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High-temperature conductive and convective processes are widely used in the different areas of technology. These 
processes directly influence the materials of the media, which must possess the specific heat insulation and erosional 
durability. Therefore it becomes urgent to create the procedures, which make it possible to experimentally establish a 
change in the erosional durability with respect to a change in the heat conductivity. The technique of erosion modeling 
process is offered by the model of heat conductivity. It allows to define an indirect quantitative measure of erosion on 
the basis of the factor of heat conductivity which is presented in the model equation. Thus process of erosion can be 
indirectly estimated during its development according to the in time varying factor of heat conductivity. In this work the 
model of thermal conductivity, which solves the problem of the indirect simulation of erosion is built and the method of 
solving the equation of model is given. The offered technique is actual for construction of systems of research and 
diagnostics of erosion process.  
Keywords: erosion , thermal conductivity, high-temperature, model, identification, inverse problems. 

 
INTRODUCTION∗

Studying the erosive destruction of the heated 
refractories and ceramic surfaces in high-speed streams of 
combustion products, is actual problem. Significant losses 
of weight of materials in such conditions lead to premature 
deteriorations to a design and structures of high-
temperature devices and their unfitness to the further 
operation [1]. 

The refractory material heated up by the moving high-
temperature gas stream up to appreciable temperature of 
sublimation, undergoes superficial and volumetric physical 
and chemical transformations [2]. Destruction eroding 
surfaces of materials develops of some balance of levels of 
external influence on the part of an accumulating gas 
stream and ability of a material to resist to this influence 
[3]. Superficial formations – ''erosits'', created by the 
moving environment, have characteristic components: a 
place tearing off a stream, a zone of connection of a 
stream, recirculation zone with craters, cavities, or poles. 
Such model of erosive destruction enables to assume 
distribution of indignation of pressure and mass streams of 
substance in a boundary layer on a rough surface. Mass 
speed of evaporation from a surface can be defined from 
expression Hertz-Knudsen [4]. During erosion, sublimation 
of eroding surfaces proceeds irregular. In different places 
of ''erosits'' there is a process of change of sublimation by 
condensation. It is caused diffusion and convection by 
ablation of sublimation products in an external stream from 
recirculation zones [3]. 

In erosive conditions of destruction, considering the 
specified model, pressure vapor in a cloud behind a 
deepening pressure sated pair will be essentially lower, 
similar to processes at sublimation in vacuum. This one has 
an extreme measures, or a limiting mode of possible 
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process. In opposite case during destruction the other 
phenomena of equilibrium sublimation takes place which 
will be other extreme measure of possible ablation of 
weight of a material. Between these limiting modes of 
destruction, there is a transient site which passes the 
processes of kinetic up to equilibrium state depending on a 
''erosit'' place in degrees of development of these 
formations. This process is inconceivable without 
considering a complex mass streams of substance with 
various irregularities creating the complex mechanism 
transfer of mass and promoting erosive destruction of a 
surface of a material [5]. 

It is necessary to note, that at the given investigation 
phase the assumption that the product of material 
sublimation – the particles which are taking place above 
eroding surface, are the components of products of 
combustion and behave as very fine particles with 
relaxation time. They have low mobility and achieve a 
speed equal to pulsation speed of gas. In this case the 
analogue of Schmidt number of a mixed gases flow with 
firm particles is equal to Schmidt's number for gases [3]. 

In a zone of connection of a stream there is a vertical 
inflow of energy to a wall [3]. After a stream connection 
the turbulence starts to grow in the field of a wall. This 
causes a maximal imbalance in generation and dissipation  
energy of turbulence which is observed in parietal layers of  
flow in a vicinity of a zone of connection. Just in this place 
most eroding active zone of ''erosits'' in which plastic flow 
of a material is observed [6]. The analysis of members of 
the equation of balance of kinetic energy of turbulence 
shows the important role of diffusion process, especially in 
a zone of connection of a stream. Mass of gas with the 
certain vertical speed are transferred to the surface layers, 
providing a force pulse to delayed layers.  

On eroding surfaces of ceramics or refractories, with 
formation of roughnesses as ''erosits'', there is complex 
heat – mass exchange mechanisms. In same parts of 
''erosits'' different mechanisms mass transfer and condensa-
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tion sublimate material takes place. Existence of streams 
and jets provides a heat and mass transfer and removal of 
sublimate and products of erosion from a surface. The 
change of pressure depending on the created obstacle 
promote process of destruction.  

With all these phenomena intensive unilateral heat 
delivery, and energy of a high-temperature gas stream 
leaves in a ceramic or refractory wall are associated.  

Recently researches of erosion of various materials 
and covering eroding surfaces are published in different 
scientific magazines. Modern research on destruction of 
eroding surfaces, definition of speeds of erosion and 
attempts to reduce them can be found in [7, 8]. The further 
research of erosion with the purpose of the prevention of  
possible materials surface destruction by erosion is still 
actual.  

Heat exchange in the channel of a moving high-tem-
perature gas stream basically will consist of several com-
ponents: radiations, turbulent heat and mass exchange and 
heat conductivity. A quantitative estimation of erosion in 
progress is required. The application of turbulent heat 
exchange is related with the big difficulties of registration 
of this process. Proceeding from physical reasons we 
estimated, that the most informative way of supervision of 
influence of erosion on heat exchange process is a heat 
conductivity variation of a material during the erosion 
process.  

Temperature gradient in a longitudinal direction of a 
gas stream in a kind of the smallness we ignore. The 
greatest heat exchange just also occurs to walls of a 
refractory material in a perpendicular direction to a stream 
in due to the greatest gradient in this direction. We 
postulate, that process of erosion influences heat 
conductivity of a normal direction to a wall of the channel. 
It can be proved by the following physical reasons. During 
erosion there is a formation of craters, cavities and poles 
on border between a high-temperature gas stream and a 
material surface. In these areas due to turbulence effects 
the temperature increases and as a consequence the thermal 
stream directed in a normal direction also raises. It can be 
interpreted as the heat conductivity factor increment which 
is presented in mathematical model. The increase in 
temperature influences on recrystallization and growth of 
grains in a frontier layer [3], also influences change of 
factor of heat conductivity.  

We offer a technique of research of ceramics and 
refractories erosion on the basis of heat conductivity model 
in a material. The given technique allows to estimate 
quantitative characteristics of erosion from the moment of 
its origin and in development in time. We believe, that the 
offered technique will promote studying erosion resistance 
of materials and to creation of systems of erosion 
diagnosis.  

STATEMENT OF A PROBLEM 
Let some experimental installation making a high-

temperature gas stream in the channel from a fire-resistant 
material which erosive stability is subject to definition 
during experiment is set. During experiment the 
temperature field is measured in a refractory material. Let 

the model of the phenomenon of heat conductivity in a 
researched refractory material is set.  

The problem will consist in an estimation of factor of 
heat conductivity in time which process of erosion 
influences. The estimation of factor of heat conductivity in 
time is carried out on the basis of the measuring data and 
model of heat conductivity by the solution of identification 
problem of heat conductivity process linked with process 
of erosion. Thus we carry out indirect identification of 
process of erosion.  

This problem it is possible to interpret just as 
coefficient-type inverse problem of heat conductivity. The 
task in view will consist of two important auxiliary 
problems:  

1. Construction of model of the heat conductivity 
linked with a process of erosion.  

2. Identification of process of the heat conductivity 
linked with a process of erosion.  

PHYSICAL AND MATHEMATICAL MODEL 
OF PROCESS OF EROSION 

Proceeding from statement of a problem, it is offered 
to model process of erosion on the basis of model of heat 
conductivity. For this purpose it is postulated the following 
statements:  

1. During erosion there is a destruction of a surface of 
a material in a gas stream that influences the basically 
change of factor of heat conductivity in a researched 
material in radial direction.  

2. Change of radial factor of heat conductivity can 
serve as a quantitative measure of an estimation of erosion 
as the phenomena during its development.  

Hence for modeling process of erosion we use model 
of heat conductivity, and for a quantitative estimation of 
erosion it is necessary to receive an estimation of factor of 
heat conductivity in a radial direction. This problem is a 
problem of identification, or factor inverse problem of heat 
conductivity [9]. The modern solution of these inverse 
problems of heat conductivity can be found in [10 – 15].  

According to factor of heat conductivity using a 
method descriptive regularization authors have published 
some results in [16 – 19]. The offered method of 
descriptive regularization allows to raise considerably the 
accuracy of an estimation of factor of heat conductivity by 
implementation of descriptive attributes which are set on 
the basis of known physical assumptions in the 
identification procedure.  

Let us examine the section of the channel with the 
ceramic walls, inside which (rectangle ABKP) (Fig. 1) 
flows the high-temperature high-speed flow of combustion 
products. The flow of gas goes in the direction indicated 
and heats up sides AB, KP. Heat flux in the wall from the 
eroding surface it goes in the normal direction to the side 
of the external surface CO. 

We will approximate three-dimensional heat 
propagation by the two-dimensional equation, which 
describes heat propagation in the rectangular region 
ABCO. This is caused by the fact that in similar type 
experiments, a quantity of sensors is limited in the space. 
Furthermore a superfluous quantity of sensors strongly  
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distorts temperature fields and heat fluxes. Therefore it is 
necessary to find a reasonable compromise between a 
quantity of sensors and the accuracy of measurements. We 
consider that this reasonable compromise it is possible to 
find by the arrangement of sensors in the specific normal 
plane. In the case in question this is rectangle ABCO. 

Fig. 1 shows the arrangement of sensors. Sensors Θb1 , 
Θb2 , ... , Θb12 serve for registering the boundary conditions. 
The sensors Θb1 , Θb2 , ... , Θb4 are located not directly on 
boundary of AB, but at a distance d = A – A′ from the 
boundary on line A′B′.  

This by the fact that sensors on boundary of AB 
caused undergo additional actions with the erosion. They 
are the source of turbulent disturbances because of the 
being appeared heterogeneities. Furthermore they simply 
spoil with the direct effect, i.e. their lifetime is shortened. 
However, this is inadmissible, since they must be 
operational throughout prolonged experiment.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Section of channel with the ceramic walls inside which 
flows the high-temperature high-speed flow of 
combustion products 

With the arrangement of sensors on line A′B′, we will 
assume also that the geometry of boundary conditions will 
not change because of the erosion of surface of AB. 

We will consider that the flow of high-temperature 
gas is stationary, if the process of erosion does not occur. 
Consequently in this case the process of thermal 
conductivity in region A′B′CO also must be stationary. 
Upon consideration of the process of erosion, we deal 
concerning the nonstationary process of thermal 
conductivity, as a result of which changes the coefficient 
of thermal conductivity in the material.  

The two-dimensional equation of thermal 
conductivity can be represented in the form 
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where ρ is the material density, с is the thermal capacity, 
λx = const is the the coefficient of thermal conductivity in 
direction x, λy (T, t) is the coefficient of thermal 
conductivity in direction y, T (x, y, t) is the temperature, 
dependent on coordinates x, y and time t.  

To the equation in question the following boundary 
and initial conditions are added: 

( ) ( )tTtyxT ΩΩyx =∈,,, ; (2) 

( ) ( )yxTtyxT t ,,, 00 == , (3) 

where Ω  is the bounding area given by rectangle A′B′CO.  
Since we assume that the flow of gas stationary, 

temperature along the straight line Ayy ′≤= 0  changes  
this change can be disregarded. Therefore composing 
thermal conductivities λx does not depend on the 
coordinate x and time t.  

With a significant temperature difference on 
boundaries of A′B′ and OC, heat flux will flow from AB to 
OC and its intensity will depend on thermal conductivity 
λy , which in this case depends on temperature T and time t, 
assuming that the process of erosion, occurs.  

The influence of thermal conductivity λx must be 
considerably below λy , since the gradient in direction x 
appears considerably smaller than in coordinate y.  

         y      
 
         K                                                                  P 
 
 
 
        A                                                                   B 
        A′                                                                  B′ 
         D                                                                        θb5

θb12                                                                        E 

θb11                                                                              θb6

        O                                                                   C     x 

       θb10  θb1 θ1  θb2 θb9   θ2    θ3   θb3  θb8 θ4  θb4 θb7

In this model we postulate that in the course of time 
occurs the process of erosion and as consequence changes 
the coefficient of thermal conductivity λy , which draws a 
change in temperature field T (x, y, t). 

Direction of the stream 

In the model the source functions and drains are not 
provided, since there are no sources, but the heat of sink 
through the measuring sensors are negligible. For applying 
the procedure of the identification of coefficients of λx and 
λy , it is necessary to produce repeated solution of equation 
(1), with add conditions (2), (3).  

Let us examine a question of the approximation of 
boundary conditions according to measured data. 
Boundary conditions are approximated according to 
measured temperatures Θb1 , Θb2 , ... , Θb12 . Let us first 
examine the approximation of values Θb1 , Θb2 , ... , Θb4 on 
boundary of A′B′. For this are used basic splines of first 
order β0 (x), β1 (x), ... , β4 (x)  expressed in the form 
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minimizing the following quadratic criterion of the quality 
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where b = (b0 , b1 , ... , b6) is the desired vector of the 
parameters, on which ϕAB and thus QAB depends. 

However, the unknown function ϕAB (x) must 
smoothly be connected with other functions ( )xOAϕ  and 
ϕBC (x) on end-points A′ and B′. Analogous condition must 
satisfy function on boundary of OC. 

Therefore it is the best to produce approximation for 
all measuring points Θb1 , Θb2 , ... , Θb12 , mentally 
straightening rectangle A′B′CO into the straight line in 
direction x. Then instead of ( )xABϕ , we obtain ϕ (x), where 
ϕ (x1) = Θb1 , ϕ (x2) = Θb2 , ... , ϕ (x12) = Θb12 , and the 
straightened rectangle is torn up at point A′. Initial point is 
A′ of which it corresponds to x = 0, and final we will 
designate A′′, to which x = a corresponds. Then ϕ (x) is 
determined in interval of x = [0, a] and it is expressed by 
the equation: 
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with the boundary condition 
( ) ( taxtx ,,0 === )ϕϕ . 

It is assumed that ( )tx,ϕ  must approximate boundary 
condition (2). Coefficients  are selected in the form 
of the polynomials of the third power in the form: 
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Then function depends on the desired vector of the 
parameters 
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We will use the minimization criterion of quality in 

the form: 
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where Θ  is the indication of sensor Θ( )kbi t bi at the moment 
of time tk , K is the number of measurements on the time, 
which is determined by the duration of experiment. The 
estimation of that desired the vector of the parameters α′, 
is found by the minimization of criterion Q, i.e.: 

( )αα
α

Qmin=′ . (8) 

This is reached by usual methods [20], therefore we 
not will discuss this question and will consider that the 
function ( )tx,ϕ  is obtained and it is approximated by 
boundary conditions (2). It is further necessary to 
approximate initial condition (3) on measurements Θb1 , 
Θb2 , ... , Θb12 and Θ1 , Θ2 , Θ3 , Θ4 . Approximation we will 
produce with two-dimensional splines of the first order 
[21]: 
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where  it is triangular region on rectangle 
A′B′CO. The separation of rectangle A′B′CO into the 
triangles {  is shown in Fig. 2. As it is evident partition 
into the triangles occurs in such a way that measured 
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1 , Θ2 , Θ3 , Θ4 correspond to the apexes of triangle. 
As a result we obtain 20 regions . Then the unknown 
function , which interpolates initial condition (2) it 
is possible to express in the form: 
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With the partition of rectangle A′B′CO we obtain 18 
points of the apexes of rectangles. To any point of the par-
tition  of rectangle is placed in the correspondence 
function B

( lk yx ,

i (x, y), which is equal to one at point ( )lk yx , , 
and at remaining points it is equal to zero, where  
k = 0, 1, ... , 5;  l = 0, 1, 2. 

Thus we do obtain N = 6 ⋅ 3 = 18 functions Bi (x, y), 
which we will express in the analytical form. For an 
example let us take triangular region  and write down 
formula for function B
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For determining the coefficients, it is possible to use 
the method of least squares [20]. The quadratic criterion of 
the quality is determined for this 
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where – lkTlk ,,2,1,0;5,...,2,0 ==  are the measured 
temperatures at the initial moment of time t = 0 at points 

. Estimation c′ of the desired vector of the parameters lk yx ,
( )c Nccc ,...,, 21=  is found from the condition: 

cc
Qc min'= , (12) 

which can be found by solving the system of linear 
equations, which corresponds to the second-order 
conditions of the minimum of criterion Qc . 
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Fig. 2. Triangulation of region and computational grid for solving 

the equation of thermal conductivity 

By having functions ( tx, )ϕ  and Φ  as the 
boundary and initial conditions, determined during the 
experiment, it is possible to approach the solution of 
equation (1).  

( yx ),

This equation can be solved by grid [22] or variational 
methods [21]. We will further assume that we in the state it 
to solve having the assigned coefficients of thermal 
conductivity λx and λy (T , t). Having a solution of T (x, y, t)  
on a certain set of three-dimensional points of the xi , yi and 
at the moments of time tk , it is possible to approach the 
process of the identification of the coefficients of thermal 
conductivity λx and λy (T, t). 

For solution (1) and identification it is necessary to 
produce parametrization λy (T, t) via its suitable 
approximation. We will express this coefficient in the form 
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parameters ,,, 210 iii τττ 3,...,0=i . A common vector we let 
us designate ( )sr,=λ . 

SOLUTION OF THE EQUATION OF MODEL 
Equation (1) with additional conditions (2), (3) is 

quasi-linear equation; therefore its solution is achieved by 
an iteration technique, after assigning the initial condition 

( tTy ,00, )λ . After obtaining solution ( )0,1 ;,, ytyxTT λ= , 

using (13), we determine the new value of ( )tTy ,11,λ , 
which is original value for the second iteration with 
calculation ( )1,2 ;,, ytyxTT λ= . Process continues as long 
as it is not reached one of two or both conditions 
simultaneously 
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where ⋅  is the standard of functions T,λ  specific in 
spatial domain Ω  = A′B′CO, and in the interval of time 
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For this with the calculation of the standard of function 
( tT , )λ  it is transformed into function 
( )( ) ( tyxttyxT ,,,,, )λλ ′= . 
In general case it is difficult to obtain theoretical 

conditions of the convergence of iterative process. 
However, practically it is possible to consider that if with 
the given sufficiently low values of ελ and εT , inequality 
(15) and (16) they are satisfied after a certain number of 
iterations, then iterative process converges. Coefficients ελ 
and εT are called the criteria of the stop of the iterative 
process of solving the equation of model. 

Let us build the diagram of the solution of equation 
(1) for one iteration. For this we will use the method of 
Galerkin [21]. Let us create new uniform discrete grid in 
spatial domain Ω, assigned by coordinates 
{ } { } MjNiyx ji ,...,1,0,,...,1,0,, == . As a result we 

obtain rectangular grid from N ⋅ M squares, assigned by the 
coordinates {xi}, {yj}. Each square is divided into two 
triangles. A quantity of triangular subregions is equal  
L = 2N ⋅ M . 

Thus, analogous to (9), (10) it is possible to build L of 
the basic functions  on each triangular subregion. ( yxBi , )
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where the coefficients  be subject to determination.  ( )tci

Thus, the solution we search for in the function space 
of those determined on Ω, quadratically integrated first by 
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where ( )tci′  – time derivative of coefficient ( )tci . 
Following the Galerkin method let us multiply (19) 

scalar for each of L of the basic functions , and the 
second and third members of equation let us integrate in 
parts, using boundary conditions. As a result we will obtain 
system from L of ordinary differential equations: 

( yxBi , )

( ) ( ) ( ) 0=+′ tctBtcA , (20) 
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Let us find initial conditions for (20) on the basis of the 
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Having a matrix C and a vector of right side d, we find 
the desired vector of initial conditions in the form 
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For obtaining solution (20) with initial conditions (23), 

we convert it to the form: 
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where according to (23) is determined the initial condition 
с0

 , ii tt −= +1τ  it is the step of sampling. 
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composites  Journal of the Ceramic Society of Japan    111 
(7)   2003:  pp. 485 – 490. 
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