
81

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 2011. No. 2(108)

ELEKTRONIKA IR ELEKTROTECHNIKA

AUTOMATION, ROBOTICS
T 125

AUTOMATIZAVIMAS, ROBOTECHNIKA

Simulation using Interruptions

S. Bartkevicius
Department of Electrical Engineering, Kaunas University of Technology,
Stu str. 48-230, LT-51367 Kaunas, Lithuania, phone: +370 37 300253, e-mail: stanislovas.bartkevicius@ktu.lt
K. Sarkauskas
Department of Control Engineering, Kaunas University of Technology,

str. 48-107, LT-51367 Kaunas, Lithuania, phone: +370 61025585, e-mail: kastytis.sarkauskas@ktu.lt
A. Vilkauskas
Mechatronics Centre for Research, Studies and Information, Kaunas University of Technology,

str. 27, LT-44312 Kaunas, Lithuania, phone +370 61024708, e-mail: andrius.vilkauskas@ktu.lt

Introduction

There are known two methods of organization of con-
trol programs in discrete control systems – polling of de-
vices or subsystems and interruption service. The first one
is simple to program, but is used in relatively not compli-
cated systems, because requires many resources of a pro-
cessor for continuous polling of devices. The second one
requires of a processor attention only if a service is needed.
This necessity calls an interruption of a running program to
make a service. This method is more efficient in sense of
usage of resources, because continuous checking of peri-
pherals devices is not required.

It is helpfully to create and check control programs
and methods using simulation systems. The authors have
built and use program package CENTAURUS CPN [1] for
this purpose. The aim of this paper is to show, how control
systems with interruption service may be simulated by
means of this package. The necessity of design of such
means was called by simulation of traffic control in a ring
crossing. The simulation, using polling, becomes very slow
and not effective, if number of cars increases. For example,
when 21 car is in such crossing with 4 ways, 420 (21*20)
conditions must be checked to avoid collisions on entering
the ring, and the same number of conditions is to be
checked to bypass overrides from the rear [2], when a car
moves around in the ring. Thus, total number of checks to
be made on each step of simulation – 840 and model be-
comes not functional

Solution of the problem of redundant checks

The checking’s, of conflict conditions on each step of
the Petri net seems to be redundant, if organize control
with interruptions. It is necessary to show parameter (ex-
pressions), which may have any transition the net realized

by the means of CENTARUS CPN, before that. Any tran-
sition may be delayed, except of conventional guard ex-
pression. Delay time is defined by „delay expression“.
Usage of colored Petri nets as simulation tool of control
systems requires, as shown in [3], global variables. It is a
bit dangerous, but some special limitations, such as prohi-
bited change of value of a global variable until a current
step of Petri net is not complete, let to avoid hidden links
or cyclic references. Some extensions are made. A transi-
tion can have additional attribute – „finish expression“.
Values of global can be changed only by finish expres-
sions, which all are calculated after a current Petri net step
is finished. A change of a global variable value may cause
branching conditions of the net. On other hand, it may be a
reason to make an interruption.

A transition, in a conventional Petri net, can be fired
only if all values of expressions of input links are found as
tokens in appropriate places, connected to these links. Ad-
ditional boolean expression (guard expression) - must be
satisfied too, if declared. Fired transition causes calcula-
tion of expressions of output links, i. e. generation of out-
put tokens. Therefore, a transition without input links nev-
er can fire.

An interruption of running program on one processor
controller means, that execution of the program is tempora-
rily stopped and a procedure of the interruption service is
executed until finished. The interrupted program is contin-
ued from the brake point after that. Petri nets suppose pa-
rallel firing of transitions; therefore let us treat an interrup-
tion of running program, simulated by Petri net, as firing of
a transition on a special conditions, despite of presence of
input links.

These special conditions are three:
1. Value of a global variable is changed;
2. Special function, causing interruption, is present

in the guard expression of a transition;

82

3. This boolean function returns value „true“.
The special function to cause an interruption is called

Event(fun). The parameter fun is parameter less function
defined by user in declarations. The function fun operates
only with constants or global variables because of absence
of input parameters. It may be concluded, that there is no
need to execute this function, in order to check if an inter-
ruption arise, if no one of global variables is changed.
Furthermore, it is possible in the phase of compilation of
declarations to define global variable or group of them,
change of that can cause an interruption. The fact of
change of a global variable can be easily checked when
finish expressions are calculated.

The algorithm of one step of simulation process writ-
ten in pseudo-code is such:

for all transitions do
if input links exist then

Calculate values of expressions of input
links;

Check, if tokens equivalent for these values
exists in places, to which input chords are

connected;
if all input expressions satisfied then

if value of guard expression is true
then

{Fire this transition}
Calculate values of expressions
of output links;

if finish expression defined
then

Evaluate it and put
the result into temporary store

else if a global value has changed before
then

if guard expression contains function
event and this function returns true
then

{Fire this transition. An inter–
ruption rises}
Calculate values of expressions
of output links;

if finish expression defined
then

Trim up tokens in places – remove tokens used
by input links and put tokens generated by out-
put links.

Evaluate it and put the re-
sult into temporary store;

Remember new values of global variables gen-
erated by finish expressions and stored in tem-
porary store.

The underlined code is added to simulate interrup-
tions.

The example shown in Fig. 1 explains the written
above. The function go, defined in declarations returns
result „true“ then value of global boolean variable R1 be-
comes „true“. This function is included into guard expres-
sion of transition 6. Value of R1can be changed in finish
expression of delayed transition 2 by function Zap, which
realizes assignment of value „true“ to global value R1.The

transition 6 fires only after that, when event R1= true oc-
curs.

Fig. 1. Model with interruption. 1–5 simple model, 6–7 interrup-
tion control

This event originates at the end of the step of the net,
on which delayed transition 2 was fired, delay time has
finished and finish expression of this transition is calcu-
lated, in other words, when all three, before mentioned,
conditions are fulfilled.

Simulation with interruptions

The aim of this paragraph is to show differences in
modeling and simulation using polling and interruptions.
The traffic simulation in a ring crossing was used only as a
test task, show that new modeling system is functioning.

The principles of building Petri net model of the traf-
fic are described in [3, 6] and a crossing is shown in Fig. 2.
A riding car must keep secure distant from a car before,
therefore continuous control of distance is necessary. On
other hand, a car entering the ring must let a car riding
around the ring, if distant between cars is not sufficient [4,
5, 7].

Fig. 2. Ring crossing with riding cars. 1–4 the zones of entering
the ring, 5–8 zones „ring is busy“, A – riding car

It is evident, that such task is asynchronous and sto-
chastic, because appearance of a car near the crossing is
random.

A car A can enter and leave the crossing by any of
four ways (Fig. 3), so it seems reasonable to split the task

83

of riding throughout the crossing into several smaller
tasks:

1. Check, on each simulation step, if a car reached a
zone (1–4) of entering the ring;

2. Check, if a zone „ring is busy“(5–8) is free, because
the presence of a car in these zones prohibit enter-
ing the ring. It means that checking of all cars, if
they are not in a zone of 5–8 is necessary. The
zones 1–4 and 5–8 are coherent in pairs – zone 1
with 5, 2 with 6 and so on;

3. Check, on each simulation step, if each car do not
overtake another car to avoid collision.

The fragment of the net (Fig. 3) shows, how a „rid-
ing“ of a car is realized.

Fig. 3. The net fragment, representing the riding of a car. Names
of transitions and actions, that are simulated by firing of them: go
– car is riding, finish – car is out of simulation field, 118 – car can
move or must stop, stop – car is waiting during one simulation
step

The delayed transition 116 simulates the movement
of a car in one simulation step, in time and distance.

The new position of the car, dot type token, is gener-
ated by output chord of this transition and remembered if
the place 117. The car, if the new position of it is out of the
simulation field, is „sent“ into the part of the model, which
organizes movement of new cars, to be used repeatedly.
The token, representing car is sent, throughout the transi-
tion 118, into place 115, if car can move the next step and
into 48, if car must stop for a while, to avoid a possible
collision. All before mentioned checks are done in the en-
vironment of the transition 118. Checking, if a car reached
the crossing, is done at the 118 transition too.

The main amount of time necessary to simulate riding
of a car is wasted for checks associated with the transition
118. The model with 21 car becomes very slow and not
useful practically.

The same crossing (Fig. 2) can be simulated using
proposed interruptions. The continuous, from step to step,
checking conditions of interruptions is necessary now only.
Many of conditions formulated above can be checked
when an interruption rises.

There are three kinds of interruptions in the model:
1. Interruption occurs, when a car enters one of zones

5–8. The fact, which car did that, is not important at
all;

2. A car entered into one of zones 1–4. It is important,
which car did it and into which zone, here. The ser-
vice program must check, if a coherent zone, 5–8, is
free. The car can enter the ring if „ring is busy“
zone free and stop, if busy;

3. A car overtakes another car, moving before it. Inter-
ruption rises, if distance between both cars becomes

less then secure one. The service program stops the
car.

Services of these interruptions are nested, e.c. the inter-
ruption of the first kind generates conditions of the branch-
ing on service of a interruption of the second type.

The structure of the fragment of the net, where ser-
vices of the interruptions of the first kind are organized, is
shown in Fig. 4. Transitions 614 – 617 fires, when inter-
ruptions, called by entering of a car into zone 5 – 8, respec-
tively, near the south, east, north and west, ways entering
the ring rises. Therefore, these four fragments simulate
service programs of each interruption.

Fig. 4. Subnet realizing interruptions, when a car enters one of
zones 5 – 8, service of the interruptions is organized here too

Transitions 141–152 have finish expressions to make
changes of global variables, which are used in user defined
functions setting necessity of an interruption. Transitions
158–161 check and fix new values of global variables –
symptoms of business of zones 5–8. Therefore, it is not
necessary organize checking of this condition for all cars
on each simulation step. It is one of reasons, why speed of
simulation rises.

The fragment of the net (Fig. 5) shows, how a „rid-
ing“ of a car is realized with interruptions.

Fig. 5. The net fragment, simulating riding of a car step by step:
go – car is riding, 118 – subnet, where checking of conditions of
interruptions is modeled

Firing of transition 116 is equivalent to movement of
a car by one step. All checks of before mentioned interrup-
tion conditions are realized in the subnet, represented by
transition 118.

The structure of the subnet 118 is shown in Fig. 6.
The fragment in this picture illustrates simulation of a car
riding throughout the crossing (Fig. 2) with interruptions.
Transition 760 fires, when a car moves, on current simula-
tion step, without any conflict. Transition 762 fires, when a

84

car leaves the area of the crossing. A conflict causes firing
of the transition 764 and it is equivalent to stop of a car for
a time interval, which is realized as delay of the transition
765.

Fig. 6. The subnet fragment, representing the riding of a car,
when interruptions are used. Names of transitions and actions,
that are simulated by firing of them: Free – car can ride, because
there is no obstacles, conflict – an obstacle fixed, stop – car is
waiting during one simulation step, after conflict – permission to
ride is granted for a car, finish – car is out of simulation field

The transition 761 fires after conflict is solved and a
car may continue movement under control of the transition
760.

It can be noted, that there is no need to check conflict
conditions on each step of simulation. It lets significantly
increase the simulation speed.

Conclusions

Simulation of control systems with large amount of
interacting objects requires a powerful computer, if process

is realized using polling. The number of conditions to
check becomes huge and these checking must be done on
each step of simulation. Simulation process becomes slow
and, practically, not useful.

The new simulation technique and program package
using interruptions generated by the model itself are pro-
posed. This technique, applied to simulation of traffic
throughout a ring crossing, allows significantly simplify
the model structure and make the simulation process ap-
preciably faster.

References

1. . Spalvoti Petri tinklai. Pro-
graminis paketas CENTAURUS CPN. – Kaunas: Technologi-
ja, 2008. – 59 p.

2. Autonomous mobile robot control
using IF–THEN rules and genetic algorithm. // Information
technology and control, 2008. – Vol. 37. – No. 3. – P. 193–
197.

3.
Rationalization of the Path Search Algorithm.

// Electronics and Electrical Engineering. – Kaunas: Techno-
logija, 2010. – No. 5(101). – P. 72–82.

4. An interval compositional
vehicular traffi c model for real–time applications // IEEE In-
telligent Vehicles Symposium. – Eindhoven, Netherlands,
2008. – P. 494–499.

5.
K. Influence of dimensions of a mobile robot in-

to navigation trace // Proceedings of International Conference
Electrical and Control Technologies’2010. – Kaunas: Tech-
nologija. 2010. – P. 47–50.

6. Creation
of vector marks for robot navigation // Electronics and Elect-
rical Engineering. – Kaunas: Technologija, 2008. – No. 4(84).
– P. 27–30.

7. Modelling and Investigation of Car
Collisions // Transport. –Vilnius, 2007. – No. 22(4). – P.
279–283.

Received 2010 10 21

S. Bartkevicius K. Sarkauskas A. Vilkauskas. Simulation using Interruptions // Electronics and Electrical Engineering. –
– – P. – .

Simulation of control systems with large amount of interacting objects requires a powerful computer, because traditionally systems
with polling are used. The number of conditions to check on each step of simulations becomes so large, that models become unfunction-
al. The new simulation technique, using program interruptions, which are organized by the model itself is proposed. Replace of polling
by interruptions lets radically increase the speed of simulation and simplify the model structure. Ill. 6, bibl. 7 (in English; abstracts in
English and Lithuanian).

S A. Vilkauskas. odeliavimas taikant
elektrotechnika. – – r – P. – .

S ia labai spartaus atlieka-
mas nuosekliu apklausos principu. Tokioje sistemoje susidaro tiek daug , imitacijos e-

etodas, kai pats modelis gali organizuoti pertraukimus atsisakydamas pro-
gramavimo, paremto nuoseklios apklausos principu. Apklausos principo pakeitimas pertraukimo metodu gerokai padidino modeliavimo

pa Il. 6, bibl. 7

