (Figure 9).

Figure 9. Element levels

Merge and generalization. More than ten ISD
agile methods emerged since the publishing the Agile
Manifesto in 2001 [4]. Their evolution raised the

problem of element overlapping. The classes of this
concept provide a possibility to merge and generalize
similar or complementary elements [7] (Figure 10).

Figure 10. Elements allowing merge and generalization

Coupling. Breaking down methods into elements
gives a possibility to merge and generalize similar or
complementary elements. Hence, it becomes possible
to combine elements from different agile methods.
However, having a lot of small elements burdens the
process of selecting elements in the third tier. The
coupling allows grouping of closely related small ele-
ments into bigger (independent) elements (Figure 11).

Figure 11. Coupling the elements

Pattern. The result of the work of the agile me-
thod engineer is in the second tier. It consists of struc-
tured, merged and generalized elements from agile
methods; their levels; relations to application areas
and internal elements; agility requirements that are
defined for decomposed methods. Multiple patterns
may be created by different engineers. The concept
gives the possibility to maintain different versions of
patterns for the same agile methods [29] (Figure 12,
Figure 11).

Figure 12. Pattern concept classes

Prioritization. The prepared patterns are used for
creating an implementation model of a partial agile
method adaptation in the third tier. Several priori-
tizations may be performed during the creation of a
partial implementation model (Figure 13).

Figure 13. Priority concept classes

An Approach for the Metamodel of the Framework for a Partial Agile Method Adaptation

77

Criteria. The prioritization is performed using a
subset of criteria from a predefined set (Figure 14).
Criteria reflect the custom needs that are identified by
the end user [26, 38]. Examples include “Easy to
learn”, “Easy to install”, “Easy to use”, “Low risk”,
“Required efforts”, “Available resources” etc.

Figure 14. Criteria concept classes

Implementation model. The result of the third
tier process is the implementation model (Figure 15).

Figure 15. Implementation concept classes

The partial implementation can be described as an
initialized adaptation project that consists of several
phases (initial, intermediate, final). During the first
phase, the user identifies concerns as application
areas, selects the related elements and their minimal
levels. The initial phase can be described as a trial.
During the intermediate phases, user configures the
use of selected elements (removes non-profitable ele-
ments, selects new elements or their higher levels).

5. The final metamodel
This section presents the summarized view of the

metamodel of the framework for the partial agile me-
thod adaptation. The architecture of related element
kinds, elements and selected elements is presented in
0. The classes used for the first, second and third tiers
are filled in a dark grey, light grey and white color
respectively. The core classes used for element
classification are defined as “Element Kinds” (classes
in a dark grey). The classes used for pattern com-
position of structured agile methods are defined as
“Elements” (classes in light grey). The classes used
for an implementation model are defined as “Suitable
Elements” (classes in white). This architecture
defines how the main classes are related and arranged
through the tiers that can be used for method
decomposition and their element classification.

Figure 16. The architecture of the method decomposition

Using this architecture, it is possible to structure
agile methods into patterns. Furthermore, it is pos-
sible to have many implementation models using
these patterns. The three tier architecture distingui-

shes the metamodeling of the element classification
structure from the modeling and implementing the
actual agile methods. The relations between the dif-
ferent kinds of elements are shown in Figure 17.

G. Mikulėnas, R. Butleris, L. Nemuraitė

78

The proposed metamodel of the framework has
eight classes of Element Kind. Any agile method can
be structured into a set of elements of these kinds.
They are “Guidance Kind”, “Stage Kind”, “Producer
Kind”, “Work Unit Kind”, “Work Product Kind”,
“Language Kind”, “Category Kind” and “Indepen-
dent Kind”. The stage (process) consists of producers
that are responsible for producing assigned work
products. If a work product is a code, then the class
“Language” is used. The producer performs the work

units (activities, steps) that manipulate related work
products. Any element may have a related guidance
(example, checklist, supporting material). Any frag-
ment of agile method that does not fit to other kinds
is defined using the “Category Kind”. Related ele-
ments can be grouped into the independent elements
that facilitate the implementation process in the third
tier. The composite metamodel is presented in Figure
18.

Figure 17.The core classes used for the method decomposition

Figure 18.Composite metamodel of the framework for the partial agile method adaptation

The framework is divided into three tiers. There-
fore, the classes are grouped with respect to these
tiers. An agile method engineer can extend the struc-
ture used for agile method decomposition. This
means he can add new element or relations kinds,
define new internal relations or element levels, sup-
plement the list of application area kinds or define
new types of agility requirements in the first tier.
Using this structure (first tier, dark grey classes),
many agile methods may be structured into patterns

(second tier, light grey classes) composed from ele-
ments and related agility requirements. Many
different patterns can be created by different agile
method engineers due to their different skills or expe-
rience. The pattern is the result of composition of de-
composed different agile methods and is built using
the predefined structure (first tier, dark grey classes).
These patterns may be used for constructing many
implementation models (third tier, white classes) for
the selected partial agile method adaptation.

An Approach for the Metamodel of the Framework for a Partial Agile Method Adaptation

79

6. Case study
In this section, we will overview the application

of the framework by presenting steps that are
performed during all three tiers. Due to a lack of

space, we will present only fragments of each step
using illustrative scenarios. The tasks that will be
covered are presented in Table 4.

Table 4. The tasks of using the framework for the partial adaptation

S1 Extend the metamodel
 S1.1 Add new children classes to “kind” classes
S2 Create the pattern of XP and Scrum agile methods
S2.1 Structure the XP method
S2.2 Structure the Scrum method
S2.3 Merge and generalize similar or complementary elements
S2.4 Couple elements into independent elements
S2.5 Relate elements with corresponding application areas
S2.6 Define adaptation levels for independent elements

S3 Create an implementation model for the partial implementation of XP and Scrum methods
S3.1 Assess environmental suitability for the agile methods
S3.2 Select suitable elements
S3.3 Perform the prioritization of the independent elements with respect to criterions
S3.4 Build the implementation model for the selected elements

Table 5. Extended kind classes with the classes from OPF metamodel

Core classes Detailed classes
Stage Kind Cycle Kind, Phase Kind, Build Kind , Milestone Kind
Work Unit Kind Activity Kind, Task Kind, Work Flow Kind, Technique Kind
Producer Kind Organization Kind, Team Kind, Role Kind, Project Kind, Tool Kind
Language Kind Constraint Kind, Implementation Kind, Modeling Kind, Natural Kind, Specification Kind, Database

Kind, Interface Kind, Scripting Kind
Work Product Kind Application Kind, Architecture Kind, Component Kind, Diagram Kind, Document Kind, Metric Kind,

Model Kind, Requirement Kind, Database Kind, Convent. Kind

S1. Extend the metamodel

S1.1. Add new children classes to kind classes.
The proposed metamodel has a flexible structure that
allows to extend it with the classes from existing
metamodels. For example, an agile method engineer
can extend the proposed metamodel by adding new
classes from the OPF metamodel [34].

S2. Create the pattern of XP and Scrum agile me-
thods

S2.1. Structure the XP method. Using the ori-
ginal source of the XP method [9], it is possible to
extract such elements as XP team (Team Kind),
customer (Role Kind), programmer (Role Kind), ar-
chitect (Role Kind), tester (Role Kind), interaction
designer (Role Kind) and others. They are respon-
sible for producing such elements as metaphor (Ar-
chitecture Kind), user stories (Requirement Kind),
iteration plan (Document Kind), code (Work Product
Kind) using pair programming (Technique Kind) per-
forming estimate iteration (Task Kind), etc. In addi-
tion, corresponding agility requirements such as real
customer involvement, friendly environment, the
policy of the company can be defined.

S2.2. Structure the Scrum method. Using the
original source of the SCRUM method [35], it is
possible to extract such elements as SCRUM team

(Team Kind), SCRUM master (Role Kind), Product
Owner (Role Kind), developer (Role Kind) etc. They
are responsible for producing such elements as Pro-
duct backlog list (Requirement Kind), Sprint backlog
list (Requirement Kind) performing Daily Scrum
Meeting (Task Kind), Sprint Backlog task (Task
Kind), Sprint review meeting (Task Kind) during
Sprint (Phase Kind).

S2.3. Merge and generalize similar or comple-
mentary elements. XP and SCRUM methods are
often described as complementary agile methods.
Therefore, SCRUM is oriented towards the process
while XP emphasizes supplementing techniques and
practices. However, the overlapping elements also
exist (see examples presented in Table 6.
Table 6. Overlapping or complementary elements from XP
and SCRUM

XP SCRUM
Iteration Sprint
User stories Product backlog list
User stories selected for iteration Sprint backlog list
Metaphor Architecture

Also, the common elements such as developer,
tester, customer, process lifecycle exist in most ISD
methods and they are a subject for merging when
creating a pattern.

G. Mikulėnas, R. Butleris, L. Nemuraitė

80

S2.4. Couple elements into independent ele-
ments. If we take a closer look at the descriptions of
elements in the agile methods, we will find that most
of them are closely related to each other. For
example, a user story (Work Product Kind Re-
quirement Kind) is closely related to such tasks as
derive requirements (Task Kind), analyze require-
ments (Task Kind), estimate requirements (Task
Kind), and to such producers as developer (Role
Kind), customer (Role Kind) and project manager
(Role Kind). The independent element that consists
of these smaller elements simplifies the use of these
elements later, working in the third tier.

S2.5. Relate elements with corresponding ap-
plication areas. The relations of elements and appli-
cation areas also facilitate the selection of elements
by the end user. Such elements as “Pair Program-
ming”, “Refactoring” may be related to such applica-
tion area as “Code quality”. The elements “Ten-
Minute Build”, “Continuous Integration” can be
related to “Early testing”. The elements “Test-First
Programming”, “Incremental development” may be
related to “Get close to business values”. The ele-
ments “Open workspace”, “Energized work” may be
related to “Tuning work performance”.

S2.6. Define adaptation levels for independent
elements. Sometimes, it is not desirable to follow all
the steps, sections or adaptation levels when adapting
an element. For example, if a template is used for
requirement specification, then sometimes only the
major sections are used for capturing the require-
ments due to some restrictions on time or available
resources. Another example is selecting the duration
of iteration. “Weekly cycle” is defined as an element
describing the duration of the iteration. It may be im-
possible to perform a weekly iteration. The possible
definitions of the element adaptation levels would be
full = weekly, minimal = bi-monthly, balanced = one
week during a month.

S3. Create an implementation model for the
partial implementation of XP and Scrum methods.

S3.1. Assess environmental suitability for the
agile methods. Agile methods are not suitable every-
where due to their specific nature. The extraction of
agility requirements gives the possibility to perform
an approximate assessment of the method suitability.
For example, if an IT company is performing a pro-
ject where requirements are clear, unambiguous, and
non-changing, but there is a poor customer involve-
ment, project manager distrusts the stakeholders, then
it is likely that the more rigorous plan-driven ISD
methods should be used instead of the agile methods.

S3.2. Select suitable elements. From the end
user’s point of view, the framework facilitates the
process of element selection. For example, customer
identifies his needs by selecting application areas
“Code quality”, “Tuning work performance” and
“Get close to business values” first. Then, consi-
dering the existing relations, corresponding elements
such as “Pair Programming”, “Refactoring”, “Test-

First Programming”, “Incremental development”,
“Open workspace”, “Energized work” can be
proposed as the most suitable solutions.

S3.3. Perform the prioritization of the indepen-
dent elements with respect to criteria. There is
always a balance between the elements needed and
resources available to apply them. Whenever there is
a need for an optimal decision, it is wise to try the
proven decision making techniques. The prioriti-
zation is the process of ranking the elements with
respect to criteria such as the ease of use, ease of
learning, cost, benefit and etc. There is a formal de-
cision making technique such as Analytic Hierarchy
Process (AHP) that should be used for element prio-
ritization [36].

S3.4. Build the implementation model for the
selected elements. Let us assume that elements
“Refactoring”, “User stories”, “Sprint”, “Metaphor”,
“Open workspace”, “Working conventions”, “Appli-
cation Refactoring”, “Daily sprint meeting”, “Pair
programming”, “Continuous Integration” were
ranked as top ten elements having highest cost/value
ratio among other suitable elements during prio-
ritization. The implementation model for the partial
agile method adaptation can be described as a plan.
The selected top ten elements should be implemented
incrementally during the phases.

Table 7. Implementation of selected elements

Do (Phase 1): try elem1(lvl 1), elem2(lvl 1), elem3(lvl 1),
elem4(lvl 1), elem5(lvl 1),…, elem10(lvl 1);
 Evaluate (Phase 1): dismiss elem2, neutral elem5,
elem10, eager for elem1, elem3, elem4;
Do (Phase 2): try elem1(lvl 2), elem2(lvl 1), elem3(lvl 2),
elem4(lvl 2), elem5(lvl 1),…, elem10(lvl 1);
 Evaluate (Phase 1): dismiss elem10, neutral elem5,
eager for elem3, elem4;
Do (Phase 3): try elem1(lvl 1), elem2(lvl 1), elem3(lvl 3),
elem4(lvl 1), elem5(lvl 1),…, elem10(lvl 1);
 Evaluate (Phase 1) dismiss elem5, eager for elem1;

7. Conclusions

An in-depth analysis of the problem of a partial
agile method adaptation revealed that this problem
can be described as a composition of the several sub-
problems. Subsequently, the required solution for a
partial agile method adaptation must cover all of the
sub-problems. We defined a set of concepts, where
each concept has direct or indirect relation to these
sub-problems. The integral solution has been achie-
ved by developing these concepts, deriving their
classes and organizing them into the framework of
the partial agile method adaptation. The constructed
metamodel for the framework serves as a structure
for the decomposition of the agile methods. It is a
guide for creating patterns and developing models for
the partial implementations of the agile methods from
these patterns.

An Approach for the Metamodel of the Framework for a Partial Agile Method Adaptation

81

A contribution of this paper is manifold. First, it
combines classes from the OPF, ISO/IEC 24744 and
SPEM metamodels along with the new proposed
classes. The developed metamodel also has a straight-
forward structure oriented towards the decomposition
of the lightweight agile methods. Therefore, the me-
tamodel can be extended by adding new element or
relations kinds, defining new internal relations or
element levels, application area kinds or new types of
agility requirements for emergent custom needs.
Moreover, the proposed metamodel implements such
concepts as agility requirements, levels of element
adaptation, application areas, criteria and prioriti-
zation that are used for decision making when
building an implementation model. Note that existing
Situational Method Engineering metamodels are
lacking of such concepts.

References

 [1] L. Ablonskis, L. Nemuraitė. Discovery of complex
model implementation patterns in source code. Infor-
mation Technology and Control, 2010, 39(4),
291−300.

 [2] L. Ablonskis, L. Nemuraitė. Discovery of model
implementation patterns in source code. Information
Technology and Control, 2010, 39(1), 68−76.

 [3] P. Abrahamsson, J. Warsta, M.K. Siponen,
J. Ronkainen. New directions on agile method A
comparative analysis. In proceedings of the 25th
International Conference on Software Engineering,
IEEE Computer Society, 2003, 244 – 254.

 [4] Agile Alliance. Principles behind the Agile Ma-
nifesto. Available from: http://agilemanifesto.org
/principles.html [Accessed 20 September 2009].

 [5] S.W. Ambler. Agile Adoption Rate Survey: March
2007. Available from: http://www.ambysoft.com
/downloads/surveys/AgileAdoption2007.ppt
[Accessed 15 April 2009].

 [6] S.W. Ambler. Agile Modeling: Effective Practices
for eXtreme Programming and the Unified Process.
John Wiley & Sons, 2002.

 [7] A. Armonas, L. Nemuraitė. Using attributes and
merging algorithms for transforming OCL expres-
sions to code. Information Technology and Control,
2009, 38(4), 283−293.

 [8] I. Attarzadeh, O.S. Hock. New direction in project
management success: Base on smart methodology
selection. In proceedings of Information Technology
Symposium, Springer, 2008, 1–9.

 [9] K. Beck. Extreme Programming Explained: Embrace
Change, Second Edition. Addison Wesley Professio-
nal, 2004.

[10] B. Boehm, R. Turner. Using Risk to Balance Agile
and Plan-Driven Methods. Computer, 2003, 36(6),
57–66.

[11] J. Charvat. Project Management Methodologies –
Selecting, Implementing, and Supporting Metho-
dologies and Processes for Projects. John Wiley &
Sons, 2003.

[12] A. Cockburn. Selecting a Project's Methodology.
IEEE Software, 2000, 7(4), 64–71.

[13] A. Cockburn, J. Highsmith. DSDM Business Fo-
cused Development, Addison-Wesley, 2003.

[14] A. Cockburn. Crystal Clear A Human-Powered Me-
thodology for Small Teams. Addison Wesley Profes-
sional, 2004.

[15] J. Drobka, D. Noftz, R. Raghu. Piloting XP on Four
Mission-Critical Projects, IEEE Computer, 2004,
21(6), 70–75.

[16] D.G. Firesmith, B. Henderson-Sellers. The OPEN
Process Framework, an introduction. Addison-Wes-
ley, 2002

[17] E. Georgiadou, K.V. Siakas, E. Berki. Agile quality
or depth of reasoning: applicability versus suitability
respecting stakeholders' needs. In proceedings of
Agile software development quality assurance, In-
formation Science Reference, 2007, 23 – 55.

[18] D. Greer, G. Ruhe. Software release planning: An
evolutionary and iterative approach. Information and
Software Technology, 2004, 46(4), 243–253.

[19] B. Henderson-Sellers, C. Gonzalez-Perez, J. Raly-
te. Comparison of Method Chunks and Method
Fragments for Situational Method Engineering. In
proceedings of Software Engineering ASWEC 2008,
IEEE Computer Society, 2008, 479–488.

[20] ISO/IEC. Software Engineering - Metamodel for
Development Methodologies. ISO/IEC 24744:2007
(E), 2007.

[21] R.E. Jeffries, A. Anderson, C. Hendrickson. Ext-
reme Programming Installed, Addison-Wesley, 2000.

[22] P. Kroll, B. MacIsaac. Agility and Discipline Made
Easy: Practices from OpenUP and RUP. Addison
Wesley Professional, 2006.

[23] C. Lan, K. Mohan, X. Peng, B. Ramesh. How Ex-
treme does Extreme Programming Have to be? Adap-
ting XP Practices to Large-scale Projects. In procee-
dings of the 37th Hawaii International Conference on
System Sciences, IEEE Press, 2004, 342 – 250.

[24] L. Layman, L. Williams, L. Cunninghan. Explo-
ring extreme programming in context: An industrial
case study. In proceedings of the Agile Development
Conference, IEEE Computer Society, 2004, 32–41.

[25] J. Lynch. New Standish Group report shows more
project failing and less successful projects. Available
from: http://www.standishgroup.com/newsroom
/chaos_2009.php [Accessed 2 September 2009].

[26] G. Mikulenas, R. Butleris. An approach for modeling
technique selection criterions. In proceedings of the
15th International Conference on Information and
Software Technologies, IT 2009, Kaunas University
of Technology, 2009, 207−216.

[27] G. Mikulėnas, K. Kapočius. An Approach for Prio-
ritizing Agile Practices for Adaptation. In procee-
dings of 18th International Conference on Infor-
mation Systems Development, Springer, 2010, 485–
498.

[28] G. Mikulėnas, K. Kapočius. A Framework for De-
composition and Analysis of Agile Methodologies
during their Adaptation. In proceedings of 18th
International Conference on Information Systems
Development, Springer, 2010, 547–560.

G. Mikulėnas, R. Butleris, L. Nemuraitė

[29] G. Mikulėnas, R. Butleris. An approach for const-
ructing evaluation model of suitability assessment of
agile methods using analytic hierarchy process. Elect-
ronics and Electrical Engineering, 2010, 10(106),
99–104.

[30] E. Mnkandla, B. Dwolatzky. Agile methodologies
selection toolbox. In proceedings of the International
Conference on Software Engineering Advances
ICSEA '07, IEEE Computer Society, 2007, 72 – 72.

[31] M. Mirakhorli, A.K. Rad, F.S. Aliee, A. Mirak-
horli, M. Pazoki. RDP Technique: Take a Different
Look at XP for Adoption.Software Engineering. In
proceedings of the 19th Australian Conference on
Software Engineering, ASWEC 2008. IEEE Computer
Society, 2008, 656–662.

[32] I. Mirbel. Method chunk federation. In proceedings
of workshops on Exploring Modeling Methods for
Systems Analysis and Design, Namur University
Press, 2006, 407-418.

[33] OMG. Software Process Engineering Metamodel
Specification. OMG Document Number: for-
mal/2002-11-14, 2002.

[34] OPEN Process Framework Repository Orga-
nization (OPFRO). OPF repository. Available from:
http://www.opfro.org/ [Accessed 9 February 2010]

[35] K. Schwaber. Agile Project Management with
Scrum. Microsoft Press, 2004.

[36] D. Silingas, R. Butleris. Towards implementing a
framework for modeling software requirements in
MagicDraw UML. Information Technology and
Control, 2009, 38(2), 153-164.

[37] A. Smaizys, O. Vasilecas. Business Rules Based
Agile ERP Systems Development. Informatica, 2009,
20(3), 439 – 460.

[38] L. Tutkutė, R. Butleris, T. Skersys. An approach
for formation of leverage coefficients-based recom-
mendations in social network. Information Techno-
logy and Control, 2008, 37(3), 245 – 254.

Received September 2010.

