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NOMENCLATURE 

SAFEM – Semi Analytical Finite Element Method; 

WFEM – Wave Finite Element Method; 

WSFEM – Wave Spectral Finite Element Method; 

SBFEM – Scaled Boundary Finite Element Method; 

FEM – Finite Element Method; 

BEM – Boundary Finite Element; 

FFT – Fast Fourier transform; 

SHM – Structural health monitoring; 

NDT – Non-destructive testing; 

dof – the number of degrees of freedom; 

Re(∙) – the real part of a complex number; 

Im(∙) – the imaginary part of a complex number; 

𝜈 – Poisson’s ratio; 

𝜆 – wavelength; 

𝑘 – wavenumber; 

𝜔 – angular frequency; 

𝑓 – frequency; 

𝜎 – stress; 

𝜀 – strain; 

𝑡 – time; 

𝑉 – volume; 

𝑆 – square; 

𝑐𝑝ℎ – phase velocity; 

𝑐𝑔𝑟 – group velocity; 

𝐸 – Young’s modulus; 

𝜁 – viscosity; 

𝜌 – mass density; 

𝑖 – complex unit; 

𝛿 – Kronecker’s delta; 

𝑄 – quality factor; 

𝒖 – displacement vector; 

𝑴 – mass matrix; 

𝑲 – stiffness matrix; 

𝑫 – elasticity tensor. 
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Introduction 

The simulation of propagating waves is of primary importance in many 

engineering applications, such as planning ultrasonic measurement procedures, 

monitoring of the structural integrity of pipelines by analyzing pressure pulses 

propagation, earthquake waves propagation and many other types of real-life 

applications. Traditionally, the computational methods of wave propagation analysis 

in geometrically complex structures and environments use the finite element or the 

finite difference approaches. However, inherent shortcomings arise due to huge 

dimensionalities of the models in cases when the length of the analyzed waves is much 

lesser than the linear dimensions of the structure. The limit situation is the infinite 

wave propagation environment in one or several directions, which actually is 

extremely difficult to simulate by traditional FEM because fictitious wave reflections 

form artificially introduced boundaries of the computational domain. The existing 

techniques within traditional FEM which enable to cope with the infinite domains are 

the non-reflecting boundary condition (suitable only for acoustic waves), scaled-

boundary FEM techniques and perfectly matched layers. However, the latter 

approaches are approximate, and they also require significant computational 

resources, anyway. The semi-analytical approaches such as the SAFE method seem 

to be promising as they enable their users to avoid the discretization of the structures 

along the infinite direction. Even though the principles of SAFE have been well-

known for several decades, the approach is still underdeveloped as perfectly as the 

traditional FEM – therefore, further research is still necessary.    

The guided waves in the waveguide (plate, bar, pipe, etc.) are described by their 

dispersion curves. The dispersion curves present the relationships of phase, group and 

energy velocities of the waves against the wave frequency.  The SAFE method 

facilitates the calculation of dispersion curves for waveguides having uniform cross-

section geometries along at least one direction. The finite element covers the 

discretization of the waveguide cross-section only. Along the wave propagation 

direction, the harmonic solutions in space and time are used. The expressions of such 

solutions use the exponential functions in the space of complex numbers. Similarly to 

the conventional FEM, the SAFEM enables to express forced time-dependent wave 

response analysis as a superposition of modal responses.  

While there are many researches addressing waveguides in vacuum, SAFE 

modeling of traveling waves in dissipative environments is still a challenging task. It 

is caused by the fact that the traditional SAFE analyses presume the amplitude decay 

of the traveling wave as negligible and, therefore, certain mathematical 

simplifications of the FE formulation are possible. In the case of higher damping, such 

simplifications would lead to considerable errors of the solution. In this research, the 

SAFE formulation is extended in order to treat the wave propagation problems in 

viscous environments.  The energy dissipation model is presented via Rayleigh 

damping (i.e., energy dissipation caused by material damping) and via the leaky wave, 

where the waveguide immersed into the perfect fluid is considered. 
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Research Object 

The research object is the semi-analytical finite element models for simulation 

of guided waves in viscous environments. 

Research Aim 

The aim of the research is the development of algorithms for obtaining the 

propagating wave modal solutions and forced responses of wave propagation in the 

environments with a higher level of viscosity. 

Research Tasks 

1. To implement Semi Analytical Finite Element for extracting modal 

solutions of guided waves in waveguides surrounded by vacuum, where 

the level of Rayleigh damping requires to use solutions in terms of 

complex wavenumbers; 

2. To obtain the forced response of the waveguide with internal Rayleigh 

damping placed in vacuum environment to external harmonic and non-

harmonic loading; 

3. To verify the forced wave propagation results obtained with SAFEM 

along a short propagation path by comparing them against the results 

obtained by the 3D FEM model which represents a bounded segment of 

the same waveguide; 

4. To develop the SAFE model of a waveguide immersed into the perfect 

fluid and to obtain the corresponding dispersion curves; 

5. To analyze the theoretical feasibility of obtaining the forced response 

for an immersed rectangular waveguide. 

Scientific Novelty 

The scientific novelty of this dissertation is in the extension of the SAFE models 

of unidirectional waveguides by incorporating the Rayleigh damping of the 

waveguide material. Differently from the already existing analyses, the formulation 

containing the complex conjugate wavenumbers has been used in order to obtain 

mathematically exact solutions along the wave propagation direction. A novelty of 

this work is also the transition from the earlier known immersed into the perfect fluid 

plate model to the immersed waveguide model. 

Practical Relevance 

The developed approach can facilitate the development and enhancement of the 

software for the computer simulation of guided wave propagation with the application 

to damped waveguides positioned in fluids. From the computational standpoint, the 

developed approaches enable to reduce the dimensionality of the models and thus save 

computer resources.  From the standpoint of the engineering practice, such 

simulations facilitate the design of the wave- and vibrations-based non-destructive 
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measurement procedures by predicting the wave responses from fault-free structures 

or the structures with internal faults.    

Approbation of the Research Results 

The main results of the dissertation are represented in 4 scientific publications: 

2 in periodical scientific journals (ISI Web of Science) and 2 in international 

conference proceedings. 

The Structure and Volume of the Dissertation 

This doctoral dissertation consists of an introduction, 3 main chapters, 

conclusions, references and a list of publications. The main body of the doctoral 

dissertation is presented in 108 pages. The main part of the dissertation contains 54 

figures and 112 entries in the reference list.  
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1 Review of Research Related to Short Wave Modeling 

1.1 The Application of Guided Waves 

Mechanical stresses and strains produced by a source which releases energy into 

the solid body or fluid will propagate away from the source as waves. Periodic 

excitation imposed on an elastic structure will cause its dynamic response as the 

elastic harmonic wave. One of the useful engineering applications of propagating 

waves lies in the field of ultrasonic measurements (UM) and Non-Destructive Testing 

(NDT). The waves in the bodies under analysis are excited in the ultrasonic frequency 

range by employing piezoelectric transducers.  At such high frequencies, the 

generated wavelengths lie in the range of millimeters or even microns; therefore, they 

should be regarded as short waves with respect to the dimensions of the structures 

under investigation.  

Ultrasonic measurement procedures evaluate particular properties of the 

material or find the locations of internal structural non-integrity by analyzing the 

registered properties of the waves propagating in the structure. The locations of flaws 

are detected by exciting the wave at one location of the structure and by registering 

its reflections produced by the defects.  

Along with the conventional UM technique, the guided wave technique has 

emerged and is already well-established for the long-range inspection. The benefit of 

using a measurement system based on guided waves is the ability to travel long 

distances along the waveguide (Fig. 1.1). The waveguide is a specially designed 

structure for ensuring the transfer of the wave energy over a considerable distance.  In 

the conventional NDT, only a relatively small area can be analyzed by high frequency 

bulk waves. Much wider areas can be analyzed by using guided waves as they are 

considerably longer. Guided wave inspection uses relatively low ultrasonic 

frequencies compared to those used in the conventional UM, typically between 10 −
100 𝑘𝐻𝑧 [1],[2]. 

 
 

a) b) 

Fig. 1.1. (a) Conventional ultrasonic testing; (b) Guided wave testing. 

The guided elastic waves are widely used for the inspection of elongated 

structures for  exploring the structural integrity or possible defects [3], [4], [5], [6]. 

The term guided wave is formed of multiple reflections from the side boundaries of 

the waveguide which add up to the wave traveling in the infinite direction of the 

waveguide. Guided waves can travel on the surface of semi-infinite solids (such as 

Rayleigh waves), on the interface between different material environments (such as 

Stoneley-Scholte waves), along homogenous or multilayered plates, in generic cross-

section beams, axial symmetric rods and cylinders. Only the plate, cylinder and beam 

types are the simplest waveguides. Generally, any structure uniform (both in the 
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geometrical and in the physical sense) in at least one direction can be regarded as a 

waveguide. For example, the simulation in waveguides consisting of carbon fiber 

reinforced plastics (CFRP) rods can help to find delamination regions in samples [7]. 

The inspected elongated structures, such as pipes and rails, are also treated as 

waveguides in many practical applications [8], [9]. UM could also be applied for 

measuring the viscosity of viscous substances surrounding the waveguide [10], the 

viscosity of fluid density [11], or the viscosity of the properties of  frequency-

dependent viscoelastic polymers [12], etc. 

For the characterization of guided waves, dispersion curves are used which 

display the relationship of wave velocities against frequencies. There are a number of 

different types of waves which can propagate along the waveguides. The types of the 

waves are determined by their displacement shapes over the waveguide’s cross-

section, by the wave frequency and by the wavelength (even though, most commonly, 

the wavenumber – which is the inverse of the wavelength – is used). Such wave 

characteristics of each wave type refer to as the wave mode. Wave modes are the 

solutions to the homogenous wave equation. This means that such non-zero solutions 

corresponding to the modes are possible without any external excitation. They present 

the wave motions which are naturally inclined to propagate along this particular 

waveguide. Each mode of the waveguide represents a stationary traveling wave. 

Dispersion curves also provide information about the phase and group velocities of 

the waves at a particular frequency. This information provides the basis for the design 

of angle- and comb-type transducers used for ultrasonic inspection [13]. The 

calculations acquiring dispersion curves are necessary apriori. They provide a 

foundation for planning the inspection procedure. The wave dispersion phenomenon 

causes a distortion of the shape of the wave pulse when traveling a longer distance 

since the propagation velocity of each wave mode combined in the wavepulse as a 

superposition term may be different.  This dispersion may reduce the resolution of 

UM, therefore, wave simulation analysis is crucially important for the understanding 

and evaluation of the effect caused by this phenomenon. In the engineering practice, 

the effect of dispersion is reduced by using the tone burst of a limited bandwidth in 

those ranges where the rate of the group velocity change with respect to time is 

minimal [14]. 

1.2 Calculating the Solutions for Guided Waves 

The first theoretical approach to guided waves dates back to Pochhammer and 

Chree who were the first researchers to provide a solution in terms of dispersion 

curves of rod waveguides [15], [16]. The traveling wave solutions for plates were 

obtained by Rayleigh and Lamb. The dispersion curves of homogenous and isotropic 

plates can be analytically derived from the Rayleigh-Lamb equation [17], however, 

such solutions are available just for the waveguides of the simplest geometry [18]. 

The extension of the analytical approach is the Global matrix method. It is an 

exact method based on the superposition of bulk waves. The dispersion equations are 

formulated via interference of partial bulk waves which  satisfy the boundary 

conditions of the waveguide [19]. For damped and/or leaky waves, solutions are as 

pairs of the modal frequency and the complex modal wavenumber which satisfy the 
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dispersion equation. During the search for such pairs, some of them might be missed 

[20]. Moreover, the Global matrix method can be applied only to simple waveguides 

such as axisymmetric rods or multilayer plates which are uniform and homogenous 

within a layer in at least one direction. 

Obtaining the dispersion characteristics of complex structures requires different 

numerical approaches, most often based on the finite element method (FEM). Many 

authors, such as Sorohan [9], Hladky-Hennion [21], Damljanovic and Weaver [22], 

and Zienkiewicz [23] have researched FEM application for propagating waves in 

waveguides. FEM is a robust and flexible tool widely preferred for solving general 

problems of physical behavior of structures of the generic geometry and material 

setup.  

However, the traditional 3D finite element approach becomes unsuitable in 

cases of infinite domains. Propagating wave solutions require the infinity of the 

domain at least in one dimension in order to eliminate wave reflections which form a 

standing wave rather than a propagating one.  On the other hand, the FE mesh density 

must be adjusted to the analyzed wavelengths. Usually, 20 to 30 FEs are necessary 

along the characteristic wavelength; therefore, huge dimensionality of the 

computational models is required in those cases when the wavelength is considerably 

smaller than the characteristic length of the structure.  

1.3 Obtaining the Guided Waves Solutions by Using Semi-Analytical 

Methods 

The dimensionality of 3D FE models of waveguides can be reduced by taking 

just a small representative segment of the waveguide structure by using the periodicity 

condition along the wave propagation direction. This enables to obtain the wave 

characteristics via Eigenproblem, where the whole number of wavelengths is 

contained along the length of the structure. This technique is used in the wave finite 

element method  (WFEM) and is easily adopted in commercial FE software in order 

to reduce the computational resources for the simulation of propagating waves [24], 

[25] [26], [27]. However, in cases of complex structures, standard wave elements 

require cumbersome formulations due to the exact analytical wave solutions as the 

interpolation functions of the FE. Moreover, WFEM leads to numerical inaccuracies 

when short waves (compared to the length of the FE slice) are considered. Further 

development of WFEM is the Wave Spectral Finite Element Method (WSFEM). In 

this approach,  the transfer matrix of the structural waveguide is obtained from a thin 

slice by using the conventional FEM. Then, dispersion relations are obtained from the 

transfer matrix and used to build the spectral element matrix. These spectral elements 

could be used to model homogenous waveguides with an invariant cross section over 

long distances [28]. 

Another approach based on the semi-analytical method that requires 

discretization of the boundary only is the Scaled Boundary Finite Element Method 

(SBFEM) [29], [30], [31], [32]. The Semi Analytical Finite Element Method (SAFE) 

requires the discretization of the cross-section in the waveguide and differs from 

SBFEM in terms of FE interpolation functions and leads to another form of the 

obtained Eigenvalue problem [33], [34], [35]. The common assumption for WFEM, 



18 

 

SBFEM and SAFE is the separation of the wave displacement field along the 

propagation direction 𝑂𝑍 from the displacements in other directions by using 

harmonic term 𝑒−𝑖𝑘𝑧. As in most FE formulations, the time domain is transformed to 

the frequency domain by using a harmonic term 𝑒−𝑖𝑤𝑡[36] which allows to calculate 

the steady state solutions via Eigenproblems formulated in real numbers. Whenever 

the material damping in a waveguide is present, much more difficult problems arise 

as the Eigenvalue problem in terms of complex numbers evolves. Thus solutions  

attenuated both in space in time can be expressed [37], [33], [38], [39]. However, such 

an approach still requires further mathematical and algorithmic elaborations, whereas 

the physical interpretation of the obtained complex modal solutions is not always 

obvious. Some of such problems are solved in this work by using SAFEM as a base 

for the computational approach. 

1.4 Semi Analytical Finite Element Method 

The SAFE methodology was first introduced by Lagasse [40] and Aalami [41]. 

Gavrić assumed that the displacement time law along the wave propagation direction 

is shifted by phase π/2 with respect to the in-plane displacement time law over the 

cross section of the waveguide. This shift allowed to formulate the Eigenvalue 

problem in terms of real symmetric matrices [42]. Viola, Marzani and Bartoli [43], 

[44] further developed this technique. They introduced the complex stiffness term 

which allowed simulation of the wave propagation in attenuating media.  

The SAFE technique combines the analytical solution of the propagating wave 

along the length of the uniform waveguide with the FE solution of the 2D 

displacement field over the cross-section of the waveguide. Therefore, it enables the 

modeling of very short waves propagating over very long distances since the 

approximation of the displacement field along the length of the waveguide is not 

necessary. Simultaneously, the  SAFE formulation employs only 2D FE discretization 

for obtaining the 3D solution of the propagating wave [30], [45]. 

Waves in infinite uniform structures such as rails, bars, beams, pipes, etc., were 

efficiently treated by applying SAFEM [46], [47]. The SAFE formulation was   

applied for calculating the wave propagation characteristics of fluid-filled composite 

pipes [38]. It enabled to solve guided wave dispersion relations in structures with a 

periodic geometrical pattern along the wave propagation direction. In this way, waves 

in a stranded wire [48], helical spring [49], laminar [50] waveguides or waves in a 

grooved aluminum plate [50] have been investigated. Waves in a thin elastic 

cylindrical shell were analyzed in [51], [52], [53] in order to predict vibrations and 

underwater acoustic radiations caused by hammer impacts. In addition to acquiring 

dispersion curves, SAFE applications also included modeling of piezoelectric 

transducers attached to waveguides and forced response computation [8, 22, 54, 55]. 

SAFEM and FEM were coupled to solve Lamb waves’ reflections at plate edges [56, 

57]. 

1.5 Modeling Dissipative Environment 

The propagating waves in real environments experience attenuation, the main 

sources of which are the internal material damping and the leaky surrounding 
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environment. In the SAFE approach, the material damping was usually approximated 

by linear viscoelasticity by introducing the complex Young’s modulus [58–61]. 

However, the application of Rayleigh damping seems to have been absent in SAFEM 

until now, though this damping approximation is much more versatile. It is capable of 

accounting for linear viscoelasticity and introduce the mass-proportional, stiffness-

proportional, as well as mass-stiffness-proportional damping. In this way the damping 

models resembling fluid loads may be constructed, as well as the creation of different 

laws of the damping level against frequency may be enabled. Therefore, mass 

Rayleigh damping was explored in this work.  

There are many studies devoted to the investigation of waveguides in vacuum 

with the stress-free boundary condition on its sides (the so-called closed waveguides). 

However, the techniques that support a waveguide’s interaction with a leaky medium 

(open waveguides) are still under development. Concrete rods buried in soil, thin-

walled pipes filled with a fluid and similar structures require modeling of the 

surrounding medium, which causes the propagating wave to attenuate due to the 

leakage of the energy. Leaky waves are also important in ultrasonic applications. 

When a leaky wave propagates, it quickly attenuates because of losing energy to the 

surroundings. For instance, a crack in the inspected structure can partially block the 

energy leakage and hence reduce attenuation. The size of the crack can be evaluated 

by measuring the amplitude of the leaky wave [62].  

The leaky medium surrounding the waveguide is commonly assumed to be 

unbounded. This creates additional difficulties for computational modeling. An 

artificial infinity of the surrounding medium can create wave-absorbing regions [63, 

64]. However, such absorbing regions require highly refined meshes, the number of 

FE in which may be much bigger than the number of FEs in the waveguide itself. 
An approach combining SAFEM and the perfectly matched layer (PML) 

technique may be used for computing the leaky modes which carry energy away from 

the waveguide to the surroundings. Complex coordinates are used in the PML domain, 

and  therefore complex wavenumbers are obtained which describe rapidly absorbed 

leaky waves [37, 49, 61, 65, 66]. However, in this formulation, the computational 

domain surrounding the waveguide is necessary. In addition, the sorting procedure of 

the Eigenvalue solutions is necessary in order to identify the physically meaningful 

solutions. 

The 2.5 D boundary element technique [67] was used to model the surrounding 

leaky medium. This approach involves the complex non-linear Eigenvalue problem 

for obtaining the wavenumbers of the damped waveguides. However, the 

computational time was longer compared to the SAFEM coupled to infinite elements 

or PML [68].  

The simple approximation by dashpot boundary conditions included in SBFEM 

can lead to sufficiently accurate results for waveguides embedded in the surrounding 

solid medium [31], [69]. An iterative exact dashpot boundary condition was employed 

in SBFEM for obtaining the wavenumbers for a waveguide immersed in the perfect 

fluid [70]; Hayashi et al. have extended the SAFE formulation for plates surrounded 

by the leaky medium [71]. Waveguides interacting with a fluid support distinct quasi-

Scholte surface waves which are absent in the case of vacuum. The Scholte wave 
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propagates at the interference between the waveguide and the fluid; it tends to 

dissipate energy rather slowly. 

In this work, the approach of the immersed plate will be adopted to account for 

the surrounding perfect fluid. The leaky medium combined with material damping is 

treated as a dissipative environment for the propagating wave. 

1.6 Bulk Wave Propagation in Unbounded Medium 

The general equation for the time harmonic elastic wave in unbounded isotropic 

medium reads as [58]: 
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 (1) 

where 𝜌 is the mass density, 𝒖 = (𝑢𝑥 𝑢𝑦 𝑢𝑧)𝑇 is the displacement vector 

and 𝝈 is the  3 × 3 stress tensor. 

When using vector operator ∇= (
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
)
𝑇

and notation 𝑖, 𝑗, 𝑘 ∈ {𝑥, 𝑦, 𝑧},  

(Eq. 1) reads as: 

 ∇𝝈 = 𝜌
𝜕2𝒖

𝜕𝑡2
 or 𝜎𝑖𝑗,𝑗 = 𝜌

𝜕2𝑢𝑖

𝜕𝑡2
. (2) 

Due to the symmetry of 𝝈, the constitutive Hook’s law for the isotropic material 

reads as [58]: 

 𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘+2𝜇𝜀𝑖𝑗, (3) 

where 𝜆 and 𝜇 are Lame constants describing material stiffness properties, 𝛿 is the 

Kronecker delta, and 𝜀𝑖,𝑗 =  
1

2
(∇𝒖 +  (∇𝒖)𝑇) is the strain. Lame constants are 

interlinked with Young’s modulus 𝐸 and Poisson’s ratio 𝜈 as [58]: 

 𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
 and 𝜇 =

𝐸

2(1+𝜈)
. (4) 

The vector form of Navier’s governing dynamic equation can be obtained from 

(Eqs. 1–3) [46]:  

 𝜌𝒖̈ = (𝜆 + 𝜇)∇(∇𝒖)+ 𝜇∇2 𝒖. (5) 

The displacement vector 𝒖 can be decomposed in terms of derivatives of 

compressional scalar potential 𝝓 and an equivoluminal vector 𝝍 = (𝜓𝑥 𝜓𝑦 𝜓𝑧)𝑇 

[46]: 

 𝒖 = ∇𝝓+ ∇ × 𝝍. (6) 

Substitution of  (Eq. 6) to (Eq. 5) yields two (due to displacement 

decomposition) Helmholtz differential equations [46]: 
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𝜕2𝝓

𝜕𝑡2
=

𝜆+2𝜇

𝜌
∇2𝝓 = 𝑐𝑝ℎ𝐿

2∇2𝝓,  (7) 

 ∇2𝝍 =
𝜇

𝜌

𝜕2𝝍

𝜕𝑡2
= 𝑐𝑝ℎ𝑆

2 𝜕
2𝝍

𝜕𝑡2
, (8) 

where 𝑐𝑝ℎ𝐿 and 𝑐𝑝ℎ𝑆 are phase velocities of longitudinal and shear waves, 

respectively. Their wavenumbers are obtained as 𝑘𝐿,𝑆 =
𝜔

𝑐𝑝ℎ𝐿,𝑆
, where 𝜔 is an angular 

frequency of the wave. 

The solutions to (Eq. 7) and (Eq. 8) read as [46]: 

 𝝓 = 𝚽𝑒
𝑖(±𝑘𝐿𝑥𝑥±𝑘𝐿𝑦𝑦±𝑘𝐿𝑧𝑧−𝜔𝑡) and 𝝍 = 𝚿𝑒

𝑖(±𝑘𝑆𝑥𝑥±𝑘𝑆𝑦𝑦±𝑘𝑆𝑧𝑧−𝜔𝑡), (9) 

where 𝚽 and 𝚿 are the amplitudes of longitudinal and shear waves, respectively, 𝑘𝐿𝑥, 

𝑘𝐿𝑦, 𝑘𝐿𝑧, 𝑘𝑆𝑥, 𝑘𝑆𝑦 and 𝑘𝑆𝑧 are projections of the wavenumbers of longitudinal and 

shear waves on the 0𝑋, 0𝑌 and 0𝑍 axes, respectively. 

 

 

Fig. 1.2. A representation of (a) shear and (b) longitudinal bulk waves.  

The oscillations of the shear (dilatational, or S) wave occur perpendicularly to 

the direction of the propagation of the wave. The oscillations of the longitudinal 

(pressure, or P) wave take place in the same direction as the direction of propagation 

of the wave (Fig. 1.2). These are the two main types of waves in the elastic medium. 

1.7 Guided Wave Propagation in Bounded Medium 

When a harmonic bulk wave propagates in bounded media, reflections and 

refractions occur from the boundaries. Let us consider the boundary between the 

isotropic medium and vacuum. In this case, no energy losses due to the radiation of 

bulk waves occur (i.e., there is no refraction), since incident bulk waves at the solid-

vacuum interface are fully reflected, and also another wave type is generated as 𝑃 →
𝑆 or  𝑆 → 𝑃 . Fig. 1.3 shows incident longitudinal 𝑃𝐼 (Fig. 1.3 (a)) and shear 𝑆𝐼 (Fig. 

1.3 (b)) waves with incidence angles 𝛾 and  , respectively, in the semi-infinite isotropic 

medium. Each incident bulk wave yields reflected and converted waves. The total 

wave potential (𝝓, 𝝍) is the superposition of incident and reflected waves, which can 

be presented as [72]: 
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𝝓𝑃 = 𝚽𝑃𝐼𝑒

𝑖(𝑘𝐿cos (𝜃)𝑦+𝑘𝐿sin𝜃𝑥−𝜔𝑡) +𝚽𝑃𝑅𝑒
𝑖(−𝑘𝐿cos (𝜃)𝑦+𝑘𝐿sin𝜃𝑥−𝜔𝑡)

𝝍𝑃 = 𝚿𝑃𝑅𝑒
𝑖(−𝑘𝑆cos (𝛾)𝑦+𝑘𝑆sin (𝛾)𝑥−𝜔𝑡),

 (10) 

where 𝚽𝑃𝑅, 𝚿𝑃𝑅 are the amplitudes of the reflected longitudinal and shear waves 

generated by the incident longitudinal wave with amplitude 𝚽𝑃𝐼. 

Similarly, the total wave potential for the shear waves can be written as [72]: 

 
𝝓𝑆 = 𝚽𝑆𝑅𝑒

𝑖(−𝑘𝐿cos (𝜃)𝑦+𝑘𝐿sin𝜃𝑥−𝜔𝑡)

𝝍𝑆 = 𝚿𝑆𝐼𝑒
𝑖(𝑘𝑆cos (𝛾)𝑦+𝑘𝑆sin (𝛾)𝑥−𝜔𝑡) +𝚿𝑆𝑅𝑒

𝑖(−𝑘𝑆cos (𝛾)𝑦+𝑘𝑆sin (𝛾)𝑥−𝜔𝑡),
 (11) 

where 𝚽𝑆𝑅, 𝚿𝑆𝑅  are the amplitudes of the reflected longitudinal and shear waves 

generated by the incident shear wave with amplitude 𝚿𝑆𝐼. 

The wavenumbers of the longitudinal and shear waves are linked by Snell’s law 

as [72]: 

 
sin (𝜃)

sin (𝛾)
=

𝑘𝑆

𝑘𝐿
=

𝑐𝑝ℎ𝐿

𝑐𝑝ℎ𝑆
. (12) 

  
a) b) 

Fig. 1.3. Incidence of (a) longitudinal and (b) shear waves at the boundary of the semi-

infinite isotropic medium. 

In the homogenous elastic layer, harmonic waves propagate due to the 

back and forth reflections between the two planar boundary surfaces. The 

steady state of the harmonic Lamb wave as a guided wave finally appears as a 

result of the superposition (constructive interference) of the bulk waves 

traveling obliquely to the waveguide direction and repeatedly reflected and 

type-converted at the two boundaries (see Fig. 1.4). Lamb waves are referred 

to as the elastic waves where the oscillations take place over all the volume of 

the plate, and the direction displacements vector of each point contains the 

direction of the wave propagation and the plate normal. Wavenumber 𝑘 of the 

Lamb wave is related to the bulk waves wavenumbers 𝑘𝐿 and 𝑘𝑆 as [72]: 

 (𝑘𝐿sin (𝜃))
2
+  𝑘

2
= (

𝜔
𝑐𝑝ℎ𝐿

)

2

  

(𝑘𝑆sin (𝛾))
2
+  𝑘

2
= (

𝜔
𝑐𝑝ℎ𝑆

)

2

, (13) 

https://en.wikipedia.org/wiki/Elastic_wave
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where 𝜃 and 𝛾 are incident angles of longitudinal and shear waves that make up the 

Lamb wave. 

 

Fig. 1.4. The built-up Lamb wave in the plate. 

The dispersion relations (𝜔, 𝑘) of Lamb waves can be obtained from the  

Rayleigh-Lamb equation as [26]:  

 
tan (

𝑞

2
)

tan (
𝑝

2
)
= −

4𝑘2𝑝𝑞

(𝑞2−𝑘2)2
 (14) 

 
tan (

𝑞

2
)

tan (
𝑝

2
)
= −

(𝑞2−𝑘2)
2

4𝑘2𝑝𝑞
, (15) 

where  𝑝2 = (
𝜔ℎ

𝑐𝑝ℎ𝐿
)
2

− 𝑘2 , 𝑞2 = (
𝜔ℎ

𝑐𝑝ℎ𝑆
)
2

− 𝑘2, ℎ =
𝐻

2
, and  𝐻 is the height of the 

plate.  

From (Eq. 14) and (Eq. 14), it follows that only the height of the plate and the 

phase velocities of the bulk waves determine the properties of the Lamb wave at given 

wave frequency  𝜔.  The two equations provide the dispersion relations for 

symmetrical and asymmetrical wave modes, respectively. 

As calculated, wavenumber 𝑘 represents a stationary harmonic wave, it provides 

the modal solution for the dynamic equation in the finite elastic isotropic medium. 

With the increasing 𝜔 (Eq. 14) and (Eq. 15) provide more and more modal 

wavenumbers. The two fundamental wave modes exist over the whole frequency 

range, beginning from very low frequency values. As the frequency increases, new 

higher order modal wavenumbers appear at ‘cut-on’ frequencies.  

For symmetrical wavenumbers, the corresponding displacement field reads as 

[58]: 

𝒖𝑠𝑦𝑚= (
𝑢𝑥
𝑢𝑦
) = (

(Φ1𝑖𝑘 𝑐𝑜𝑠(𝑝𝑦) + Ψ1𝑞 𝑠𝑖𝑛(𝑞𝑦))𝑒
𝑖(𝑘𝑥−𝜔𝑡)

−(Φ1𝑠𝑖𝑛(𝑝𝑦) + Ψ1𝑖𝑘 𝑠𝑖𝑛(𝑞𝑦))𝑒
𝑖(𝑘𝑥−𝜔𝑡)

). (16) 

The unknown Φ1, Ψ1 amplitudes can be obtained after applying traction-free 

conditions at boundaries 𝑦 = ℎ and 𝑦 = −ℎ [58]: 
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{
𝜇(−2𝑖𝑘𝑝Φ1 sin(𝑝𝑦) + (𝑘

2 − 𝑞2)Ψ1 sin (𝑞𝑦)) = 0

−𝜆(𝑘2 + 𝑞2)Φ1 cos(𝑝𝑦) − 2𝜇(𝑝
2Φ1 cos(𝑝𝑦) + 𝑖𝑘𝑞Ψ1 cos(𝑞𝑦)) = 0

 (17) 

For asymmetrical wavenumbers, the corresponding displacement field reads as 

[58]: 

𝒖𝑎𝑠𝑦𝑚= (
𝑢𝑥
𝑢𝑦
) = (

(Φ2𝑖𝑘 𝑠𝑖𝑛(𝑝𝑦) − Ψ2𝑞 𝑠𝑖𝑛(𝑞𝑦))𝑒
𝑖(𝑘𝑥−𝜔𝑡)

(Φ2𝑝 𝑐𝑜𝑠(𝑝𝑦) − Ψ2𝑖𝑘 𝑠𝑖𝑛(𝑞𝑦))𝑒
𝑖(𝑘𝑥−𝜔𝑡)

). (18) 

The unknown Φ2, Ψ2 amplitudes can be obtained from the equation system [58]: 

{
𝜇(2𝑖𝑘𝑝Φ2 cos(𝑝𝑦) + (𝑘

2 − 𝑞2)Ψ2 cos(𝑞𝑦)) = 0

−𝜆(𝑘2 + 𝑞2)Φ2 sin(𝑝𝑦) − 2𝜇(𝑝
2Φ2 sin(𝑝𝑦) − 𝑖𝑘qΨ1 sin(𝑞𝑦)) = 0

 (19) 

(Fig. 1.5) represents the two fundamental wave modes. As from (Eq. 16), the 

symmetrical mode in (Fig. 1.5 (a)) contains both components of longitudinal and shear 

waves. However, because of the dominating longitudinal wave component, the 

symmetrical mode is closer to the longitudinal wave. Similarly, the asymmetrical 

wave mode in (Fig. 1.5 (b)) is closer to the shear wave. However, at higher frequencies 

with the increasing wavenumbers, the curvature of the mode shapes increases, and 

Lamb waves obtain complex vibrational patterns over the height of the plate. 
It can be shown analytically that (Eq. 14) and (Eq. 15) may be reduced to the 

Rayleigh wave dispersion equation in a homogenous half space when the 

frequency approaches infinity [73]. As a result, phase velocities of symmetrical and 

asymmetrical modes converge to each other in the high frequency range. 

  

a) b) 

Fig. 1.5. Representation of the fundamental symmetrical (a) and asymmetrical (b) 

Lamb modes. 

In 3D bodies, the number of fundamental modes increases due to the additional 

boundaries. For example, three groups of modes exist in the rectangular rod (Fig. 1.6). 

The flexural (𝐹) modes are characterized by the prevailing bending deformations in 

the rod, (see Fig. 1.6 (a)). In the longitudinal (𝐿) modes, the particles predominantly 

oscillate along the length of the rod, however, simultaneously, small breathing-like 

transverse displacements are visible in (Fig. 1.6 (b)). The torsional (𝑇) mode describes 

the twisting about the longitudinal axis oscillations of the rod, (see Fig. 1.6 (c)). 
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a) b) c) 

Fig. 1.6. Fundamental flexural (a), longitudinal (b) and torsional (c) modes in a 

rectangular rod. 

At particular incidence angles of bulk waves, the guided surface Rayleigh and 

Love waves can be excited when the waveguide has a boundary with vacuum. The 

surface waves combine both longitudinal and transverse motions where the particles 

of the waveguide move in elliptic orbital paths. Both types of waves have dominant 

S-wave components in the plane normal to the surface and the propagation direction 

(in the Rayleigh surface wave case) or in the plane tangent to the surface and the 

normal to the propagation direction (in the Love surface wave case). 

In those cases when the waveguide is in contact with a solid or a fluid with 

significantly different wave propagation characteristics, the Stoneley and Scholte 

waves similar to leaky Rayleigh waves may exist. Their mechanical energy content is 

concentrated over a few wavelengths around the interface in each medium, depending 

on the material properties of the medium at the interface. However, the major part of 

the wave energy is on the liquid side, whereas the lesser part is on the solid side [74]. 

The velocity of the Scholte wave is smaller, but it is close to the acoustic bulk wave 

velocity in a fluid [75]. 

1.8 Wave Attenuation 

A more general and realistic propagation scenario includes attenuation, which 

describes the decrease of the wave amplitude. The decay of the elastic wave may be 

caused by geometrical damping, scattering, material damping, fluid viscosity or by 

energy leakage into an infinite medium surrounding the waveguide [39], [76], [77]. 

Besides that thermo-effect, it also influences wave attenuation [36]. For simplicity, 

damping can be considered as internal if caused by materials structure and 

characteristics, and external if caused by boundary effects. 

For example, in an unbound isotropic elastic medium in cases of the point 

source, the amplitude decay occurs when affected by only geometrical damping, due 

to which, the spherical wave front varies inversely with the square of the distance 

from the source. This so-called radiational (or geometrical) damping is caused by the 

spreading of the wave energy and mainly depends on the type of excitation and body 

geometry. For example, the amplitude will decrease much faster in cases of the 

spherical pattern point source when compared to two-dimensional energy spread to 

the infinity in a circular pattern from a point source. Due to the finite geometries of 

ultrasonic sources, true bulk waves whose wave fronts are parallel planes cannot be 

excited. 
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Material damping or material absorption is responsible for wave energy 

conversion to heat due to the internal friction forces in the material. As a consequence, 

wave energy is dissipated due to frictional losses. Viscoelasticity, while simulating 

material damping in solids, is usually modeled by using hysteretic or Kelvin-Voigt 

approaches and introducing Young’s complex valued modulus. 

Scattering is caused by inhomogeneities and variations in the material structure. 

Traveling ultrasonic waves may encounter material variations which cause the wave 

to scatter – to refract, reflect or mode convert. Material variations can be inclusions, 

physical disbands, geometrical discontinuities when composites are concerned, etc. 

[58]. Scattering is mostly the reflection wave in directions other than its original 

direction of propagation; as a result, part of the energy from the initial wave is sent 

randomly into different directions within the material. 

Fluid viscosity must be taken into account when the wave in the fluid domain is 

concerned. A hypothetical isotropic solid can represent the fluid accommodating 

viscosity [78]. 

Attenuation due to energy leakage occurs in inhomogenous layered media and 

affects both elastic and viscoelastic materials. As the material parameters in the layers 

significantly differ, so do the phase velocities of bulk waves. Then, the energy leakage 

from the layer with the greater phase velocity to the layer with the smaller one occurs 

[79], [63]. In the case of vacuum, all the bulk waves fully reflect and mode convert 

from the boundary (Fig. 1.3), but at the interface with a different medium, the part of 

the bulk wave is refracted, another part is mode-converted, and the remaining part is 

reflected. Let us consider a medium that supports the higher phase velocity of the 

longitudinal bulk wave when compared with that of the second medium that has a 

boundary with the first one. Let us consider only the longitudinal incident wave in the 

first medium, which at the interface between the media reflects, refracts and mode 

converts (Fig. 1.7). Snell law interlinks incidence θ1, mode conversion θ3 and 

refraction θ4, θ5 angles with phase velocities of incident 𝑃𝐼, mode converted shear 

𝑆𝑅 and refracted 𝑃𝐹, 𝑆𝐹 waves as 

 
sin (θ1)

𝑐
𝑝ℎ𝑃𝐼

=
sin (θ3)

𝑐
𝑝ℎ𝑆𝑅

=
sin (θ4)

𝑐
𝑝ℎ𝑃𝐹

=
sin (θ5)

𝑐
𝑝ℎ𝑆𝐹

. (20) 

If the first medium is a waveguide and the second medium is the perfect fluid, 

the waveguide under harmonic excitation would dissipate energy only via refracted 

𝑃𝐹 longitudinal modes since fluids do not support shear waves. 
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Fig. 1.7. Leaky bulk waves. 

Listed attenuation mechanisms are the main sources of energy dissipation of 

ultrasonic guided waves. However, further in our study, only material damping and 

energy leakage due to the surrounding perfect fluid will be explicitly modeled. 

1.9 Material Rheological Models 

Rheological models are used for the representation of the viscoelastic nature of 

solid materials. Viscoelasticity is the property of materials which exhibit both viscous 

and elastic properties during the deformation. Only linear viscoelastic models which 

are defined in terms of stresses-strains and their first order time derivatives will be 

discussed in the present thesis. Moreover, the idealized models take into account the 

elasticity and the damping of the material separately. 

Simple rheological models are provided in (Fig. 1.8). Springs with parameter 

𝐸 [𝑃𝑎] represent elasticity, whereas dashpots with 𝜁 [𝑃𝑎 ∙ 𝑠] represent viscosity. For 

small strains, the stress in the Hook model (Fig. 1.8 (a)) is proportional to the 

instantaneous strain and is independent from the strain rate as 𝜎 = 𝐸𝜀. In the 

Newtonian model (Fig. 1.8 (b)) which represents a viscous fluid, according to the 

theory of hydrodynamics [80], stress is proportional to the instantaneous strain rate 

and is independent from the strain value as  𝜎 = 𝜁𝜀̇. Viscoelastic damping combines 

the strain rate-dependent energy dissipation of viscous fluids with the strain-

dependent energy storing capacity of elastic solids. The Maxwell and Kelvin-Voigt 

models (Fig. 1.8 (c), (d)) are commonly used for the simulation of linear 

viscoelasticity. The unidimensional Maxwell model consists of a spring and a dashpot 

connected in sequence, where the stress-strain is presented via differential equation 
𝜎̇

𝐸
+
𝜎

𝜁
= 𝜀̇. The Kelvin-Voigt model consists of a spring and a dashpot connected in 

parallel, where the stress-strain relation reads as 𝜎 = 𝜁𝜀̇ + 𝐸𝜀. Generally, different 

combinations of springs and dashpots enable to simulate a large variety of features of 

viscoelastic materials. 
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a) b) 

 
 

c) d) 

Fig. 1.8. Rheological models: (a) Hook, (b) Newton, (c) Maxwell and (d) Kelvin-

Voigt.  

The wave attenuation properties of rheological models can be defined in terms 

of complex valued Young’s modulus  𝐸̂ , the real and imaginary parts of which enable 

to represent the  average stored and dissipated energies. 

Complex Young’s modulus can be considered by assuming harmonic 

displacements in the material. Under harmonic stress 𝜎 = 𝜎0𝑒
𝑖𝜔𝑡, the strain varies 

with the same frequency but generally with a different phase 𝜀 = 𝜀0𝑒
𝑖(𝜔𝑡+𝜑). 

Therefore, complex Young’s modulus under assumption of harmonic vibrations reads 

as [81]: 

 𝐸̂(𝜔) =
𝜎

𝜀
=

𝜎0

𝜀0
𝑒𝑖𝜑 = 𝑅𝑒(𝐸̂(𝜔)) + 𝑖 ∙ 𝐼𝑚(𝐸̂(𝜔)), (21) 

where 𝑅𝑒(𝐸̂) is the storage modulus which determines the stiffness of the relevant 

material, and 𝐼𝑚(𝐸̂) is the loss modulus which defines the energy dissipation of the 

material.  

Such a model of viscoelasticity resulting in the complex structural stiffness 

matrix is widely recognized as the most suitable approach towards introducing 

material damping [82]. In the case of Hook’s model 𝑅𝑒(𝐸̂) = 𝐸 and 𝐼𝑚(𝐸̂) = 0, 

Newton’s model 𝑅𝑒(𝐸̂) = 0 and 𝐼𝑚(𝐸̂) = 𝜁𝜔, Maxwell’s model 𝑅𝑒(𝐸̂) =
𝐸𝜔2𝜁2

𝐸2+𝜔2𝜁
2 

and 𝐼𝑚(𝐸̂) =  
𝐸2𝜔𝜁

𝐸2+𝜔2𝜁
2, Kelvin-Voigt’s model 𝑅𝑒(𝐸̂) = E and 𝐼𝑚(𝐸̂)= 𝜁𝜔 [81]. 

Quality factor 𝑄 is used to evaluate the stored energy and the rate of dissipation 

of energy in viscoelastic materials as [81]: 

 𝑄 =
4𝜋𝑉̅

∆𝑉
,  (22) 

where 𝑉̅ is the average stored energy, ∆𝑉is the dissipated energy per cycle. 

If viscoelasticity is modeled via the rheological model consisting of spring-

dashpot networks, the quality factor reads as [81]: 

 𝑄 =
𝑅𝑒(𝐸̂)

𝐼𝑚(𝐸̂)
. (23) 
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The attenuation of the rheological model can be described as 𝑄−1. The 

attenuation for Hook’s model is 𝑄−1 = 0, as it behaves as a perfectly elastic material 

and is not defined for Newton’s model because it represents the perfect viscous 

material. In Maxwell’s model, the formula reads as 𝑄−1 =
𝐸

𝜔𝜁
 whereas for Kelvin-

Voigt’s model, it is 𝑄−1 =
𝜔𝜁

𝐸
 (Fig. 1.9) [81]. 

  
a) b) 

Fig. 1.9. (a) Attenuation 𝑄−1 of (a) Maxwell’s and (b) Kelvin-Voigt’s models. 

As seen in (Fig. 1.9), Maxwell’s model behaves like a viscous fluid in the low 

frequency range and resembles an elastic material at high frequencies. Kelvin-Voigt’s 

model exhibits just the opposite behavior. Maxwell’s model predicts that stress decays 

exponentially with time, which is accurate for most polymers or soft solids, such as 

numerous metals at temperatures close to the melting point [59]. The attenuation of 

Kelvin-Voigt’s model does not decrease with frequency, therefore it is suitable for the 

representation of material damping in ultrasound propagation.  

In structural analysis, the distribution of Kelvin-Voigt’s rheological model 

elements over the whole structure is conveniently represented by Rayleigh damping 

model which has a conducive mathematical form. 

1.10 Rayleigh Damping Model for Vibrating Structures 

Rayleigh damping enables to take into account the general internal losses in 

vibrating systems. Even though Rayleigh damping has no unambiguous physical 

interpretation, it is widely applied due to its convenient mathematical formulation. In 

case of Rayleigh damping, the structural dynamic equation is supplemented by the 

damping term as:  

 𝑴𝑼̈+ 𝑪𝑼̇ + 𝑲𝑼 = 𝟎 (24) 

where 𝑪 = 𝑎𝑴+ 𝑏𝑲 is the damping matrix expressed as a weighted sum of the 

mass and stiffness matrices.  

Coefficients of Rayleigh damping are interrelated in terms of damping ratio 𝜉𝑗 

and modal angular frequency  𝜔𝑗 of 𝑗-th vibration mode of the structure as:  
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 𝜉𝑗 =
𝑎

2𝜔𝑗
+
𝑏𝜔𝑗

2
, (25) 

where coefficients 𝑎 and 𝑏 can be determined by using the approach of the single 

control frequency or two control frequencies.  

In the first approach, the control frequency 𝜔𝑚 is chosen as the Eigenfrequency 

of the dominant fundamental mode whereas  𝜉𝑚 is regarded as a given value. In this 

case, the Rayleigh coefficients are obtained as 

 𝑎 = 𝜉𝑚 ∙ 𝜔𝑚, 𝑏 =
𝜉𝑚

𝜔𝑚
 . (26) 

Damping ratio 𝜉𝑗 is minimum at frequency 𝜔𝑚, while over other frequency 

ranges, the damping ratio is higher (see Fig. 1.10 (a)). 

In the case of two control frequencies 𝜔𝑚 and 𝜔𝑛 (Fig. 1.10 (b)), it is assumed 

that the damping ratio has the same value at the 𝑚-th and 𝑛-th modes 𝜉𝑘 = 𝜉𝑚 = 𝜉𝑛; 

therefore, the damping coefficients are obtained as [83]: 

 𝑎 = 𝜉𝑘 ∙
2𝜔𝑚∙𝜔𝑛

𝜔𝑚+𝜔𝑛
𝜔𝑚, 𝑏 = 𝜉𝑘

2

𝜔𝑚+𝜔𝑛
. (27) 

The selection of 𝑚-th and 𝑛-th modes at which the damping ratio is prescribed 

as  𝜉𝑘, which the most commonly leads to similar damping ratio values over all the 

frequency range in between the 𝑚-th and 𝑛-th modal frequencies. Therefore, these 

frequencies shall be selected in order to encompass all the frequency components 

which contribute significantly to the overall vibrational response [84]. 

The major limitation of the mass and stiffness proportional damping 

approximation is its inability to represent an arbitrary experimentally observed 

variation of the damping ratios against the vibration frequency in complex situations 

[85].  

  
a) b) 

Fig. 1.10. (a) Rayleigh damping determined at a single mode frequency; (b) Rayleigh 

damping determined at two modal frequencies. 

Rayleigh coefficient 𝑎 (mass damping) may be physically interpreted as the 

external viscous damping component because of the vibration velocities of the nodes. 

Mass damping has a resemblance with Maxwell’s model in terms of the inverse 
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proportionality of the damping ratio against frequency (see Fig. 1.10). Rayleigh 

coefficient 𝑏 may be physically interpreted as the internal viscous damping property 

which is proportional to the strain rate. It is inclined to damp the higher frequency 

components. For high frequencies (> 20 𝑘𝐻𝑧), as it is usually in ultrasound 

applications, mass damping can be considered as negligible [60]. 

1.11 Coefficients of Rayleigh Damping for Viscoelastic Material 

As previously discussed, the rheological model of linear viscoelasticity is 

formulated by using complex Young’s modulus. Rayleigh damping can also be 

specified for taking into account the material viscoelasticity. What concerns the 

practical value for the analysis, the characterization of the material properties on the 

basis of wave propagation features should be mentioned. 

The determination of 𝑎 and 𝑏 coefficient can be linked with complex Young’s 

modulus. The damping loss factor 𝜂 is the ratio of the dissipated energy versus the 

input energy and is defined as [83]: 

 𝜂 =
1

𝑄
=

𝐼𝑚(𝐸̂)

𝑅𝑒(𝐸̂)
= 2𝜉 =

𝑎

2𝜔
+
𝑏𝜔

2
, (28) 

 (Eq. 28) provides the relations between complex Young’s modulus and 

coefficients of Rayleigh damping. In case of high frequencies, where (
𝑎

2𝜔
→ 0), only 

𝑏 coefficient is retained in the model and can be obtained as: 

 𝑏 ≈
𝐼𝑚(𝐸̂)

𝜔𝑅𝑒(𝐸̂)
. (29) 

As it is evident, the 𝑏 coefficient depends on complex Young’s modulus 𝐸̂ and 

angular frequency 𝜔. The 𝐸̂ value can by acquired from the wave solution. At first, 

let us consider 1D elastic wave traveling along the 0𝑋 axis in a viscoelastic material 

[85] as: 

 𝑐̂
𝜕2𝑢

𝜕𝑥2
=

𝜕2𝑢

𝜕𝑡2
, (30) 

where 𝑐̂(𝜔) is the complex valued phase velocity. The real part of the complex 

wavenumber is related with the angular frequency via the phase velocity: 𝑅𝑒(𝑘) =

𝑅𝑒 (
𝜔

𝑐̂
) =

𝜔

c𝑝ℎ
. The solution to (Eq. 30) at 𝜔 reads as: 

 𝑢(𝑥, 𝑡) = 𝑈𝑒−𝐼𝑚(𝑘)𝑒𝑖(𝑅𝑒(𝑘)𝑥−𝜔𝑡) = 𝑈𝑒𝛼(𝜔)𝑒
𝑖(

𝜔

c𝑝ℎ
𝑥−𝜔𝑡)

, (31) 

where 𝛼(𝜔) = −𝐼𝑚(𝑘) = 𝐼𝑚(
𝜔

𝑐̂
) is the attenuation coefficient which describes the 

exponential decay of the wave along the 0𝑋 axis. 

In the general case, the solution of the wave in an infinite viscoelastic solid reads 

as [86]: 

 𝒖𝐿,𝑆 = 𝑼𝐿,𝑆𝑒
−𝒌𝐼𝑚𝑆,𝐿𝑒𝑖(𝒌𝑅𝑒𝑆,𝐿𝑥−𝜔𝑡), (32) 
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where 𝑼𝐿,𝑆 corresponds to the amplitude of the longitudinal (L) and shear (S) wave, 

respectively, 𝒌 =𝒌𝑅𝑒 + 𝑖 ∙ 𝒌𝐼𝑚 = 𝑅𝑒(𝑘)𝒏 − 𝑖 ∙ 𝐼𝑚(𝑘)𝒃 is the complex vector of the 

wavenumber where unit vector 𝒏 describes the direction of propagation, and unit 

vector 𝒃 describes the direction in which the wave exponentially decays [82]. 

Then relations between the wavenumber and the angular frequency can be 

written as [82]: 

𝒌𝐿,𝑆 ∙ 𝒌𝐿,𝑆 = 𝑅𝑒(𝑘𝐿,𝑆)
2
− 2𝑖 ∙ 𝑅𝑒(𝑘𝐿,𝑆)𝐼𝑚(𝑘𝐿,𝑆)𝒏 ∙ 𝒃 − 𝐼𝑚(𝑘𝐿,𝑆)

2
=

𝜔2

𝑐̂𝑝ℎ𝐿,𝑆
2, (33) 

where 𝑐̂𝑝ℎ𝐿,𝑆 is the complex valued velocity of the wave. 

When the medium is elastic, the right-hand side of (Eq. 33) is a real number. As 

a result, the term 𝐼𝑚(𝑘𝐿,𝑆) = 0  (no decay), or 𝒏 ∙ 𝒃 = 0, i.e., the decay direction must 

be the normal to the direction of propagation. When the wavenumber is a real number, 

(Eq. 32) corresponds to the plane wave. When the medium is elastic, the propagation 

direction and the phase propagation direction are always coincident [82]. 

When the medium is viscoelastic, the right-hand side of (Eq. 33) is a complex 

number. The material acoustic properties of a viscoelastic medium can be specified in 

terms of longitudinal and shear waves. However, for the particular material, an infinite 

number of bulk waves can propagate depending on the angle between 𝒏 and 𝒃. For 

practical reasons, material characterization is measured by setting 𝒏 and 𝒃 in parallel, 

i.e., when the wave decays only along the direction of propagation. This definition of 

orientation between 𝒏 and 𝒃 also includes the case of elastic materials, for which the 

acoustic properties are defined by considering the longitudinal and shear plane waves 

[82]. 

The complex bulk wave velocities read as [86]: 

𝑐̂𝑝ℎ𝐿,𝑆 =
𝜔

𝑘𝑅𝑒+𝑖∙𝑘𝐼𝑚
=

𝑐𝑝ℎ𝐿,𝑆

1+𝑖∙
𝑘𝐼𝑚
𝑘𝑅𝑒

=
𝑐𝑝ℎ𝐿,𝑆

1+𝑖∙𝛼(𝜔)𝐿,𝑆
. (34) 

where 𝑐𝑝ℎ is the phase velocity and 𝛼(𝜔) is the angular frequency-dependent 

attenuation coefficient that can be experimentally measured [87], [88], [89]. 

As mentioned, the viscoelastic material properties can be presented in terms of 

complex bulk velocities [33], [90], [61]. Since the wavelength equals 𝜆 =
1

𝑘𝑅𝑒
, the 

attenuation coefficient 
𝛼(𝜔)

2𝜋
 in (Eq. 34) uses the measure unit of Nepers per 

wavelength [
𝑁𝑝

𝑤𝑙
]. An alternative unit for attenuation can be acquired from (Eq. 31). 

As the attenuation coefficient is in the exponent term 𝑒−𝛼(𝜔)𝑥, attenuation in units of 

decibels [𝑑𝐵] can be obtained as 

 20𝑙𝑜𝑔10(𝑒
−𝛼(𝜔)𝑥) = −𝛼(𝜔)𝑥20𝑙𝑜𝑔10(𝑒) ≈ −8.686𝛼(𝜔)𝑥 (35) 

Attenuation in alternative units [
𝑑𝐵

𝑚
] is simply calculated as −8.686𝛼(𝜔). 

The properties of a viscoelastic isotropic material, the complex Young’s 

modulus and the complex Poisson’s ratio can be obtained from complex velocities 

𝑐̂𝑝ℎ𝐿 and 𝑐̂𝑝ℎ𝑆 as [43]: 
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 𝐸̂ = 𝜌𝑐̂𝑝ℎ𝑆
2 (

3𝑐̂𝑝ℎ𝐿
2−4𝑐̂𝑝ℎ𝑆

2

𝑐̂𝑝ℎ𝐿
2−𝑐̂𝑝ℎ𝑆

2 ) and 𝜈̂ = (
𝑐̂𝑝ℎ𝐿

2−2𝑐̂𝑝ℎ𝑆
2

𝑐̂𝑝ℎ𝐿
2−𝑐̂𝑝ℎ𝑆

2 ).  (36) 

Finally, the approximate value of the 𝑏 coefficient that accounts for linear 

viscoelasticity in material under harmonic excitation can be found from (Eq. 29). 

It has been demonstrated [91] that Rayleigh damping, retaining both mass and 

stiffness damping, can be approximated by the analytical generalized three element 

Maxwell’s model obtained by adding a dashpot in parallel to the classical Maxwell’s 

cell (see Fig. 1.11 (a)). For small to moderate damping (𝜉 <  0.25), the attenuation of 

the generalized Maxwell’s model and the damping ratio are linked as [91]: 

 𝜂 =
1

𝑄
≈ 2𝜉. (37) 

The attenuation of the generalized Maxwell’s model is obtained as a sum of two 

terms, one of which is proportional to the frequency whereas the other is inversely 

proportional to the frequency [91]: 

 
1

𝑄
=

1

𝜔

𝐸(𝜁1+𝜁2)

𝜁1
2 + 𝜔

𝜁2

𝐸
. (38) 

It can be noted that, for low damping ratio values, the attenuation curve (Fig. 

1.10) is similar to that of the resulting attenuation curve for the generalized Maxwell’s 

model (Fig. 1.11 (b)). 

 

 
a) b) 

Fig. 1.11. (a) Generalized Maxwell’s model; (b) Attenuation of generalized Maxwell’s 

model. 

 

The corresponding Rayleigh damping model coefficients can be easily obtained 

from (Eq. 38) as [91]: 

 𝑎 =
𝐸(𝜁1+𝜁2)

𝜁1
2  and 𝑏 =

𝜁2

𝐸
. (39) 

The obtained estimates of parameters allow easier adjustment of the models to 

the experimental measurement results. It is of interest to note that when only mass 

damping is considered (𝑏 = 0), Rayleigh damping consisting of only term 𝑎𝑀 is still 

linked with the stiffness matrix via 𝑎, which depends on Young’s modulus (Eq. 39). 
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1.12 Concluding Remarks 

Guided waves have a broad field of application in NDT, mainly in the inspection 

of elongated structures, flaws detection and material parameters determination. 

Extractable analytical solutions for guided waves exist for simple geometry 

waveguides only under certain simplifying assumptions, one of which is the lossless 

material of the waveguide. 

3D FE methods offer a solution for wave propagation in almost any reasonably 

described environments, however, they only do this at high computational costs. The 

assumption that the waveguide is homogenous in at least one direction allows using 

semi analytical methods, for example, SAFEM, which reduce the computational 

resources. Moreover, semi-analytical methods coupled with other techniques, for 

example, the 2.5D boundary element technique, enable users to simulate dissipative 

environments and non-reflecting boundary conditions. These methods also enable to 

reduce the computational resources even more compared to the conventional FEM 

models.  

The presented literature review revealed that wave propagation in dissipative 

environments lacks an unambiguous attenuation mechanism due to the complexity of 

the dissipation phenomenon. A large variety of approximations in accordance to the 

physical nature of the considered problem are applied. There is no general rule of 

choosing the energy dissipation model, therefore, the formulation of wave solutions 

is not straightforward. 

The main sources of wave attenuation in homogenous materials is absorption 

and energy leakage to the surroundings. Leaky waves are not considered when the 

traction boundary condition for the waveguide is set to be free. Idealized rheological 

models account for the material damping in the waveguide. 

From the theory of plane wave propagation in a homogenous isotropic elastic 

body, it was shown that only two types of bulk waves propagate. The superposition 

of these bulk waves results in a complex harmonic displacement field that could be 

used for practical applications. The measured phase velocities and the attenuation of 

bulk waves in real materials can help to determine the attenuation parameters 

simulated by the rheological model. Yet, compromises are inevitable when choosing 

rheological models for damped materials since viscoelasticity generally may depend 

on the frequency in an arbitrary way.  

Rayleigh damping was chosen to simulate material damping since it is employed 

with ease and provides more capabilities for material dissipation behavior when 

compared to constitutive linear viscoelastic models such as Maxwell’s or Kelvin-

Voigt’s. Moreover, to the best of the author’s knowledge, the SAFEM has never been 

applied directly with Rayleigh damping before. 

As material damping and leaky waves are the main sources for attenuation, both 

of these mechanisms will be coupled and applied in SAFEM throughout the remainder 

of this study. 
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2 Safe Formulation for Elastic Waves in Undamped Waveguide  

2.1 Governing Equation 

The detailed mathematical framework of SAFE is presented in [59], [58], [92]. 

Let us consider a 3D waveguide which is uniform and infinite in the 0𝑍 direction with 

a stress-free surface. 

The vectors of displacement 𝒖, Voigt’s stresses 𝝈 and strains 𝜺 at each point of 

the cross-section are presented as: 

𝒖 = (𝑢𝑥 𝑢𝑦 𝑢𝑧)𝑇, 𝝈 = (𝜎𝑥 𝜎𝑦 𝜎𝑧 𝜎𝑥𝑦 𝜎𝑥𝑧 𝜎𝑦𝑧)𝑇 and 

𝜺 = (𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑥𝑦 𝜀𝑥𝑧 𝜀𝑦𝑧)𝑇. 

The generalized Hook’s law is used for determining the 3D volumetric stress-

strain relation as [59]: 

 𝝈 = 𝑫𝜺,  (40) 

where 𝑫 is the stiffness tensor. 

The small strain against the displacement relation reads as [59]: 

 𝜺 =

(

 
 
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝜀𝑥𝑦
𝜀𝑥𝑧
𝜀𝑦𝑧)

 
 
 
=

(

 
 
 
 
 
 
 
 

𝜕𝑢𝑥

𝜕𝑥
𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑧

𝜕𝑧

𝜕𝑢𝑥

𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑥

𝜕𝑧
+
𝜕𝑢𝑧

𝜕𝑥
𝜕𝑢𝑦

𝜕𝑧
+
𝜕𝑢𝑧

𝜕𝑦 )

 
 
 
 
 
 
 
 

. (41) 

The matrix form reads as [59]: 

 𝜺 = (𝑳𝑥
𝜕

𝜕𝑥
𝑳𝑦

𝜕

𝜕𝑦
𝑳𝑧

𝜕

𝜕𝑧
) 𝒖, (42) 

where 

 𝑳𝑥 =

(

  
 

1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0)

  
 

, 𝑳𝑦 =

(

  
 

0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0)

  
 

, 𝑳𝑧 =

(

  
 

0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0)

  
 

. 

In the SAFE formulation, the displacement field along the waveguide is 

assumed as a harmonic propagating wave described analytically by complex 

exponential function 𝑒−𝑖𝜔𝑡, where 𝜔 [
𝑟𝑎𝑑

𝑠
], 𝑘 [

𝑟𝑎𝑑

𝑚
] are the angular frequency of the 

wave and the wavenumber, correspondingly. The cross-section of the waveguide (Fig. 
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2.1) is discretized into 2D first-order serendipity finite elements (FE) [93] and are thus 

used in the following study.  

0  

Fig. 2.1. Discretization with FE in the cross-section of the waveguide. 

The approximate displacement field within the FE reads as: 

𝒖𝑒(𝑥, 𝑦, 𝑧, 𝑡) = 𝑵(𝑥, 𝑦)𝑼𝑒(𝑧)𝑒
−𝑖𝜔𝑡 = (

∑ 𝑵𝑎(𝑥, 𝑦)𝑈̅𝑥𝑎
4
𝑎=1

∑ 𝑵𝑎(𝑥, 𝑦)𝑈̅𝑦𝑎
4
𝑎=1

∑ 𝑵𝑎(𝑥, 𝑦)𝑈̅𝑧𝑎
4
𝑎=1

)𝑒𝑖(𝑘𝑧−𝜔𝑡) =

= 𝑵(𝑥, 𝑦)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡).

 (43) 

where 𝑼̅𝑒 is the nodal displacements vector containing displacements of each node in 

the directions of the three axes, 𝑵(𝑥, 𝑦) is the matrix of approximation functions; 𝑎 is 

the node number within the four nodded FE; 𝑈̅𝑥, 𝑈̅𝑦 and 𝑈̅𝑧 are the nodal 

displacements of 𝑎 -th node in the 𝑂𝑋,𝑂𝑌 and 𝑂𝑍 directions, correspondingly, and 𝑖 
stands for imaginary units.  

Vector 𝑼𝑒(𝑧) denotes the Fourier transform of nodal displacement vector 

𝒖𝑒(𝑥, 𝑦, 𝑧, 𝑡) in respect to time 𝑡 [13]: 

 𝒖𝑒(𝑥, 𝑦, 𝑧, 𝑡) = ∫ 𝑼𝑒(𝑧)𝑒
−𝑖𝜔𝑡𝑑𝜔

+∞

−∞
. (44) 

𝑼̅𝑒 is the Fourier transform of 𝑼𝑒(𝑧) in respect of the 𝑂𝑍 direction: 

 𝑼𝑒(𝑧) = ∫ 𝑼̅𝑒𝑒
𝑖𝑘𝑧𝑑𝑘

+∞

−∞
. (45) 

By substituting (Eq. 43) by (Eq. 42), the strain-displacement relation reads as: 

 
𝜺 = (𝑳𝑥

𝜕

𝜕𝑥
𝑳𝑦

𝜕

𝜕𝑦
𝑳𝑧

𝜕

𝜕𝑧
)𝑵(𝑥, 𝑦)𝑼̅𝑒𝑒

𝑖(𝑘𝑧−𝜔𝑡) =

= (𝑩1 + 𝑖𝑘𝑩2)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡),

 (46) 

where 𝑩1 = 𝑳𝑥
𝜕𝑵(𝑥,𝑦)

𝜕𝑥
+ 𝑳𝑦

𝜕𝑵(𝑥,𝑦)

𝜕𝑦
 and 𝑩2 = 𝑳𝑧𝑵(𝑥, 𝑦).  

When applying Hamilton’s virtual work principle for a single FE, it yields [59]: 

 ∫ 𝛿(𝐸𝑠 − 𝐸𝑘)𝑑𝑡 = 0
𝑡2

𝑡1
, (47) 
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where 𝛿 stands for a virtual quantity; 𝛿𝐸𝑠 = ∫ 𝛿𝜺𝑒
𝑇𝑫

𝑉𝑒
𝜺𝑒𝑑𝑉𝑒 is the variation of the 

strain energy, and 𝛿𝐸𝑘 = ∫ 𝛿𝒖̇𝑒
𝑇𝜌𝑒𝑉𝑒

𝒖̇𝑑𝑉𝑒 is the variation of the kinetic energy within 

the volume of FE, 𝜌𝑒 is the material density within the FE element, and 𝑇 denotes the 

matrix conjugate transpose. 

The integration of  the kinetic term by parts and the virtual work principle yields 

[43]: 

 ∫ (∫ 𝛿𝜺𝑒
𝑇𝑫

𝑉𝑒
𝜺𝑒𝑑𝑉𝑒 + ∫ 𝛿𝒖𝑒

𝑇𝜌
𝑉𝑒

𝒖̈𝑒𝑑𝑉𝑒)
𝑡2

𝑡1
𝑑𝑡 = 0. (48) 

The constitutive strain and the kinetic terms can be expanded to [43]: 

 
∫ 𝛿𝜺𝑒

𝑇𝑫
𝑉𝑒

𝜺𝑒𝑑𝑉𝑒 = ∫ ∫ 𝛿 ((𝑩1 + 𝑖𝑘𝑩2)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡))

𝑇
𝑫

𝑧𝑆𝑒
∙ 

∙ (𝑩1 + 𝑖𝑘𝑩2)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡)𝑑𝑧𝑑𝑆𝑒 .

 (49) 

and 

 
∫ 𝛿𝒖𝑒

𝑇𝜌
𝑉𝑒

𝒖̈𝑒𝑑𝑉𝑒 = ∫ ∫ 𝛿(𝑵(𝑥, 𝑦)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡))

𝑇
𝜌𝑒(−𝜔

2)
𝑧𝑆𝑒

∙

∙ 𝑵(𝑥, 𝑦) 𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡)𝑑𝑧𝑑𝑆𝑒 .

 (50) 

The complex wavenumber 𝑘 = 𝑅𝑒(𝑘) + 𝑖 ∙ 𝐼𝑚(𝑘) describes the spatial 

configuration of the wave propagating along the waveguide. 𝐼𝑚𝑎𝑔(𝑘) means the 

exponent of the wave decay in space. In practical applications, attenuation is 

preferably measured in 
𝑁𝑝

𝑚
 (Nepers per meter, 1𝑁𝑝 = 8.6859 𝑑𝐵), that is, 

1

𝐼𝑚(𝑘)
 is the 

distance over which the amplitude of the travelling wave decreases by 
1

𝑒
. As (Eq. 49) 

and (Eq. 50) produce complex quantities, the conjugate transposes of matrices are 

used where transposition converts complex numbers to their conjugates, as: 

 

∫ 𝛿𝜺𝑒
𝑇𝑫

𝑉𝑒
𝜺𝑒𝑑𝑉𝑒 = ∫ ∫ 𝛿(𝐔̅𝑒

𝑇(𝑩1
𝑇 − 𝑖𝑘∗𝑩2

𝑇)𝑒−𝑖(𝑘
∗𝑧−𝜔𝑡))𝑫

𝑧𝑆𝑒
∙

∙ (𝑩1 + 𝑖𝑘𝑩2)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡)𝑑𝑧𝑑𝑆𝑒 =

∫ ∫ 𝛿(𝐔̅𝑒
𝑇(𝑩1

𝑇 − 𝑖𝑘∗𝑩2
𝑇)𝑒−𝐼𝑚(𝑘)𝑧𝑒−𝑖(𝑅𝑒(𝑘)𝑧−𝜔𝑡))𝑫

𝑧𝑆𝑒
∙

∙ (𝑩1 + 𝑖𝑘𝑩2)𝑼̅𝑒𝑒
−𝐼𝑚(𝑘)𝑧𝑒𝑖(𝑅𝑒(𝑘)𝑧−𝜔𝑡)𝑑𝑧𝑑𝑆𝑒 =

∫ ∫ 𝛿𝐔̅𝑒
𝑇 ((𝑩1

𝑇 − 𝑖𝑘∗𝑩2
𝑇)𝑒−2𝐼𝑚(𝑘)𝑒−𝑖(𝑅𝑒(𝑘)𝑧−𝜔𝑡))𝑫

𝑧𝑆𝑒
∙

∙ (𝑩1 + 𝑖𝑘𝑩2)𝑒
𝑖(𝑅𝑒(𝑘)𝑧−𝜔𝑡)𝑼̅𝑒𝑑𝑧𝑑𝑆𝑒 =

∫ ∫ 𝛿𝐔̅𝑒
𝑇𝑒−2𝐼𝑚(𝑘) ((𝑩1

𝑇 − 𝑖𝑘∗𝑩2
𝑇))𝑫 ∙ (𝑩1 + 𝑖𝑘𝑩2)𝑼̅𝑒𝑑𝑧𝑑𝑆𝑒 =𝑧𝑆𝑒

𝑒−2𝐼𝑚(𝑘)

−2𝐼𝑚(𝑘)
𝛿𝐔̅𝑒

𝑇 ∫  ((𝑩1
𝑇𝑫𝑩1 − 𝑖𝑘

∗𝑩2
𝑇𝑫𝑩1 +𝑆𝑒

+𝑖𝑘𝑩1
𝑇𝑫𝑩2 + 𝑘

∗𝑘𝑩2
𝑇𝑫𝑩1))𝑑𝑆𝑒𝑼̅𝑒 .

 (51) 

and 
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∫ 𝛿𝒖𝑒
𝑇𝜌

𝑉𝑒
𝒖̈𝑒𝑑𝑉𝑒 = ∫ ∫ 𝛿

𝑧𝑆𝑒
𝐔̅𝑒
𝑇𝑵(𝑥, 𝑦)𝑇𝑒−𝐼𝑚(𝑘)𝑒−𝑖(𝑅𝑒(𝑘)𝑧−𝜔𝑡)𝜌𝑒 ∙

∙ (−𝜔2)𝑵(𝑥, 𝑦) 𝑼̅𝑒𝑒
−𝐼𝑚(𝑘)𝑒𝑖(𝑅𝑒(𝑘)𝑧−𝜔𝑡)𝑑𝑧𝑑𝑆𝑒 =

= −
𝑒−2𝐼𝑚(𝑘)

−2𝐼𝑚(𝑘)
𝜔2𝛿𝐔̅𝑒

𝑇 ∫ 𝑵(𝑥, 𝑦)𝑇𝜌𝑒𝑵(𝑥, 𝑦)𝑑𝑆𝑒 𝑼̅𝑒𝑆𝑒
,

 (52) 

where 𝑘∗ is the complex conjugate of 𝑘. 

By substituting (Eq. 52) and (Eq. 51) into (Eq. 48), we obtain the finite element 

equation of the FE of the waveguide cross-section as: 

 
∫ (

𝑒−2𝐼𝑚(𝑘)

−2𝐼𝑚(𝑘)

𝑡2

𝑡1
𝛿𝐔̅𝑒

𝑇(𝑲1𝑒 + 𝑖𝑘𝑲
′
2𝑒 − 𝑖𝑘

∗𝑲′2𝑒
𝑇
+

+ 𝑘∗𝑘𝑲3𝑒 −𝜔
2𝑴𝑒) 𝑼̅𝑒)𝑑𝑡 = 0,

  (53) 

where the FE matrices read as:  

 𝑴𝑒 = ∫ ∫ 𝑵(𝑥, 𝑦)𝑇𝜌𝑒𝑵(𝑥, 𝑦)𝑦𝑥
𝑑𝑥𝑑𝑦, 

 𝑲1𝑒 = ∫ ∫ 𝑩1
𝑇𝑫𝑩1𝑦𝑥

𝑑𝑥𝑑𝑦, 

 𝑲′2𝑒 = ∫ ∫ 𝑩1
𝑇𝑫𝑩2𝑦𝑥

𝑑𝑥𝑑𝑦, 

 𝑲3𝑒 = ∫ ∫ 𝑩2
𝑇𝑫𝑩2𝑦𝑥

𝑑𝑥𝑑𝑦, 

where 𝑴𝑒 is the mass matrix, 𝑲1𝑒 is the stiffness matrix related with planar 

deformations of the cross-section, 𝑲3𝑒 is the symmetric stiffness matrix related with 

the out-of-plane deformations, 𝑲′2𝑒 −𝑲
′
2𝑒
𝑇

 is the skew symmetric stiffness matrix 

which couples planar and out-of-plane effects. 

The integrals in (Eq. 53) are computed by using the Gaussian quadrature rule. 

Since the term 
𝑒−2𝐼𝑚(𝑘)

−2𝐼𝑚(𝑘)
 can be arbitrary (infinite length in the 𝑂𝑍 direction) due to the 

arbitrary nature of the variation of the displacements, thus SAFE Eigenvalue equation 

for FE becomes: 

 (𝑲1𝑒 + 𝑖𝑘𝑲′2𝑒 − 𝑖𝑘
∗𝐊′2𝑒

𝑇
+ 𝑘∗𝑘𝑲3𝑒 − 𝜔

2𝑴𝑒) 𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡) = 0. (54) 

As external excitation in terms of the cross-section tractions is given, the SAFE 

equation reads as: 

 
(𝑲1𝑒 + 𝑖𝑘𝑲′2𝑒 − 𝑖𝑘

∗𝑲′2𝑒
𝑇
+ 𝑘∗𝑘𝑲3e −𝜔

2𝑴𝑒) 𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡) =

= 𝑭𝑒(𝑧)𝑒
−𝑖𝜔𝑡  = 𝑭̅𝑒𝑒

𝑖(𝑘𝑧−𝜔𝑡),
 (55) 

where 𝑭̅𝑒 is a nodal vector of external forces acting upon FE throughout all the length 

of the waveguide given as a propagating excitation wave. 

As SAFE matrices and vectors are assembled to the SAFE structural matrix and 

vector, the structural SAFE equation is obtained as: 

 (𝑲1 + 𝑖𝑘𝑲′2 − 𝑖𝑘
∗𝑲′2

𝑇
+ 𝑘∗𝑘𝑲3 −𝜔

2𝑴)𝑼̅𝑒𝑖(𝑘𝑧−𝜔𝑡) = 𝑭̅𝑒𝑖(𝑘𝑧−𝜔𝑡), (56) 
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where 𝑼̅ is the global vector of unknown nodal displacements over the cross-section. 

In case 𝑭̅ = 𝟎, the homogenous version of (Eq. 56) is obtained as: 

 (𝑲1 + 𝑖𝑘𝑲′2 − 𝑖𝑘
∗𝑲′2

𝑇
+ 𝑘∗𝑘𝑲3 − 𝜔

2𝑴)𝑼̅𝑒𝑖(𝑘𝑧−𝜔𝑡) = 0, (57) 

which is treated as an Eigenvalue problem with 𝜔 or 𝑘  treated as the unknowns. 

2.2 Dispersion Relations 

2.2.1 Dispersion Curves 

The solution of a complex Eigenvalue problem (Eq. 57) at numerous 𝜔 values 

within the selected range provides a number of propagating wave modes. The modes 

are presented in terms of 𝑘, 𝑼 pairs of the wavenumber, and oscillatory displacement 

shape over the cross section. The number of the obtained modes at each 𝜔 value 

depends on the refinement of the FE mesh over the cross-section of the waveguide. 

Each modal displacement shape defines the type of the wave. The relationship of the 

wavenumbers of the same type of the wave against the frequency values is referred to 

as the dispersion relationship (the dispersion curve) of the particular type of the wave. 

The dispersion relationships of the real waveguides are all non-linear. 

Wavenumbers 𝑘 may be real, complex or purely imaginary values. Real values 

𝑘 represent propagating waves. In such a case, 𝑘∗ = 𝑘, therefore, (Eq. 57) can be 

simplified as: 

 (𝑲1 + 𝑖𝑘(𝑲′2 −𝑲
′
2
𝑇
) + 𝑘2𝑲3 −𝜔

2𝑴)𝑼̅𝑒𝑖(k𝑧−𝜔𝑡) = 𝟎. (58) 

Complex wavenumbers 𝑘 represent damped waves. Complex wavenumbers are 

obtained from (Eq. 58), however, they are mathematically correct only in case 

𝑅𝑒(𝑘) ≫ 𝐼𝑚(𝑘), until relation (𝑘∗ ≈ 𝑘) may be assumed as approximately valid. In 

a general case, the matrix expression in (Eq. 58) has to be adjusted by taking into 

account the real and imaginary parts of 𝑘∗ thus generating a non-linear Eigenvalue 

problem. 

Purely imaginary 𝑘 values (𝑘∗ = −𝑘), or 𝑅𝑒(𝑘) ≪ 𝐼𝑚(𝑘) represent end-mode 

solutions as ‘non-propagating waves’. In such a case (Eq. 58) reads as: 

 (𝑲1 + 𝑖𝑘(𝑲′2 +𝑲
′
2
𝑇
) − 𝑘2𝑲3 −𝜔

2𝑴)𝑼̅𝑒𝑖(k𝑧−𝜔𝑡) = 𝟎. (59) 

In our further exploration, we shall use Eigenvalue problem formulation (Eq. 

58) for obtaining solutions which are able to approximately describe weakly-

evanescent guided waves.  

Equation (Eq. 57) is a quadratic Eigenvalue problem with respect to 𝑘. It may 

be transformed into the first order problem as [59]: 

 (𝑨 − 𝑘𝑩)𝑸 = 𝑷, (60) 

where 

𝑨 = (
𝟎 𝑲1 −𝜔

2𝑴

𝑲1 −𝜔
2𝑴 𝑖𝑲2

) , 𝑩 = (
𝑲1 −𝜔

2𝑴 𝟎
𝟎 −𝑲3

) , 𝑸 = ( 𝑼̅
𝑘𝑼̅
)

𝑷 = (
𝟎
𝑭̅
)  and 𝑲2 = 𝑲′2 −𝑲

′
2
𝑇
.
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The homogenous version of equation (Eq. 60) reads as:  

 (𝑨 − 𝑘𝑩)𝑽 = 𝟎, (61) 

where for each given real 𝜔 value 2 × 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑔𝑟𝑒𝑒𝑠𝑂𝑓𝐹𝑟𝑒𝑒𝑑𝑜𝑚 = 2𝑁, natural 

wavenumbers 𝑘 with corresponding natural vectors describing the shape of the mode 

may be obtained. 

Simultaneously, we formulate the left Eigenvalue problem as: 

 𝑾(𝑨 − 𝑘𝑩) = 𝟎 (62) 

even though vector 𝑾1×2𝑁 has no immediate physical meaning. 

Further, we shall use notations for the first halves of vectors 𝑽, 𝑾 as 𝒗𝑁×1 and 

𝒘𝑁×1, where: 

𝑾𝑗 =  (𝒘𝑗 𝑘𝒘𝑗) and 𝑽𝑗 = (
𝒗𝑗
𝑘𝒗𝑗

). 

The natural wavenumber values are obtained from (Eq. 58) in pairs. Solutions 

with positive and negative 𝑅𝑒(𝑘) parts represent propagating wave modes in the 

forward and backward 0𝑍 directions, correspondingly. Complex solutions 

±(𝑅𝑒(𝑘) + 𝑖 ∙ 𝐼𝑚(𝑘)) represent evanescent waves with the amplitude decaying along 

0𝑍. Solutions ±(𝑅𝑒(𝑘) − 𝑖 ∙ 𝐼𝑚(𝑘)) have no physical meaning [94]. Pairs of purely 

imaginary solutions with positive and negative 𝐼𝑚(𝑘) values represent non-

propagating end-modes. The immediate practical value can be traced in the 

propagating and evanescent (in the case of a dissipative environment) wave solutions. 

The algorithm to acquire dispersion relations for propagative waves using 

SAFEM is summarized in (Fig. 2.2). 
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Fig. 2.2. Flowchart of the algorithm to obtain dispersion relations for propagating 

waves using SAFEM. 

For the model verification purposes, dispersions curves of a steel waveguide 

with a rectangular cross-section 0.00508 ×  0.00508 𝑚 were calculated. The 

material properties were: mass density 𝜌 = 7850
𝑘𝑔

𝑚3, Young’s modulus 𝐸 = 2 ∙

1011 𝑃𝑎 and Poisson’s ratio 𝜈 = 0.3. The FE mesh was 4 ×  4 over the cross-section 

of the waveguide. (Fig. 2.3) (a) and (b) show 𝑓(𝑘) and 𝑘(𝑓) solutions presented as 

dispersion curves for the forward-direction travelling waves, where 𝑓 =
𝜔

2𝜋
 is the 

frequency in cycles per second. The 𝑓(𝑘) solutions are acquired from the homogenous 

version of equation (Eq. 60), where wavenumber 𝑘 is considered to be given, and its 

values run in the range of 0 − 250 1/𝑚. The 𝑘(𝑓) solutions are acquired from the 

Hamilton’s principle: zero variation of functional of energy 

න 𝛿(𝐸𝑠 − 𝐸𝑘)𝑑𝑡 = 0
𝑡2

𝑡1

 

 

Traveling displacement field within FE in SAFEM: approximate displacement 

field over the cross-section coupled with a harmonic wave along the length of the 

waveguide  𝒖𝑒(𝑥, 𝑦, 𝑧, 𝑡) = 𝑵(𝑥, 𝑦)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡) 

Weak form of energy balance discrete equation for FE 

න (
𝑒−2𝐼𝑚(𝑘)

−2𝐼𝑚(𝑘)
𝛿𝐔̅𝑒

𝑇(𝑲1𝑒 + 𝑖𝑘𝑲
′
2𝑒 − 𝑖𝑘

∗𝑲′2𝑒
𝑇
+ 𝑘∗𝑘𝑲3𝑒 −𝜔

2𝑴𝑒) 𝑼̅𝑒)𝑑𝑡
𝑡2

𝑡1

= 0 

SAFEM wave equation for structure 

(𝑲1 + 𝑖𝑘𝑲
′
2 − 𝑖𝑘

∗𝐊′2
𝑇
+ 𝑘∗𝑘𝑲3 −𝜔

2𝑴)𝑼̅ = 0 

SAFEM governing equation 

(𝑲1 + 𝑖𝑘(𝑲
′
2 −𝑲

′
2
𝑇
) + 𝑘2𝑲3 −𝜔

2𝑴)𝑼̅ = 0 

Boundary condition: vacuum; material damping: none 

Assumption for non-evanescent waves 𝑘∗ = 𝑘 

 

Analysis of dispersion relations (𝜔, 𝑘, 𝑼̅) 

Eigenvalue problem solver: for given 𝜔 or 𝑘 
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homogenous version of equation (Eq. 60), when frequency 𝑓  is considered to be 

given, and its values run in the range of 0 − 1 𝑀𝐻𝑧. The results agreed reasonably 

well with those published by Hayashi and were backed up by experimental data 

presented in [34]. 

  
a) b) 

Fig. 2.3. (a) 𝑓(𝑘) solutions with 𝑘 = 50 1/𝑚 are shown as the dotted line mark; (b) 

𝑘(𝑓) solutions with 𝑓 = 0.2 𝑀𝐻𝑧 are shown as the dotted line mark. 

(Fig. 2.4) shows the classified natural wavenumbers for forward and backward 

traveling waves at 𝑓 = 0.2 𝑀𝐻𝑧 in the complex plane, where the symmetry in-

between wavenumbers is evident. Four forward-propagating modes were obtained as 

two identical pairs because of the square shape of the waveguide. 

 

Fig. 2.4. Natural wavenumbers in the complex number plane at 𝑓 = 0.2 𝑀𝐻𝑧. 

For representation purposes, the set of numerous obtained natural wavenumbers 

was classified in order to distinguish among the propagating, evanescent and end-

mode waves from each other. As the natural wavenumbers are always calculated with 

a certain numerical error, the symmetry of the values over the complex plane implies 

that arithmetic averages of real and imaginary parts should be calculated. Several 

similarity measures are used in order to determine the type of symmetry of the 

obtained natural wavenumbers.  

(Fig. 2.5) summarizes the convergence of 𝑘(𝑓) fundamental modes solutions at 

𝑓 = 0.2 𝑀𝐻𝑧 (the doted vertical line in (Fig. 2.3 (b)). It can be seen that a small 
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number of FE in the squared 𝑁 × 𝑁 cross-section yields the wavenumber of the 

longitudinal mode to converge rapidly. The accuracy of the solutions for the flexural 

and torsional modes is more sensitive to the mesh size. 

   
a) b) c) 

Fig. 2.5. The convergence of the wavenumber of the fundamental (a) flexural, (b) 

torsional and (c) longitudinal modes of 𝑘(𝑓) solutions due the increment of the mesh size at 

𝑓 =  0.2 𝑀𝐻𝑧.  

A similar convergence behavior is seen in (Fig. 2.6) for 𝑓(𝑘) fundamental 

modes at given wavenumber 𝑘 = 50 1/𝑚 (the horizontal dotted line in Fig. 2.3 (a)).  

 

   
   

Fig. 2.6. The convergence of frequency of the fundamental (a) flexural, (b) torsional 

and (c) longitudinal modes of 𝑓(𝑘) solutions due to the increment of the mesh size at 

𝑘 =  50 1/𝑚. 

It can be noted that the 10 × 10 FE cross-section assures sufficiently accurate 

dispersion relations results for 𝑓(𝑘) and 𝑘(𝑓) fundamental modes. 

2.2.2 Phase and Group Velocities 

Along with the dispersion relations, phase velocity 𝑐𝑝ℎ =
𝜔

𝑅𝑒(𝑘)
 is another way 

for expressing the relations between the wavelength, which is the inverse of the real 

part of 𝑘, and frequency. (Fig. 2.7) (a) and (b) shows the phase velocities of 

propagative modes of the same waveguide presented by 10 ×  10  and 6 ×  6 FEs 

over the cross-section. The theoretical values of longitudinal [35] 𝑐𝐿 =

√
𝐸(1−𝜈)

𝜌(1+𝜈)(1−2∙𝜈)
, shear 𝑐𝑆 = √

𝐸

2∙𝜌(1+𝜈)
 and bar 𝑐𝑏 = √

𝐸

𝜌
 (the speed of sound for the 

pressure wave) velocities are presented by the dashed lines. The phase velocities of 

fundamental flexural 𝐹0 and longitudinal 𝐿0 modes approach Rayleigh wave velocity 



44 

 

𝑐𝑅 ≈  
0,862+1.14𝜈

1+𝜈
 𝑐𝑆 as the frequency increases. Velocity 𝑐𝑏 coincides with the 

velocity of 𝐿0 mode at the zero frequency. Phase velocities of higher order modes 

velocities approach 𝑐𝐿 at higher frequencies, see (Fig. 2.7 (b)). The phase velocity of 

the fundamental torsional mode 𝑇0, which, in the case of plates and cylindrical bars, 

coincides with 𝑐𝑆 and is nondispersive, reaches the value of 𝑐𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 ≈  0.92𝑐𝑆 

[95]. However, over a higher frequency range, it does not approach the horizontal 

line of 𝑐𝑆 any more, thus implying a low dispersion. The phase velocities of 𝐿0, 𝐹0 

tend towards 𝑐𝑆 due to their numerical errors. 

  
a) b) 

Fig. 2.7. Phase velocity of a square bar with a mesh of 10 ×  10 (a) and 6 ×  6 (b) on 

the cross-section. 

The group velocity represents the velocity at which the mechanical energy 

travels in a lossless waveguide and is defined as 𝑐𝑔𝑟 =
𝜕𝜔

𝜕𝑘
. The phase and group 

velocities are interlinked through Rayleigh’s formula: 

 𝑐𝑔𝑟 =
𝑐𝑝ℎ

(1−
𝜔

𝑐𝑝ℎ

𝜕𝑐𝑝ℎ

𝜕𝜔
)

. (63) 

For example, two similar (in terms of frequency) harmonic waves of the same 

mode added together result in an envelope wave due to the fact that the phase velocity 

varies with frequency. The velocity of the formed packet (envelope) travels at the 

group velocity. The effect of dispersion on a propagating mode means that the shape 

of the wave packet is distorted, and the peak amplitude of the packet decreases in 

space. 

 However, if the wave transferring medium is non-dispersive, the phase and 

group velocities coincide. 

Tracking a separate mode over the frequency axis might be a challenging task 

since many modes with close wavenumbers exist – it is evident in (Fig. 2.3 (b)). 

Therefore, the usage of direct numerical differentiation 
𝜔+∆𝜔

𝑘+∆𝑘
 might produce 

misleading results by losing the observed mode. 
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For given 𝜔, the group velocity of the  𝑗-th mode could be derived from 

homogenous equation (Eq. 58) by taking the derivative with respect to the 

wavenumber as [43]:  

 
𝜕(−𝜔2𝑴+𝑲1+𝑖𝑘𝑲2+𝑘

2𝑲3)𝒗

𝜕𝑘
= (−2𝜔

𝜕𝜔

𝜕𝑘
𝑴+ 𝑖𝑲2 + 2𝑘𝑲3)𝒗 = 𝟎. (64) 

Pre-multiplying (Eq. 64) by the left natural vector 𝒘 gives [43]: 

 𝒘(−2𝜔
𝜕𝜔

𝜕𝑘
𝑴+ 𝑖𝑲2 + 2𝑘𝑲3)𝒗 = 𝟎. (65) 

Eventually, we obtain [43]: 

 𝑐𝑔𝑟 =
𝜕𝜔

𝜕𝑘
=

𝒘𝑗(𝑖𝑲2+2𝑘𝑗𝑲3)𝒗𝑗

2𝜔𝒘𝑗𝑴𝒗𝑗
. (66) 

(Fig. 2.8) shows the results obtained by applying (Eq. 66) for the waveguide 

with a 4 ×  4  FEs mesh. 

 

Fig. 2.8. Group velocity. 

It may be observed that the modes with negative group velocities do exist, which 

indicates that the mechanical energy of the wave travels in the direction opposite to 

that of the phase velocity at particular frequency ranges. Unlike plates and cylindrical 

bars, the group velocity of 𝑇0 mode is also denoted by low dispersion. 

In the practical ultrasound applications group, the velocity dispersion curves are 

used to recognize and isolate modes observing different arrival times in the signals 

obtained when employing experimental measures. 

2.3 Excitation of Guided Waves in Waveguide 

2.3.1 Single Frequency Response 

The 𝑗-th mode 𝑘𝑗 and 𝑽𝑗 satisfies the equation: 

 (𝑨 − 𝑘𝑗𝑩)𝑽𝑗 = 𝟎, (67) 
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where the right natural vector 𝑽𝑗 has a clear physical interpretation as the displacement 

profile of the propagating wave over the cross-section of the waveguide.  

The natural wavenumber 𝑘𝑚 and 𝑾𝑚 are obtained as a solution of the left 

Eigenvalue problem as: 

 𝑾𝑚(𝑨 − 𝑘𝑚𝑩) = 𝟎. (68) 

Pre-multiplying (Eq. 67) by 𝑾𝑚 and post-multiplying (Eq. 68) by 𝑽𝑗 yields the 

following relations: 

 {
𝑾𝑚(𝑨 − 𝑘𝑗𝑩)𝑽𝑗 = 𝟎

𝑾𝑚(𝑨 − 𝑘𝑚𝑩)𝑽𝑗 = 𝟎.
 (69) 

This expands to: 

 {
𝑾𝑚𝑨𝑽𝑗 −𝑾𝑚𝑘𝑗𝑩𝑽𝑗 = 𝟎

𝑾𝑚𝑨𝑽𝑗 −𝑾𝑚𝑘𝑚𝑩𝑽𝑗 = 𝟎.
 (70) 

which is equivalent to the left and right natural vector orthogonality relations: 

 

{
 
 

 
 𝑾𝑚𝑨𝑽𝑗 = {

𝑾𝑗𝑨𝑽𝑗 𝑗 = 𝑚

0 𝑗 ≠ 𝑚

𝑾𝑚𝑩𝑽𝑗 = {
𝑾𝑗𝑩𝑽𝑗 𝑗 = 𝑚

0 𝑗 ≠ 𝑚

𝑘𝑗 =
𝑾𝑗𝑨𝑽𝑗

𝑾𝑗𝑩𝑽𝑗
.

 (71) 

Any vector of length 𝑙 can be cast in the basis of 𝑙 independent vectors. In the 

case of external loading presented in (Eq. 60) as 𝑷, solution 𝑸 is presented as the 

weighted superposition of natural vectors [34]: 

 𝑸 = ∑ 𝑜𝑗𝑽𝑗
2𝑁
𝑗=1 . (72) 

(Eq. 60) can now be presented as [34]: 

 (𝑨 − 𝑘𝑩)∑ 𝑜𝑗𝑽𝑗 = 𝑷
2𝑁
𝑗=1 . (73) 

Pre-multiplying (eq. 73) equation by left natural vector 𝑾𝑚 yields [34]: 

 ∑ (𝑾𝑚𝑨𝑽𝑗 − 𝑘𝑾𝑚𝑩𝑽𝑗)𝑜𝑗
2𝑁
𝑗=1 = 𝑾𝑚𝑷. (74) 

Due to the orthogonality of the natural vectors, the scalar weight of the 𝑚-th 

natural vector reads as [34]: 

 𝑜𝑚 =
𝑾𝑚𝑷

(𝑘𝑚−𝑘)𝑾𝑚𝑩𝑽𝑚
. (75) 

And, finally, the nodal displacement vector is [34]: 

 𝑼̅ = ∑ 𝑜𝑚𝒗𝑚
2𝑁
𝑚=1 . (76) 

The force is considered to be applied at a particular point 𝑧0 on the 0𝑍 axis over 

the cross-section of the waveguide as nodal amplitudes vector 𝑭̅(𝑧) = 𝑭̅𝛿(𝑧 − 𝑧0). 
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The weight of the 𝑚-th mode contribution to the overall solution can now reads as 

[34]: 

 𝑜𝑚 =
𝑾𝑚𝑷

(𝑘𝑚−𝑘)𝑾𝑚𝑩𝑽𝑚
𝛿(𝑧 − 𝑧0), (77) 

where 𝛿 defines the Dirac delta. The substitution of (Eq. 77) into (Eq. 76) yields: 

 𝑼̅ = ∑
−𝑾𝑚𝑷

(𝑘−𝑘𝑚)𝑾𝑚𝑩𝑽𝑚
𝒗𝑚

2𝑁
𝑚=1 𝛿(𝑧 − 𝑧0). (78) 

Since 𝑼(𝑧) is a Fourier transform with respect to wavenumber 𝑘 (Eq. 45), the 

application of Cauchy residue theorem [34] leads to: 

 𝑼(𝑧) = 𝑖 ∑
−𝑾𝑚𝑷

𝑾𝑚𝑩𝑽𝑚
𝒗𝑚

𝑁
𝑚=1 𝑒𝑖(𝑘𝑚(𝑧−𝑧0)). (79) 

Displacements expressed by relation (Eq. 79) at points 𝑧 > 𝑧0 are expressed via 

the superposition of 𝑁 modes propagating forwards. At points 𝑧 < 𝑧0 in relation to 

(Eq. 79), the backwards-propagating modes are engaged. Relation (Eq. 79) can also 

be considered as a response to the general excitation, while both types of modes 

(propagating and evanescent) are engaged. Finally, the displacement vector as a 

response to a harmonic load with particular angular frequency 𝜔 is obtained as: 

 𝒖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑖𝑵(𝒙, 𝒚)∑
−𝑾𝑚𝑷

𝑾𝑚𝑩𝑽𝑚
𝒗𝑚

𝑁
𝑚=1 𝑒𝑖(𝑘𝑚(𝑧−𝑧0)−𝜔𝑡). (80) 

It is worth noting that the calculation of the left-side natural vectors for lossless 

waveguides is not necessary. They can be substituted by the right-side ones as both 𝑨 

and 𝑩 are Hermitian matrices (𝑨𝑇 = 𝑨 and 𝑩𝑇 = 𝑩) because of the symmetry of 

matrices 𝑲1, 𝑲3, 𝑴 and skew-symmetry of matrix 𝑲2. Under such conditions, (Eq. 

68) may be re-cast as:  

 (𝑨 − 𝑘∗𝑩)𝑾𝑇  = 𝟎. (81) 

For propagating modes corresponding to real valued natural wavenumbers, the 

left natural vectors can be obtained as 𝑾 =  𝑽𝑇 since 𝑘∗ = 𝑘. In the case of complex 

natural wavenumbers 𝑅𝑒(𝑘) +  𝑖 ∙ 𝐼𝑚(𝑘) and 0 +  𝑖 ∙ 𝐼𝑚(𝑘), the left-side natural 

vectors are conjugate transposes of the right ones as 𝑅𝑒(𝑘) −  𝑖 ∙ 𝐼𝑚(𝑘) and 0 −  𝑖 ∙
𝐼𝑚(𝑘), respectively. The graphical point of feasibility for the above mentioned 

substitutions is clearly depicted in (Fig. 2.4). In the presence of damping, the 

technique for overcoming the necessity of the left-side natural vector calculation has 

been proposed by Gavrić and Hladky-Hennion [21, 96]. They suggested a 

displacement field at the FE level in order to obtain real symmetric matrices in 

homogenous (Eq. 43): 
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𝒖𝑒(𝑥, 𝑦, 𝑧, 𝑡) = 𝑵(𝑥, 𝑦)(

𝑈̅𝑒𝑥𝑒
𝑖(𝑘𝑧−𝜔𝑡)

𝑈̅𝑒𝑦𝑒
𝑖(𝑘𝑧−𝜔𝑡)

𝑈̅𝑒𝑧𝑒
𝑖(
𝜋

2
+𝑘𝑧−𝜔𝑡)

) =

= 𝑵(𝑥, 𝑦)(

𝑈̅𝑒𝑥𝑒
𝑖(𝑘𝑧−𝜔𝑡)

𝑈̅𝑒𝑦𝑒
𝑖(𝑘𝑧−𝜔𝑡)

𝑈𝑒𝑧𝑒
𝑖
𝜋

2𝑒𝑖(𝑘𝑧−𝜔𝑡)

) = 𝑵(𝑥, 𝑦)(

𝑈̅𝑒𝑥𝑒
𝑖(𝑘𝑧−𝜔𝑡)

𝑈̅𝑒𝑦𝑒
𝑖(𝑘𝑧−𝜔𝑡)

𝑖𝑈̅𝑒𝑧𝑒
𝑖(𝑘𝑧−𝜔𝑡)

) .

 (82) 

As an equivalent to this field, Viola [43] instead introduced a quadratic 𝑁 ×  𝑁 

matrix 𝑻 which has units in the diagonal, except that every third term is imaginary 

unit 𝑖: 

 𝑻 =

(

 
 
 
 

1 0 0 ⋯ 0 0 0
0 1 0 ⋯ 0 0 0
0 0 𝑖 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 1 0 0
0 0 0 ⋯ 0 1 0
0 0 0 ⋯ 0 0 𝑖)

 
 
 
 

 (83) 

Pre-multiplying (Eq. 58) by 𝑻𝑇 yields: 

 

𝑻𝑇 (𝑲1 + 𝑖𝑘(𝑲′2 −𝑲
′
2
𝑇
) + 𝑘2𝑲3 −𝜔

2𝑴)𝑻𝑻−1 𝑼̅𝑒𝑖(k𝑧−𝜔𝑡) =

= (𝑻𝑇 𝑲1𝑻 + 𝑖𝑘𝑻
𝑇𝑲2𝑻+ 𝑘

2𝑻𝑇𝑲3𝑻− 𝜔
2𝑻𝑇𝑴𝑻)𝑻−1 𝑼̅𝑒𝑖(k𝑧−𝜔𝑡) =

= ( 𝑲1 + 𝑘𝑲̂2 + 𝑘
2𝑲3 −𝜔

2𝑴) 𝑼̂𝑒𝑖(k𝑧−𝜔𝑡) = 𝟎

 (84) 

where 𝑼̂ = 𝑻−1 𝑼̅ and 𝑻𝑇 𝑲2𝑻 = −𝑖𝑲̂2, because matrix 𝑲2 = 𝑲′2 −𝑲
′
2
𝑇
 is skew 

symmetric; 𝑻𝑇 𝑲1𝑻 = 𝑲1, 𝑻𝑇 𝑲3𝑻 = 𝑲3, 𝑻𝑇 𝑴𝑻 = 𝑴 due to the symmetry of 𝑲1, 

𝑲3 and 𝑴; the transform matrix 𝑻 has a property of  𝑻𝑇 = 𝑻∗ = 𝑻−1. 

The matrices become real and symmetric in (Eq. 84), and, as a result of this, the 

corresponding homogenous (Eq. 61) yields 𝑾′ = ±𝑽, where 𝑾′ contains the left 

natural vector 𝑾 in 2𝑁 × 1 dimensions, while the alternating sign cancels in (Eq. 

79). 

However, a more convenient way to obtain the left natural vectors from the right 

ones by omitting algebra manipulations with 𝑻 is the introduction of transformation 

matrix 𝑮 which differs from 𝑻 by substituting the imaginary unit 𝑖 with −1. After 

acquiring the right natural vector from (Eq. 61), the left one is simply obtained as 

follows: 

 𝑾′ =  𝑮𝑽. (85) 

(Eq. 85) allows calculating only the right natural vectors. 

2.3.2 Non-Harmonic Force Response 

What concerns the general time law, the excitation of the guided wave can be 

presented as a superposition of numerous Fourier components. In such a case, the 

response to each single harmonic component is obtained as described in the previous 
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section. The overall response equals the sum of time relationships corresponding to 

all the single-frequency responses. Further in this study, non-harmonic force response 

analysis is discussed. 

Let us consider an aluminum waveguide of mass density 𝜌 = 2700 
𝑘𝑔

𝑚3, 

Young’s modulus 𝐸 = 70 ∙  109  𝑃𝑎 and Poisson’s ratio 𝜈 = 0.33. The cross-section 

of the waveguide is 0.001 ×  0.0011 𝑚, which is slightly different from a square in 

order to avoid multiple natural wavenumbers as it was considered in our simulation. 

Let us consider the external loading as the shearing force applied along a source (Fig. 

2.9).  The time law is given as a Hanning-windowed 5 cycle sinus burst centered at 

250 𝑘𝐻𝑧 (Fig. 2.10 (a)). 

 

Fig. 2.9. A schematic representation of excitation. 

(Fig. 2.10 (b)) displays the frequency spectrum of the modulated loading 

impulse. It is obtained by applying the fast Fourier transform (FFT) to the time 

relationship shown in (Fig. 2.10 (a)), which is followed by zero padding 50 times the 

duration of the impulse. The threshold for the meaningful harmonic components is 

assumed as 0.05 %. The FFT sampling frequency was 250 𝐺𝐻𝑧. The sum of the 

displacement vectors of all the harmonic components of the response in accordance 

with relation (Eq. 80) provides the overall response to the loading impulse. 

  
a) b) 

Fig. 2.10. (a) Excitation’s modulation; (b) Excitation’s frequency spectrum. 
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(Fig. 2.11 (a)) presents the resulting displacements in the 0𝑋, 0𝑌 and 0𝑍 

directions registered at the monitored point at 0.1 𝑚 from the source line. Certain 

small wrap-around effects may be observed, such as the displacements in the 0𝑍 

direction at the time moment just before the arrival of the impulse. Most probably, 

they appear because of the artificial periodicity of the impulse due to the finite 

duration of the time relationship processed by FFT. Similar discrepancies are visible 

near to the incoming slope of the impulse in the 0𝑍 direction, (Fig. 2.11 (a)). Such 

effects can be reduced by increasing the FFT sampling frequency and the length of 

zero padding. 

   
a) 

   
b) 

Fig. 2.11. Displacements of the monitored point (𝑧 = 0.1 𝑚 distance from the source 

in the waveguide) in the 0𝑋, 0𝑌 and 0𝑍 directions obtained by using SAFEM (a) and FEM 

(b). 

Results of the explicit simulation by means of the 3D FE model subjected to the 

same excitation scenario are shown (Fig. 2.11 (b)). The 3D mesh density was 4 ×
4 × 100 elements up to the monitored point in the 0𝑋, 0𝑌 and 0𝑍 directions. 

Excellent agreement of the results provided by both models was demonstrated as 

maximum differences of the nodal displacements calculated by both methods in the 

observed time-space interval did not exceed 2% for the investigated scenario. It can 

be noted that the SAFE approach, when compared to the conventional FE model, is 

capable to extract the force response invariant to time and location in the waveguide 

since the observed displacement field is a sum of weighted natural vectors which are 

calculated only once prior the numerical experiment. The complexity of FEM in the 

force response analysis significantly increases with the length of the waveguide (as 

dofs increase linearly) and the duration of excitation scenario, yet, in contrast, the 

SAFEM complexity mainly depends on the size of the mesh on the cross-section of 

the waveguide, while the Eigenvalue problem is generally of 𝑂(𝑛3) complexity, 

where 𝑛 = dofs in the cross-section.  
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(Fig. 2.12) shows nodal responses in the 0𝑋, 0𝑌 and 0𝑍 directions obtained by 

using all modes contributions (Fig. 2.12 (a)) and propagative-only modes’ 

contributions (Fig. 2.12 (b)) to the force response at the points near the source line. 

The wrap-around effect is also noticeable as displacements are not equal to zero at 

𝑡 = 0 𝑠. 

   
a) General excitation in the lossless waveguide. 

   
b) Propagative modes excitation in the lossless waveguide. 

Fig. 2.12. The nodal response in the 0𝑍 direction to (a) general and (b) propagative 

modes excitations at distances of 0.0001 𝑚 0.0002 𝑚 and 0.0004 𝑚 from the source in the 

0𝑍 axis. 

The results imply that the evanescent and end-modes’ contribution to the 

response decays rapidly and could be neglected in the far-field response analysis. 

Similar findings were reported by Weaver and Damljanovic [22]. 

2.4 Concluding Remarks 

Despite the fact that the principles of SAFE formulation have already been 

known for several decades, the technique still cannot be considered as fully developed 

and standardized for routine simulations. Several reasons can be mentioned, such as 

lack of reliability when treating wave propagation solutions in environments with 

higher attenuation properties, the absence of approaches using direct integration 

techniques for obtaining transient wave pulse solutions, as well as the sophisticated 

interpretation of wave modes characterized by the complex space and time exponents. 

Also, efficient computer implementation of computational algorithms of SAFEM is 

important.  

In this chapter, approaches to several problems related with damped wave 

solutions while using SAFEM were developed and implemented as software 

prototypes in MATLAB. Attention should be drawn to the fact that, until now, 

simplifications due to neglecting the complex conjugate wave numbers have been 

generally accepted by most authors. However, this is correct or approximately correct 
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only for the analysis of the propagating modes in almost lossless waveguides. In case 

no simplifications are allowed, obtaining solutions from an Eigenvalue problem with 

a complex conjugate wavenumber is not straightforward anymore. It can be assumed 

that the conventional governing equation is accepted for propagative or lightly 

attenuated modes as these modes have the highest practical value. 

The SAFE approach can be efficiently applied to calculate dispersion relations 

of the waveguide which are uniform in at least one spatial dimension in the sense of 

geometrical and material properties. As the SAFE approach involves the Eigenvalue 

problem, each modal wavenumber corresponds to a different mode. Due to the mode 

separation, the SAFE approach is suitable for providing dispersion relations for any 

wave mode of interest. As for the given wavenumber 𝑘 or angular frequency 𝜔, all 

the existing modes are acquired at once, yet the tracking mode of interest for varying 

𝑘 or 𝜔 is not straightforward; however, linear extrapolation based on mode 

orthogonality relations proves to be sufficient.  

SAFEM enables to obtain the transient traveling-wave solutions in infinite or 

almost-infinite waveguide structures. The approach is based on the superposition of 

forced modal responses, where transient solutions are obtained via Fourier 

transformation. We demonstrated that the wave modes as well as the combined forced 

responses of the waveguides to the harmonic and general excitations during long time 

intervals can be obtained at a much lower cost compared to the direct simulation of a 

waveguide as a solid 3D FE structure. Once calculated apriori, the Eigenvalue 

solutions can be repeatedly used for acquiring different responses at any location and 

at arbitrary time intervals, as long as the waveguide and the localized loading pattern 

remain the same. 

The verification of the forced damped response obtained by the SAFE approach 

was performed by comparing the obtained results against some test solutions acquired 

by the direct integration of 3D FE models. However, this does not mean anyway that 

3D FEM could universally replace SAFEM in such calculations. By using the 3D FE 

model, only certain test situations can be created in space and time intervals of very 

limited magnitudes. 
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3 Guided Waves in Damped Waveguide 

3.1.1 Rayleigh Damping in SAFE Formulation 

The equation of motion using SAFE with the damping term appears as: 

 (𝑲1 + 𝑖𝑘𝑲2 + 𝑘
2𝑲3 − 𝑖𝜔𝑪 − 𝜔

2𝑴)𝑼̅𝑒𝑖(k𝑧−𝜔𝑡) = 𝑭̅𝑒𝑖(k𝑧−𝜔𝑡). (86) 

Expanding (Eq. 86) yields: 

 
(𝑲1 + 𝑖𝑘𝑲2 + 𝑘

2𝑲3 − 𝑖𝜔(𝑎𝑴+ 𝑏(𝑲1 + 𝑖𝑘𝑲2 + 𝑘
2𝑲3)) − 𝜔

2𝑴) ∙

∙ 𝑼̅𝑒𝑖(k𝑧−𝜔𝑡) = 𝑭̅𝑒𝑖(k𝑧−𝜔𝑡).
 (87) 

Collecting common terms in (Eq. 87) gives us: 

 (𝑲̂1 + 𝑖𝑘𝑲̂2 + 𝑘
2𝑲̂3 −𝜔

2𝑴̂)𝑼̅𝑒𝑖(k𝑧−𝜔𝑡) = 𝑭̅𝑒𝑖(k𝑧−𝜔𝑡), (88) 

where 𝑴̂ = (1 + 𝑖
𝑎

𝜔
)𝑴, 𝑲̂1 = (1 − 𝑖𝜔𝑏)𝑲1, 𝑲̂2 = (1 − 𝑖𝜔𝑏)𝑲2, 𝑲̂3 = (1 −

𝑖𝜔𝑏)𝑲3.  

As discussed previously, Rayleigh damping results in mass damping inversely 

proportional to the frequency and stiffness damping proportional to frequency. In this 

way, complex mass and stiffness matrices are introduced similarly to the Kelvin-Voigt 

attenuation model which involves the frequency-dependent complex stiffness matrix. 

In the case of the Kelvin-Voigt model, the attenuation per distance unit 

increases linearly with frequency, therefore attenuation per wavelength is constant for 

the modes in all the frequencies.  

All the solutions to homogenous (Eq. 88) are evanescent modes. Nevertheless, 

a mode could still be considered as traveling if an amplitude has not dropped below a 

reasonably small factor in relation to the initial value within the specified distance 

[69], [79]. One can consider a threshold for evanescent modes as an arbitrarily 

predefined factor 𝑎0 by which an amplitude has dropped after traveling its 

wavelength. As decay of the amplitude is stored in 𝐼𝑚(𝑘) [
𝑟𝑎𝑑

𝑚
] and as the wavelength 

in 𝑚 is 
2𝜋

𝑅𝑒(𝑘)
, the threshold can be obtained as  

 −𝐼𝑚(𝑘) >
𝑅𝑒(𝑘)

2𝜋
𝑙𝑜𝑔𝑒𝑎0 (89) 

All the modes with wavenumbers (𝑅𝑒(𝑘) + 𝑖 ∙ 𝐼𝑚(𝑘)) evanescing in the 

positive 0𝑍 direction and meeting the condition of (Eq. 89) can be retained as 

significant ensuring that the contribution of higher order modes is negligible and is of 

less interest in practical applications for further analysis. Moreover, it has been 

demonstrated that the calculation of the high-order wave modes which decay very 

rapidly with the distance is prone to poor numerical conditioning when using WFEM 

[97]. 

Analogically, homogenous (Eq. 88) can be linearized and solved as in the case 

of the lossless waveguide in the previously described way. 

3.2 Dispersion Relations for Damped Waveguide 
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On the grounds of the computational experiments presented in this thesis, we 

investigate how the dispersion curves of different wave modes as solutions to 

homogenous (Eq. 88) depend on values 𝑎 and 𝑏. The results are presented in (Fig. 

3.1), where the cross-section mesh of the waveguide is  4 ×  4. In the damped case, 

all the natural wavenumbers are complex and are therefore associated with 

exponentially-decaying evanescent waves. The phase velocities are obtained by using 

the real parts of natural wavenumbers as 𝑐𝑝ℎ =
𝜔

𝑅𝑒(𝑘)
. 

The presence of damping severely modifies the appearance of the phase 

velocities relationships. Due to non-zero 𝑎 and 𝑏, the branches of fundamental modes 

tend to bend away from the Rayleigh’s wave’s velocities relationship (see Fig. 3.1(a)). 

Simultaneously, the attenuation of higher modes is less affected as the frequency 

increases, (Fig. 3.1 (b)). 

   
a) 

   
b) 

Fig. 3.1. 𝑎 and 𝑏 impact to the phase velocity (a) and attenuation (b) of the waveguide 

with 4 ×  4 mesh on the cross-section. 

(Fig. 3.2) shows how the phase velocities of fundamental modes are affected by 

severe damping. The scenario of the heaviest simulated damping clearly demonstrates 

a kind of behavior which may be hardly explicable. This may serve as an indication 

that the assumptions on which equation (Eq. 58) was based probably lack solid 

background, even though they had been used by many researchers before for the 

analysis of slightly damped structures. Thus our discovery implies the need for further 

research in order to revise the solutions of (Eq. 56) by fully considering the non-linear 

Eigenvalue problem. 
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Fig. 3.2. Damping impact to the phase velocity of the fundamental modes in the 

waveguide with 4 ×  4 mesh on the cross-section. 

(Fig. 3.3) shows the appearance of natural wavenumbers values on the complex 

plane in the case of different severity of Rayleigh damping at a selected frequency 

𝑓 =  1 𝑀𝐻𝑧. As damping increases, the natural wavenumbers do not retain 

symmetries with respect to the 0𝑋 and 0𝑌 axes any more.  

   
a) b) c) 

Fig. 3.3. Wavenumbers in a complex plain at 𝑓 = 1 𝑀𝐻𝑧 with the damping 

coefficients: (a) 𝑎 = 100 and 𝑏 = 10−9; (b) 𝑎 = 500 and 𝑏 = 10−8; (c) 𝑎 = 1000 and 𝑏 =
10−7. 

(Fig. 3.4) presents the response frequency spectra at the monitored point in the 

case of damped and undamped waveguides with the 4 ×  4 FE cross-section. The 

frequency spectra describe the modal contribution in the force response. As the 
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damping increases, the number of the dominant modes directly influencing the 

displacement field at the observed point decreases. 

 

   
a) b) c) 

Fig. 3.4. Frequency spectra of the time transient response in the 0𝑍 direction of the 

observed point at a distance of 𝑧 = 0.1 𝑚 from the forcing source in undamped (a) and 

damped (b), (c) waveguide. 

(Fig. 3.5) demonstrates the dispersion effect which is caused by the different 

phase velocities of the modes excited by the loading in the lossless and damped (𝑎 =
500 and 𝑏 = 10−8) aluminum waveguide. 

   
a) b) c) 

Fig. 3.5. The nodal response to force in lossless and damped waveguides at distances 

𝑧 = 0.07 𝑚 (a), 𝑧 = 0.14 𝑚 (b) and 𝑧 = 0.21 𝑚 (c) in the 0𝑍 direction from the source. 

The 3D view of the waveguide structure deformed by the wave is presented in 

(Fig. 3.6). The displacement field is shown at time 𝑡 = 20 𝜇𝑠 in case of lossless and 

damped (𝑎 = 500 and = 10−7) aluminum waveguide. Separate layers over the cross-

section were drawn. A high sampling frequency was used in order to avoid aliasing in 

animation.  
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a) b) 

Fig. 3.6. 3D animation representing excitation in a) lossless and b) damped (𝑎 = 500   

and 𝑏 = 10−7) aluminum waveguide with 3 × 3 mesh on cross-section at 𝑡 = 20 𝜇𝑠. 

3.3 Calculating Dispersion Relations in Damped Plate 

3.3.1 Governing Equation for Damped Plate 

As it was demonstrated in the previous section, it is likely that assumption 𝑘∗ =
𝑘 leads to unsatisfactory dispersion results in the cases of extreme values of damping. 

We propose a retrieval of the solution to (Eq. 57) with 𝑘∗ retained in the Eigenvalue 

problem with the added Rayleigh damping. 

Without the loss of generality, let us consider the Lamb wave to be traveling in 

an isotropic plate of 𝐻 height in the 0𝑍 direction. Only the cross-section of the plate 

is discretized with the one-dimensional two-noded 𝐿 length FE in the 0𝑌 direction 

(Fig. 3.7). Displacement vector 𝒖 in the 𝑗-th element (𝑗 = 1,𝑁,̅̅ ̅̅ ̅̅  where 𝑁 is the number 

of FE in the cross-section) under harmonic wave assumption reads as: 

 𝒖(𝑦, 𝑧, 𝑡)𝑒 = 𝑵(𝑦)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡), (90) 

where 𝑵(𝑦) = (
1 −

𝑦

𝐿
0

𝑦

𝐿
0

0 1 −
𝑦

𝐿
0

𝑦

𝐿

) is interpolating the form function and  

𝑼̅𝑒 =

(

 
 

𝑈̅𝑒1𝑦

𝑈̅𝑒1𝑧
𝑈̅𝑒2𝑦

𝑈̅𝑒2𝑧)

 
 

 is a vector of nodal displacement within FE. 

The strain vector for FE reads: 

 𝜺𝒆 = (

𝜺𝑦𝑦
𝜺𝑧𝑧
𝜺𝑦𝑧

) =

(

 
 

𝜕𝒖𝑒𝑦

𝜕𝑦

𝜕𝒖𝑒𝑧

𝜕𝑧
𝜕𝒖𝑒𝑦

𝜕𝑧
+
𝜕𝒖𝑒𝑧

𝜕𝑦 )

 
 

, (91) 
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where 𝒖𝑒𝑦 and 𝒖𝑒𝑧 are components of displacement vector 𝒖𝑒 in respect to the 0𝑌 

and 0𝑍 axes, respectively. 

 

Fig. 3.7. Discretization with FE in the cross-section in a plate. 

The strain vector (Eq. 91) can be rewritten as: 

(

𝜺𝑦𝑦
𝜺𝑧𝑧
𝜺𝑦𝑧

) =

(

 
 

𝜕

𝜕𝑦
0

0
𝜕

𝜕𝑧
𝜕

𝜕𝑧

𝜕

𝜕𝑦)

 
 
𝑵(𝑦)𝑼̅𝑒𝑒

𝑖(𝑘𝑧−𝜔𝑡) =

=

(

 

𝜕

𝜕𝑦
0

0 0

0
𝜕

𝜕𝑦)

 𝑵(𝑦)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡) +(

0 0

0
𝜕

𝜕𝑧
𝜕

𝜕𝑧
0

)𝑵(𝑦)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡) =

=

(

 
 
(

−
1

𝐿
0

1

𝐿
0

0 0 0 0

0 −
1

𝐿
0

1

𝐿

)+ 𝑖𝑘(

0 0 0 0

0 1 −
𝑦

𝐿
0

𝑦

𝐿

1 −
𝑦

𝐿
0

𝑦

𝐿
0

)

)

 
 
𝑼̅𝑒𝑒

𝑖(𝑘𝑧−𝜔𝑡) =

= (𝑩1 + 𝑖𝑘𝑩2)𝑼̅𝑒𝑒
𝑖(𝑘𝑧−𝜔𝑡).

 (92) 

As derived in (Eq. 53), the stiffness and mass matrices for FE can be obtained 

as: 

𝑲𝑒 = ∫ (𝑩1 + 𝑖𝑘𝑩2)
𝑇𝑫(𝑩1 + 𝑖𝑘𝑩2)𝑑𝑦 = ∫ 𝑩1

𝑇𝐿

0
𝑫𝑩1𝑑𝑦 +

𝐿

0

+𝑖𝑘 ∫ 𝑩1
𝑇𝐿

0
𝑫𝑩2𝑑𝑦 − 𝑖𝑘

∗ ∫ 𝑩2
𝑇𝐿

0
𝑫𝑩1𝑑𝑦 + 𝑘

∗𝑘 ∫ 𝑩2
𝑇𝐿

0
𝑫𝑩2𝑑𝑦 =

𝑲𝑒1 + 𝑖𝑘𝑲𝑒2 − 𝑖𝑘
∗𝑲𝑒2

𝑇 + 𝑘∗𝑘𝑲𝑒3,

𝑴𝑒 = ∫ 𝑵(𝑦)𝜌𝑵(𝑦)
𝐿

0
𝑑𝑦,

 (93) 
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where elasticity matrix 𝑫 =
𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)

(

 
 
1

𝜈

1−𝜈
0

𝜈

1−𝜈
1 0

0 0
1−2𝜈

2(1−𝜈))

 
 

. 

The assembling procedure by overlapping the values in the stiffness and mass 

matrices in respect to the common nodes of FE leads to matrices 𝑲1 𝑲2 𝑲3 and 𝑴 of 

the structure (cross-section). A dynamic equation 𝑴𝒖̈ + 𝑪𝒖̇ + 𝑲𝒖 = 0 with damping 

matrix 𝑪 which accounts for the viscoelasticity in the plate provides the governing 

equation while using the SAFE formulation. Two scenarios leading to two types of 

different governing equations shall be discussed. In the first one, wavenumber 𝑘 of 

the Lamb wave is considered to be given, and angular frequency 𝜔 is to be found. In 

the second scenario, 𝜔 is given, and wavenumber 𝑘 has to be found. 

When the wavenumber of the Lamb wave is given, the governing equation can 

be solved for angular frequency 𝜔(𝑘) while introducing an equation system by 

reducing the order of the time derivative: 

 {
𝒗 = 𝒖̇

𝑴𝒗̇ + 𝑪𝒗 + 𝑲𝒖 = 0,
 (94) 

where 𝒖̇ = −𝑖𝜔𝑼̅𝑒𝑖(𝑘𝑧−𝜔𝑡) =  𝑖𝑽̅𝑒𝑖(𝑘𝑧−𝜔𝑡), 𝒖̈ = −𝜔2𝑼̅𝑒𝑖(𝑘𝑧−𝜔𝑡) = −𝜔𝑽̅𝑒𝑖(𝑘𝑧−𝜔𝑡) 
and 𝑽̅ = 𝜔𝑼̅. 

The system (Eq. 94) can be rewritten as: 

 {
𝑽̅ − 𝜔𝑼̅ = 0

−𝜔𝑴𝑽̅ − 𝑖𝑪𝑽̅ + 𝑲𝑼̅ = 0,
 (95) 

The matrix form of the system can be summarized as: 

 ((
−𝑖𝑪 𝑲
𝑰 𝟎

) −  𝜔 (
𝑴 𝟎
𝟎 𝑰

))(𝑽̅
𝑼̅
) = 𝟎,  (96) 

where 𝑰 is 2(𝑁 + 1) × 2(𝑁 + 1) dimensional identity matrix. 

A canonical Eigenvalue equation for dispersion relations is obtained: 

 ((−𝑖𝑴
−1𝑪 𝑴−1𝑲
𝑰 𝟎

) −  𝜔 (
𝑰 𝟎
𝟎 𝑰

)) (𝑽̅
𝑼̅
) = 𝟎.  (97) 

It is a common assumption of setting 𝑘∗ = 𝑘, i.e., a given wavenumber 𝑘 is a 

pure real number when dealing with solutions of undamped and only propagative 

waves (also setting 𝑪 = 0). Under this assumption, the stiffness matrix within FE (Eq. 

93) can be simplified: 

 𝑲𝑒 = 𝑲𝑒1 + 𝑖𝑘(𝑲𝑒2 −𝑲𝑒2
𝑇) + 𝑘2𝑲𝑒3.  (98) 

 However, an accurate model of the damped waveguide (𝑪 ≠ 0) must retain 

both 𝑘∗and 𝑘 for the waves in dissipative environment.  
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In the second scenario, when the angular frequency 𝜔 of the Lamb wave is 

given, the governing equation for wavenumber 𝑘(𝜔) can be derived from dynamic 

equation: 

  𝑴𝒖̈ + 𝑪𝒖̇ + (𝑲1 + 𝑖𝑘𝑲2 − 𝑖𝑘
∗𝑲2

𝑇 + 𝑘∗𝑘𝑲3)𝒖 = 0,  (99) 

where 𝒖̇ = −𝑖𝜔𝑼̅𝑒𝑖(𝑘𝑧−𝜔𝑡), 𝒖̈ = −𝜔2𝑼̅𝑒𝑖(𝑘𝑧−𝜔𝑡). 
The reduction of the power of the wavenumber by notation 𝑽̅ = 𝑘∗𝑼̅ leads to 

the system: 

 {
𝑽̅ − 𝑘∗𝑼̅ = 0

(−𝜔2𝑴− 𝑖𝜔𝑪 + 𝑲1)𝑼̅ + 𝑖𝑘𝑲2𝑼̅ − 𝑖𝑲2
𝑇𝑽̅ + 𝑘𝑲3𝑽̅ = 0.

 (100) 

The matrix form of the system can be summarized as: 

 ((−𝑖𝑲2
𝑇 (−𝜔2𝑴− 𝑖𝜔𝑪 + 𝑲1)

𝑰 𝟎
) + (

𝑘𝑲3 𝑖𝑘𝑲2
𝟎 −𝑘∗𝑰

)) (𝑽̅
𝑼̅
) = 𝟎. (101) 

The system (Eq. 101) is non-linear and relates the given 𝜔 with two unknowns 

𝑘 and its complex conjugate 𝑘∗. It is not straightforward to acquire dispersion relations 

(𝜔,  𝑘,  𝑘∗), but the iterative approach can be applied to find solutions for each mode 

of interest separately. At first (Eq. 101) for undamped waveguide at given 𝜔 is solved. 

Then, for the first approximation, real wavenumber 𝑘0 of the propagating mode of 

interest is chosen. The selected 𝑘0 is then used in (Eq. 102) to obtain updated 𝑘𝑗+1, 

which corresponds to the target mode. The wavenumber is updated with each 𝑗-th 

iteration until the solution converges. At each iteration, the Eigenvalue equation is 

modified to improve the solution for the tracked mode only, therefore, the procedure 

for the different mode must be repeated. However, input 𝜔 cannot be apriori exactly 

predefined for the damped waveguide without loss of information about the 

attenuation in the time domain (represented by the imaginary part of 𝜔). Moreover, 

some difficulties arise in terms of assuring the convergence condition for the iterating 

solution and requires further analysis, which is beyond the scope of the present study. 

 ((−𝑖𝑲2
𝑇 (−𝜔2𝑴− 𝑖𝜔𝑪 + 𝑲1)

𝑰 𝟎
) + 𝑘𝑗+1 (

𝑲3 𝑖𝑲2

𝟎 −
𝑘𝑗
∗

𝑘𝑗
𝑰
))(𝑽̅

𝑼̅
) = 𝟎.  (102) 

Under the assumption that 𝑘∗ ≈ 𝑘, i.e. 𝑅𝑒(𝑘) ≫ 𝐼𝑚(𝑘), which is valid in the 

case of only light damping, (Eq. 101) is simplified to: 

 ((−𝑖𝑲2
𝑇 (−𝜔2𝑴− 𝑖𝜔𝑪 + 𝑲1)

𝑰 𝟎
) +  𝑘 (

𝑲3 𝑖𝑲2
𝟎 −𝑰

))(𝑽̅
𝑼̅
) = 𝟎.  (103) 

Application of property 

(
𝑲3 𝑖𝑲2
𝟎 −𝑰

)
−1

= (𝑲3
−1 𝑖𝑲3

−1𝑲2
𝟎 −𝑰

) 

leads (Eq. 103) to the canonical Eigenvalue problem for dispersion relations: 
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((𝑲3
−1𝑖(𝑲2 −𝑲2

𝑇) 𝑲3
−1(−𝜔2𝑴− 𝑖𝜔𝑪 + 𝑲1)

−𝑰 𝟎
) +  𝑘 (

𝑰 𝟎
𝟎 𝑰

)) (𝑽̅
𝑼̅
) = 𝟎. (104) 

Under the assumption that 𝑘∗ = 𝑘, which is valid for propagative undamped 

modes only, (Eq. 104) can be further simplified by omitting the damping term −𝑖𝜔𝑪. 

The algorithm to acquire the dispersion relations for evanescent waves in the 

damped waveguide while using SAFEM is summarized in (Fig. 3.8):. 

 

Fig. 3.8. A flowchart of the algorithm to obtain dispersion relations for evanescent 

waves in a damped waveguide while using SAFEM. 

 

3.3.2 Verification of the Plate Model 

As the number of FE in the structure (the cross-section of the plate) increases, 

the solutions to the governing equation become more accurate. In order to verify the 

SAFEM wave equation for structure 

(𝑲1 + 𝑖𝑘𝑲
′
2 − 𝑖𝑘

∗𝐊′2
𝑇
+ 𝑘∗𝑘𝑲3 −𝜔

2𝑴)𝑼̅ = 𝟎 

SAFEM governing equation: 

(𝑲̂1 + 𝑖𝑘𝑲̂2 + 𝑘
2𝑲̂3 −𝜔

2𝑴̂)𝑼̅ = 𝟎 
 

The boundary condition: vacuum; material damping: Rayleigh 

Assumption for weakly 

evanescent waves: 𝑘∗ ≈ 𝑘 

Analysis of dispersion relations (𝜔, 𝑘, 𝑼̅) 

Eigenvalue problem 

solver: for given 𝜔 or 𝑘 

General case 

 
SAFEM governing equation: 

(𝑲1 + 𝑖𝑘𝑲
′
2 − 𝑖𝑘

∗𝐊′2
𝑇
+ 𝑘∗𝑘𝑲3 − 𝑖𝜔𝑪 − 𝜔

2𝑴)𝑼̅ = 𝟎 
 

((−𝑖𝑲2
𝑇 (−𝜔2𝑴− 𝑖𝜔𝑪 + 𝑲1)

𝑰 𝟎
) + 𝑘𝑗+1(

𝑲3 𝑖𝑲2

𝟎 −
𝑘𝑗
∗

𝑘𝑗
𝑰
))(𝑽̅

𝑼̅
) = 𝟎 

 

((−𝑖𝑴
−1𝑪 𝑴−1𝑲
𝑰 𝟎

) −  𝜔 (
𝑰 𝟎
𝟎 𝑰

)) (𝑽̅
𝑼̅
) = 𝟎 

Iterative equation: 

 

Eigenvalue problem 

solver: for given 𝜔 

Eigenvalue problem 

solver: for given 𝑘 



62 

 

model, the properties for an undamped (𝑪 = 0) steel plate were chosen as 𝜌 =
7850 𝑘𝑔/𝑚3, 𝐸 =  2.1 ∙ 1011 𝑃𝑎, 𝜈 = 0.287 and the height of the plate 𝐻 = 0.01 𝑚. 

The convergence of solutions for the longitudinal mode acquired from (Eq. 97) at a 

given real wavenumber 𝑘 = 10 ∙
1

2𝜋
 
1

𝑚
  (the model accepts input 𝑘 in 

𝑟𝑎𝑑

𝑚
 units) due to 

the increasing FE in the cross-section are given in (Fig. 3.9 (a)). Already a single FE 

in the cross-section yields sufficient result 𝜔(𝑘) in low frequency when compared to 

the results acquired while using more FE; however, at high frequencies, the model on 

the single FE exhibits non-physical behavior visible in (Fig. 3.9 (b)). For example, the 

phase velocity of the longitudinal mode 𝐿0 does not asymptotically approach the 

velocity of Rayleigh wave marked by the dotted line. 

  
a) b) 

Fig. 3.9. (a) Convergence of the longitudinal mode at 𝑘 =
10

2𝜋
 
1

𝑚
; (b) Phase velocities of 

the plate with a single FE in the cross-section. 

The convergence of the solution for the longitudinal mode acquired from (Eq. 

104) at given real  𝜔 = 10 𝑘𝐻𝑧 due to the increasing FE in the cross-section are given 

in (Fig. 3.10 (a)). The same behavior of the longitudinal mode 𝐿0 is evident in (Fig. 

3.10 (b)) 

  
a) b) 

Fig. 3.10. (a) Convergence of the longitudinal mode at real 𝜔 = 10 𝑘𝐻𝑧; (b) Phase 

velocities of the plate with a single FE in the cross-section. 
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Phase velocities for a plate with 𝑁 = 10 elements in the cross-section are 

provided in (Fig. 3.11). 

  
a) b) 

Fig. 3.11. (a) Phase velocities acquired from 𝜔(𝑘) solutions; (b) Phase velocities 

acquired from 𝑘(𝜔) solutions. 

The phase velocities for longitudinal 𝐿0, 𝐿1 and flexural 𝐹0, 𝐹1 modes acquired 

from 𝜔(𝑘) (Fig. 3.11 (a)) and 𝑘(𝜔) (Fig. 3.11 (b)) solutions excellently agree with 

the theoretical results for the same modes in a steel plate [98]. 

3.3.3 Calculating Dispersion Relations in Mass Damped Plate 

Due to the absence of the research of the mass damping impact on the dispersion 

relations while using the SAFE formulation, the material damping in the plate model 

is introduced via matrix 𝑪 proportional to the mass only, 𝑪 = 𝛼𝑴, resulting in the 

complex valued mass of the plate. In the case of an undamped waveguide, the 

dispersion relations for propagative modes are calculated by inserting into the 

governing equation either the real wavenumber (then, the real 𝜔(𝑘) is the output), or 

the real angular frequency (then, the real 𝑘(𝜔) is the output). In the case of a damped 

waveguide, when free vibrations are considered, the input argument 𝜔 or 𝑘 has to be 

a complex number and to match the given 𝑪 for the structure, therefore, these inputs 

are unknown in advance (i.e., the imaginary parts of 𝜔 and 𝑘 correspond to the 

attenuation of the Lamb wave in time and space and are dependent on 𝑪). 

The numerical exploration is performed to find 𝜔(𝑘) dispersion relations while 

using (Eq. 97). The arbitrary damping coefficient 𝛼 = 11250 is chosen. The input 

wavenumber is varied in respect to the real part which corresponds to the length of 

the Lamb wave 𝜆 =
1

𝑅𝑒(𝑘)
, and the imaginary part which corresponds to the decay of 

the amplitude of the Lamb wave. For given 𝑅𝑒(𝑘), successive 𝐼𝑚(𝑘) are run from 0 

to 1 ∙ 102
𝑟𝑎𝑑

𝑚
  at a step of  0.2 ∙ 102, i.e., the variation of attenuation is bounded only 

to the Lamb waves which have decayed by factor 
1

𝑒
 only after traveling the distance 

exceeding 
2𝜋

1 ∙102
 𝑚. At first, the impact of assumption 𝑘∗ = 𝑘 corresponding to (Eq. 

98) will be investigated. For the sake of simplicity, the dispersion relations are 

provided only for longitudinal mode 𝐿0 because it has been observed that this 

particular mode is most sensitive to the presence of mass damping and therefore 
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deserves detailed exploration. The numerical results expressed via phase velocity 

𝑐𝑝ℎ =
𝑅𝑒(𝜔)

𝑅𝑒(𝑘)
, 𝑅𝑒(𝜔) versus 𝑅𝑒(𝑘), 𝐼𝑚(𝑘) and 𝐼𝑚(𝜔) versus 𝑅𝑒(𝑘), 𝐼𝑚(𝑘) are 

provided in (Fig. 3.12) and (Fig. 3.13). 

  
a) b) 

  
c) d) 

Fig. 3.12. (a) Phase velocities of mode 𝐿0 due to varying 𝐼𝑚(𝑘) of the wavenumber 

under assumption 𝑘∗ = 𝑘; (b)  Phase velocities of  𝐿0 in the approximate range defined by 

wave lengths of  𝜆 ≈ 0.157 𝑚 and  𝜆 ≈ 0.022 𝑚; (c) Phase velocities of  𝐿0 at the wave 

length of  𝜆 ≈ 0.157 𝑚; (d) Phase velocities of  𝐿0 at the wave length of 𝜆 ≈ 0.022 𝑚. 

It can be seen in (Fig. 3.12 (a)) that the imaginary part of the wavenumber has 

little effect to the phase velocity in the range of high frequencies. It can be noted that 

at the wavelengths similar to  𝜆 ≈ 0.157 𝑚 and 𝜆 ≈ 0.022 𝑚, the solutions of the 

phase velocities are sensitive to the change in the imaginary parts of the wavenumber 

(Fig. 3.12 (b)). The increment of 𝐼𝑚(𝑘) in the low frequency range yields solutions 

to the approach and oversteps the solutions of 𝐿0 in the undamped waveguide. Plate 

velocity 𝑐𝑝𝑙𝑎𝑡𝑒 = 
√𝐸

√𝜌(1−𝜈2)
 coincides with the phase velocity of the 𝐿0 mode at very 

low frequencies and can be considered as the upper physical bound of this mode across 

all the frequency range. A trivial bottom bound for dispersion relations are solutions 

with 𝐼𝑚(𝑘) = 0. The given damping matrix 𝑪 can support only Lamb waves with at 

most 𝐼𝑚(𝑘) ≈ 0.7 ∙ 102
𝑟𝑎𝑑

𝑚
 in low frequencies (Fig. 3.12 (c)). Unusual behavior is 
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visible in (Fig. 3.12 (d)), it is evident that the given damping matrix 𝑪 is not 

sufficiently big to fully support the solutions within the whole interval of 𝐼𝑚(𝑘). So 

far, the phase velocities obtained from the governing equation with the assumption of 

𝑘∗ = 𝑘 alone cannot distinguish the exact dispersion relations matching the damping 

matrix but they rather provide a region of physically feasible solutions. 

 

  
a) b) 

  
c) d) 

Fig. 3.13. (a) 𝑅𝑒(𝜔) versus 𝑅𝑒(𝑘) and 𝐼𝑚(𝑘) under assumption 𝑘∗ = 𝑘; (b) 𝐼𝑚(𝜔) 
versus 𝑅𝑒(𝑘) and 𝐼𝑚(𝑘); (c) 𝑅𝑒(𝜔) versus 𝑅𝑒(𝑘) and 𝐼𝑚(𝑘) at a zoomed fragment; 

(d) 𝐼𝑚(𝜔) versus 𝑅𝑒(𝑘) and 𝐼𝑚(𝑘) at a zoomed fragment.  

 

The increasing 𝐼𝑚(𝑘) yields the dispersion curve to ‘fold’ at the wavelength of 

around 𝜆 ≈ 0.022 𝑚 thus supporting our previous notes on the inadequacy of the 

model (Fig. 3.13 (a)). Moreover, an unfeasible area at a small 𝐼𝑚(𝑘) in low 

frequencies, where a wave solution with  𝑅𝑒(𝑘) > 0 has zero frequency, is visible in 

(Fig. 3.13 (c)). The dispersion relations in the whole range of 𝑅𝑒(𝑘) but linked with 

this area should also be excluded as non-physical. Moreover, (Fig. 3.13 (b)) reveals 

that the increasing 𝐼𝑚(𝑘) results in the negative values of 𝐼𝑚(𝜔), which corresponds 

to unattenuated waves in the time domain. However, only physically reasonable 

solutions of the damped wave should have 𝐼𝑚(𝜔) > 0. It can be seen in (Fig. 3.13 

(d)) that the interval of feasible solutions gets narrower; only the waves at most up to 



66 

 

𝐼𝑚(𝑘) ≈ 0.5 ∙ 102
𝑟𝑎𝑑

𝑚
 can be considered, but the solutions at this value have 

𝐼𝑚(𝜔) ≈ 0, i.e., they are almost unattenuated-in-time waves. It is important to note 

that the observed variation 𝐼𝑚(𝜔) of attenuation in the time domain makes 

mathematically possible another common assumption to set 𝐼𝑚(𝜔) = 0. It is widely 

accepted to plug in the pure real valued 𝜔 to acquire wavenumbers by using (Eq. 104), 

which is a direct consequence of the above mentioned assumption 𝑘∗ = 𝑘, even when 

damping is present. Finally, additional assumption 𝐼𝑚(𝜔) = 0 allows determining the 

solution of only spatially damped Lamb wave. 𝐼𝑚(𝜔) = 0 is accepted in terms of the 

considered harmonic loading resulting in a nondecaying-in-time wave, which is often 

preferable in practical applications. 

 

  
a) b) 

  
c) d) 

Fig. 3.14. (a) Phase velocities of mode 𝐿0 due to varying 𝑖𝑚𝑎𝑔(𝑘) of the 

wavenumber; (b)  Phase velocities of  𝐿0 in the approximate range defined by the 

wavelengths of  𝜆 ≈ 0.157 𝑚 and  𝜆 ≈ 0.022 𝑚; (c) Phase velocities of  𝐿0 at a wavelength 

of  𝜆 ≈ 0.157 𝑚; (d) Phase velocities of  𝐿0 at a wavelength of 𝜆 ≈ 0.037 𝑚. 

 

In our further numerical exploration, the dispersion relations are calculated by 

discarding any of the assumptions in order to retain the accuracy of the model. 𝐼𝑚(𝑘) 
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is varied up to 0.25 ∙ 102
𝑟𝑎𝑑

𝑚
  at a step of 0.025 ∙ 102. The numerical results are 

expressed in a similar way in (Fig. 3.14) and (Fig. 3.15). 

It can be seen in (Fig. 3.14 (a)) that the imaginary part of the wavenumber has a 

considerable effect to the phase velocity only in low frequencies. The phase velocities 

at the wave length of around 𝜆 ≈ 0.157 𝑚 (Fig. 3.14 (b)) is inspected in detail. The 

solutions reach and overpass the bound 𝑐𝑝𝑙𝑎𝑡𝑒 more rapidly (Fig. 3.14 (c)). It can be 

seen that waves with at most 𝐼𝑚(𝑘) ≈ 0.1 ∙ 102
𝑟𝑎𝑑

𝑚
 in low frequencies can be 

considered as feasible solutions. Already at a wave length of 𝜆 ≈ 0.037 𝑚, the 

variation of 𝐼𝑚(𝑘) has little effect in terms of the phase velocity (Fig. 3.14 (d)). Again, 

only an approximate interval for the solutions can be obtained from phase velocities. 

  
a) b) 

  
c) d) 

Fig. 3.15. (a) 𝑅𝑒(𝜔) versus 𝑅𝑒(𝑘) and 𝐼𝑚(𝑘); (b) 𝐼𝑚(𝜔) versus 𝑅𝑒(𝑘) and 𝐼𝑚(𝑘); 
(c) 𝑅𝑒(𝜔) versus 𝑅𝑒(𝑘) and 𝐼𝑚(𝑘) at a zoomed fragment; (d) 𝐼𝑚(𝜔) versus 𝑅𝑒(𝑘) and 

𝐼𝑚(𝑘) at a zoomed fragment. 

As 𝐼𝑚(𝑘) increases, unphysical solutions at 𝑅𝑒(𝑘) = 0 with  𝑅𝑒(𝜔) > 0 appear 

(Fig. 3.15 (a)). An area with unfeasible solutions at 𝐼𝑚(𝜔) =  0 with 𝑅𝑒(𝑘) > 0 can 

be clearly seen in (Fig. 3.15 (c)). Dispersion curves, at least one of whose solutions is 

related with these regions, should not be considered. It can be seen in (Fig. 3.15 (b)) 

that we should expect a small region as the resulting time attenuation factor 𝐼𝑚(𝜔) is 

constant across all the range of 𝑅𝑒(𝑘) and 𝐼𝑚(𝑘). The physically unfeasible area in 
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(Fig. 3.15 (d)) coincides with that of (Fig. 3.15 (b)). The observation of constant 

𝐼𝑚(𝜔) for a mode is a more intuitive consequence when compared to the previous 

results in (Fig. 3.13 (b)) as linear damping is considered in the model.  It is therefore 

important to perform further investigation in terms of the use of complex 𝜔 with fixed 

𝐼𝑚(𝜔) > 0 as an input in (Eq. 104) along with the assumption of 𝑘∗ = 𝑘. It is 

observed that although 𝐼𝑚(𝜔) is constant but it still differs for each mode. However, 

a more detailed exploration is beyond the scope of this study. 

It can be observed on closer inspection in (Fig. 3.15 (c)) that on only one 

dispersion curve the wave does not propagate (𝑅𝑒(𝜔) = 0) at only point 𝑅𝑒(𝑘) = 0 

and 𝐼𝑚(𝑘) ≈ 0.104 102
𝑟𝑎𝑑

𝑚
.  Therefore, this curve can be considered as an exact 

solution 𝜔(𝑘) (Fig. 3.16 (a)); above this curve, nonphysical waves seem to propagate 

already at 𝑅𝑒(𝑘) = 0, whereas beneath this curve, nonphysical waves do not 

propagate even at 𝑅𝑒(𝑘) > 0. The phase velocity of the discovered solution does not 

exceed the upper bound 𝑐𝑝𝑙𝑎𝑡𝑒, either (Fig. 3.16 (b)). However, more profound 

analysis is required to distinguish the solution in any given range of 𝑅𝑒(𝑘) because 

the identification of the solution is performed in the area of only low 𝑅𝑒(𝑘). It is 

important to note that the solution was identified by fixing spatial attenuation as a 

constant per length unit. However, for many low loss materials, bulk attenuation is 

approximately proportional to the frequency, therefore bulk attenuation per 

wavelength is constant [82] but with a different assumption 𝐼𝑚(𝜔) = 0. 

  
a) b) 

Fig. 3.16. (a) Exact 𝜔(𝑘) solution of a damped plate; (b) Phase velocity of  𝜔(𝑘) 
solution.  

A comparison of solutions for the longitudinal mode in the undamped 

waveguide, in the damped waveguide and in the damped waveguide under 

assumptions of  𝐼𝑚(𝜔) =  0 and with 𝑘∗ = 𝑘 (when using (Eq. 104)) is provided in 

(Fig. 3.17). The phase velocities of the solutions significantly differ only in the low 

frequency range (Fig. 3.17 (a)); however, these differences diminish as the frequency 

increases. All the solutions asymptotically approach velocity 𝑐𝑅 of the Rayleigh wave, 

which is an expected result for the Lamb waves in the high frequency range (Fig. 3.17 

(b)). 
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a) b) 

Fig. 3.17. (a) A comparison of the phase velocities of 𝐿0 mode in undamped 

waveguide, in damped waveguide and in damped waveguide under assumptions of  

𝐼𝑚(𝜔) =  0 and with 𝑘∗ = 𝑘; (b) Phase velocities of 𝐿0 mode approach. 

The phase velocity as the ratio 𝑐𝑝ℎ =
𝑅𝑒(𝜔)

𝑅𝑒(𝑘)
  is not significantly affected by the 

damping in the range of high frequencies. Let us consider a decay factor to be defined 

as a scalar by which the wave’s amplitude has dropped after traveling one length of 

the wave. A variation of the decay factor due to the frequency is visualized on the 

phase velocity of the damped 𝐿0 mode (Fig. 3.18 (a)). A similar coefficient expressed 

in terms of Nepers per wavelength [
𝑁𝑝

𝑊𝑎𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ
] turns out to be useful for those 

materials whose spatial attenuation per unit length is a linear function of the frequency 

while the bulk velocity is mainly constant with the frequency [82]. 

  
a) b) 

Fig. 3.18. (a) Intervals of decay factors for the damped 𝐿0 mode; (b) Decay of the 

wave in time and space. 

For example, an amplitude of the mode solution at 0.3 𝑀𝐻𝑧 would have 

dropped by a factor of around 
1

150
 after the wave had traveled its own length 𝜆 ≈

0.011 𝑚. 

In summary, 𝜔(𝑘) dispersion relations of the attenuated in time and space 

longitudinal Lamb wave were found. A solution among the possible alternatives was 
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identified by fixing the imaginary part of the input wavenumber 𝑘 in the governing 

Eigenvalue problem; as a consequence, the solution has constant attenuation per unit 

length. As a result, the attenuation in time seems to be constant for the major part of 

the possible solutions. Finding solution 𝑘(𝜔) to damped free vibrations requires 

further analysis. In contrast, finding 𝑘(𝜔) solutions to only spatially damped waves 

(𝐼𝑚(𝜔) = 0) seems to be only possible by setting 𝑘∗ = 𝑘, and, in such a case, spatial 

attenuation is a function of frequency. Above all that, it would be useful to investigate 

the impact of varying damping to the dispersion solutions for more generality. A 

schematic representation of the wave decay in space and time domains is provided for 

clarity (Fig. 3.18 (b)). 

3.4 Concluding Remarks 

In this section, the mass-proportional Rayleigh damping of the waveguide 

material was introduced in SAFEM. The new aspect of this work is that the 

propagating wave solutions have been analyzed at a significant level of damping. 

The influence of damping on the dispersion and phase-velocity curves was 

investigated. It was demonstrated that the approximate linearized Eigenvalue problem 

for the wave modes investigation is only extremely approximate in cases of severe 

damping. At higher values of Rayleigh damping, the dispersion relations show evident 

abnormalities. The erroneous results are caused by the assumption that only real wave 

numbers are considered, or that the complex parts of them are negligible. Physically, 

this means that the wave mode amplitude is not attenuated along the distance.  

Therefore, the Eigenvalue problem was reformulated to include fully complex 

wavenumbers. As a result, all the modal solutions for the waveguide were obtained as 

evanescent. At a given wave frequency, the presence of the complex wavenumber 

leads to a non-linear Eigenvalue problem which can be solved only iteratively. 

At a given wavenumber, the linearity of the Eigenproblem is retained, however, 

the dispersion relations have to be constructed by prescribing the values of the 

wavenumbers on the complex plane. So each mode is characterized by two complex 

exponents which characterize the behavior of the wave mode in space and time. The 

complex parts of the space exponent characterize the decay of the wave mode 

amplitude along the direction of propagation. The complex parts of the time exponent 

characterize the decay of the wave mode amplitude over time. The real parts of both 

constants represent the modal wave number and the modal wave frequency, 

correspondingly. 

It is observed that the obtained solution of the longitudinal wave mode is less 

affected by the presence of mass damping applied to the waveguide when compared 

to the corresponding solution of the conventional approximate equation. However, 

further analysis would be necessary to calculate modal solutions in terms of complex 

wavenumbers at a given frequency. 

Moreover, Rayleigh damping increases proportionally with frequency, 

therefore, attenuation is not bounded at high frequencies. On the other hand, more 

sophisticated rheological models for solids assume different material behavior over 

the range of frequency. 
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4 Leaky Guided Waves in Waveguide Immersed in Perfect Fluid 

4.1 Open Waveguide 

An embedded/immersed waveguide is considered to be open when the 

surrounding medium is unbounded. As mentioned previously, one of the main sources 

for attenuation is energy leakage from the waveguide to the surroundings. The 

modeling of the infinite surrounding leaky medium requires techniques that help to 

avoid unwanted reflections from the boundaries. These techniques include infinite 

elements, boundary integral methods, non-reflecting boundary conditions and 

absorbing layer techniques [46]. However, each technique is denoted by a varying 

efficiency of application depending on the modeling scenario. It has been 

demonstrated that the infinite element method only exhibits limited accuracy for 

elastic bulk waves (actually, as well as for guided waves) [46]. Non-reflecting 

boundary conditions applied in FE and the finite difference (FD) methods generally 

use extra variables in order to approximate the infinite surrounding media and require 

the development of specialist codes for FE/FD [46]. For example, the SAFEM 

coupled with boundary element yields a non-linear Eigenvalue problem and requires 

rather high computation resources [68]. The absorbing layer technique includes FE 

domains located at the boundaries of the investigated domain and designed to absorb 

the incident waves, and therefore it can be implemented in commercially available FE 

packages. 

The two common absorbing layer techniques for the elastic bulk waves 

problems are the perfectly matched layer (PML) and the absorbing layer with 

increasing damping (ALID) techniques. The PML technique exploits the match of the 

impedances between the PML and the investigated domain. Therefore, an incident 

wave enters the PML without reflection and attenuates exponentially when inside the 

PML. Let us consider a 1D elastic wave 𝑢(𝑥, 𝑡) = 𝑈𝑒−𝑖(𝑘𝑥−𝜔𝑡) traveling towards the 

boundary of the investigated domain along the 0𝑋 axis (Fig. 4.1 (a)). The attenuation 

of the wave in the PML is achieved by the introduction of a complex coordinate: 𝑥 →
𝑥(1 + 𝑖 ∙ 𝛼), where 𝛼 = 𝐴 ∙ 𝑥𝑝; (𝑝 ≥ 2; 𝐴 is constant) is an attenuation parameter 

varying at least quadratically with the distance within the PML. Therefore, the wave 

solution in the PML reads as: 

 𝑢(𝑥, 𝑡) = 𝑈𝑒−𝑖(𝑘𝑥−𝑖𝑘𝛼𝑥−𝜔𝑡). (105) 

As it can be seen, the resulting wavenumber becomes a complex number and 

describes the evanescent wave. The layer thickness and 𝛼 are the main parameters for 

the PML. 
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The ALID has the same material properties as the adjacent medium in the 

investigated domain but with gradually increasing artificial damping. The 

viscoelasticity that accounts for material damping in the ALID can be introduced via 

the complex valued mass density and stiffness modulus. The resulting wavenumber is 

complex, and the wave solution in the ALID reads as: 

 𝑢(𝑥, 𝑡) = 𝑈′𝑒−𝑖(𝑅𝑒(𝑘
′)𝑥+𝑖∙𝐼𝑚(𝑘′)𝑥−𝜔𝑡), (106) 

𝑅𝑒(𝑘′) describes the traveling wave within the ALID and varies with damping, 

however, it does not perfectly match wavenumber 𝑘 in the adjacent medium in the 

investigated domain. This mismatch results in the reflection of the incident wave (Fig. 

4.1 (b)). Additional calculations are necessary to determine the attenuation parameters 

for the ALID in order to minimize the reflections [46]. 

The main drawback of the absorbing layer techniques is that they require 

additional computational domain (Fig. 4.1 (d)). In cases of the perfect fluid, the 

infinite leaky medium surrounding the waveguide can be expressed via the exact 

boundary condition and is analyzed further in this study. 

4.1.1 Boundary Condition for Immersed Waveguide 

Let us consider a waveguide which is infinite in the 𝑂𝑍 direction and is 

immersed in the infinite leaky medium as perfect non-viscous fluid which does not 

support shear waves (Fig. 4.2 (a)). The guided wave is assumed to be traveling in a 

waveguide along the 𝑂𝑍 direction with wavenumber vector 𝒌𝑧 (whose direction 

coincides with the 𝑂𝑍 axis) at angular frequency 𝜔. The SAFE approach represents 

the finite element domain Ω as a discretized cross-section of the waveguide, whereas 

Γ is the boundary perimeter of the cross-section (Fig. 4.2 (b)). The coordinate system 

of the structure is oriented in such a way that the directions of the nodal displacements 

– 1) 𝑢𝜏 tangential to the surface of the cross-section, 2) 𝑢𝑛 normal to the surface of 

the cross-section, 3) 𝑢𝑧 parallel to the waveguide axis – on the upper side of Γ 

respectively match the 𝑂𝑋 or 𝑂𝑌 and 𝑂𝑍 global directions depending on the 

concerned side of the waveguide. Displacements 𝑢𝜏 and 𝑢𝑧 would excite shear waves 

in the surrounding leaky medium. In case of the perfect fluid, only displacement 𝑢𝑛 

excites the longitudinal wave in the outer fluid. 

  

 
a) b) c) 

Fig. 4.1. 1D elastic wave in the PML (a) and ALID (b); the cross-section of the 

domain consisting of the waveguide, the leaky medium and the absorbing layer (c). 
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a) b) 

Fig. 4.2. (a) A scheme of the immersed waveguide; (b) Discretization of the cross-

section of the waveguide. 

In this work, the analysis is restricted to convex cross-sections in order to avoid 

traveling the wavefield back to the waveguide surface. 

4.1.2 One Dimensional Leaky Wave 

Since the effect of the infinite surrounding medium is modeled via external 

traction forces acting upon the surface of the waveguide, the stress-strain relations can 

be retrieved from the leaky wave equation. When the wave propagation direction in 

the waveguide is not taken into account, it could be assumed that displacements 𝑢𝑛 

perpendicular to the cross-section change in accordance with the one-dimensional 

wave traveling in two adjoining infinite half spaces representing the waveguide and 

the fluid (Fig. 4.3 (a)). Helmholtz equation holds for both displacements in the 

waveguide and the fluid; particularly for a leaky medium, the displacements of the 

wave field are described via equation [31]: 

 
𝜕2𝑢̃′

𝜕𝑥′2
+ 𝑘̃′2𝑢̃′ = 0, (107) 

where the tilde superscription ~ denotes the parameter correspondence to the leaky 

medium. The separation of variables leads to the general wave solution: 

 𝑢̃′(𝑘̃′, 𝑥′) = 𝐴(𝑘̃′)𝑒𝑖𝑘̃′𝑥′ + 𝐵(𝑘̃′)𝑒−𝑖𝑘̃′𝑥′, (108) 

where 𝐴 and 𝐵 denote the wavenumber dependable amplitudes of the backward and 

forward direction, respectively, with 1D waves traveling along the  𝑂𝑋′ axis. At the 

boundary 𝑥′ = 0, the stresses in the waveguide and the fluid must match [69]: 

 𝜎′ = 𝜎̃′ = 𝐸̃
𝜕𝑢̃′(𝑘̃′,0)

𝜕𝑥′
= 𝐸̃𝜀̃′, (109) 

where 𝐸̃ denotes the elastic modulus of the leaky medium, and 𝜀̃ is the strain. The 

elastic modulus for the longitudinal wave reads as [69]: 
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 𝐸̃ = 𝜌̃𝑐̃𝐿
2, (110) 

where 𝜌̃ denotes the mass density of the leaky medium, whereas 𝑐̃𝐿 denotes the phase 

velocity of the longitudinal wave in the leaky medium. The stress reads as [69]: 

 
𝜎̃′ = 𝜌̃𝑐̃𝐿

2 𝜕𝑢̃′(𝑘̃′,𝑥′)

𝜕𝑥′
|
𝑥′=0

=  𝑖𝜌̃𝑐̃𝐿
2𝑘̃′(𝐴(𝑘̃′)𝑒𝑖𝑘̃′𝑥′ − 𝐵(𝑘̃′)𝑒−𝑖𝑘̃′𝑥′)|

𝑥′=0
=

= 𝑖𝜌̃𝑐̃𝐿
2𝑘̃′ (𝐴(𝑘̃′) − 𝐵(𝑘̃′)) .

 (111) 

However, the displacements on the boundary also match [69]: 

 𝑢′(𝑘′, 0) = 𝑢̃′(𝑘̃′, 0) = 𝐴(𝑘̃′) + 𝐵(𝑘̃′). (112) 

The stress for the leaky medium can be rewritten by using (Eq. 109): 

 
𝜎̃′ = 𝑖𝜌̃𝑐̃𝐿

2𝑘̃′ (𝐴(𝑘̃′) − 𝐵(𝑘̃′)) = 𝑖𝜌̃𝑐̃𝐿
2𝑘̃′ (2𝐴(𝑘̃′) − 𝑢̃′(𝑘̃′, 0)) =

= 𝑖𝜌̃𝑐̃𝐿
2𝑘̃′ (2𝐴(𝑘̃′) − 𝑢′(𝑘′, 0))

 (113) 

Since term 𝐴(𝑘̃′) corresponds to a wave resulting from a reflection from the 

boundary, it can be omitted in the case of the infinite fluid. The stress on the boundary 

for the waveguide is finally obtained [69]: 

 𝜎′ = 𝜎̃′ = −𝑖𝜌̃𝑐̃𝐿
2𝑘̃′𝑢′(𝑘′, 0) = −𝑖𝜌̃𝑐̃𝐿𝜔𝑢

′(𝑘′, 0). (114) 

The assumption of continuity for the stresses at the boundary of the solid and 

the fluid will be applied in the three-dimensional immersed waveguide as well. 

4.1.3 Traction Condition for Waveguide 

When the wave propagation direction in the waveguide is taken into account, 

the traveling wave in the waveguide generates the pressure wave in the surrounding 

fluid. The wave is obtained as a superposition of two separate waves traveling in the 

directions of the waveguide axes 𝑂𝑍 and 𝑢𝑛, respectively. The wave in the fluid is 

characterized by wavenumber vector 𝒌̃. The norm of the wavenumber vector is related 

with the acoustic properties of the leaky medium as [99]: 

 𝑘̃ =
𝜔

𝑐𝐿̃
, (115) 

The direction of wavenumber vector 𝒌̃ reads as [99]: 

 𝑘̃2 = 𝑘̃𝐿
2 + 𝑘𝑍

2, (116) 

where 𝑘̃𝐿is the projection of 𝒌̃ in the plane perpendicular to the cross-section of the 

waveguide, 𝑘̃𝑍 is the projection of 𝒌̃ on the axis 𝑂𝑍 and coincides with the 

wavenumber of the traveling wave in the waveguide, i.e., 𝑘̃𝑍 = 𝑘𝑍 (Fig. 4.3 (b)). 

When the phase velocity of a guided wave is considerably higher than the 

longitudinal bulk wave in the fluid, the energy of the guided wave leaks into the leaky 

medium with angle 𝜃 (Fig. 4.3 (b)) determined by Snell’s law [100]: 

 sin(𝜃) =
𝑐𝑝ℎ 

𝑐̃𝑝ℎ
,  (117) 
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where 𝑐𝑝ℎ  and 𝑐̃𝑝ℎ are the phase velocities of the guided wave and the leaky wave, 

respectively. 

 When the phase velocity of the waveguide is many times larger than that of the 

leaky wave 𝑐𝑝ℎ ≫ 𝑐̃𝑝ℎ, 𝜃 approaches zero, i.e., the leaky wave tends to travel along 

the 𝑂𝑌 axis. Under these circumstances, the surrounding medium can be regarded as 

a solid which does not support shear waves. A 1D dashpot boundary condition could 

be proposed to approximate the effect of this type of the surrounding solid, particularly 

in high frequencies [70]. Parameter 𝑅𝑐 defined as the ratio of acoustic impedances of 

the embedded waveguide and the leaky medium can be used to estimate the effect of 

the surrounding medium [70]: 

 𝑅𝑐 =
𝑐𝑝ℎ 𝜌

𝑐̃𝑝ℎ 𝜌̃
= √

𝐺𝜌

𝐺̃𝜌̃
,  (118) 

where 𝐺 is the shear modulus. 

When 𝑅𝑐 ≫ 1, i.e., when the materials are very different, the major part of the 

energy of the guided wave reflects at the waveguide’s interface, therefore, the 

damping effect due to the leaky wave is relatively small. When 𝑅𝑐 ≈ 1, the angle of 

reflection at the interface of the waveguide approaches zero, and the structure can no 

longer be considered as an embedded waveguide. It was demonstrated that, for 𝑅𝑐 ≥
4, a technique of the FE absorbing region that accounts for the surrounding medium 

(as described in [64]) can be assumed to converge to more accurate results [70]. It was 

also shown, that, at the extreme case, when 𝑅𝑐 = 2, both approaches of the dashpot 

boundary condition and the FE absorbing region fail to produce very reliable results. 

However, in order to overcome proximities, the boundary condition for the waveguide 

will account for the exact direction of the leaky waves. 

 

 
a) b) 

Fig. 4.3. (a) A one-dimensional wave traveling in infinite half spaces; (b) 

Wavenumbers at the interface of the waveguide and the fluid. 
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Let Γ1 be the segment of the cross-section perimeter determined between two 

points (0, 𝑦1) and (𝑥1, 𝑦1) (Fig. 4.2 b). The displacement field in the fluid at arbitrary 

𝑥𝑎𝑟𝑏 position  Γ1 after omitting the temporal term 𝑒−𝑖𝜔𝑡 is a two-dimensional wave 

[99]: 

 𝒖̃𝑓𝑙𝑢𝑖𝑑1 = (
𝑢̃𝑦
𝑢̃𝑧
) = (

𝑘̃𝐿
𝑘𝑧
)𝑎𝐿𝑒

𝑖(𝑘̃𝐿𝑦+𝑘𝑍𝑧), (119) 

where 𝑎𝐿 is an arbitrary scalar. As in the case of a one-dimensional wave (Eq. 108), 

the amplitude depends on the wavenumbers of the added waves. Since an excited 

wave in the leaky medium is longitudinal and perpendicular to Γ1, displacements 

equal to 𝑢̃𝑥 = 0. The displacement field for the leaky wave on boundary Γ1  at 𝑧 = 0 

and 𝑥𝑎𝑟𝑏 reads: 

 𝒖Γ1 = (
𝑢𝑛
𝑢𝑧
) = (

𝑢̃𝑛
𝑢̃𝑧
) = (

𝑘̃𝐿
𝑘𝑧
)𝑎𝐿𝑒

𝑖𝑘̃𝐿𝑦1. (120) 

The scalar 𝑎𝐿 can be expressed as [99]: 

 𝑎𝐿 =
𝑢𝑛

𝑘̃𝐿
𝑒−𝑖𝑘̃𝐿𝑦1. (121) 

(Eq. 119) can be rewritten as [99]: 

 𝒖̃𝑓𝑙𝑢𝑖𝑑1 = (
𝑢̃𝑦
𝑢̃𝑧
) = (

1
𝑘𝑧

𝑘̃𝐿

)𝑢𝑛𝑒
𝑖(𝑘̃𝐿(𝑦−𝑦1)+𝑘𝑍𝑧). (122) 

The strain vector for the leaky wave in a fluid affected by boundary Γ1 reads as: 

 

𝜺̃𝑓𝑙𝑢𝑖𝑑1 = (𝐋𝑦
𝜕

𝜕𝑦
+ 𝐋𝑧

𝜕

𝜕𝑧
) 𝒖̃𝑓𝑙𝑢𝑖𝑑1 =

= (𝑖𝑘̃𝐿𝐋𝑦 + 𝑖𝑘𝑍𝐋𝑧) (
1
𝑘𝑍

𝑘̃𝐿

)𝑢𝑛𝑒
𝑖(𝑘̃𝐿(𝑦−𝑦1)+𝑘𝑍𝑧),

 (123) 

where 𝑳𝑦 = (
1 0
0 0
0 1

) and 𝑳𝑧 = (
0 0
0 1
1 0

). The strain vector for the leaky wave on 

boundary Γ1 is: 

 𝜺̃Γ1 = (

𝜀𝑦̃𝑦
𝜀𝑧̃𝑧
𝛾̃𝑦𝑧

) = (𝑖𝑘̃𝐿𝐋𝑦 + 𝑖𝑘𝑍𝐋𝑧) (
1
𝑘𝑍

𝑘̃𝐿

)𝑢𝑛𝑒
𝑖𝑘𝑍𝑧. (124) 

However, the stress on boundary Γ1 is present only in the direction of 

displacements 𝑢𝑛 and can be expressed similarly to (Eq. 114), where 𝑘̃′ wavenumber 

is replaced with projection 𝑘̃𝐿 = √𝑘̃
2 − 𝑘𝑍

2 of the wavenumber vector 𝒌̃: 
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 𝝈̃Γ1 = (

𝜎̃𝑦𝑦Γ1
𝜎̃𝑧𝑧Γ1
𝜏̃𝑧𝑦Γ1

) = (
𝜎̃𝑦𝑦Γ1
0
0

), (125) 

where 𝜎̃𝑦𝑦Γ1 = −𝑖𝜌̃𝑐̃𝐿𝜔𝑢̃(𝑘̃𝐿, 𝑦 = 𝑦1, 𝑧) = −𝑖𝜌̃
𝜔

√𝑘̃2−𝑘𝑍
2
𝜔𝑢̃𝑦 = −𝑖𝜌̃

𝜔2

𝑘̃𝐿
𝑢̃𝑦. By using 

(Eq. 70), 𝜎̃𝑦𝑦Γ1 can be rewritten as: 

 𝜎̃𝑦𝑦Γ1 = −𝑖𝜌̃
𝜔2

𝑘̃𝐿
𝑢̃𝑦 = −𝑖𝜌̃

𝜔2

𝑘̃𝐿
𝑢̃n𝑒

𝑖𝑘𝑍𝑧 = −𝑖𝜌̃
𝜔2

𝑘̃𝐿
𝑢𝑛𝑒

𝑖𝑘𝑍𝑧. (126) 

The stress on boundary Γ1 in the fluid corresponds to the surface traction 

condition for the waveguide: 

 𝒕Γ1 = (

𝑡𝑛
𝑡𝜏
𝑡𝑧

) = (
𝜎̃𝑦𝑦Γ1
0
0

). (127) 

It can be noted that traction, as well as stress, in the fluid along the 𝑂𝑍 direction 

is governed by the harmonic wave. If we let 𝑥𝑎𝑟𝑏 coincide with the FE nodes in respect 

of the 𝑂𝑋 axis, it yields us the waveguide surface traction caused by a fluid: 

 𝒕Γ1 = (

𝑡𝑛
𝑡𝜏
𝑡𝑧

) = 𝑵𝑻𝑗𝑒
𝑖𝑘𝑍𝑧, (128) 

where 𝑵 is a shape function with constraint 𝑦 = 𝑦1, 𝑗 = 1,𝑚̅̅ ̅̅ ̅̅ , (𝑚 − 1) is the number 

of FE along boundary Γ1, 𝑻𝑗 is the nodal external traction vector at the waveguide 

boundary as: 

 𝑻𝑗 = (
𝑇𝑛
0
0
)

𝑗

= −𝑖
𝜔2

𝑘̃𝐿
(
𝜌̃ 0 0
0 0 0
0 0 0

)(

𝑢𝑛
𝑢𝜏
𝑢𝑧
)

𝑗

= −𝑖
𝜔2

𝑘̃𝐿
𝑪(

𝑢𝑛
𝑢𝜏
𝑢𝑧
)

𝑗

. (129) 

Similarly to the one-dimensional case (as shown in Eq. 114), the surface traction 

for the waveguide (Eq. 129) is a function of acoustic properties of the surrounding 

leaky medium, the angular frequency of the traveling wave and the displacements at 

the boundary of the solid and the fluid. 

4.2 Obtaining Dispersion Solutions 

4.2.1 Nonlinear Eigenvalue Problem 

The external boundary condition must be included into the general Eigenvalue 

problem as [99]: 

 (𝑲1 + 𝑖𝑘𝑍𝑲2 + 𝑘𝑍
2𝑲3 −𝜔

2𝑴)𝒖 = 𝑭𝑓𝑙𝑢𝑖𝑑 + 𝑭𝑙𝑜𝑎𝑑𝑖𝑛𝑔, (130) 

where 𝑭𝑓𝑙𝑢𝑖𝑑 is the nodal force vector due to the fluid traction condition. 𝑭𝑙𝑜𝑎𝑑𝑖𝑛𝑔 is 

the nodal force vector due to the external dynamic loading as long as the forced wave 

response is concerned. If our case is 𝑭𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝟎, (Eq. 130) is treated as an 
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Eigenvalue problem whose solution provides us with the dispersion relations for a 

waveguide immersed in the fluid. 

𝑭𝑓𝑙𝑢𝑖𝑑 summarizes the external traction caused by fluid loading: 

 𝑭𝑓𝑙𝑢𝑖𝑑 = 𝑖
𝜔2

𝑘̃𝐿
𝑸𝒖 = 𝑖

𝜔2

𝑘̃𝐿
𝑸𝐔̅𝑒𝑖𝑘𝑍𝑧, (131) 

where coefficient matrix 𝑸 characterizes the distribution of fluid tractions among the 

nodes on surface perimeter 𝛤 as [70]: 

 𝑸 = ∫ (𝑵(𝑠))𝑇𝑪𝑵(𝑠)𝑑𝑠
𝑠∈Γ

, (132) 

where 𝑵(𝑠) is a one-dimensional shape function used to interpolate the 𝑥 and 𝑦 

coordinates on  Γ, 𝑠 is a circumferential integral coordinate running along Γ. 

Finally, the governing equation for the immersed waveguides is obtained as a 

nonlinear Eigenvalue problem: 

 (𝑲1 + 𝑖𝑘𝑍𝑲2 + 𝑘𝑍
2𝑲3 −𝜔

2𝑴− 𝑖
𝜔2

𝑘̃𝐿
𝑸) 𝑼̅ = 𝟎. (133) 

4.2.2 Solving Eigenvalue Problem 

In this study, (eq. 133) is solved by extending the technique proposed in paper 

[99] to a three-dimensional waveguide. A two-stage procedure of the algebraic 

transformation and linearization of (Eq. 133) is employed. The  𝑚-th wavemode 

(𝑘𝑍𝑚, 𝑘̃𝐿𝑚, 𝝋𝑚) must satisfy the following equation: 

 (𝑲1 + 𝑖𝑘𝑍𝑚𝑲2 + 𝑘𝑍𝑚
2 𝑲3 −𝜔

2𝑴− 𝑖
𝜔2

𝑘̃𝐿𝑚
𝑸)𝝋𝑚 = 𝟎. (134) 

The further transformation is based on the symmetry of wave solutions with 

respect to the 𝑋𝑂𝑌 plane. Identical waves propagating in the positive and negative 𝑂𝑍 

directions are described by (Eq. 134). In order to exploit this feature, we shall split 

natural vector 𝝋𝑚 with respect to displacements in the directions of 𝑂𝑍 and others 

than 𝑂𝑍: 

 𝝋𝑚 = (
𝝋𝑜𝑚
𝝋𝑧𝑚

). (135) 

For the convenience of the post-processing of modal results, natural vector 𝝋𝑚 

is split by separating the nodal degrees of freedom (dof) with respect to displacements 

𝑢𝑛 on 𝛤 that correspond to the longitudinal wave in the fluid (denoted as L), 

displacements 𝑢𝜏 on 𝛤 that would excite the shear wave (represented by S), 

displacements 𝑢𝑧 along the 𝑂𝑍 axis on the entire cross-section (written as z) and 

introduced displacements 𝑢𝐶 in the core of the cross-section (marked by C) (Fig. 4.4). 

The preferable reordering of dof could be summarized as: 

 𝝋𝑚 = (
𝝋𝑜𝑚
𝝋𝑧𝑚

) = (

𝝋𝐿𝑚
𝝋𝑆𝑚
𝝋𝐶𝑚
𝝋𝑧𝑚

). (136) 
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Fig. 4.4. A schematic classification of nodal displacements in the cross-section. 

The matrices in (Eq. 134) are divided into block components in accordance with 

(Eq. 136) as 

 

 

((𝑲1𝐿 𝑲1𝑆 𝑲1𝐶 𝑲1𝑍) + 𝑖𝑘𝑍𝑚(𝐊2𝐿 𝑲2𝑆 𝑲2𝐶 𝑲2𝑍) +

+𝑘𝑍𝑚
2 (𝑲3𝐿 𝑲3𝑆 𝑲3𝐶 𝑲3𝑍) − 𝜔

2(𝑴𝐿 𝑴𝑆 𝑴𝐶 𝑴𝑍) −

−𝑖
𝜔2

𝑘̃𝐿𝑚
((𝑸𝐿 𝑸𝑆 𝑸𝐶 𝑸𝑍)))(

𝝋𝐿𝑚
𝝋𝑆𝑚
𝝋𝐶𝑚
𝝋𝑧𝑚

) = 0.

 (137) 

A symmetrical solution with respect to the 𝑂𝑍 direction means that the 

displacement distribution with the −𝑘𝑧𝑚 wavenumber and the corresponding natural 

vector (
𝝋𝑜𝑚
−𝝋𝑧𝑚

) also satisfies the following equation: 

 

 

((𝑲1𝐿 𝐊1𝑆 𝑲1𝐶 𝑲1𝑍) − 𝑖𝑘𝑍𝑚(𝑲2𝐿 𝑲2𝑆 𝑲2𝐶 𝑲2𝑍) +

+𝑘𝑍𝑚
2 (𝑲3𝐿 𝑲3𝑆 𝑲3𝐶 𝑲3𝑍) − 𝜔

2(𝑴𝐿 𝑴𝑆 𝑴𝐶 𝑴𝑍) −

−𝑖
𝜔2

𝑘̃𝐿𝑚
((𝑸𝐿 𝑸𝑆 𝑸𝐶 𝑸𝑍)))(

𝝋𝐿𝑚
𝝋𝑆𝑚
𝝋𝐶𝑚
−𝝋𝑧𝑚

) = 𝟎.

 (138) 

The linear combination 
((𝐸𝑞.137)+(𝐸𝑞.138))

2
+ 𝑘𝑍𝑚

((𝐸𝑞.137)−(𝐸𝑞.138 ))

2
 [99] 

provides the Eigenvalue problem as:  

((𝑲1𝐿 𝑲1𝑆 𝑲1𝐶 𝑲1𝑍) + 𝑖(𝟎 𝟎 𝟎 𝑲2𝑍) − 𝜔
2(𝑴𝐿 𝐌𝑆 𝑴𝐶 𝑴𝑍)

+𝑖𝑘𝑍𝑚
2 (𝑲2𝐿 𝑲2𝑆 𝑲2𝐶 𝟎) + 𝑘𝑍𝑚

2 (𝑲3𝐿 𝑲3𝑆 𝑲3𝐶 𝑲3𝑍)

−𝑖
𝜔2

𝑘̃𝐿𝑚
((𝑸𝐿 𝑸𝑆 𝑸𝐶 𝑸𝑍))(

𝝋𝐿𝑚
𝝋𝑆𝑚
𝝋𝐶𝑚

𝑘𝑍𝑚𝝋𝑧𝑚

) = 𝟎.

(139) 
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(Eq. 139) then can be further simplified as: 

 (𝑯11 + 𝑘𝑍𝑚
2 𝑯12 +

𝑯0

𝑘̃𝐿𝑚
)(

𝝋𝐿𝑚
𝝋𝑆𝑚
𝝋𝐶𝑚

𝑘𝑍𝑚𝝋𝑧𝑚

) = 𝟎, (140) 

where 

𝑯11 = (𝑲1𝐿 𝑲1𝑆 𝑲1𝐶 𝑲1𝑍 +𝑖𝑲2𝑍) − 𝜔
2(𝑴𝐿 𝑴𝑆 𝑴𝐶 𝑴𝑍), 

𝑯12 = (𝑲3𝐿 + 𝑖𝑲2𝐿 𝑲3𝑆 + 𝑖𝑲2𝑆 𝑲3𝐶 + 𝑖𝑲2𝐶 𝑲3𝑍), 

𝑯0 = −𝑖𝜔
2((𝑸𝐿 𝑸𝑆 𝑸𝐶 𝑸𝑍)). 

The matrix block H0 in (Eq. 140) can be simplified to the form of: 

𝑯0 = −𝑖𝜔
2((𝑸𝐿 𝟎 𝟎 𝟎)) as the mechanical energy of the waveguide is 

transferred to the fluid in the normal direction only. By substituting (Eq. 116) to (Eq. 

140), we obtain: 

 (𝑯1 + 𝑘̃𝐿𝑚
2 𝑯3 +

𝑯0

𝑘̃𝐿𝑚
)(

𝝋𝐿𝑚
𝝋𝑆𝑚
𝝋𝐶𝑚

𝑘𝑍𝑚𝝋𝑧𝑚

) = 𝟎, (141) 

where 𝑯1 = 𝑯11 + 𝑘̃
2𝑯12 , 𝑯3 = −𝑯12. Finally, (Eq. 141) can be rewritten as a 3rd 

polynomial Eigenvalue problem as: 

 
(𝑘̃𝐿𝑚𝑯1 + 𝑘̃𝐿𝑚

3 𝑯3 +𝑯0)(

𝝋𝐿𝑚
𝝋𝑆𝑚
𝝋𝐶𝑚

𝑘𝑍𝑚𝝋𝑧𝑚

)

′

=

= (𝑘̃𝐿𝑚𝑯1 + 𝑘̃𝐿𝑚
3 𝑯3 +𝑯0)𝝋′𝑚 = 𝟎.

 (142) 

(Eq. 142) now can be recast to a linear Eigenvalue problem as: 

 

((
𝟎 𝑯1 𝑯0
𝑰 𝟎 𝟎
𝟎 𝑰 𝟎

) − 𝑘̃𝐿𝑚 (
−𝑯𝟑 𝟎 𝟎
𝟎 𝑰 𝟎
𝟎 𝟎 𝑰

))(

𝑘̃𝐿𝑚
2 𝝋′𝑚
𝑘̃𝐿𝑚𝝋′𝑚
𝝋′𝑚

) =

= (𝑨 − 𝑘̃𝐿𝑚𝑩)(

𝑘̃𝐿𝑚
2 𝝋′𝑚
𝑘̃𝐿m𝝋′𝑚
𝝋′𝑚

) = 𝟎,

 (143) 

where 𝑰 is the identity matrix of dimensions 𝑁 × 𝑁, where 𝑁 is the number of dof 

over the cross-section of the waveguide. (Eq. 143) can be reduced by omitting zero 

members as: 
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((
𝟎 𝑯1 𝑯′0
𝑰 𝟎 𝟎
𝟎 𝑰′ 𝟎

) − 𝑘̃𝐿𝑚 (
−𝑯𝟑 𝟎 𝟎
𝟎 𝑰 𝟎
𝟎 𝟎 𝑰′′

))(

𝑘̃𝐿𝑚
2 𝝋′𝑚
𝑘̃𝐿𝑚𝝋′𝑚
𝝋′′𝑚

) =

= (𝑨′ − 𝑘̃𝐿𝑚𝑩′)(

𝑘̃𝐿𝑚
2 𝝋′𝑚
𝑘̃𝐿𝑚𝝋′𝑚
𝝋′′𝑚

) = 𝟎,

 (144) 

where the number of columns in the 𝑯′0 matrix, the number of rows in matrix 𝑰′ are 

the same as the number of both rows and columns in matrix 𝑰′′ . The number of rows 

in vector 𝝋′′𝑚 coincides with the number of columns 𝑀 in matrix 𝑸𝐿, where 𝑀 is the 

number of nodes in contact with the fluid. 

It is convenient to present (Eq. 144) as the standard Eigenvalue problem: 

 ((𝑩′)−1𝑨′ − 𝑘̃𝐿𝑚𝑰)(

𝑘̃𝐿𝑚
2 𝝋′𝑚
𝑘̃𝐿𝑚𝝋′𝑚
𝝋′′𝑚

) = ((𝑩′)−1𝑨′ − 𝑘̃𝐿𝑚𝑰)𝒀,  (145) 

The fluid load can be taken into account in cases of both elastic and viscoelastic 

waveguide materials. The rheological model of linear viscoelasticity is formulated by 

using complex Young’s modulus and is an individual case of the generalized 

Maxwell’s model. This study considers Rayleigh damping in order to account for the 

linear viscoelasticity of the waveguide under harmonic excitation. 

A substitution of Rayleigh damping matrix 𝑪 = 𝑎𝑴+ 𝑏𝑲 into (Eq. 133) yields: 

 (𝑲̂1 + 𝑖𝑘𝑍𝑲̂2 + 𝑘𝑍
2𝑲̂3 −𝜔

2𝑴̂ − 𝑖
𝜔2

𝑘̃𝐿
𝑸) 𝑼̅ = 𝟎, (146) 

where 𝑲̂𝑗 = (1 − 𝑖𝜔𝑏)𝑲𝑗, 𝑗 = 1,2,3 and 𝑴̂ = (1 − 𝑖𝜔−1𝑎)𝑴. It can be noted that the 

Rayleigh damping term presents attenuation dependent on frequency. It is important 

to note that (Eq. 146) is derived from (Eq. 58) by assuming 𝑘𝑍
∗ ≈ 𝑘𝑍. Therefore, the 

Rayleigh damping model supports just low damping for modes, where (𝑅𝑒(𝑘𝑍) ≫
𝐼𝑚(𝑘𝑍)). 

(Eq. 146) can be linearized and solved as explained by formulas (Eqs. 134–145). 

As (Eq. 145) provides 2𝑁 + 2𝑀 solutions of 𝑘̃𝐿𝑚, therefore 2(2𝑁 + 2𝑀) solutions 

for 𝑘𝑍 are acquired as [99]: 

 𝑘𝑍 = ±√𝑘̃
2 − 𝑘̃𝐿

2. (147) 

The 2𝑁 wavenumbers as (𝑅𝑒(𝑘𝑍) + 𝐼𝑚(𝑘𝑍)) and 2𝑁 wavenumbers as 

(−𝑅𝑒(𝑘𝑍) − 𝐼𝑚(𝑘𝑍)) represent the outgoing forward and backward wavemodes, 

respectively. The outgoing modes radiate mechanical energy to the surrounding 

medium while traveling. This energy dissipation causes the decrease of amplitudes 

characterized by the magnitudes of the imaginary part ( 𝐼𝑚(𝑘𝑍) ≠ 0). 2𝑁 

wavenumbers as (𝑅𝑒(𝑘𝑍) − 𝐼𝑚(𝑘𝑍)) and 2𝑁 wavenumbers as (−𝑅𝑒(𝑘𝑍) + 𝐼𝑚(𝑘𝑍)) 
represent the forward and backward incoming modes, respectively. The incoming 
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modes represent the inward wave from the surrounding medium into the waveguide 

which amplifies the amplitude of the wave within the waveguide. 

2𝑀 wavenumbers as (𝑅𝑒(𝑘𝑍) + 0) and 2𝑀 wavenumbers as  (−𝑅𝑒(𝑘𝑍) + 0) 
represent the forward and backward quasi-Scholte wavemodes. They propagate at the 

interface of the waveguide and the fluid. Their energy distribution is concentrated 

along the interface as they travel. Quasi-Scholte waves do not attenuate and disperse 

to a significant extent [74, 75, 101]. 

If the Rayleigh damping of the immersed waveguide is considered in (Eq. 146), 

the imaginary parts of the resulting wavenumbers account for energy losses due to the 

geometrical energy spread and the internal friction. 

4.3 Mode Tracking 

SAFE models with refined discretization of the waveguide cross-section provide 

a large number of wavemode solutions to (Eq. 146) due to the multi-modal nature of 

the waves. Different modes with numerically similar wavenumbers for the same 

angular frequency may appear. Therefore, it is difficult to distinguish among the 

dispersion curves of different relaying just on the grounds of the graphical appearance 

of the dispersion curves. At different angular frequencies, tracking a mode of an 

individual modal shape is of interest as dispersion curves are generated. The approach 

described in [34] is adopted in this study for tracking the wavenumbers obtained from 

(Eq. 146) and assigning them to the same mode characterized by its individual modal 

shape. 

Tracking wavenumber 𝑘̃𝐿𝑚 at given value 𝜔 is based on finding increment ∆𝑘̃𝐿𝑚 

at which the updated wavenumber 𝑘̃𝐿𝑚 + ∆𝑘̃𝐿𝑚 at 𝜔 + ∆𝜔 would belong to the 𝑚-th 

mode. The right 𝒖𝑚 and left 𝒗𝑚 natural vectors of the 𝑚-th mode in (Eq. 144) at 

frequency 𝜔 satisfy such equations as [34]: 

 (𝑨′ − 𝑘̃𝐿𝑚𝑩′)𝒖𝑚 = 𝟎, (148) 

 𝒗𝑚(𝑨′ − 𝑘̃𝐿𝑚𝑩′) = 𝟎. (149) 

At frequency 𝜔 + ∆𝜔 (Eq. 148) can be rewritten as [34]: 

 ((𝑨′ + ∆𝑨′) − (𝑘̃𝐿𝑚 + ∆𝑘̃𝐿𝑚)(𝑩
′ + ∆𝑩′)) (𝒖𝑚 + ∆𝒖𝑚) = 𝟎, (150) 

where matrices ∆𝑨′ and ∆𝑩′ are calculated at frequency ∆𝜔. After expending the 

terms in (Eq. 150), the second order differential terms are omitted for simplicity, 

therefore, ∆𝜔 must be selected and varied along 𝜔 with caution. 

While more sophisticated estimation methods exist (for example, with the 

employment of Pade expansion [29]), in this case, just a linear estimation is found to 

be sufficient. (Eq. 150) can be simplified as [34]: 

 (𝑨′ − 𝑘̃𝐿𝑚𝑩
′)∆𝒖𝑚 = (𝑘̃𝐿𝑚∆𝑩

′ + ∆𝑘̃𝐿𝑚𝑩
′ − ∆𝑨′)  𝒖𝑚. (151) 

Vector ∆𝒖𝑚 can be expanded in the base of independent right natural vectors 𝒖𝑙 
(𝑙 =  1, 2𝑁 + 2𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) as [34]: 

 ∆𝒖𝑚 = ∑ 𝛼𝑙𝑚𝒖𝑙
2𝑁+2𝑀 
𝑙=1 , (152) 
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where 𝛼𝑙𝑚 is the superposition weight of the 𝑙-th mode for vector ∆𝒖𝑚 of the 

tracked 𝑚-th mode, and 2𝑁 + 2𝑀 is the number of solutions 𝑘̃𝐿𝑚. 

The application of the orthogonality condition is written as: 

 

𝒗𝑚𝑨′𝒖𝑙 = {
𝒗𝑚𝑨′𝒖𝑚;  𝑚 = 𝑙

0 𝑚 ≠ 𝑙

𝒗𝑚𝑩′𝒖𝑙 = {
𝒗𝑚𝑩′𝒖𝑚;  𝑚 = 𝑙

0 𝑚 ≠ 𝑙

𝑘̃𝐿𝑚 =
𝒗𝑚𝑨′𝒖𝑚

𝒗𝑚𝑩′𝒖𝑚

 . (153) 

It leads to the extraction of the wave number increment from (Eq. 151) [34]: 

 ∆𝑘̃𝐿𝑚 ≈
𝒗𝑚 (∆𝑨

′−𝑘̃𝐿𝑚∆𝑩
′)  𝒖𝑚

𝒗𝑚𝑩
′𝒖𝑚

. (154) 

This estimate can be used for identifying the natural wavenumber value which 

should be chosen for the 𝑚-th dispersion curve at the next angular frequency value. 

4.4 Dispersion Relations for Immersed Waveguide 

4.4.1 Phase Velocity 

The dispersion relations can be presented by phase velocity 𝑐𝑝ℎ =
𝜔

𝑅𝑒(𝑘𝑍)
  which 

is a ratio between the given 𝜔  and the real part of the calculated wavenumbers 𝑘𝑍 

when using (Eq. 145). The phase velocities of the modes of the immersed waveguide 

SAFE model with 3 ×  3 FE over the rectangular cross-section is presented in (Fig. 

4.5 (a)). The material properties of the aluminum waveguide are as follows: mass 

density 𝜌 = 2780
𝑘𝑔

𝑚3, Young’s modulus 𝐸 = 7.24 ∙ 1010 𝑃𝑎, Poisson’s ratio 𝜈 =

0.34, and cross-section 0.001 𝑚 ×  0.001 𝑚. The material properties of the perfect 

fluid (water) are as follows: mass density𝜌 = 1000
𝑘𝑔

𝑚3, the velocity of the pressure 

(longitudinal) wave 𝑐̃𝐿 =  1500 
𝑚

𝑠
. The results of tracking only the fundamental and 

quasi-Scholte modes while using (Eq. 154) are shown in (Fig. 4.5 (b)). 

  
a) b) 

Fig. 4.5. (a) Phase velocities of modes in the immersed waveguide; (b) Phase 

velocities of fundamental and quasi-Scholte modes in the immersed waveguide. 
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It can be noted that the fluid load mostly affects the torsional and flexural modes 

in the low frequency range. However, the longitudinal mode in the immersed 

waveguide does not exhibit evident influence of attenuation at low frequencies, since 

the displacement field is predominant in the 𝑂𝑍 direction. The interaction of this mode 

with the fluid at low frequencies is insignificant. Our analysis demonstrated that the 

immersed waveguide of the square cross-section supported three distinct groups of 

Scholte waves (the zoomed part in (Fig. 4.5 (b))). The threshold of velocity of these 

types of modes is 𝑐̃𝐿 =  1500 
𝑚

𝑠
 (that is slightly higher than the Scholte wave velocity 

in water [101]), which determines them as subsonic waves with respect to the sound 

velocity in the leaky medium.  

Attention must be drawn to the quasi-Scholte modes because such techniques as 

SAFE coupled with 2.5 D boundary elements [102], SAFE with PML [61] and SAFE 

with absorbing region [103], dashpot boundary condition coupled to SAFE [70] that 

deal with the leaky modes do not seem to be able to provide us with dispersion results 

for 3D quasi-Scholte waves. 

The obtained attenuation curves are presented in (Fig. 4.6 (a)). The attenuation 

of the fundamental modes is relatively small when compared with the attenuation of 

the higher modes (Fig. 4.6 (b)). 

  
a) b) 

Fig. 4.6. (a) Attenuation of modes in the immersed waveguide; (b) Attenuation of the 

fundamental and quasi-Scholte modes in the immersed waveguide. 

However, quasi-Scholte modes exhibited a low attenuation constant over the 

frequency range. Therefore, quasi-Scholte modes were almost non-dispersive. They 

tend to retain their wave shape while travelling, which is a useful feature in many 

practical applications. 

For comparing the results of the obtained dispersion curves against the 

dispersion curves exhibited by the lossless waveguide surrounded by vacuum, the 

waveguide with Rayleigh damping and the immersed waveguide was analyzed. 

Initially, the analysis was carried out by examining a single FE over the cross-section 

model in order to reveal the main properties of the solutions, which are inherent for 

the analyzed waveguide. The results are summarized in (Fig. 4.7). For obtaining better 

precision solutions, we further employ the finer mesh over the cross-section of the 

waveguide. 
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a) b) c) 

Fig. 4.7. Phase velocity, attenuation and wavenumbers (at 1 MHz (the dashed line)) of 

the waveguide (a) in the vacuum; (b) with Rayleigh damping 𝑎 = 1𝑒6; 𝑏 = 3𝑒 − 8; (c) 

immersed in the perfect fluid. 

(Fig. 4.7 (a)) demonstrates that, in the case of the surrounding vacuum, three 

fundamental modes exist at the zero frequency. The higher modes appear at the cut-

on frequency where attenuation 𝐼𝑚(𝑘𝑍) approaches zero. Thus evanescent modes 

become propagative. The wavenumbers at a frequency of 1𝑀𝐻𝑧 (represented by the 

dashed line) on the complex plane come out as symmetric with respect to the axes of 

the complex plane. The propagative modes correspond to the wavenumbers with 

𝐼𝑚(𝑘𝑍) = 0, while the end modes (the local vibrations not capable of transferring 

energy) correspond to 𝑅𝑒(𝑘𝑍) = 0, and the remaining modes are evanescent modes 

with the rapidly decaying amplitude. Such wavenumbers as ±(𝑅𝑒(𝑘𝑍) − 𝐼𝑚(𝑘𝑍)) 
have no physical meaning as they represent fictitious wavemodes with the increasing 

amplitude as they travel. 

In those cases when damping is present (Fig. 4.7 (b)), all the modes are 

evanescent. Their wavenumbers do not retain symmetry on the complex plane, and 

the cut-on frequencies do not apply anymore. At higher frequencies in the case of 

severe damping (say, 𝑎 = 1𝑒6; 𝑏 = 3𝑒 − 8), the phase velocity curve does not 

converge to the phase velocity of Rayleigh’s surface wave. This indicates the 
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appearance of certain errors of the wave solutions which are caused by the commonly 

used assumption 𝑘𝑍
∗ = 𝑘𝑍 as far as some more damped waveguides are concerned.  

In the case of the immersed waveguide (Fig. 4.7 (c)), all the modes (with the 

exception of quasi-Scholte modes) are evanescent. Some modes cut on frequencies 

as, in the case of vacuum surrounding, the wavenumbers demonstrate symmetry with 

respect to the axes of the complex plane. 

The verification of the model was performed by using the numerical 

experiments where the waveguide of the cross-section of 0.006 𝑚 ×  0.012 𝑚, FE 

mesh 3 × 6 was considered. Initially, the ratio between the height and the length of 

the cross-section was 1: 2. As this ratio increased, the obtained dispersion curves 

converged to those of the plate (Fig. 4.8). 

  
FE domain: 3 × 6; ratio 1: 2 FE domain: 3 × 10; ratio 1: 10 

  
FE domain: 3 × 15; ratio 1: 100 FE domain: 3 × 15; ratio 1: 1000 

Fig. 4.8. The convergence of the model. 

As the longitudinal mode at the close to zero frequency approached the threshold 

of wave velocity in the plate as 𝑐𝑝𝑙𝑎𝑡𝑒 =
√𝐸

√𝜌(1−𝜈2)
 (the dashed line in Fig. 4.8), it can 

be assumed that the obtained fundamental modes of the analyzed waveguide match 

those of the plate of the same height as the height of the  cross-section of the 

waveguide. The results show evident convergence and agree reasonably well with the 

results published in [99] for the plate. 
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4.4.2 Group Velocity 

In the case of attenuation, due to the damped medium, group velocity 𝑐𝑔𝑟 no 

longer expresses the velocity at which mechanical energy is being transferred since 

direct differentiation 𝑐𝑔𝑟 =
𝜕𝜔

𝜕𝑘
 is performed in respect to the real part of the complex 

wavenumber. These calculations might lead to infinite velocities at some locations of 

dispersion curves, then the energy velocity is used instead [104], the wave carries its 

potential and kinetic energy along the structure at the energy velocity, and a single FE 

is defined [66] as: 

 𝑐𝑒𝑛 =
∫ 𝑷𝑑𝑆𝑒𝑆𝑒

∫ (𝐸𝑝+𝐸𝑘)𝑑𝑆𝑒𝑆𝑒

,  (155) 

where 𝑷 is the time-averaged 0𝑍 axial component of the Poynting vector, 𝐸𝑝 and 𝐸𝑘 

are the time-averaged potential and the kinetic energy, respectively, 𝑆𝑒 is the area of 

the cross-section in the FE. The natural solutions from (Eq. 145) can be 

straightforwardly used to calculate the terms [66]: 

 

∫ 𝑷𝑑𝑆𝑒𝑆𝑒
=

𝜔

2
𝐼𝑚(𝑼̅𝑒

∗
(𝑲′2 + 𝑖𝑘𝑲3)𝑼̅𝑒)

∫ 𝐸𝑘𝑑𝑆𝑒𝑆𝑒
=

𝜔2

4
𝑅𝑒(𝑼̅𝑒

∗
𝑴𝑼̅𝑒)

∫ 𝐸𝑝𝑑𝑆𝑒 
𝑆𝑒

=  
1

4
𝑅𝑒(𝑼̅𝑒

∗
(𝑲1 + 𝑖𝑘𝑲′2 − 𝑖𝑘

∗𝑲′2
𝑇 + 𝑘∗𝑘𝑲3)𝑼̅𝑒).

 (156) 

Still, the group velocity for modes with only minor attenuation could be used for 

eluding direct differentiation in respect to the wavenumber. A proposed approach 

[105] is used to obtain the group velocity for the immersed three-dimensional 

waveguide. The right 𝑽𝑚 and left 𝑾𝑚 natural vectors of the 𝑚-th mode satisfy the 

following equations: 

 (𝑨′ − 𝑘̃𝐿𝑚𝑩′)𝑽𝑚 = 𝟎, 𝑾𝑚(𝑨′ − 𝑘̃𝐿𝑚𝑩′) = 𝟎. (157) 

The derivatives of matrices 𝑨′ and 𝑩′ in respect to angular frequency 𝜔 are 

obtained [105]: 

 

𝜕𝑨′

𝜕𝜔
= (

𝟎
𝜕𝑯1

𝜕𝜔

𝜕𝑯′0

𝜕𝜔

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

) =

(

 𝟎
𝜕( 𝑯11+(

𝜔

𝑐̃𝐿
)
2

𝑯12)

𝜕𝜔

𝜕(−𝑖𝜔2𝑸𝐿)

𝜕𝜔

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 )

 =

(
𝟎 −2𝜔𝑴+ 2

𝑘̃2

𝜔
𝑯12 −2𝑖𝜔𝑸𝐿

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

)  and 
𝜕𝑩′

𝜕𝜔
= 𝟎.

 (158) 

Differentiating (Eq. 157) with the right vector in respect to 𝜔 yields [105]: 

 (
𝜕𝑨′

𝜕𝜔
−
𝜕𝑘̃𝐿𝑚

𝜕𝜔
𝑩′)𝑽𝑚 + (𝑨′ − 𝑘̃𝐿𝑚𝑩′)

𝜕𝑽𝑚

𝜕𝜔
= 𝟎. (159) 
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Pre-multiplying (Eq. 159) with the left natural vector 𝑾𝑚 from the left hand 

side yields the second summand to disappear according to (Eq. 157). A relation is then 

obtained [105]: 

 𝑾𝑚 (
𝜕𝑨′

𝜕𝜔
−
𝜕𝑘̃𝐿𝑚

𝜕𝜔
𝑩′)𝑽𝑚 = 𝟎. (160) 

Then, a derivative of the wavenumber in respect to 𝜔 from (Eq. 159) is acquired 

[105]: 

 
𝜕𝑘̃𝐿𝑚

𝜕𝜔
=

𝑾𝑚
𝜕𝑨′

𝜕𝜔
𝑽𝑚

𝑾𝑚𝑩𝑽𝑚
. (161) 

Further, differentiating (Eq. 116) in terms of 𝜔 yields: 

 2𝑘̃
𝜕𝑘̃

𝜕𝜔
= 2

𝑘̃2

𝜔
= 2𝑘̃𝐿

𝜕𝑘̃𝐿

𝜕𝜔
+ 2𝑘̃𝑍

𝜕𝑘̃𝑍

𝜕𝜔
. (162) 

(Eq. 159) can be rewritten as: 

 
𝜕𝑘̃𝑍

𝜕𝜔
=

𝑘̃2

𝜔
−𝑘̃𝐿

𝜕𝑘̃𝐿
𝜕𝜔

𝑘̃𝑍
. (163) 

Finally, the group velocity 𝑐𝑔𝑟𝑚 of the 𝑚-th mode reads as [105]: 

 𝑐𝑔𝑟𝑚 =
𝜕𝜔

𝜕𝑘̃𝑍
=

𝑘̃𝑍
𝑘̃2

𝜔
−𝑘̃𝐿

𝜕𝑘̃𝐿
𝜕𝜔

. (164) 

Running the computations of the group velocity at each given angular frequency 

provides us with dispersion relations. The group velocity results for the same 

immersed waveguide with 3 ×  3 FE over the cross-section described in the previous 

section are presented in (Fig. 4.9 (a)). The results of tracking only the fundamental 

and one of the quasi-Scholte modes using (Eq. 154) are shown in (Fig. 4.9 (b)), and 

they share many similarities with those of the immersed plate [106], [71]. 

  
a) b) 

Fig. 4.9. (a) Group velocity for the immersed waveguide; (b) Group velocity for the 

fundamental modes in the immersed waveguide. 
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It is evident that numerous modes which, within a specific frequency range, 

exhibit a negative group velocity at the positive wavenumber do exist. A considerably 

lower number of these occurrences can be observed in the case of an undamped 

waveguide. 

4.5 Dispersion Relations for Immersed Waveguide with Rayleigh Damping 

The fluid load affects the waveguide of both elastic and viscoelastic material. 

Rayleigh damping is considered for immersed waveguide to account for linear 

viscoelasticity as in the previous section. The introduction of matrix 𝑪 for Rayleigh 

damping in (Eq. 133) yields: 

 (𝑲̂1 + 𝑖𝑘𝑍𝑲̂2 + 𝑘𝑍
2𝑲̂3 −𝜔

2𝑴̂ − 𝑖
𝜔2

𝑘̃𝐿
𝑸) 𝑼̅ = 𝟎,  

where 𝑲̂𝑗 = (1 − 𝑖𝜔𝑏)𝑲𝑗, 𝑗 = 1,2,3 and 𝑴̂ = (1 − 𝑖𝜔−1𝑎)𝑴. 

The algorithm to acquire dispersion relations for evanescent waves in the 

immersed and in the immersed damped waveguide using SAFEM is summarized in 

(Fig. 4.10). 
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Fig. 4.10. A flowchart of the algorithm to obtain the dispersion relations for 

evanescent waves in the immersed and in the immersed and damped waveguide using 

SAFEM. 

 

 

The dispersion results for the fundamental modes of the immersed waveguide 

with Rayleigh damping, where coefficients 𝑎 and 𝑏 were varied, are shown in (Fig. 

4.11). As damping was increased, the quasi-Scholte wavemode remained 

unattenuated and merged to the common group of wavemodes with the constant phase 

velocity. In case of severe damping (Fig. 4.11 c), the phase velocity curves of the 

fundamental modes at higher frequencies tended to bend away from the dispersion 

curves of quasi-Scholte modes. This clearly indicates non-feasible results, and the 

symmetry of the wavenumbers on the complex plane is destroyed. The cause of the 

inadequacy of the damped immersed waveguide model is likely due to the fact that 

the assumption about the complex conjugate of the wavenumbers was no longer met. 

In this analysis, the model is considered to be adequate as long phase velocities 

asymptotically and monotonically approach the Rayleigh surface wave phase velocity 

value. This is valid for isotropic waveguides [107]. 

SAFEM wave equation for structure 

(𝑲1 + 𝑖𝑘𝑲
′
2 − 𝑖𝑘

∗𝐊′2
𝑇
+ 𝑘∗𝑘𝑲3 −𝜔

2𝑴)𝑼̅ = 𝟎 

SAFEM governing equation 

(𝑲1 + 𝑖𝑘𝑍𝑲2 + 𝑘𝑍
2𝑲3 −𝜔

2𝑴− 𝑖
𝜔2

𝑘̃𝐿
𝑸) 𝑼̅ = 𝟎 

Boundary condition: perfect non-viscous fluid; material damping: none 

Assumption for weakly evanescent waves 𝑘𝑍
∗ ≈ 𝑘𝑍 

 

Analysis of dispersion relations (𝜔, 𝑘𝑍, 𝑼̅) 

Eigenvalue problem solver: for given 𝜔 or 𝑘 

SAFEM governing equation 

(𝑲̂1 + 𝑖𝑘𝑍𝑲̂2 + 𝑘𝑍
2𝑲̂3 −𝜔

2𝑴̂ − 𝑖
𝜔2

𝑘̃𝐿
𝑸) 𝑼̅ = 𝟎 

Boundary condition: perfect non-viscous fluid; material damping: Rayleigh 

Assumption for weakly evanescent waves 𝑘𝑍
∗ ≈ 𝑘𝑍 
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a) b) c) 

Fig. 4.11. Phase velocity and wavenumbers (at 1 MHz (the dashed line)) of the 

immersed waveguide with Rayleigh damping; 𝑎 = 1𝑒5; 𝑏 = 1𝑒 − 10 (a); 𝑎 = 1𝑒6; 𝑏 =
1𝑒 − 9 (b); 𝑎 = 1𝑒7; 𝑏 = 1𝑒 − 8 (c). 

It was observed [108] that viscous fluid loading on the plate reduces the phase 

velocity of Love waves. By modeling the soft tissue as a transverse isotropic 

viscoelastic plate immersed in a fluid, it was also observed that the phase velocity of 

the shear wave that travels in a direction perpendicular to the fibres is reduced due to 

the increasing viscosity [109]. The reduction of the phase velocity due to the 

increasing material damping, especially in a low frequency, is visible in (Fig. 4.11). 
As shown in the previous section (Fig. 3.17) and (Fig. 3.2), mass damping in the 

plate and the waveguide significantly modifies the phase velocity in the low frequency 

range. A similar pattern of the longitudinal mode bending is demonstrated in [63], 

where guided modes in the aluminum plate and radiating into an elastomer were 

simulated. In case of the immersed waveguide as shown in (Eq. 129), the effect of 

fluid loading is defined by matrix 𝑪 which stores the mass density of the fluid. As 

seen in (Eq. 140), the fluid load results in a complex valued mass matrix in the 

Eigenvalue problem; therefore, mass damping can also be related with the energy 

dissipation to the surrounding media. On the other hand, viscoelasticity, introduced 

by the complex stiffness matrix,  has little effect on the phase velocity in plates [110], 

[111]. 

4.6 Force Response  

The two-dimensional force response [106] can be extended to the three-

dimensional one. The theoretical assumptions to achieve this possibility shall be 

discussed in this section. Calculated modal solutions (𝑘𝑍, 𝑘̃𝐿 , 𝑐𝑝ℎ , 𝑐𝑔𝑟) for a given 

frequency 𝜔 can be exploited to construct the time-transient response to the external 

loading varied in time and space. A dynamic nodal loading reads as: 
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 𝑭𝑙𝑜𝑎𝑑𝑖𝑛𝑔(𝑧, 𝑡) = 𝑭(𝑧)𝑒
−𝑖𝜔𝑡 = 𝑭̅𝑒𝑖(𝑘𝑍𝑧−𝜔𝑡), (165) 

where 𝑭(𝑧) = ∫ 𝑭𝑙𝑜𝑎𝑑𝑖𝑛𝑔(𝑧, 𝑡)𝑒
𝑖𝜔𝑡𝑑𝑡

+∞

−∞
 is the time Fourier transform, whereas 

𝑭̅ =  ∫ 𝑭(𝑧)𝑒−𝑖𝑘𝑍𝑧𝑑𝑧
+∞

−∞
 is the spatial Fourier transform. When concentrated at 

arbitrary source location 𝑧0, the loading can be expressed via the Dirac delta as 

𝑭(𝑧) =  𝑭𝛿(𝑧 −  𝑧0). A schematic line loading on the immersed waveguide and the 

normal to the boundary of the cross-section is shown in (Fig. 4.12). 

 

Fig. 4.12. A schematic representation of line loading in an immersed waveguide. 

The nodal vector (1 × 𝑁) of line forcing reads as: 

 𝑭̅ = ∫ 𝑭𝛿(𝑧 − 𝑧0)𝑒
−𝑖𝑘𝑍𝑧𝑑𝑧

+∞

−∞
= 𝑭𝑒−𝑖𝑘𝑍𝑧0. (166) 

(Eq. 130) can be rewritten as [106]: 

 (𝑲1 + 𝑖𝑘𝑍𝑲2 + 𝑘𝑍
2𝑲3 −𝜔

2𝑴− 𝑖
𝜔2

𝑘̃𝐿
𝑸) 𝑼̅ = 𝑭̅. (167) 

(Eq. 167) for the Eigenvalue problem reads as [106]: 

 (𝑨′ − 𝑘̃𝐿𝑩′)𝒀 = 𝑭̅
′, (168) 

where dimensions of  𝑭̅′ = (𝑭̅
𝟎
) are in accordance to matrices 𝑨′ and 𝑩′. The solution 

of homogenous (Eq. 168) for the 𝑚-th mode while using (Eq. 144) is the right natural 

vector, and it reads as: 

 𝑽𝑚 = (

𝑘̃𝐿𝑚
2 𝝋′𝑚
𝑘̃𝐿𝑚𝝋′𝑚
𝝋′′𝑚

) =

(

 
 
 

𝑘̃𝐿𝑚
2 𝝋′𝑜𝑚

𝑘̃𝐿𝑚
2 𝑘𝑍𝑚𝝋′𝑧𝑚
𝑘̃𝐿𝑚𝝋′𝑜𝑚

𝑘̃𝐿𝑚𝑘𝑍𝑚𝝋′𝑧𝑚
𝝋′′𝑚 )

 
 
 

, (169) 

where, according to (Eq. 136), 
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 𝝋′𝑚 = (
𝝋′𝑜𝑚

𝑘𝑍𝑚𝝋′𝑧𝑚
). (170) 

The solution of (Eq. 168) can be cast in the base of linearly independent right 

natural vectors: 

 𝒀 = ∑ 𝛼𝑚𝑽𝑚
2(𝑁+𝑀)
𝑚=1 , (171), 

where 𝛼𝑚is a scalar. The pre-multiplication of (Eq. 168) by the left natural 𝑾𝑙vector 

and the application of orthogonality relations (Eq. 153) leads to: 

 

𝑾𝑙(𝑨′ − 𝑘̃𝐿𝑩′)𝒀 = 𝑾𝑙(𝑨′ − 𝑘̃𝐿𝑩′)∑ 𝛼𝑚𝑽𝑚
2(𝑁+𝑀)
𝑚=1 =

= ∑ 𝛼𝑚(𝑾𝑙𝑨′𝑽𝑚 − 𝑘̃𝐿𝑾𝑙𝑩′𝑽𝑚)
2(𝑁+𝑀)
𝑚=1 =

𝛼𝑙(𝑾𝑙𝑨′𝑽𝑙 − 𝑘̃𝐿𝑾𝑙𝑩′𝑽𝑙) = 𝛼𝑙(𝑘̃𝐿𝑙 − 𝑘̃𝐿)𝑾𝑙𝑩′𝑽𝑙 .

 (172) 

(Eq. 168) can be written as: 

 𝛼𝑙(𝑘̃𝐿𝑙 − 𝑘̃𝐿)𝑾𝑙𝑩
′𝑽𝑙 = 𝑾𝑙𝑭̅

′. (173) 

The weight of the 𝑙-th mode in the force response can be expressed as: 

 𝛼𝑙 =
𝑾𝑙𝑭̅

′

−(𝑘̃𝐿−𝑘̃𝐿𝑙)𝑾𝑙𝑩
′𝑽𝑙
=

𝛼𝑙
′

(𝑘̃𝐿−𝑘̃𝐿𝑙)
. (174) 

The solution (Eq. 171) can be expressed as: 

 𝒀 =

(

  
 

𝑘̃𝐿
2𝑼̅𝑜

𝑘̃𝐿
2𝑘𝑍𝑼̅𝑧
𝑘̃𝐿𝑼̅𝑜
𝑘̃𝐿𝑘𝑍𝑼̅𝑧
𝑼̅′ )

  
 
= ∑ 𝛼𝑚

2(𝑁+𝑀)
𝑚=1

(

 
 
 

𝑘̃𝐿𝑚
2 𝝋′o𝑚

𝑘̃𝐿𝑚
2 𝑘𝑍𝑚𝝋′𝑧𝑚
𝑘̃𝐿𝑚𝝋′𝑜𝑚

𝑘̃𝐿𝑚𝑘𝑍𝑚𝝋′𝑧𝑚
𝝋′′𝑚 )

 
 
 

, (175) 

where 𝑼̅𝑜is a vector of the nodal in the non-𝑂𝑍 direction displacements, 𝑼̅′ is a 

vector of displacements only for the nodes in contact with a fluid in the normal to the 

cross-section of the waveguide direction. The nodal vector of displacements can be 

extracted from (Eq. 175), either from the upper or the middle part of the vector. As 

the terms in the upper part provide with a more general solution, the displacement 

vector reads as:  

 (
𝑼̅𝑜
𝑼̅𝑧
) = ∑ 𝛼𝑚

2(𝑁+𝑀)
𝑚=1 (

𝑘̃𝐿𝑚
2 𝝋′𝑜𝑚

𝑘̃𝐿
2

𝑘̃𝐿𝑚
2 𝑘𝑍𝑚𝝋′𝑧𝑚

𝑘̃𝐿
2𝑘𝑍

) = ∑ 𝛼𝑚
′2(𝑁+𝑀)

𝑚=1 (

𝑘̃𝐿𝑚
2 𝝋′𝑜𝑚

(𝑘̃𝐿−𝑘̃𝐿𝑚)𝑘̃𝐿
2

𝑘̃𝐿𝑚
2 𝑘𝑍𝑚𝝋′𝑧𝑚

(𝑘̃𝐿−𝑘̃𝐿𝑚)𝑘̃𝐿
2𝑘𝑍

). (176) 

When applying relations 𝑘̃𝐿
2 + 𝑘𝑍

2 = 𝑘̃2 and 𝑘̃𝐿𝑚
2 + 𝑘𝑍𝑚

2 = 𝑘̃2, the term in (Eq. 

176) can be rewritten as: 
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(

𝑘̃𝐿𝑚
2 𝝋′𝑜𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)

(𝑘̃𝐿−𝑘̃𝐿𝑚)𝑘̃𝐿
2(𝑘̃𝐿+𝑘̃𝐿𝑚)

𝑘̃𝐿𝑚
2 𝑘𝑍m𝝋

′
𝑧𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)

(𝑘̃𝐿−𝑘̃𝐿𝑚)𝑘̃𝐿
2𝑘𝑍(𝑘̃𝐿+𝑘̃𝐿𝑚)

) = (

𝑘̃𝐿𝑚
2 𝝋′𝑜𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)

(𝑘̃𝐿
2−𝑘̃𝐿𝑚

2 )𝑘̃𝐿
2

𝑘̃𝐿𝑚
2 𝑘𝑍𝑚𝝋′𝑧𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)

(𝑘̃𝐿
2−𝑘̃𝐿𝑚

2 )𝑘̃𝐿
2𝑘𝑍

) =

= (

𝑘̃𝐿𝑚
2 𝝋′𝑜𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)

(𝑘̃𝐿
2−𝑘̃𝐿𝑚

2 )𝑘̃𝐿
2

𝑘̃𝐿𝑚
2 𝑘𝑍𝑚𝝋′𝑧𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)

(𝑘̃2−k𝑍
2−𝑘̃2+𝑘𝑍𝑚

2 )𝑘̃𝐿
2𝑘𝑍

) = (

𝑘̃𝐿𝑚
2 𝝋′𝑜𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)

(𝑘̃𝐿
2−𝑘̃𝐿𝑚

2 )𝑘̃𝐿
2

𝑘̃𝐿𝑚
2 𝑘𝑍𝑚𝝋′𝑧𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)

(𝑘̃2−𝑘𝑍
2−𝑘̃2+𝑘𝑍𝑚

2 )𝑘̃𝐿
2𝑘𝑍

) =

= (

𝑘̃𝐿𝑚
2 𝝋′𝑜𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)

(𝑘̃𝐿
2−𝑘̃𝐿𝑚

2 )(𝑘̃2−𝑘𝑍
2)

𝑘̃𝐿𝑚
2 𝑘𝑍𝑚𝝋′𝑧𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)

(𝑘𝑍𝑚
2 −𝑘𝑍

2)(𝑘̃2−𝑘𝑍
2)𝑘𝑍

) .

 (177) 

The nodal vector can be expressed as: 

 (
𝑼̅𝑜
𝑼̅𝑧
) = ∑ 𝛼𝑚

′2(𝑁+𝑀)
𝑚=1 (

𝑘̃𝐿𝑚
2 (𝑘̃𝐿+𝑘̃𝐿𝑚)𝝋′𝑜𝑚

(𝑘𝑍−𝑘𝑍𝑚)(𝑘𝑍+𝑘𝑍𝑚)(𝑘𝑍−𝑘̃)(𝑘𝑍+𝑘̃)

𝑘̃𝐿𝑚
2 𝑘𝑍𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)𝝋′𝑧𝑚

(𝑘𝑍−𝑘𝑍𝑚)(𝑘𝑍+𝑘𝑍𝑚)(𝑘𝑍−𝑘̃)(𝑘𝑍+𝑘̃)𝑘𝑍

). (178) 

Since the nodal vector in (Eq. 178) is expressed in the wavenumber domain, the 

nodal displacement vector in the space domain is the inverse Fourier transform of (Eq. 

45): 

 𝑼(𝑧)𝑜 = ∫ 𝑼̅𝑜
∞

−∞
𝑒𝑘𝑍𝑑𝑘𝑍, (179) 

 𝑼(𝑧)𝑧 = ∫ 𝑼̅𝑧
∞

−∞
𝑒𝑘𝑍𝑑𝑘𝑍. (180) 

Infinite integrals can be calculated as the limits of contour integrals applying 

Cauchy’s residue theorem [112]. By applying Cauchy’s theorem, we have: 

 

 
∫ 𝑓(𝑥
∞

−∞
)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 +

𝑅

−𝑅 ∫ 𝑓(𝑧)𝑑𝑧
𝐶𝑅

= ∮ 𝑓(𝑧)𝑑𝑧
𝐶

= 

= 2𝜋𝑖 ∑ 𝑟𝑒𝑠(𝑓, 𝑧𝑖)𝑧𝑖 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 ,
 (181) 

where 𝑅 > 0 and 𝐶𝑅is the semicircular arc given by 𝑧 = 𝑅𝑒𝑖𝑡, where 𝑡 ∈ [0, 𝜋] and 

𝐶 = [−𝑅, 𝑅] ∪ 𝐶𝑅 is a closed contour, in which a summation of the residues is taken 

over all the poles of 𝑓 in the upper half plane. 

The integrands (Eqs. 179, 180) are analytical functions of a complex variable 

except at poles ±𝑘𝑍𝑚, ±𝑘̃ and additionally at 0 for (Eq. 180) for each 𝑚-th mode. 

The contour which lies in the complex plain should encircle just the physically 

meaningful poles; thus poles 𝑘𝑍 = ±𝑘̃ and 𝑘𝑍 =  0 are discarded. For real valued 

poles ±𝑘𝑍𝑚 (when an elastic medium without energy dissipation is considered in the 

model) and for complex valued poles ±𝑘𝑍𝑚 (when a viscoelastic medium and/or 

energy dissipation is considered in the model), the integration paths are represented 

in (Fig. 4.13). In a case of real valued poles ±𝑘𝑍𝑚, 𝑚-th positive forward propagative 

mode should be included in the upper half-plane (𝑧 > 0) with the positive 𝑐𝑔𝑟𝑚 > 0 
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group velocity whereas a negative backward propagative 𝑚-th mode should be 

included in the lower half-plane (𝑧 < 0) with negative 𝑐𝑔𝑟𝑚 < 0. The positive 

forward propagative mode propagates from the origin 𝑧0 in positive direction, the 

negative backward propagative 𝑚-th mode propagates from the origin 𝑧0 in negative 

direction. 

Modes with the positive group velocity cause the mechanical energy to be 

transported in the positive 0𝑍 direction. For most cases, the natural wavenumber and 

the group velocity of a propagating mode have the same sign as it is evident in (Fig. 

2.8) and (Fig. 4.9). However, some modes can have wavenumbers and group 

velocities of the opposite sign within small frequency ranges. Selecting natural 

wavenumbers of the same sign as the corresponding group velocity will ensure that 

energy flows out from the excited region in the waveguide.  

For complex poles ±𝑘𝑍𝑚, the 𝑚-th positive forward evanescing mode should 

be included in the upper half-plane (𝑧 > 0) with the positive 𝑐𝑒𝑛𝑚 > 0 energy 

velocity, and the 𝑚-th negative backward evanescing mode should be included in the 

lower half-plane (𝑧 < 0) with the negative 𝑐𝑒𝑛𝑚 < 0 energy velocity. For the positive 

propagating and evanescing modes in the closed integration path 𝐶 for 𝑧 > 0 (the 

negative propagating (evanescing) and unphysical modes lie outside the contour), 

Cauchy residue theorem (Eq. 181) yields: 

 𝑼(𝑧)𝑜 = ∫ 𝑼̅𝑜
∞

−∞
𝑒𝑖𝑘𝑍𝑚𝑑𝑘𝑍 = ∮ 𝑼̅𝑜𝑒

𝑖𝑘𝑍𝑚𝑑𝑘𝑍𝐶
= 2𝜋𝑖 ∑ 𝑅𝑒𝑠𝑼̅𝑜(𝑘𝑍𝑚)

𝑃
𝑚=1 ,(182) 

where 𝑃 is the number of the positive going modes (𝑐𝑔𝑟𝑚 > 0 or 𝑐𝑒𝑛𝑚 > 0). Since 

(Eq. 179) has a single singularity at 𝑘𝑧 = 𝑘𝑧𝑚, the 𝑚-th residue reads as: 

 𝑅𝑒𝑠𝑼̅𝑜(𝑘𝑧𝑚) = lim
𝑘𝑧→𝑘𝑧𝑚

(𝑘𝑧 − 𝑘𝑧𝑚) 𝑼̅𝑜𝑒
𝑖𝑘𝑍, (183) 

(Eq. 179) can be rewritten as: 

 

𝑼(𝑧)𝑜 = 2𝜋𝑖 ∑ lim
𝑘𝑧→𝑘𝑧𝑚
(𝑘̃𝐿→𝑘̃𝐿𝑚)

(𝑘𝑧 − 𝑘𝑧𝑚) 𝑼̅𝑜𝑒
𝑖𝑘𝑍𝑚𝑃

𝑚=1 =

= 2𝜋𝑖 lim
𝑘𝑧→𝑘𝑧𝑚
(𝑘̃𝐿→𝑘̃𝐿𝑚)

∑ 𝛼𝑚
′𝑃

𝑚=1
(𝑘𝑧−𝑘𝑧𝑚)𝑘̃𝐿𝑚

2 (𝑘̃𝐿+𝑘̃𝐿𝑚)𝝋′𝑜𝑚

(𝑘𝑍−𝑘𝑍𝑚)(𝑘𝑍+𝑘𝑍𝑚)(𝑘𝑍−𝑘̃)(𝑘𝑍+𝑘̃)
𝑒𝑖𝑘𝑍𝑚(𝑧−𝑧0) =

= 2𝜋𝑖 lim
𝑘𝑧→𝑘𝑧𝑚
(𝑘̃𝐿→𝑘̃𝐿𝑚)

∑ 𝛼𝑚
′𝑃

𝑚=1
𝑘̃𝐿𝑚
2 (𝑘̃𝐿+𝑘̃𝐿𝑚)𝝋′𝑜𝑚

−(𝑘𝑍+𝑘𝑍𝑚)(𝑘̃
2−𝑘𝑧

2)
𝑒𝑖𝑘𝑍𝑚(𝑧−𝑧0) = 2𝜋𝑖 ∙

 ∙ lim
𝑘𝑧→𝑘𝑧𝑚
(𝑘̃𝐿→𝑘̃𝐿𝑚)

∑ 𝛼𝑚
′𝑃

𝑚=1
(𝑘̃𝐿+𝑘̃𝐿𝑚)𝝋

′
𝑜𝑚

−(𝑘𝑍+𝑘𝑍𝑚)
𝑒𝑖𝑘𝑍𝑚(𝑧−𝑧0) =

= 2𝜋𝑖 ∑ 𝛼𝑚
′𝑃

𝑚=1
𝑘̃𝐿𝑚𝝋′𝑜𝑚

−𝑘𝑍𝑚
𝑒𝑖𝑘𝑍𝑚(𝑧−𝑧0).

 (184) 

Analogically, (Eq. 180) can be expressed as: 



96 

 

𝑼(𝑧)𝑧 = 2𝜋𝑖 ∑ lim
𝑘𝑧→𝑘𝑧𝑚
(𝑘̃𝐿→𝑘̃𝐿𝑚)

(𝑘𝑧 − 𝑘𝑧𝑚) 𝑼̅𝑧𝑒
𝑖𝑘𝑍𝑚(𝑧−𝑧0)𝑃

𝑚=1 =

= 2𝜋𝑖 lim
𝑘𝑧→𝑘𝑧𝑚
(𝑘̃𝐿→𝑘̃𝐿𝑚)

∑ 𝛼𝑚
′𝑃

𝑚=1
𝑘̃𝐿𝑚
2 𝑘𝑍𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)𝝋′𝑧𝑚

(𝑘𝑍−𝑘𝑍𝑚)(𝑘𝑍+𝑘𝑍𝑚)(𝑘𝑍−𝑘̃)(𝑘𝑍+𝑘̃)𝑘𝑍
𝑒𝑖𝑘𝑍𝑚(𝑧−𝑧0) =

= 2𝜋𝑖 lim
𝑘𝑧→𝑘𝑧𝑚
(𝑘̃𝐿→𝑘̃𝐿𝑚)

∑ 𝛼𝑚
′𝑃

𝑚=1
𝑘̃𝐿𝑚
2 𝑘𝑍𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)𝝋′𝑧𝑚

−(𝑘𝑍+𝑘𝑍𝑚)(𝑘̃
2−𝑘𝑧

2)𝑘𝑍
𝑒𝑖𝑘𝑍𝑚(𝑧−𝑧0) = 

= 2𝜋𝑖 lim
𝑘𝑧→𝑘𝑧𝑚
(𝑘̃𝐿→𝑘̃𝐿𝑚)

∑ 𝛼𝑚
′𝑃

𝑚=1
𝑘𝑍𝑚(𝑘̃𝐿+𝑘̃𝐿𝑚)𝝋′𝑧𝑚

−𝑘𝑍(𝑘𝑍+𝑘𝑍𝑚)
𝑒𝑖𝑘𝑍𝑚(𝑧−𝑧0) =

= 2𝜋𝑖 ∑ 𝛼𝑚
′𝑃

𝑚=1
𝑘̃𝐿𝑚𝝋′𝑧𝑚

−𝑘𝑍𝑚
𝑒𝑖𝑘𝑍𝑚(𝑧−𝑧0).

(185)  

  

 
 

a) b) 

Fig. 4.13. Integration paths when the wavenumber (a) 𝑘𝑍 is real (no energy 

dissipation); (b) 𝑘𝑍 is complex (energy dissipation is present). 
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Finally, the displacements in the spatial domain for the response in 𝑧 > 0 region 

have the following form: 

 𝑼(𝑧) = (
𝑼(𝑧)𝑜
𝑼(𝑧)𝑧

) = ∑ 𝛼𝑚
+𝝋𝑚𝑒

𝑖𝑘𝑍𝑚(𝑧−𝑧0)𝑃
𝑚=1 , (186) 

where 

 𝛼𝑚
+ = 2𝜋𝑖

𝑾𝑚𝑭̅

𝑾𝑚𝑭̅𝑽𝑚

𝑘̃𝐿

𝑘𝑍
. (187) 

The displacements in the 𝑧 > 0 region are acquired by simply replacing 

wavenumber 𝑘𝑍 to −𝑘𝑍: 

 𝑼(𝑧) = (
𝑼(𝑧)𝑜
𝑼(𝑧)𝑧

) = ∑ 𝛼𝑚
−𝝋𝑚𝑒

𝑖𝑘𝑍𝑚(𝑧−𝑧0)𝑃
𝑚=1 , (188) 

where 

 𝛼𝑚
− = −2𝜋𝑖

𝑾𝑚𝑭̅

𝑾𝑚𝑭̅𝑽𝑚

𝑘̃𝐿

𝑘𝑍
. (189) 

When displacements in (Eq. 186) or (Eq. 188) were calculated for each angular 

frequency 𝜔, this displacement field in the frequency domain can be transformed into 

displacement field in the time domain applying the inverse Fourier transform (Eq. 44). 

4.7 Concluding Remarks 

The techniques of acquiring dispersion relations for the damped three-

dimensional waveguide immersed in the perfect fluid were discussed, and analysis of 

the obtained wave modes was performed. 

This enables further investigation of quasi-Scholte waves. Up to now, the 

available scientific publications have only paid scant attention to the 3D quasi-Scholte 

wave modes which propagate at the interference between the solid (the waveguide) 

and the fluid. 

The coupling of two attenuation mechanisms due to the energy leakage and 

material damping showed that the models of the immersed waveguide used in this 

study support only the weak and moderate Rayleigh damping. 

The adequacy of the solutions for more severe damping requires to additionally 

consider the complex conjugate of the wavenumber in the governing finite element 

formulation, which would lead to non-linear Eigenvalue problems. 
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Conclusions and Future Directions 

One of the efficient methods to study the wave propagation phenomena in the 

linearly elastic medium is the Semi-Analytical Finite Element (SAFE) method. 

It enables to analyze waves in 3D waveguides which are uniform geometrically 

and physically along at least one direction by using 2D mesh discretization of the 

cross-section only. In this study, the SAFE Method was used to explore the 

characteristics of guided wave modes and forced wave propagation responses in 

a rectangular cross-section isotropic waveguide. It was shown that the SAFE 

model is capable of obtaining adequate results in terms of the wave dispersion 

curves, phase and group velocities, and also structural propagating wave modes 

in elastic and viscoelastic waveguides. So far, the SAFE models have mostly 

been used for waveguides of only light or moderate Rayleigh damping because 

of the inherent simplifying assumption that the complex part of the wavenumber 

is always very small. This approach leads to linear Eigenproblem equations, from 

which, the wave modes are obtained. In this work, the following new elaborations 

regarding modal and forced wave solutions obtained by the SAFE method were 

carried out.  

 

In general, Rayleigh damping states proportional frequency dependence; 

therefore, it should be applied within a limited range of frequencies. The reason 

is that even in those cases when the physical and geometrical behavior of the 

waveguide is linear, the Eigenvalue problem still has to be considered as a non-

linear one. 

 

1. The full complex Eigenvalue equations have been formulated in order to cope 

with complex wavenumber exponents which may represent significantly damped 

waveguides. As an example, only the mass-proportional Rayleigh damping term 

was used. However, the stiffness-proportional damping component can be 

included as well without any changes  to the computational algorithm. 

2. A new approach to the construction of the dispersion relations of the damped 

wave modes has been proposed. In order to retain the linearity of the 

Eigenproblem, the solutions in terms of complex time exponents have to be 

calculated at prescribed modal wavenumbers. However, the wavenumbers are 

now fully complex and shall be treated as complex space exponents. Therefore, 

the dispersion relation is obtained as a surface above the complex wavenumber 

plane rather than a curve over the wavenumber axis. 

3. The forced wave response analysis was performed by using the SAFE method 

for a 3D waveguide for elastic and viscoelastic homogenous materials. The 

forced response is obtained by using the normal wave modes superposition 

principle, where transient solutions are obtained via Fourier transformation. We 

demonstrated that the wave modes, as well as the combined forced responses of 

the waveguides to harmonic and general excitations during long time intervals, 

can be obtained at a much lower cost compared to the direct simulation of a 

waveguide as a solid 3D FE structure. The quantitative evaluation of the gain 
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cannot be estimated uniquely as it depends on the time interval over which the 

solution is necessary as well as on the complexity of the time law of excitation. 

The longer is the time interval form the beginning of the excitation and the less 

harmonic components does the excitation time law contain, the bigger is the gain. 

Practically, for the waves used in ultrasonic applications, the computational cost 

can be reduced many times. Among the advantages of SAFEM there is the ability 

to acquire steady forced propagating wave responses invariant in time and space. 

Moreover, SAFE may treat very long waves without any increase of the 

computational resource needs, while this always leads to difficulties of numerical 

calculation for the 3D FEM. 

4. A good agreement of results obtained by using 3D FEM and SAFEM was 

demonstrated. This verification task has been performed by simulating sample 

wave signals of quite limited propagation duration. At such conditions, the same 

simulations can be performed by SAFEM and 3D FEM, and the results can be 

compared against each other. In such numerical experiments, the differences 

between the nodal displacements of the forced response did not exceed 2%. 

5. The known approach for acquiring dispersion relations for an immersed plate 

was extended to the three-dimensional waveguide analysis under similar 

assumptions about the leaky two-dimensional waves.  

6. The theoretical derivation of the forced response of the three-dimensional 

waveguide immersed into the perfect fluid was performed. This would enable to 

extract physically meaningful solutions. Furthermore, it would lead to further 

analysis of a propagating wave pulse, which is via Fourier transform considered 

as a superposition of evanescing and leaky modes and thus helps to gain 

fundamental insights into the propagation of leaky waves generated by a 

traveling impulse. 
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