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Introduction 

Relevance of the Work 
The importance of hiding information when transferring data has been 

highlighted since the early days of communication. Even though initially 
information hiding was mainly used in military areas, the exponential growth and 
the widespread use of the internet in the public domain fueled the need to secure 
business, medical or personal data, money transactions, and other sensitive areas of 
information exchange. Depending on the information type, cryptography, 
steganography or watermarking techniques are used. They are usually interrelated 
with each other to ensure a higher level of security. In the areas where privacy, 
undetectability and confidentiality is required, steganography and visual 
cryptography take an important role. However, these techniques alone are prone to 
attacks as soon as the algorithm of encoding becomes public. Thus reliable, 
steganographically secure and fast-working information hiding techniques are 
required. 

The complex self-organizing patterns emerging from the biological, chemical 
or physical processes have been successfully adapted for hiding and communicating 
secret visual information. The Beddington-DeAngelis type predator prey model with 
self- and cross-diffusion has been successfully employed in a secure steganographic 
communication algorithm. SOP induced by prisoner dilemma type interactions 
between competing individuals has also been exploited for hiding and transmitting 
secret visual information. These communication schemes require the generation of 
two patterns while the difference image reveals the secret. Computational speed 
issues and the system insensitivity to small local perturbations of these approaches 
influences the further development of the communication schemes based on SOP. 
DVC scheme based on the optical time-averaging moiré technique has also been 
developed for information hiding. This approach is denoted by advantages over SOP 
because the secret image embedded into a moiré grating can be interpreted by a 
naked eye when the image is oscillated or deformed; also, it does utilize only a 
single image during communication. A natural extension of DVC could be the 
employment of a physical process describing the deformation law in encryption and 
decryption of the secret information in a stochastic deformable moiré grating. 

Various pattern formation mechanisms and parameters result in different 
characteristic images which require the evaluation of complexity and feasibility for 
information hiding applications. Standard approaches, such as Shannon entropy, 
row/column correlation, image pixel analysis, or detection of steganographic 
characteristics, have been successfully used in image analysis. However, physical 
processes could form complex patterns and conceal additional information – e.g., 
small scale spatial chaos could be mentioned in this context; hence, novel 
approaches towards identification are required. 

The object of the research is visual information hiding based on 
self-organizing patterns. 

The aim of the work is to develop mathematical models and algorithms for 
visual information hiding and communication based on self-organizing patterns. 
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The Main Tasks of this Research Are: 
1. to develop an effective and steganographically secure digital image hiding 

schemes based on self-organizing patterns which can be used to transmit secret 
visual information; 

2. to build the mathematical foundation for the formation of cover images on 
the surface of structures performing harmonic oscillations;  

3. to develop novel algorithms for the assessment of the complexity of 
self-organizing patterns.  

Methods, Software, and Experimental Tools 
• Information visualization and processing methods have been used for the 

creation and realization of dynamic visual cryptography conception based on 
non-linear oscillations.  

• The mathematical apparatus and the theory of the optical moiré method was 
used for the researches. Its application is extended and further developed.  

• The Euler method (the forward Euler method) was applied to simulate a 
chemical reaction and to numerically integrate differential equations. 

• The theory of linear recurrent sequences was employed for the construction 
of algebraic approximation of any 2D image. 

• Matlab R2016a was used for developing computational and experimental 
tools.  

• COMSOL Multiphysics (the scientific package for physics-based finite 
element method modeling) was employed for the simulation of the deformation 
field. 

Defended Statements 
• Typical steganographic techniques are usually prone to steganalysis and do 

not guarantee the security of communication. Self-organizing patterns emerging 
from biological, chemical or physical processes can be successfully employed as an 
additional layer of security in concealing secret visual information.  

• Dynamic visual cryptography schemes based on harmonic oscillations of the 
deformable harmonic moiré grating according to the predefined Eigen-shape enable 
to hide secret information by using only one share. Scheme adaptation for Ronchi 
grating makes the formation of the stochastic cover moiré image on the surface of 
physical objects easier. 

• It is important to consider the feasibility of an image used in secure 
communication. 2-LRS pseudo-order can provide a deeper insight on the pattern 
complexity. 

Scientific Novelty and Significance 
• The proposed techniques for information hiding based on SOP amend and 

overcome the drawbacks of the previously introduced similar schemes. The ability 
to avoid the necessity of using random initial conditions and the perturbation of 
initial conditions for the generation of a self-organizing pattern is a serious 
enhancement in terms of the security of the communication scheme. 
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• An image encoding scheme in deformable one-dimensional moiré gratings 
oscillating according to a predefined Eigen-mode describing a physical process is 
implemented for the construction of two-dimensional digital dichotomous secret 
images. The Eigen-shape of the structure serves as the decoding key for a visual 
communication scheme. 

• 2-LRS can be used to analyze the complexity of self-organizing patterns. 
Unlike Shannon entropy, the order of 2-LRS can be applied to estimate the 
complexity of self-organizing patterns with respect to each spatial coordinate and to 
detect the transformation from a small scale spatial chaos to a large scale spatial 
chaos. 

Approval of the Results 
The major results of the thesis have been presented in 8 publications, 6 of 

which were delivered in journals listed by the Institute for Scientific Information 
(ISI) as the main list of publications with citing indexes; the two remaining articles 
were announced in peer-reviewed conference proceedings. The topics covered in the 
dissertation were presented at two international conferences. 

Scope and Structure of the Dissertation 
This doctoral dissertation consists of the introduction, 4 major sections, 

conclusions, a list of references and a list of the author’s publications. In total, there 
are 53 figures and 2 tables in the thesis. The list of 143 cited sources within the main 
part of the dissertation is added to the main body of the dissertation. 

The relevance of the work and its scholarly problem are discussed in the 
introduction. Also, the aim of the work and its main tasks are formulated and 
outlined. The investigation methods, the software in use, and the applied 
experimental tools are provided in this section as well together with the defended 
statements, the scientific novelty significance and the approval of the obtained 
results. 

The analysis of the scholarly literature which is relevant in terms of the aim 
and objectives of this thesis is presented in Chapter One. The visual communication 
scheme between two communicating parties based on self-organizing patterns is 
presented in Chapter 2. The image hiding scheme based on time-averaged moiré 
fringes on finite element grids is proposed in Chapter 3. The application of the order 
of a 2-sequence for the analysis of digital images is introduced in Chapter 4. Finally, 
the thesis is generalized by delivering its conclusions, bibliographic references, and 
a list of the author’s scientific publications. 
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1. LITERATURE REVIEW 

Data security was invented many years before the beginning of wireless 
communication. The importance to secure information arose from the early days of 
communication, and especially in the military sector, where it was necessary to 
provide some mechanism to protect the confidentiality of correspondence and to 
have some means of detecting tampering. It started with physical security, 
concealment and simple cipher algorithms, e.g., the Caesar cipher, where letters are 
replaced by a letter some fixed number of positions down the alphabet. It was 
followed by machines, e.g., the Enigma machine used in WWII to encrypt and 
decrypt the data of warfare whereas now computing equipment is employed to 
scramble and unscramble information (Simon, 2011). The exponential growth and 
the widespread use of electronic data processing and electronic business conducted 
through the internet, along with numerous occurrences of international terrorism, 
fueled the need for better techniques of protecting the computers and the information 
they store, process and transmit no matter who it belongs to – the military, the 
government, businesses or civilians (Killingback et al., 2013). 

With the development of network and multimedia technology, information 
security and privacy become more and more important (Ling et al., 2011; Nagaraja 
et al. 2016). The threat of an intruder accessing secret information has been an 
ever-existing concern for data communication in the public domain (Kaur et al., 
2014; Gurung et al., 2015). Whatever technique is adopted for the security purposes, 
the degree and level of security always remains top concern. In information hiding 
field cryptography, steganography and digital watermarking techniques are used 
separately or together in combination (Zhou et al., 2016; Razzaq et al., 2017) to 
provide greater security and overcome the threats of deciphering. Information 
security employs mathematical techniques and related aspects to provide 
confidentiality, data security, entity authentication and data origin authentication.  

The most common information hiding technique is cryptography which is used 
directly or indirectly by everyday computer users. Internet websites are usually 
routed through secure protocols, or the device storage is encrypted, and only the user 
with the correct password or certificate can access their content. Cryptography is 
defined as the system by which ‘normal’ records can be turned to the unreadable 
form by using computationally intensive mathematical algorithms (Mishra et al., 
2015; Ling et al., 2011) so that the unlawful individuals or entities could not access 
the plain or ‘overt’ records. The record is usually a text or digital data which is 
nothing else than an array of symbols. However, traditional cryptography suffers 
from such drawbacks as the key distribution (Maqsood et al., 2017), the visibility of 
the cipher text to an eavesdropper, passive attacks which are commonly observed in 
the traditional system (Moizuddin et al., 2017, Mishra et al., 2015). Besides, 
cryptography is a computationally intensive technique which only works if a 
computer is present. Quantum computing, quantum cryptography and quantum key 
distribution, when available to the broad public, could solve the listed drawbacks 
(Moizuddin et al., 2017). Meanwhile, with the availability of increasing computation 
power, it is only a matter of time before decrypting information becomes simple. An 
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information hiding mechanism which not only ensures confidentiality and 
authentication but is also cost effective is required (Gurung et al., 2015; Sundari et 
al., 2015). 

Apart from complex mathematical models, there are several schemes which 
provide information security ensuring high capacity, the ease of use and secrecy. 
Visual Cryptography (VC) is a technique which allows visual information to be 
encrypted in such a way that its decryption can be performed by the Human Visual 
System (HVS) without any complex cryptographic algorithms (Gurung et al., 2015). 
In 1994, Naor and Shamir suggested a secret sharing scheme which takes a secret 
binary image and divides it into many pieces known as shares. The decoding can be 
done visually by overlaying a defined number of shares (Naor et al., 1994). Instead 
of the static superposition of shares, the concept of Dynamic Visual Cryptography 
(DVC) was introduced by (Ragulskis et al., 2009a). DVC is based on time-average 
geometric moiré applied for a single encoded image. The secret image is embedded 
into the stochastic moiré grating in such a way that a naked eye cannot interpret the 
secret from the stationary cover image. The secret is leaked in the form of a pattern 
of time-averaged moiré fringes only when the encrypted cover image is oscillated 
according to a predefined law of motion. Special algorithms are required to encode 
the image, but the decoding is still completely visual. Visual cryptography is applied 
in a variety of areas: biometric security, remote electronic voting, user identification, 
online payments, etc., and is also used in conjunction with other techniques: 
watermarking and steganography (Pandey et al., 2016; Rura et al., 2016). 

Steganography is another information hiding technique in which the very 
existence of secret information is hidden into cover objects. It has been widely used 
in the area of secret communication. Whereas steganography and watermarking 
jointly belong to the science branch of information hiding, they are definitely 
different. Specifically, steganography is the art of writing a message or information 
in such a way that no one apart from the sender and the recipient knows its meaning. 
Modern steganography offers a level of service that includes privacy, authenticity, 
integrity, availability, and confidentiality of the transmitted data (Sheshasaayee et 
al., 2017). The reasons impacting the growth of interest in steganography are the 
interest in techniques for hiding encrypted copyright marks and serial numbers in the 
digital content as well as the need to communicate in some countries where the 
freedom of speech is restricted. Thus the methods by which private messages can be 
embedded in seemingly innocuous cover messages are widely studied. The ultimate 
objectives of steganography – which are undetectability, robustness (resistance to 
various image processing methods and compression) and capacity of the hidden data 
– are the main factors that distinguish it from the related techniques, such as 
watermarking and cryptography (Cheddad et al., 2010). 

Each steganography technique based on its embedding mechanism puts a 
special pattern on the stego-images. The most widely known spatial domain 
technique of steganography is the Least Significant Bit (LSB) substitution technique. 
A variety of extensions of the ‘common’ LSB can be mentioned: LSB with a shift 
(Joshi et al., 2015), modified LSB (Odat et al., 2016), MNEB (Maximum Number 
of Embedded Bits), ISB (Intermediate significant bits) (Parah et al., 2012), etc. The 
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implementation of LSB is straightforward, but the embedded information is usually 
highly vulnerable and could be easily destroyed (Joshi et al., 2015). For more secure 
data transfer, additional techniques such as cryptography (Joshi et al., 2015; Zhou et 
al., 2016), visual cryptography (Nandakumar et al., 2011), or a pattern emerged 
from physical processes (Saunoriene et al., 2011; Ishimura et al., 2014) are used 
together with steganography. The latter attracts prominent interest because of the 
employment of mathematical models representing natural processes and due to its 
potential speed advantage over standard cryptographic techniques. 

Spatial pattern formation is a key feature of many natural systems in physics, 
chemistry, and biology. The essential theoretical issue in understanding pattern 
formation is the explanation how a spatially homogeneous initial state can undergo 
spontaneous symmetry breaking leading to a stable spatial pattern (Killingback et 
al., 2013). This problem is most commonly studied by using partial differential 
equations to model a reaction-diffusion system of the type introduced by Turing 
(Saunoriene et al., 2011; Ishimura et al., 2014; Barkley et al., 1990). Self-organizing 
patterns can also be induced by complex interactions between competing individuals 
(Li et al., 2012; Ziaukas et al., 2014), nonlinear competitively coupled maps 
(Killingback et al., 2013) or arise in the context of coupled-map lattices (Xu et al., 
2016). However, not every pattern and, especially, not every pattern formation 
mechanism is suitable for embedding secret visual information because of the 
inability to resist simple statistical analysis or even worse – human inspection. Thus 
it is important to ensure that the selected pattern formation method as well as the 
stego-image is secure (Roy et al., 2016). The strengths and weaknesses are 
evaluated, for instance, by using pattern analysis of the image pixels or the palette, 
by visual inspection of the image, automated detection of steganographic 
characteristics (Johnson et al., 2012), relative entropy between the cover and the 
stego-image, fidelity or imperceptibility (Roy et al., 2016), by examining the 
textural features of the pattern (Yang et al., 2014), or by using other alternative 
methods. 

1.1. Information Hiding Techniques 
Various data hiding techniques have been developed for different purposes and 

applications which are collectively known as the ‘information hiding’ techniques 
(Feng et al., 2017; Muhammad et al., 2017; Altaay et al., 2012) and are broadly 
classified as cryptography, steganography and watermarking. A basic categorization 
of the outlined techniques as listed by (Gupta et al., 2015; Weir et al., 2012; Sundari 
et al., 2015; Altaay et al., 2012) are shown in Fig. 1.1, and a comparison (Cheddad 
et al., 2010; Zielinska et al., 2014; Mishra et al., 2015; Chandra et al., 2014) is 
presented in Table 1.1. Considering the topic of this thesis and the difference 
between the encoding and decoding processes, three main techniques could be 
complemented by an extension of cryptography – Visual Cryptography (VC) 
(Sahare et al., 2015; Weir et al., 2012). Despite the classification, these techniques 
are interlinked in practice: visual cryptography is used in watermarking (Weir et al., 
2012); the message is encrypted before hiding it inside the image by using 
watermarking techniques (Sundari et al., 2015); steganography and cryptography are 
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complementary and orthogonal to each other, and both can be used in a combined 
form to provide a higher level of security (Kaur et al., 2014; Razzaq et al., 2017). 

 
Fig. 1.1. Information hiding techniques. The arrows indicate an extension whereas the bold 

font indicates the focus of this thesis.  

Table 1.1. Comparison of cryptography, steganography and watermarking. 
Criterion Cryptography Steganography Watermarking 

Carrier Usually text-based, 
with some extensions 
to image files 

Any digital media Mostly 
image/video/audio 
files 

Secret data Plain text Payload Watermark 
Key Necessary Optional  
Input files One At least two unless in self-

embedding 
 

Visibility Always Never Sometimes 
Detection Blind Blind Usually informative 
Authentication Full retrieval of data Full retrieval of data Usually achieved by 

cross correlation 
Objective Data protection Secret communication Copyright preserving 
Security of 
communication 

Relies on the 
confidentiality of the 
key 

Relies on the confidentiality 
of the method of embedding 

 

Result Cipher-text Stego-file Watermarked file 
Concern Robustness Detectability/capacity Robustness 
Type of attacks Cryptanalysis Steganalysis Image processing 
Fails when Deciphered Detected Removed/replaced 
Flexibility  Free to choose any suitable 

cover 
Cover choice is 
restricted 

Technology Most algorithms are 
already known 

Still being developed  

1.1.1. Cryptography 
The exponential growth in the networking technology leads to the 

development of dramatic changes in the common culture for data interchanging. 
Therefore, the sensitive information, such as credit cards, banking transactions and 
social security numbers, need to be protected while in transmission. Cryptography 

Information hiding

Cryptography Visual cryptography

Symmetric key

Asymmetric key

Dynamic

Steganography Watermarking

Linguistic

Technical

Image Video Audio Text
Color

Chaotic

...

Traditional

Extended

Hash functions
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offers the means for ensuring communication security by scrambling the data to 
prevent the attacker from understanding the content. Cryptography also ensures that 
the message should be sent without any alternation and only the authorized person 
can be able to open and read the message (Niveditha, 2014). Thus the algorithms 
should ensure data privacy, confidentiality, integrity, authenticity, access control and 
non-repudiation (Sheshasaayee et al., 2017; Chandra et al., 2014; Niveditha, 2014; 
Mitali et al., 2014).  

The concept of cryptography is based on two main terms – the plain text and 
the cipher text. The original message is called the plain text whereas the encrypted 
version of the message is referred to as the cipher text. The method of encoding 
plain text is called encryption, and the process of reversing a ciphered text to its 
original plain text is called decryption (Maqsood et al., 2017). The conceptual 
communication scheme based on cryptography is shown in Fig. 1.2. 

 
Fig. 1.2. Conceptual cryptography based communication scheme. 

An important aspect of performing encryption and decryption is the key which 
makes the process of cryptography secure. Based on the key distribution, 
cryptography is further classified into three major types – symmetric key 
cryptography, asymmetric key cryptography and hash functions (Maqsood et al., 
2017; Chandra et al., 2014; Niveditha, 2014; Ubale et al., 2017; Mukundan et al., 
2016): 

• In the type of symmetric encryption, the sender and the receiver share the 
same key for encryption as well as decryption. This type of cryptographic techniques 
has several benefits determining its relatively high performance (Chandra et al., 
2014), and, since this algorithm depends on its key entirely, it can be directly 
implemented on hardware (Niveditha, 2014). The weakness of a symmetric 
algorithm lies in the sharing of the symmetric key between the sender and the 
receiver; in those cases when sharing is compromised, the encrypted communication 
can be easily decrypted by the attacker. Various algorithms have been developed so 
far to describe symmetric key cryptography: AES, DES, 3DES, Blowfish (Ubale et 
al., 2017). 

• Users of asymmetric encryption use different keys for encryption and 
decryption: the sender uses a public key of the receiver for encryption whereas the 
receiver uses his/her private key to decrypt the message. Thus anyone can encrypt 
the message but only the legitimate person can decrypt the message. The problem of 
asymmetric encryption is that it works slower if compared to symmetric encryption. 
Most asymmetric algorithms depend on the properties of hard problems in 
mathematics such as factoring the product of two large prime numbers. There are 
various algorithms to implement this encryption mechanism: RSA, Diffie-Hellman, 
ECC, and Digital Signature Algorithm (Ubale et al., 2017; Chandra et al., 2014; 
Niveditha, 2014). 

• Hash functions, also called message digests and one-way encryption, are 
algorithms that, in essence, use no key (Wang et al., 2017; Mukundan et al., 2016). 

Plain text Encryption Cipher text Channel Decryption Plain text
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Instead, a fixed-length hash value is computed based upon the plain text that makes 
it impossible for either the content or the length of the plain text to be recovered. 
Hash algorithms are typically used to provide a digital fingerprint of a file’s content; 
they are often used to ensure that the file has not been altered by an intruder or a 
virus. Hash functions are also commonly employed by many operating systems to 
encrypt passwords (Marcella et al., 2007).  

As mentioned above, cryptography is usually applied and works best on the 
plain text, but there also exist extensions of image encryption which are different 
from the text encryption technique (Das et al., 2014). There are several security 
problems associated with digital image processing and transmissions; moreover, 
digital images are comparatively less sensitive than data because any single change 
in the pixels does not change the entire image. In other words, a small modification 
of a digital image is acceptable compared to data – yet it is more prone to attacking. 
This leads to a group of visual cryptography techniques working only on graphical 
data. 

1.1.2. Visual and Dynamic Visual Cryptography 
The basic idea of cryptography is that the computation process should be 

complex enough to guarantee that nobody (i.e., no intruder) will be able to break the 
system (Sahare et al., 2015). In 1994, Naor and Shamir introduced the Visual 
Cryptography (VC) method of securing data without cryptographic computation 
(Naor et al., 1994). It encrypts visual information in such a way that the decryption 
is completely visual and computers are not required to interpret the secret image. 
The secret image is broken up into several shares which are printed on separate 
transparencies. Decryption is performed by overlaying the shares (Fig. 1.3). Many 
advances have been achieved in visual cryptography since 1994 (Vaidelys et al., 
2015b). Visual cryptography schemes enabling cheating prevention were presented 
by (Chen et al., 2012); a multi-secret visual cryptography scheme based on random 
grids was introduced by (Han et al., 2015); a secret sharing based visual 
cryptography scheme using CMY color space (Dahat et al., 2016) and quality 
improvement in color extended visual cryptography has also been proposed (Mohan 
et al., 2016). 

The concept of dynamic visual cryptography was introduced by (Ragulskis et 
al., 2009a). This technique is based not on static superposition of shares, but rather 
on time-average geometric moiré applied for a single encoded image. The secret 
image is embedded into the stochastic moiré grating; the secret is leaked only when 
the amplitude of the harmonic oscillations is set to a preselected value (Fig. 1.4). A 
naked eye cannot interpret the secret image from the stationary cover image 
(Fig. 1.4a). Therefore, dynamic visual cryptography is similar to classical visual 
cryptography – special algorithms are required to encode the image, but decoding is 
completely visual. Additional image security measures are suggested in (Vaidelys et 
al., 2015b, Ragulskis et al., 2009c) where the secret image is leaked in the form of a 
pattern of time-averaged moiré fringes only when the encrypted cover image is 
oscillated according to a predefined law of motion (Vaidelys et al., 2015a). 
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Fig. 1.3. An example of a visual cryptography scheme where the secret text (c) appears when 
two same-sized images (shares, shown in (a) and (b)) of apparently random black-and-white 

pixels are superimposed. 

 
Fig. 1.4. Visual decryption of the secret data: a) the secret image encoded into a cover moiré 

image; b) the secret message is leaked when the cover image is oscillated according to a 
preselected law of motion; c) the secret message is highlighted by using a contrast 

enhancement algorithm (Ragulskis et al., 2009b). 

Visual cryptography schemes are one of the special and most interesting 
encryption techniques. One of the advantages of VC and DVC schemes is the 
property that decoding relies purely on the human visual system. It allows this 
technique to use in a lot of interesting applications in private and public sectors. VC 
is used with short messages thus giving cryptanalysis little to work with. It can be 
used together with other data hiding techniques to provide a higher security level. As 
far as short messages are considered, this method can be a part of another technique, 
e.g., for public keys encryption. VC has proved that security can even be attained 
with simplest encryption schemes. 

a)

b)

c)
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1.1.3. Steganography 
Steganography can be defined as the study of invisible communication that 

usually deals with the ways of hiding the existence of the communicated message 
(Sheshasaayee et al., 2017, Taouil et al., 2017). Unlike cryptography whose goal is 
to secure the transferred information from an eavesdropper, a steganographic system 
hides the content by embedding it in a cover media so that not to arouse an 
eavesdropper’s suspicion while being transmitted through an open channel (Zhang et 
al., 2017). There are many kinds of covers, such as texts (Sheshasaayee et al., 2017; 
Zhang et al., 2017), images (Huang et al., 2012; Xia et al., 2016b), videos (Sadek et 
al., 2017), biological media, such as human skin or DNR, etc. The present work 
focuses on steganography in digital images which is the most popular form of 
steganography – thus other kinds of covers are not discussed further in the paper. 

Steganography provides the ultimate guarantee of authentication that no other 
security tool can ensure and has a number of applications in distinct fields, such as 
defense and intelligence, medical, on-line banking, on-line transaction, intellectual 
property protection, enhancing robustness of an image in search engines, as well as 
many other financial and commercial purposes (Kaur et al., 2014; Zhang et al., 
2017, Wang et al., 2017, Sheshasaayee et al., 2017). For example (Xia et al., 2016a; 
Zhou et al., 2017), methods of detecting illegal copies of copyrighted images have 
been introduced. In the field of medical sciences, it is necessary to ensure the 
confidentiality between the patients’ image data or DNA sequences and their 
captions, however, a link must be maintained between the two. Thus embedding the 
patient’s information in the image as stated by (Taher et al., 2016; Liu et al., 2013; 
Wang et al., 2017) could be a useful safety measure which helps in solving such 
problems. Inspired by QR codes and the notion that steganography can be embedded 
as part of the normal printing process, a method for embedding data into a 
ready-to-print halftone image which provides an alternative for embedding data in 
visually meaningful images has been presented (Chen et al., 2017). A printed picture 
can contain encoded data that is invisible but still decodable with a mobile phone 
camera. 

There are some terms commonly used by steganography communities. The 
term cover-image is used to describe the image designated to carry the embedded 
bits. An image with embedded data is called the payload or the stego-image. 
Analogously to cryptanalysis, steganalysis (or attack) refers to visual image 
processing and statistical analysis approaches aiming to detect hidden information 
inside a cover without the knowledge of the embedding algorithm and the key (Rafat 
et al., 2016). Embedding is usually parametrized by a key that makes it difficult 
even to detect the presence of data and further find a key to access the data (Kaur et 
al., 2014). 

The process of transmitting (embedding and extraction) secret message 𝑀 can 
be defined as follows (Cheddad et al., 2010): Let 𝐶 denote the cover carrier, i.e., the 
cover-image, and 𝐶’ the stego-image. An optional key used to encrypt the message 
or to generate a pseudorandom noise is denoted as 𝐾. 𝐸𝑚 is an acronym for 
embedding and 𝐸𝑥 stands for extraction. Therefore: 
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𝐸𝑚: 𝐶⨁𝐾⨁𝑀 → 𝐶ᇱ, 𝐸𝑥൫𝐸𝑚(𝑐, 𝑘, 𝑚)൯ ≈ 𝑚, ∀𝑐 ∈ 𝐶, 𝑘 ∈ 𝐾, 𝑚 ∈ 𝑀. (1)

There are three ways to hide a digital message in a digital cover (Kaur et al., 
2014): first of all, data injection – a secret message is embedded directly in the 
cover carrier, which results in larger files. Secondly, replacement or substitution – 
selected pixels of the cover are interchanged with the secret data. However, 
depending on the amount of secret data, the quality of the original cover can 
noticeably decrease. Finally, generation of the cover should be mentioned – a cover 
is generated for the sole purpose of concealing a secret message. 

Image steganography techniques are divided into spatial domain (plane 
co-ordinate system) and transform (frequency) domain categories (Kaur et al., 2014; 
Niveditha, 2014; Rafat et al., 2016): 

• Spatial domain techniques include bitwise manipulation of the intensity of 
pixels and noise manipulation. The most common and the simplest approaches to 
embed data in the spatial domain are the Least Significant Bit (LSB) methods. The 
concept of LSB substitution includes the embedding of the secret data at the bits 
having minimum weighting. If the last 2 bits of a color are manipulated, the value of 
the color changes at most +/-3 value places, and such change is indistinguishable by 
the human visual system (HVS) (Fig. 1.5). However, LSB insertion is very easy to 
implement, yet, on the other hand, it is also easily attacked (Niveditha, 2014). 
Firstly, hidden information can be easily overwritten by changing the original secret 
message. Secondly, the statistical properties of the media are modified – thus 
statistical methods can be used in order to detect and subsequently extract the secret. 
This technique works best when the message is considerably smaller than the cover 
image file, and when the color map over the image varies significantly. Other spatial 
domain methods are the Optimal Pixel Adjustment Procedure (OPAP), the Pixel 
Indicator Technique (PIT), and the Pixel Value Differencing (Roy et al., 2016). 

 
Fig. 1.5. Information may be concealed by manipulating the LSB of an image. The change of 

the last 2 bits of a color value results in the change of color value by +/-3 places. 

• Transform domain techniques initially convert an image from the spatial 
domain to the frequency domain, and then the secret message is embedded. The 
secret data is embedded by modifying the transform coefficient of the image, which 
makes this technique more robust to attacks like compression, filtering, etc. The 
techniques in use are Discrete Cosine Transformation, Discrete Wavelet Transform, 
Discrete Fourier Transform, (Cheddad et al., 2010), or Singular Value 
Decomposition (SVD) transform based method (RHISSVD) (Roy et al., 2016). 

The primary objectives of steganography are its undetectability (resistance 
against steganalysis techniques), robustness (resistance against various image 
processing methods and compression), security (an algorithm is considered secure if 
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the embedded information cannot be removed after detection) and the embedding 
rate of the hidden data (Kaur et al., 2014; Niveditha, 2014). Breaking a 
steganography system normally consists of detecting, extracting and disabling or 
destroying the embedded information. A system is already insecure if an attacker is 
able to prove the existence of a secret message (Garzia, 2013). The security 
requirement in steganography ultimately means that neither a human nor a computer 
detection method should be able to confirm the presence of a secret message within 
a cover with a significant reliability (Garzia, 2013). When developing a formal 
security model, it is important to assume that an attacker has unlimited computation 
power and is able and willing to perform a variety of attacks. Thus no matter how 
sophisticated and complex the information hiding scheme may be, the security of the 
system primarily lies in keeping the cover-image secret (Rafat et al., 2016) and the 
information hiding algorithm private (Zhang et al., 2017).  

The theoretical and formal definition of a steganographic security system was 
formulated by (Cachin, 2004). The main idea is to refer to a selection of the cover as 
random variable 𝐶 with probability distribution 𝑃஼  (Garzia, 2013). The embedding 
of a secret message can be seen as a function defined in 𝐶; let 𝑃௦ be the probability 
distribution of 𝐸𝑚(𝑐, 𝑘, 𝑚) – that is the set of all the stego-images generated by the 
steganographic system. If a cover is never used as a stego-image, then 𝑃௦(𝑐) = 0. In 
order to calculate 𝑃ௌ, probability distributions on 𝐾 and 𝑀 must be imposed. By 
using the definition of the relative entropy 𝐷(𝑃ଵ||𝑃ଶ) between two distributions 𝑃ଵ 
and 𝑃ଶ defined on the set 𝑄, the impact of the embedding process on distribution 𝑃஼  
can be measured. 𝐷(𝑃ଵ||𝑃ଶ) = ෍ 𝑃ଵ(𝑞) logଶ 𝑃ଵ(𝑞)𝑃ଶ(𝑞)௤∈ொ . (2)

This formula measures the inefficiency of assuming that the distribution is 𝑃ଶ, 
where the true distribution is 𝑃ଵ.  

Specifically, the security of a steganography system is defined in terms of 𝐷(𝑃஼||𝑃ௌ) as: 𝑆 is a steganographic system, 𝑃ௌ is the distribution probability of the 
stego-image sent over the channel, and 𝑃஼  the distribution probability of 𝐶. 𝑆 is thus 𝜀-secure against a passive attack if 𝐷(𝑃஼||𝑃ௌ) ≤ 𝜀 and is called perfectly secure if 𝜀 = 0. 

1.1.4. Watermarking 
Digital watermarking or fingerprinting is the process of embedding a 

watermark signal into multimedia data to generate a watermarked object to protect 
the authenticity of the owner on that digital object and mainly focuses on the 
robustness of the embedded message rather than the capacity or concealment (Kaur 
et al., 2014). A digital watermark can be any signal or pattern embedded into any 
multimedia file which can be used for copyright protection and authentication as it 
cannot be altered or modified (Sundari et al., 2015). 
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1.2. Self-Organizing Patterns 
The study of self-organizing patterns started in the 1950’s with a 

Belousov-Zhabotinsky (BZ) reaction which serves as a classical example of 
non-equilibrium thermodynamics resulting in the establishment of a nonlinear 
chemical oscillator. It was observed that a reaction of a mixture of specific 
chemicals does not reach an end point but rather keeps oscillating by changing 
colors. However, the finding cannot be backed up theoretically because of a 
contradiction to the second law of thermodynamics (Prigogine et al., 1977). It was 
not before the late 1960’s when Belousov’s findings were confirmed by 
Zhabotinsky, and it was also noticed that the reaction exhibits a pattern formation 
mechanism with similarities to the mechanism that Turing had proposed. However, 
an unusual and interesting feature of the reaction is that as it progresses on a 
two-dimensional plate, self-organized spirals are formed (Fig. 1.6).  

 
Fig. 1.6. The Belousov-Zhabotinsky reaction can form spiral waves in a petri-dish (a) and 
during computer simulation (b). The white color corresponds to high concentrations of a 

particular acid used in the reaction (Averill et al., 2012; Ball, 1994). 

The basic mechanism of the BZ reaction consists of cerium-catalyzed 
oxidation of malonic acid in an acid medium by bromate ions, and the simplest 
realistic model devised by (Field et al., 1974) is the three-component Oregonator 
model given by: 𝜕𝑥𝜕𝑡 = 𝑞𝑦 − 𝑥𝑦 + 𝑥(1 − 𝑥) + 𝐷௫∇ଶ𝑥,𝜕𝑦𝜕𝑡 = −𝑞𝑦 − 𝑥𝑦 + 𝑓𝑧 + 𝐷௬∇ଶ𝑦,𝜕𝑧𝜕𝑡 = 𝑥 − 𝑧 + 𝐷௭∇ଶ𝑧,  (3)

where 𝑥, 𝑦 and 𝑧 correspond to the scaled concentrations [HBrO2], [Br−] and [Ce4+], 
respectively. 𝑞 and 𝑓 parameters adjust the dynamics of the model whereas 𝐷௫, 𝐷௬ 
and 𝐷௭ are the diffusion coefficients. The Oregonator model produces concentric 
waves or spiral waves. 

Such mathematical models mimicking the evolution of nature are important 
not only to theoretical chemistry or biochemical and biological systems but also 
produce interesting visual effects on the 2D plane. Thus the formation of 
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self-organizing patterns (SOP) in biology (Yamasaki et al., 2011, Wang et al., 2011; 
Zheng et al., 2015, Klein et al., 2017) (animal markings, growth of colonies, 
vegetation patterns, cancer dynamics), chemistry (Grindrod, 1996, Rogora et al., 
2016) (reaction-diffusion systems, Turing, precipitation patterns), physics (Weiss et 
al., 2007) (liquid crystals, granular material, optical resonators), computer graphics 
(Sahin et al., 2015) (cellular automata, texture analysis) has been attracting the 
attention of researches since the middle of the twentieth century.  

Self-organizing patterns emerging from nature should not be mixed up with 
the self-organizing map (SOM) which defines a type of artificial neural network 
(ANN) and certain self-organized patterns (SOP) that develop automatically and 
unexpectedly during the training of a typical self-organizing map (SOM) network. 
These highly structured patterns emerge and evolve gradually from the random 
initial state as the training progresses (Wang, 2015). However, ANNs are not within 
the scope of this thesis. 

It is well known that self-organizing patterns can also be used for hiding and 
communicating secret visual images. A secure steganographic communication 
algorithm has been developed (Saunoriene et al., 2011; Ishimura et al., 2014) where 
patterns are produced by using a Beddington-DeAngelis type predator-prey model 
with self- and cross-diffusion. Self-organizing patterns induced by 
prisoner-dilemma-type interactions between competing individuals and described by 
evolutionary spatial 2×2 games are exploited for hiding and transmitting secret 
visual information (Ziaukas et al., 2014). Since they have some drawbacks, new 
models of self-organizing patterns are presented in this section and used in this 
thesis. 

1.2.1. Chaotic logistic map 
The generation of the initial population matrix is an important step in the 

evolution of many self-organizing patterns or systems (Ziaukas et al., 2014; 
Saunoriene et al., 2011; Bolliger et al., 2013; Moore et al., 2014). A simple 
dichotomous random number generator could be used to initialize the initial matrix; 
however, it does not ensure repeatability of the evolution. This is specifically 
important during secure communication when the Sender and the Receiver must be 
able to generate an identical copy of the initial matrix. The transmission of the whole 
initial matrix is not considered due to the bandwidth costs and the ease of tampering. 

The chaotic Logistic map (Yu et al., 2017) could be used for the efficient 
generation of the initial population. Iterated values of the logistic map are as 
follows: 𝑎௜ାଵ = 𝑟𝑎௜(1 − 𝑎௜). (4)

They can be used for the efficient generation of pseudo-random numbers. Here 𝑎௜ is 
a number between zero and one that represents the ratio of the existing population to 
the maximum possible population; parameter 𝑟 is within the interval [0,4]. In this 
thesis, parameter 𝑟 is fixed to 𝑟 = 4 because only at 𝑟 = 4 the resulting chaotic 
sequence at almost all initial conditions 𝑎଴ falls into the interval [0; 1] (Yu et al., 
2017).  
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By using the logistic map, the communicating parties can share only the initial 
condition of the logistic map instead of sharing the initial population of all the 
elements in the domain. Although every pseudo-random number generator has its 
drawbacks – the chaotic Logistic map has a limited uniformity of generated values, 
stable windows and a relatively small space of valid seeds. The Logistic map can be 
enhanced and extended – alternative versions of the map, such as an intertwined 
Logistic map (Wang et al., 2013), can eliminate some of these drawbacks. However, 
the standard Logistic map is also successfully used in various image encryption 
techniques and protocols (Yu et al., 2017; Ye et al., 2017).  

1.2.2. Nonlinear Competitively Coupled Maps1 
Let us consider a one-dimensional unimodal mapping in the form 𝑓(𝑥) = 𝑥 ⋅𝐹(𝑥) where 𝐹: ℝ → ℝ is a smooth mapping. We shall use a mapping named after 

Maynard Smith (Killingback et al., 2013): 𝐹(𝑥) = 𝜂(1 + 𝑥௕) (5)

where parameters 𝜂 and 𝑏 are positive constants. 
A two-dimensional generalization of this mapping with the introduction of the 

competitive aspect to the model gives the time evolution of a particular state 𝑥(𝑡) at 
time 𝑡 on a rectangular domain [1; 𝐿௫] × [1; 𝐿௬]: 𝑥௜,௝(𝑡 + 1) = 𝑥௜,௝(𝑡) ⋅   𝐹[𝑥௜,௝(𝑡) + 𝛼 ⋅ Σ௜,௝(𝑡)] (6)

where Σ௜,௝(𝑡) = ෍௣,௤∈{ିଵ,଴,ଵ}(௣,௤)ஷ(଴,଴) 𝑥௞,௟(𝑡),𝑘 = 𝑚𝑜𝑑(𝑖 + 𝑝 − 1, 𝐿௫) + 1; 𝑙 = 𝑚𝑜𝑑൫𝑗 + 𝑞 − 1, 𝐿௬൯ + 1 (7)

is the sum of adjacent elements in the 8-element Moore neighborhood of the element 𝑥௜,௝(𝑡); 𝛼 is a non-negative parameter that represents the strength of the competitive 
interaction between neighboring elements. We should note that the local site 
dynamics are coupled through a competitive – rather than diffusive – interaction. 2D 
periodic boundary conditions are assumed; 𝐿௫ and 𝐿௬ define the number of elements 
in the rectangular domain. We should also note that every element 𝑥௜,௝ represents a 
single pixel of a digital image. 

Competitively coupled maps are based on interactions between discrete 
neighboring nodes. These interactions are usually interpreted as the competition 
from the physical (or biological) point of view. In terms of steganography, it is 

                                                      
 
1 Some passages have been quoted verbatim from the following source: 

Competitively Coupled Maps for Hiding Secret Visual Information. 
Vaidelys M., Ziaukas P., Ragulskis M. 
Copyright © 2015 Elsevier B.V. 
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always important to take into account algorithmic aspects of the evolutionary model 
– such as feasibility, computational efficiency and complexity, memory and time 
requirements. A wide variety of different evolutionary models exhibiting interesting 
behavioral aspects does exist. However, competitively coupled maps are relatively 
simple yet robust and computationally effective models capable of producing 
stationary patterns from homogeneous initial configurations – and therefore they are 
well suited for the considered steganographic application. Moreover, presented 
competitively coupled maps (Killingback et al., 2013) do produce complex spatial 
patterns even when the dynamics at each node is trivial (the local dynamics of an 
isolated node does exhibit a stable fixed point). This is in stark contrast to 
conventional diffusively coupled map lattices where trivial dynamics of a node can 
only result in a spatially homogeneous state (Waller et al., 1984; Jansen et al., 2000; 
Rohani et al., 1996). 

Other nonlinear competitively coupled maps could be considered instead of 
the Maynard Smith map. A possible example could be the Ricker and Hassell maps 
discussed in (Killingback et al., 2013) or even some other more complex nonlinear 
competitively coupled maps. However, the ability of a coupled map to generate 
self-organizing patterns is not a sufficient condition for the construction of the 
proposed image hiding scheme. It is important that the difference image between the 
patterns produced by the non-modified and modified initial conditions would be able 
to represent the dot-skeleton representation of the secret information. This 
requirement is far from being trivial and necessitates the appropriate tuning of the 
system’s parameters.  

1.2.3. Atrial Fibrillation Model2 
The atrial muscle is comprised from myocytes which form the primal structure 

of the tissue. Observable patterns formed by myocytes are not regular and conform 
to complex self-organizing rules as proposed in (Luke et al., 1991; Verheule et al., 
2003). Cells within this structure are coupled mainly by longitudinal (end-to-end) 
connections rather than latitudinal (side-by-side) connections thus resembling a 
cable-like signal transmission (Luke et al., 1991; Nakamura et al., 2011). Such 
conditions as fibrosis and scarring processes can weaken and damage the 
connections (Luke et al., 1991) and adjust the network of functioning cells (Clayton 
et al., 2011, Clayton et al., 2001). 

The whole interaction of cells within the network can be modeled as proposed 
in (Christensen et al., 2015). Longitudinal (end-to-end) signals are always 
transmitted, whereas latitudinal (side-by-side) signals are transmitted only with a 
probability 𝜈. This non-symmetrical coupling corresponds to the physical 
organization of cable-like transmissions. As a simplification, the structure can be 
                                                      
 
2 Some passages have been quoted verbatim from the following source: 

Image hiding scheme based on the atrial fibrillation model 
Vaidelys M., Ragulskiene J., Ziaukas P., Ragulskis M.  
Applied Sciences, 2015 
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presented as a flat entity because the wall of the atrial muscle is relatively thin 
(Nakamura et al., 2011). 

The general idea of cable-like transmissions (Christensen et al., 2015) used to 
mimicking the branching network of heart muscle cells is implemented on a discrete 
grid as follows. Three states of cells are considered: the resting state, the excited 
state, and the refractory state. Resting cells and excited cells interact in two 
directions with different probabilities – probability 𝑙 for the longitudinal direction 
and probability 𝜈 for the latitudinal (transversal) direction. Just after a cell has been 
excited, it enters the refractory state where it remains for the time period equal to 𝜏 
(as illustrated in Fig. 1.7). 

 
Fig. 1.7. The diagram of interaction between cells within a network. The resting cells (black) 

and the excited cells (white) interact in two directions with different probabilities.  
A resting cell becomes excited if it interacts with another excited cell.  

An excited cell (white) enters a refractory state (gray) for time period 𝜏. 

 
Fig. 1.8. Initial plane vertical wave is induced at the left side by pacemaker cells (a). 
However, one cell is dysfunctional and blocks the propagation of the wave front (b).  

Due to the vertical connections between longitudinal cables,  
the resulting process forms a pattern (c). 

In order to recreate some basic topological features of the atrial muscle, 
periodic boundary conditions in the transversal direction can be combined with open 
boundary conditions in the longitudinal direction. This corresponds to the topology 
of a cylinder which is useful in order to investigate the effects of spontaneous 
heterogeneity that takes place on the front of the propagating wave. In general, once 
the initial grid has been fixed, all the interactions that can be numerically simulated 
depend only on system parameters 𝜈 (the probability of interactions along the 
transversal direction) and 𝜏 (the time spent in the refractory state). However, the 
interactions between cells can be seriously complicated by dysfunctional cells. That 
can be illustrated by a simple computational experiment presented in Fig. 1.8. 
Pacemaker cells are placed at the left boundary of the digital image and initiate the 
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wave front which propagates to the right in all longitudinal cables (Fig. 1.8(a)). 
However, because of dysfunctional cells, this is not always the only wave direction. 
A dysfunctional cell may block the propagation wave front (Fig. 1.8(b)). The 
interplay between the wave fronts can form different patterns as shown in 
Fig. 1.8(c). We should note that the boundary conditions are periodic.  

The reader should keep in mind that the presented atrial fibrillation (AF) 
model is a rough approximation of complex biological processes taking place in the 
tissue of the heart. The complex distribution of cardiac action potentials, spiral 
waves, arrhythmias, sinoatrial nodes and many other phenomena taking place in the 
heart cannot be modeled by using this AF model. More sophisticated models that 
facilitate understanding of the behavior of the waves in the context of the heart 
should be used: a visualization of spiral and scroll waves in simulated and 
experimental cardiac tissue was presented by (Cherry et al., 2008); a spiral wave 
drift and complex-oscillatory spiral waves caused by heterogeneities in 
two-dimensional in vitro cardiac tissues were presented by (Woo et al., 2008). 

1.2.4. The Spiral Wave Model3 
Spiral waves are observed in various nonequilibrium systems having a 

two-dimensional plane. Various examples are known to exist, for instance, the 
previously mentioned Belousov-Zhabotinsky reaction-diffusion system (Field et al., 
1974), FitzHugh-Nagumo model (Sherwood, 2014), Ball’s model (Ball, 1994), the 
chloride-iodide-malonic acid or ferrocyanide-iodate-sulfite reaction-diffusion 
systems (Szalai et al., 2008), and others. In all the cases, the spiral wave activity 
either underlies an important biological function or is denoted by physiological 
significance. For example, it was noted that waves of contraction (electrochemical 
BZ waves) propagate in the heart tissue with the switch from concentric ring 
patterns to spiral waves being associated with the onset of ventricular fibrillation 
(Winfree, 1994). Waves of contraction are initiated and propagate out to the muscle 
tissue in the ventricles. After contraction, the tissues go into a temporary refractory 
state, thus the waves propagate away from the centers of initiation, and the heart 
beats normally. However, if inhomogeneity is observed in the heart tissue (i.e., if 
some tissues are damaged or unresponsive to stimulation), even a small infarct can 
act as sites for the initiation of spiral waves of contraction and send the ventricles 
into a state of fibrillation.  

The paradigmatic Barkley model (Barkley et al., 1990; Dowle et al., 1997) for 
modeling spiral waves in excitable and oscillatory media is presented here. This 
model is often used as a qualitative model in pattern forming systems, such as the 
Belousov-Zhabotinsky reaction and other systems that have been well described by 
the interaction of an activator and an inhibitor component.  

                                                      
 
3 Some passages have been quoted verbatim from the following source: 

Digital Image Communication Scheme Based on the Breakup of Spiral Waves. 
Vaidelys M., Lu C., Cheng Y., Ragulskis M. 
Copyright © 2016 Elsevier B.V. 
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The considered model comprises a system of reaction-diffusion equations 
describing the interaction of activator 𝑢 and inhibitor 𝑣:  𝛿𝑢𝛿𝑡 = 𝑓(𝑢, 𝑣) + ∇ଶ𝑢, 𝛿𝑣𝛿𝑡 = 𝑔(𝑢, 𝑣) + 𝐷∇ଶ𝑣, (8)

where 𝑓(𝑢, 𝑣) and 𝑔(𝑢, 𝑣) are local reaction kinetics functions whereas parameter 𝐷 
is consequently the ratio of diffusion coefficients. Reaction term 𝑓(𝑢, 𝑣) is given by:  𝑓(𝑢, 𝑣) = ℎ(𝑥)𝜀 𝑢(1 − 𝑢)(𝑢 − 𝑢௧௛(𝑣)) (9)

where parameter 𝜀 sets the timescale separation between the fast 𝑢-equation and the 
slow 𝑣-equation (therefore 𝜀 is typically small); functions ℎ(𝑥) and 𝑢௧௛(𝑣) define 
the evolution of the slow variable. In the simplest case (Barkley et al., 1990), we 
obtain the following:  ℎ(𝑥) = 1,    𝑢௧௛(𝑣) = 𝑣 − 𝑏𝑎  (10)

where 𝑎 and 𝑏 are system parameters – thus a larger 𝑎 gives a longer excitation 
duration, and a higher ratio 𝑏/𝑎 gives a larger excitability threshold. The other 
reaction term reads:  𝑔(𝑢, 𝑣) = 𝑢 − 𝑣 (11)

The nullclines in the Barkley model for the nonlinear 𝑢 reaction kinetics are 
straight lines. The 𝑢-nullclines are given by 𝑓(𝑢, 𝑣) = 0 so that the three branches 
are:  𝑢 = ൝0,𝑢௧௛(𝑣),1.  (12)

The middle branch sets the excitation threshold. In practice, for spiral wave 
solutions, the system does not pass through the corners where the branches of the 
nullclines intersect. 

This reaction is simulated with a simple Euler forward scheme; the Laplacian 
operator is simulated numerically by using a finite differences method on a regular 
square grid with a five-point formula (Dowle et al., 1997):  ∇ଶ𝑢4 = 14 ൫𝑢௜ାଵ,௝ + 𝑢௜ିଵ,௝ + 𝑢௜,௝ାଵ + 𝑢௜,௝ିଵ൯ − 𝑢௜,௝ (13)

By combining the five-point formula with large time steps, the reaction terms 
can be time-stepped with relatively minor computational efforts. 

The domain is represented as a 2D square of size 𝐿 with zero-flux boundary 
conditions. We set the initial conditions as dichotomous patches (vertical for the 𝑢-field and horizontal for the 𝑣-field) where the black color corresponds to 0 and the 
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white color corresponds to 1 (Fig. 1.9). In such a model, the spiral wave forms with 
no sign of breakup (Barkley et al., 1990). Time step 𝑑𝑡 is set to 0.05; the time period 
used for the computation is marked as 𝑇. The evolving spiral wave is illustrated at 𝑇 = 5, 10, 15, 20 and 30 in Fig. 1.9. 

A regular spiral wave may evolve into a non-regular spiral wave with breakups 
when reaction term 𝑔 is a nonlinear function (as suggested by Bär et al., 1993):  𝑔(𝑢, 𝑣) = 𝑢ଷ − 𝑣 (14)

As discussed in (Barkley, 2008), there are sets of parameters 𝑎, 𝑏 and 𝜀, when 
the spirals may undergo period rotations or various types of meander/break-ups. The 
evolution of the pattern into a complete breakage is illustrated in Fig. 1.10. 

 
Fig. 1.9. The evolution of a regular spiral wave. The parameters of the model are set to:  𝐿 = 100, 𝜀 = 0.1, 𝑎 = 0.7, 𝑏 = 0.06, 𝑔 = 𝑢 − 𝑣; 𝑑𝑡 = 0.05. The initial conditions are 

shown in (a) and (b); the evolution of the 𝑢-field is shown in (c). 

 
Fig. 1.10. The evolution of a spiral wave with breakups (𝑢-field only) with reaction term 𝑔 

set to: 𝑔 = 𝑢ଷ − 𝑣 (other parameters are the same as in Fig. 1.9). 

1.3. Image Processing Techniques 
Image enhancement techniques have been widely used in many applications of 

image processing in order to bring out details in an image that are obscured or to 
highlight certain features of interest in an image for human viewers. Enhancement 
techniques include contrast adjustment, filtering, morphological filtering, and 
deblurring (Umbaugh, 2010). Image enhancement operations typically return a 
modified version of the original image and are frequently used as a preprocessing 
step to improve the results of image analysis techniques. There is no general theory 
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for determining what is a ‘good’ image enhancement when it comes to human 
perception. The general idea is that if something looks good, it is good. The few 
image enhancement techniques and morphological operations employed in this 
thesis are presented in this Section. 

1.3.1. Thresholding 
Thresholding is the simplest and fastest pixel-based technique to segment an 

image. The standard thresholding approach creates binary images from grey-level 
ones by turning all the pixels below some threshold to zero, and all the pixels above 
that threshold to one. If 𝑔(𝑥, 𝑦) is a thresholded version of 𝑓(𝑥, 𝑦) at some global 
threshold 𝑇, then (Umbaugh, 2010): 𝑔(𝑥, 𝑦) = ൜1, 𝑓(𝑥, 𝑦) ≥ 𝑇,0, otherwise.  (15)

The major problem with thresholding is that only the intensity is considered, 
and the relationships between the pixels are ignored. There is no guarantee that the 
pixels identified by the thresholding process are contiguous, and, if the illumination 
across the scene changes, additional adaptation is required. There are a number of 
different ways to perform thresholding: for global thresholding, Otsu’s method is 
aimed to find the optimal value 𝑇; automatic, variable and multiple thresholding 
tries to adapt to the changing illumination conditions across the image. However, 
when using a thresholding technique, it is typical to experiment with its parameter 𝑇 
in order to get a satisfying result. 

Since thresholding produces a binary image, this feature can be advantageous 
in certain applications when subsequent morphological operations (Rad et al., 2014) 
or level set methods (Nobi et al., 2001, Xu et al., 2010) are used (it can be easier to 
manipulate with only black and white pixels). 

Instead of converting the image to a binary, a threshold value could also be 
defined to replace all the values under the threshold to the 0 value, and the other 
values are made to take the values of the original image (Nobi et al., 2001). This 
helps to keep the original value fixed and to ignore the unnecessary part of the image 
that is not required for the task. In such a case, the thresholding function reads as: 𝑔(𝑥, 𝑦) = ൜𝑓(𝑥, 𝑦), 𝑓(𝑥, 𝑦) > 𝑇,0, otherwise.  (16)

1.3.2. Mapping Functions 
Patterns of time-averaged moiré fringes usually require classical contrast 

enhancement techniques to make them friendlier to the human eye. A digital image 
should be filtered by using grayscale level adjustment transformation where levels 
around 0.5 are mapped to 0 (middle gray levels are mapped to the black color); all 
the other grayscale levels are mapped to 1 (grayscale levels except for middle gray 
are mapped to the white color). One of the mapping functions 𝐹൫𝐼(𝑥, 𝑦)൯ used for 
contrast enhancement could be the step mapping function (Ragulskis et al., 2009b): 
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𝐹൫𝐼(𝑥, 𝑦)൯ = ൜0, 𝑚 − 𝜀 ≤ 𝐼(𝑥, 𝑦) ≤ 𝑚 + 𝜀,1, otherwise.  (17)

where 𝐹 is the intensity of the image after filtering; 𝐼(𝑥, 𝑦) is the intensity at point (𝑥, 𝑦) in the original image; 𝑚 is a grayscale level at moiré fringe centerlines, and 𝜀 
represents the bandwidth around 𝑚. A characteristic feature of the step mapping 
function is that the continuous grayscale interval is mapped into pure black and 
white colors.  

1.3.3. Hyperbolic Tangent Contrast Enhancement 
Hyperbolic tangent is a mathematical sigmoid function having a characteristic 

‘S’-shaped curve or a sigmoid curve. The hyperbolic tangent contrast enhancement 
method uses the function of the hyperbolic tangent to produce a nonlinear translation 
of image values in order to improve its contrast. As a result, the midrange portion of 
the display histogram is stretched at the expense of both high and low values, thus 
increasing the image contrast for midrange values without greatly shifting the 
average brightness. It is proposed to use the following square of hyperbolic tangent 
representation (Ragulskis et al., 2009b): 𝐹൫𝐼(𝑥, 𝑦)൯ = tanhଶ൫𝑘(𝐼(𝑥, 𝑦) − 𝑚)൯, (18)

or a simplified hyperbolic tangent version: 𝐹൫𝐼(𝑥, 𝑦)൯ = tanh൫𝑘𝐼(𝑥, 𝑦)൯, (19)

where 𝐹 is the intensity of the image after filtering; 𝐼(𝑥, 𝑦) is the intensity at point (𝑥, 𝑦) in the original image; tanh is a hyperbolic tangent (the classical sigmoidal 
function), and 𝑘 is the parameter defining the depth of darkening of the digital image 
around 𝐼 = 𝑚. At 𝑘 < 1, the whole image is darkened, but at higher values of 𝑘 this 
filter highlights the midrange values (Ragulskis et al., 2006).  

1.3.4. The Difference Image 
The construction of a digital image communication scheme based on 

self-organizing patterns requires the formation of two patterns. The nonlinear model 
of the system governs the evolution of one pattern from a predetermined set of initial 
conditions – while the evolution of the second one starts from the perturbed initial 
conditions (Saunoriene et al., 2011; Ishimura et al., 2014; Ziaukas et al., 2014). The 
secret image leaks in a form of a difference image between these two patterns. The 
morphological operation describing the difference pattern reads as (Vaidelys et al., 
2017):  𝐷(𝑥, 𝑦) = 𝑎𝑏𝑠 ቀ𝑃(𝑥, 𝑦) − 𝑃෨(𝑥, 𝑦)ቁ (20)

where 𝑃(𝑥, 𝑦) and 𝑃෨(𝑥, 𝑦) are the grayscale levels of the pixel (𝑥, 𝑦) in the first and 
the second patterns; 𝐷(𝑥, 𝑦) denotes the difference pattern. Thus the difference 
image is black if two patterns are identical. 
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1.4. Linear Recurrent Sequences4 
Recurrent sequences play a central role in a large variety of mathematical 

algorithms and applications (Telksnys et al., 2016). Some of the best-known 
examples of recurrent sequences are used in computational biology. The logistic 
map was used to model the population growth (Section 1.2.1). The logistic map is 
often used to illustrate how complex behavior can arise from very simple equations 
(Strogatz, 2014), and how it is possible to model (Diaz-Mendez et al., 2009), to 
predict (Nagatani, 2008) and to encrypt (Patidar et al., 2009) different physical 
systems and processes. 

The optimal estimation of recurrence structures in neurophysiological time 
series obtained from anaesthetized animals is used to classify the subject’s state of 
consciousness (Beim et al., 2016). Recurrences are widely applied in the theory of 
recurrence plots, which is a powerful technique for the visualization of the behavior 
of dynamical systems in the phase space (Marwan et al., 2007). It was shown by 
(Villette et al., 2015) that a population code integrating distance naturally emerges 
in the hippocampus in the form of recurring sequences. 

Models incorporating linear recurrent sequences (LRS) are used in digital 
signal processing for system identification (Juang et al., 1985); in the analysis of 
algorithms, the running time of an algorithm can be described in a recurrence 
relation if it can be broken into smaller subroutines (Sedgewick et al., 2013). LRS 
are also used in economics where the functionality of financial sectors depends on 
lagged variables (Sargent, 2009). LRSs are successfully exploited for time series 
analysis (Ragulskis et al., 2011a) and the construction of solutions to nonlinear 
ordinary differential equations (Navickas et al., 2013). 

The classical one-dimensional (1D) LRS (𝑥଴, 𝑥ଵ, 𝑥ଶ,...) is defined by the linear 
relation (Everest et al., 2003): 𝑥௡ = 𝛼ଵ𝑥௡ିଵ + 𝛼ଶ𝑥௡ିଶ +··· +𝛼௡𝑥଴, (21)

where 𝛼௞ ∈ ℝ, 𝑘 = 1, … , 𝑛. Given the initial values 𝑥଴, … , 𝑥௡ିଵ, each subsequent 
term is determined according to (21). 

There is a number of generalizations of 1D recurrent sequences to two or more 
dimensions. Prunescu considers recurrent two-dimensional (2D) sequences over the 
finite field 𝒜 (Prunescu, 2011b): given vectors 𝜆 ∈ 𝒜௡, 𝜇 ∈ 𝒜௠; 𝑛, 𝑚 ∈ 𝑁, a 
recurrent 2D sequence is defined as the mapping 𝑎: ℕ × ℕ → 𝒜, where: 

1) ∀𝑖 ≥ 0: 𝑎(𝑖, 0) = 𝜆௜ ୫୭ୢ ௡; 
2) ∀𝑗 ≥ 0: 𝑎(0, 𝑗) = 𝜇௝ ୫୭ୢ ௠; 
3) ∀𝑖, 𝑗 ≥ 1: 𝑎(𝑖, 𝑗) = 𝑓൫𝑎(𝑖 − 1, 𝑗), 𝑎(𝑖 − 1, 𝑗 − 1), 𝑎(𝑖, 𝑗 − 1)൯, where 𝑓: 𝒜ଷ → 𝒜. 

                                                      
 
4 Some passages have been quoted verbatim from the following source: 

The Order of a 2-Sequence and the Complexity of Digital Images.  
Telksnys T., Navickas Z., Vaidelys M., Ragulskis M.  
Copyright © 2016 World Scientific Publishing Company. 
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It has been demonstrated that such 2D recurrent sequences can be produced by 
context-free substitutions and can generate realizations of well-known fractals 
(Prunescu, 2010). It is shown that in the case 𝒜 = 𝕂, where 𝕂 is Klein’s four-
element group (the smallest noncyclic group) and 𝑓 is a linear function: 𝑓(𝑥, 𝑦, 𝑧) = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧, 𝐴, 𝐵, 𝐶 = const, (22)

the resulting recurrent 2D sequences can be classified into 90 groups in terms of 
their geometric content (Prunescu, 2011a). 

Multidimensional LRS and linear recurrent arrays over quasi-Frobenius rings 
and modules are discussed by (Lu et al., 2004, Mikhalev et al., 1996), respectively. 
It has also been demonstrated that 𝑛-dimensional LRSs over a module can be 
expressed in the canonical form by using eigenvalues of Hankel matrices that have 
been constructed from the sequence (Kurakin et al., 1995). 

The main objective of this section is to present an alternative definition of 2D 
LRS (referred to as 2-LRS) over the field of complex numbers ℂ by utilizing only 
1D LRS.  

1.4.1. General LRS 
Let 𝑅 be a commutative ring. Any function 𝑃: ℤ଴ → 𝑅 is called a sequence 

over ring 𝑅, and the set of all sequences is denoted as 𝑅〈ଵ〉. The elements of the 
sequence are denoted as 𝑝௝, 𝑗 ∈ ℤ଴, and the sequence itself is denoted as 𝑃 =൫𝑝௝, 𝑗 ∈ ℤ଴൯. The product of a polynomial 𝑓(𝜆) = ∑ 𝑓௦𝜆௦௄௦ୀ଴ ∈ 𝑅[𝜆] and a sequence 𝑃 ∈ 𝑅〈ଵ〉 is defined as:  𝑓(𝜆)𝑃 = 𝜈, 𝜈 ∈ 𝑅〈ଵ〉, 𝜈௞ = ෍ 𝑓௦𝑝௞ା௦௦ஹ଴ . (23)

Sequence 𝑃 ∈ 𝑅〈ଵ〉 is called order 𝑚 LRS (1-LRS) over 𝑅 if there exists a 
monic polynomial 𝑓(𝜆) ∈ 𝑅[𝜆] of order 𝑚 such that 𝑓(𝜆)𝑃 = 0. The polynomial 𝑓(𝜆) is called the characteristic polynomial of 𝑃, and the first 𝑚 values of the 
sequence (𝑝଴, 𝑝ଵ, … , 𝑝௠ିଵ) are called the initial vector of 𝑃 (Kurakin et al., 1995). 

Function 𝑋: ℤ଴ଶ → 𝑅 is called a 2D sequence, and the set of all 2D sequences 
over 𝑅 is denoted as 𝑅〈ଶ〉. In the context of this thesis, a 2D sequence can be 
considered as an infinite matrix or a data array, with elements denoted as 𝑥௞௟; 𝑘, 𝑙 ∈ℤ଴, and the 2D sequence itself is denoted as 𝑋 = ൣ𝑥௝௥൧௝,௥ୀ଴ାஶ . 

Let us consider a bivariate polynomial 𝑓(𝜆, µ) = ∑ ∑ 𝑓௦,௧𝜆௦𝜇௧௅௧ୀ଴௄௦ୀ଴ ∈ 𝑅[𝜆, 𝜇]. The product of a polynomial and a 2D sequence is defined as: 𝑓(𝜆, 𝜇)𝑋 = 𝜈, 𝜈 ∈ 𝑅〈ଶ〉, 𝜈௞,௟ = ෍ 𝑓௦,௧𝑥௞ା௦,௟ା௧௦,௧ஹ଴ . (24)

1.4.2. 1-LRS over ℂ 
Now we expand the linear recurrent sequences over the complex field, thus 𝑅 = ℂ. For 1-LRS over ℂ, there is a convenient criterion based on the Hankel matrix 
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which simplifies the determination of the order of the sequence. 
Let us consider a complex-valued sequence 𝑃. By using 𝑃, a sequence of 

Hankel matrices (𝐻௡; 𝑛 ∈ ℕ) can be formed: 

𝐻௡ ≔ ൦ 𝑝଴ 𝑝ଵ … 𝑝௡ିଵ𝑝ଵ 𝑝ଶ … 𝑝௡… … … …𝑝௡ିଵ 𝑝௡ … 𝑝ଶ௡ିଶ൪ . (25)

The Hankel mapping (𝑑௡; 𝑛 ∈ ℕ) reads: 𝑑௡ ∶=  𝑑𝑒𝑡(𝐻௡). (26)

Sequence 𝑃 = ൫𝑝௝; 𝑗 ∈ ℤ଴൯ is of order 𝑚 ∈ ℤ଴; (𝑚 < +∞) 1-LRS over ℂ if the 
Hankel mapping of that sequence has the following structure: (𝑑ଵ, … , 𝑑௠, 0, 0, … ), (27)

where 𝑑௠ ≠ 0 and 𝑑௠ା௞ = 0, 𝑘 = 1,2, …. 

1.4.3. 2D Sequences 
This section is dedicated to the definition of Complex 2D sequences 𝑋: =ൣ𝑥௝௥൧௝,௥ୀ଴ାஶ , where 𝑥௝௥ ∈ ℂ are considered. 
Any 2D sequence features two elementary families of 1D sequences: 𝑅௞(𝑋): = (𝑥௞௥; 𝑟 ∈ ℤ଴), (28)

for fixed 𝑘 ∈ ℤ଴ it is called the 𝑘th row sequence of 𝑋. Likewise, 𝐶௟(𝑋): = ൫𝑥௝௟; 𝑗 ∈ ℤ଴൯, (29)

for fixed 𝑙 ∈ ℤ଴ it is called the 𝑙th column sequence of 𝑋. 

1.4.4. The Order of a 2D Sequence 
In this section, the order of a 2D sequence based on the concept of 1-LRS is 

introduced.  
Let us take 𝑋: = ൣ𝑥௝௥൧௝,௥ୀ଴ାஶ . Let us suppose that each row sequence 𝑅௞(𝑋),  𝑘 = 0,1, … is a 1-LRS, and Γ is the finite set of characteristic roots in row sequences 𝑅௞(𝑋), 𝑘 = 0,1, … (omitting repetitions of roots). Thus Γ = {𝛾ଵ, 𝛾ଶ, … , 𝛾௡},  𝑛 < +∞. The multiplicity of 𝛾௞ ∈ Γ is defined as 𝑛௞ = max௝ஹ଴𝑛௞(௝) < +∞, where 𝑛௞(௝)  is the multiplicity of 𝛾௞ in sequence 𝑅௝(𝑋) (if 𝛾௞ is not a root of the 

characteristic polynomial corresponding to 𝑅௝ then 𝑛௞(௝): = 0). If these conditions are 
met, 𝑋 has a row order equal to 𝑁 = ∑ 𝑛௞௡௞ୀଵ . 

Elements of set Γ are called the row characteristic roots of 𝑋. 
Let us suppose that each column sequence 𝐶௟(𝑋), 𝑙 = 0,1, … is a 1-LRS, and 

that ℳ is the finite set of characteristic roots in column sequences 𝐶௟(𝑋), 𝑙 = 0,1, … 
(omitting repetitions of roots). Thus ℳ = {𝜇ଵ, 𝜇ଶ, … , 𝜇௠}, 𝑚 < +∞ and the 
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multiplicity of each 𝜇௟ ∈ ℳ is defined as 𝑚௟ = max௥ஹ଴𝑚௟(௥) < +∞, where 𝑚௟(௥)  is 
the multiplicity of 𝜇௟ in sequence 𝐶௥(𝑋) (if 𝜇௟ is not a root of the characteristic 
polynomial corresponding to 𝐶௥ then 𝑚௟(௥): = 0). If these conditions are met, 𝑋 has a 
column order equal to 𝑀 = ∑ 𝑚௟௠௟ୀଵ . 

Elements of set ℳ are called the column characteristic roots of 𝑋. 
A 2D sequence 𝑋 has a 2D order ordଶ if it has both a row order and a column 

order. It is denoted as: ordଶ𝑋 = (𝑁, 𝑀), (30)

where 𝑁 is the row order and 𝑀 is the column order of 𝑋. If 𝑋 only has a finite row 
or a column order, it is denoted as: ordଶ𝑋 = (𝑁, +∞), ordଶ𝑋 = (+∞, 𝑀), (31)

respectively. If 𝑋 has neither a finite row nor a column order, the notation is: ordଶ𝑋 = (+∞, +∞). (32)

It can be proved that a 2D sequence has a finite order if and only if it can be 
written in the canonical form (Telksnys et al., 2016). 

Let us suppose that 𝑋 = ൣ𝑥௝௥൧௝,௥ୀ଴ାஶ  is a 2D sequence with ordଶ𝑋 = (𝑁, 𝑀). 
Then, any element of 𝑋 can be expressed as: 

𝑥௝௥ = ෍ ෍ ෍ ෍ 𝑐௞௟(௦௧) ቀ𝑟𝑠ቁ ቀ𝑗𝑡ቁ 𝜆௞௥ି௪𝜇௟௝ି௧௠ೕିଵ
௧ୀ଴

௠
௟ୀଵ

௡ೖିଵ
௦ୀ଴

௡
௞ୀଵ , (33)

where 𝜆௞, 𝑘 = 1, … , 𝑛; 𝜇௟, 𝑙 = 1, … , 𝑚 are the row and column characteristic roots, 
respectively, with multiplicities 𝑛௞, 𝑘 = 1, … , 𝑛 and 𝑚௟, 𝑙 = 1, … , 𝑚; 𝑐௞௟(௦௧) ∈ ℂ are 
constants which do not depend on 𝑗 and 𝑟. 

The reversed statement is also true. Let us suppose that any element of a 2D 
sequence 𝑋 can be written as in (33). Then, ordଶ𝑋 = (𝑁, 𝑀). 

1.5. Concluding Remarks 
Our literature review shows that secure transfer of digital information is of 

utmost importance; although a lot of approaches exist and are implemented in 
everyday life, risks to data security are still significant. One of the best concepts of 
data protection is to conceal it in such a way that no one even knows it exists. Thus 
visual information hiding methods based on the formation of a self-organizing 
pattern and dynamic visual cryptography in conjunction with a secure visual 
communication scheme are investigated in this thesis. Computational tools for the 
pattern formation based on physical processes and harmonic oscillations of the 
deformable harmonic moiré grating shall be developed. A tool to evaluate the 
pattern suitability for secure information hiding shall be introduced. 
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2. VISUAL INFORMATION HIDING. THE USE OF SELF-ORGANIZING 
PATTERNS5  

This Section presents several approaches to the generation of self-organizing 
patterns and demonstrates the hiding and transmission of secret visual information 
between two communicating parties.  

Pattern formation algorithms developed and presented in previous researches 
do exhibit a number of drawbacks in secret image communication applications. The 
self-organized pattern produced in a model of reaction-diffusion cellular automata 
clearly resembles the initial fingerprint image and cannot be considered as an image 
hiding algorithm. Despite this fact, it was adapted for steganographic 
communication algorithm by (Ishimura et al., 2014). Self-organizing patterns 
induced by the Turing instability and produced by the Beddington-DeAngelis-type 
predator-prey model have been successfully used in a secure steganographic 
communication algorithm (Saunoriene et al., 2011; Ishimura et al., 2014). However, 
the reaction-diffusion models have the main computational speed drawback which is 
influenced by the computational solution of PDE where at least 10000-time forward 
iterations are required for the formation of an interpretable pattern. The speed issue 
is solved in the evolutionary spatial 2×2 game (ESG) model (Ziaukas et al., 2014); 
yet, another question arises concerning the system insensitivity to small local 
perturbations. This fact is based on the property of ESG where the strategy of a 
single individual does not determine the resulting strategy of the whole population. 

Thus an effective application of a communication algorithm based on 
self-organizing patterns needs to satisfy several important requirements. First of all, 
this algorithm should be steganographically secure. Image steganography is the 
science of concealing secret images within other digital cover images (Nakamura et 
al., 2011). The advantage of steganography, over cryptography alone is that 
steganography can be said to protect not only messages but also communicating 
parties, whereas cryptography protects only the content of a message (Clayton et al., 
2011). Secondly, the secret visual information should be encoded in the random 
image of the initial conditions by using slight modifications of only several 
individual pixels; all the modifications should be lower than the noise level of the 
                                                      
 
5 Some passages have been quoted verbatim from the following sources: 

Competitively Coupled Maps for Hiding Secret Visual Information. 
Vaidelys M., Ziaukas P., Ragulskis M. 
Copyright © 2015 Elsevier B.V. 

Image Hiding Scheme Based on the Atrial Fibrillation Model. 
Vaidelys M., Ragulskiene J., Ziaukas P., Ragulskis M.  
Applied Sciences, 2015. 

Digital Image Communication Scheme Based on the Breakup of Spiral Waves. 
Vaidelys M., Lu C., Cheng Y., Ragulskis M. 
Copyright © 2016 Elsevier B.V. 
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initial conditions. Finally, the communication algorithm should be computationally 
effective – the number of time forward steps used for the development of 
self-organizing patterns should be small. An important objective of this section is to 
develop a computationally effective visual communication scheme based on self-
organizing patterns which could preserve the security of the communication but 
minimize drawbacks mentioned in the previously suggested communication 
schemes.  

This Section is organized as follows. Communication algorithm based on 
competitively coupled maps using the Maynard Smith model are presented in 
Subsection 2.1 (Vaidelys et al., 2016); the image hiding scheme based on the atrial 
fibrillation model is presented in Subsection 2.2 (Vaidelys et al., 2015c); Digital 
image communication scheme based on the breakup of spiral waves is presented in 
Subsection 2.3 (Vaidelys et al., 2017); concluding remarks are outlined in the final 
subsection. 

2.1. Competitively Coupled Maps for Hiding Secret Visual Information6  
A novel digital image hiding scheme based on competitively coupled maps 

model described in Subsection 1.2.2 is presented in this Subsection. Self-organizing 
patterns produced by an array of non-diffusively coupled nonlinear maps are 
employed to conceal the secret. The secret image is represented in the form of a dot-
skeleton representation and is embedded into a spatially homogeneous initial state 
far below the noise level. Self-organizing patterns leak the secret image at a 
predefined set of system parameters. Computational experiments are used to 
demonstrate the effectiveness and the security of the proposed image hiding scheme. 

2.1.1. Self-Organizing Patterns 
The chaotic logistic map (see Subsection 1.2.1) is used for the efficient 

generation of the initial states of all elements of 200 × 200 domain over the interval [0,1]. The initial digital image is illustrated in Fig. 2.1.  

 
Fig. 2.1. Pseudorandom initial conditions generated sequentially by the logistic map;  

the initial value is 𝑎଴ = 0.05; the dimensions are 𝐿௫ = 𝐿௬ = 200. 

                                                      
 
6 The results presented in this section have been published as: 

Competitively Coupled Maps for Hiding Secret Visual Information. 
Vaidelys M., Ziaukas P., Ragulskis M. 
Copyright © 2015 Elsevier B.V. 
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Fig. 2.2. Patterns produced by the Maynard Smith map (5) depend on the system’s 

parameters. The set of parameters 𝜂 = 5, 𝛼 = 0.25, 𝑏 = 1 does not produce an interpretable 
pattern even after 300 iterations (a). 𝜂 = 4, 𝛼 = 0.26, 𝑏 = 2 produces an interpretable 

pattern after 300 iterations (b). 𝜂 = 7, 𝛼 = 0.3, 𝑏 = 4 also results in a developed pattern 
after only 6 iterations (c). All the three patterns have been generated from the same initial 

conditions in Fig. 2.1. 

It is clear that the 𝜂 and 𝑏 parameters of the Maynard Smith function (5), as 
well as the strength of the competitive interaction between the neighboring elements 𝛼 and the number of iterations 𝑛 have a strong effect on the formation of 
self-organizing patterns given a spatially homogeneous initial state. Different 
combinations of these parameter values result in the formation of different patterns 
(or even the absence of interpretable patterns at all) – some typical situations are 
illustrated in Fig. 2.2. The set of parameters 𝜂 = 5, 𝛼 = 0.25, 𝑏 = 1 does not 
produce an interpretable pattern even after 300 iterations from the initial conditions 
shown in Fig. 2.1 (Fig. 2.2(a)). Parameters 𝜂 = 4, 𝛼 = 0.26, 𝑏 = 2 yield an 
interpretable pattern after 300 iterations (Fig. 2.2(b)) from the same initial 
conditions. Finally, 𝜂 = 7, 𝛼 = 0.3 and 𝑏 = 4 also result in a developed pattern but 
after only as few as 6 iterations (Fig. 2.2(c)) from the same initial conditions. The 
size of all the digital images in Fig. 2.2 is 𝐿௫ = 𝐿௬ = 200; the periodic boundary 
conditions are set along the borders of the image. 

2.1.2. A Communication Scheme Based on Self-Organizing Patterns 
Self-organizing patterns (SOP) can be efficiently exploited as cover images for 

the transmission of secret visual information. The communication scenario between 
the Sender and the Receiver can be described by the scheme below (see Steps 1–6). 

The Sender and the Receiver can use an asymmetric (arbitrary) protocol in 
order to determine initial value 𝑎଴, and the number of time-forward iterations 𝑛 for 
SOP generation (parameters of SOP 𝜂, 𝛼, 𝑏, 𝐿௫, 𝐿௬ must be determined beforehand): 

1. The Sender generates the pseudo-random matrix of initial conditions (as 
introduced in Subsection 2.1.1) by using the Logistic map and value 𝑎଴; the size of 
the matrix is 𝐿௫ × 𝐿௬.  

2. The Sender modifies the pseudo-random matrix of the initial conditions by 
adding or subtracting a small number 𝛿 to/from some pixels. Usually, 𝛿 is much 
lower than the range (the difference between the highest and the lowest values) of 
the initial conditions.  

3. The Sender executes the SOP 𝑛 forward iteration algorithm (as introduced 
in subsection 2.1.1) starting from the modified initial conditions and sends the SOP 
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image to the Receiver.  
4. The Receiver generates the pseudo-random matrix of the initial conditions 

by using the Logistic map and value 𝑎଴; the size of the matrix is 𝐿௫ × 𝐿௬ (this is an 
identical image to the one generated by the Sender in Step 1).  

5. The Receiver executes the SOP 𝑛 forward iteration algorithm starting from 
the non-modified initial conditions.  

6. Finally, the difference (Section 1.3.4) between the SOP image produced by 
the non-modified and the modified initial conditions reveals the secret.  

It can be noted that instead of the whole dichotomic silhouette of the secret 
image one may use skeleton dots corresponding to the contour instead (the dot-
skeleton representation of the secret image). 

It is clear that not all values used as SOP parameters (𝜂, 𝛼, 𝑏) would be 
applicable for such a communication scheme (even if the values of parameters do 
ensure the evolution of a well-developed SOP). Let us assume that a dot-skeleton 
representation of the secret image is a regular array of dots (Fig. 2.3(a)). We set 𝛿 =0.01 and modify the image of pseudorandom initial conditions in Fig. 2.1 by 
randomly adding or subtracting 0.01 to/from the grayscale level of the 
corresponding pixels. We should note that the values of pixels generated by the 
chaotic Logistic map are distributed in the interval [0,1] – thus all the perturbations 
we make are much weaker than the noise level of the initial conditions. 

 
Fig. 2.3. The difference image between the patterns produced by random initial conditions 

and modified initial conditions by the dot-skeleton representation as shown in part (a). 
Column 1 represents the set of parameters 𝜂 = 5, 𝛼 = 0.25, 𝑏 = 1; column 2 represents the 
set of parameters 𝜂 = 4, 𝛼 = 0.26, 𝑏 = 2; column 3 represents  the set of parameters 𝜂 = 7, 𝛼 = 0.3, 𝑏 = 4. The difference images are presented in row (b); the difference images with 
an enhanced contrast are presented in row (c). Parameter sets in columns (1) and (2) do fail 

to recreate the hidden information, while the parameter set in column (3) produces a 
satisfactory result. 

It is natural to expect that the first parameter set used in Fig. 2.2 would not 
produce any interpretable pattern in the difference image – the perturbation in the 
initial conditions causes some uninterpretable fluctuations in the difference image 
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(Fig. 2.3(b), column 1). The contrast of the difference image can be sharpened by 
using digital morphological operations like the one presented in Section 1.3.1 
(Fig. 2.3(c), column 1) – but the difference image is still uninterpretable. 

 
Fig. 2.4. The optimal density of dot-skeleton points in the case of parameters 𝑛 = 6,  𝐿௫ = 𝐿௬ = 50, 𝜂 = 8, 𝛼 = 0.3, 𝑏 = 4. Figures in the upper row show the dot-skeletons; 

figures in the lower row illustrate the highlighted difference images. Distances between 
skeleton dots in cases (a), (b) and (c) are 10, 12 and 14, respectively. 

However, surprisingly, the second parameter set used in Fig. 2.2 does not 
produce any meaningful information, either (Fig. 2.3(b) and 2.3(c), column 2). 
However, the third set of parameters does produce an interpretable pattern in the 
difference image (Fig. 2.3(b) and 2.3(c), column 3). 

Figure 2.4 illustrates the formation of two parallel lines in the difference image 
from the dot-skeleton representation of these lines in the random image of the initial 
conditions. It is clear that different distances between dot-skeleton points may not 
result in the formation of continuous lines in the difference image. Thus the optimal 
density of dot-skeleton points for the formation of continuous line-type objects in 
the difference image is 10 pixels; we should note that the width of the resulting lines 
is about 13 pixels (Figure 2.4(a)).  

Finally, the communication scheme based on SOP generated by competitively 
coupled maps can be illustrated by the following flow chart diagram in Figure 2.5. 
The original secret image is shown in part (a); the dot-skeleton representation of the 
secret image is shown in part (b). The sender retrieves parameter 𝑎଴ and generates 
the random image of initial conditions by using the Logistic map (part (c)). The dot-
skeleton representation of the secret image is embedded into the random image of 
initial conditions by randomly adding or subtracting 0.01 to/from the corresponding 
pixels of the random image (part (d)). We should note that all the deformations of 
the image of the initial conditions are far below the noise level. 

Next, the sender executes the pattern formation algorithm and produces the 
SOP image (part (f)) from the modified initial conditions (part (d)). In order to 
conceal the transmission of a suspicious image of SOP, the sender uses a standard 
cover image (part (e)) and a standard least significant bit based stenographic 
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algorithm (Section 1.1.3) for hiding the SOP image (part (f)) in the cover image. The 
resulting image (part (g)) is transmitted to the receiver. 

 
Fig. 2.5. Flow chart diagram of the communication algorithm. The original image (a); the 

dot-skeleton representation (b); the initial conditions (c); the perturbed initial conditions (d); 
the cover image (e); the perturbed self-organizing pattern (f); the perturbed cover image (g); 

the self-organizing pattern (h); the difference image (i). 

The receiver uses the same cover image (part (e)) and the received image 
(part (g)) to reproduce the SOP image (part (f)). We should note that the SOP image 
(part (f)) has been produced from the initial conditions with the embedded dot 
skeleton representation of the secret image. 

Then, the receiver retrieves parameter 𝑎଴ and generates the random image of 
the initial conditions by using the Logistic map (part (c)). The receiver uses the 
identical pattern formation algorithm as used by the sender and produces his copy of 
the SOP image (part (h)). The difference image between two SOP images reveals the 
secret (part (i)). 

2.1.3. Sensitivity of the Communication Scheme to the Perturbation of 
Parameters 

As mentioned previously, the presented communication scheme does function 
at preset values of the system parameters. Slight changes of these parameters (when 
the Sender and the Receiver use different parameters) may compromise the 
communication system. 

Figure 2.6 illustrates the sensitivity of the communication system to slight 
perturbations; all the illustrations represent difference images in the enhanced 
contrast mode (similarly as used in Fig. 2.3, 2.4, 2.5). Initially, we perturb the 
random initial conditions. The Sender uses all the system parameters as preset in the 
computational experiment illustrated in Fig. 2.5 (𝑎଴ = 0.05, 𝜂 = 7, 𝛼 = 0.3, 𝑏 = 4) 
– but the Receiver uses 𝑎଴ = 0.0501 instead of 𝑎଴ = 0.05. The chaotic Logistic 
map is sensitive to small perturbations – thus it is natural to expect that the evolving 
patterns from different initial conditions would result in a completely different SOP 
image which is not applicable for the reconstruction of the embedded secret. As 
expected, the resulting difference image (Fig. 2.6 (a)) is completely uninterpretable. 

The next computational experiment simulates an attack of parameter 𝜂. The 
receiver mistreats parameter 𝜂 by using 𝜂 = 7.01 instead of 𝜂 = 7. The change is 
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crucial enough to make the difference image (Fig. 2.6 (b)) uninterpretable. 
Analogously, competitive parameter 𝛼 = 0.301 is used instead of 𝛼 = 0.3. The 
resulting difference image (Fig. 2.6 (c)) is meaningless. Finally, 𝑏 = 4.01 is taken 
instead of 𝑏 = 4 by the receiver. Once again, this results in a failure to obtain a 
meaningful difference image (Fig. 2.6 (d)). 

 
Fig. 2.6. Initial parameters used by the Sender are: 𝑎଴ = 0.05, 𝜂 = 7, 𝛼 = 0.3, 𝑏 = 4.  

The perturbation of one parameter by the Receiver results in an uninterpretable difference 
image (a single perturbation of one parameter is used in every part respectively):  

(a) 𝑎଴ = 0.0501; (b) 𝜂 = 7.01; (c) 𝛼 = 0.301; (d) 𝑏 = 4.01. 

2.2. Image Hiding Scheme Based on the Atrial Fibrillation Model7  
An image communication scheme based on the atrial fibrillation (AF) model 

described in Subsection 1.2.3 is presented in the present Subsection. Self-organizing 
patterns produced by the AF model are used to hide and transmit secret visual 
information. A secret image is encoded into the random matrix of initial cell 
excitation states in the form of a dot-skeleton representation. Self-organized patterns 
produced by such initial cell states ensure a secure and efficient transmission of 
secret visual images. The mentioned feature was missing in self-organized patterns 
produced by competitively and non-diffusively coupled non-linear maps (Vaidelys 
et al., 2016) in Subsection 2.1 where wave propagation in isotropic media 
predetermines a rather low complexity of the pattern structure.  

It is well known that patterns produced by the atrial fibrillation (AF) model 
originate from complex rules of self-organization and wave propagation in 
anisotropic media. The ability to exploit this complex pattern formation 
phenomenon in a digital image communication scheme is the main goal of this 
subsection. Procedures for digital encoding and decoding of secret images, as well 
as the sensitivity of the communication scheme to the perturbation of the AF 
model’s parameters are demonstrated in this Subsection. 

                                                      
 
7 The results presented in this section have been published as: 

Image Hiding Scheme Based on the Atrial Fibrillation Model. 
Vaidelys M., Ragulskiene J., Ziaukas P., Ragulskis M.  
Applied Sciences, 2015 
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2.2.1. The Generation of Self-Organizing Patterns Based on Atrial Fibrillation 
Model 

The initial computational setup of the AF model as illustrated in Figure 1.8 
requires many time-forward interactions for the formation of well-developed 
patterns. The wave front must propagate over all the plane (and, preferably, more 
than once); it has to collide with all the dysfunctional cells. 

Let us consider an alternative computational setup where pacemaker cells are 
randomly distributed across a 2D plane. Now, wave propagation continues in all 
directions, which makes waves collide with each other. The benefit of such AF 
model implementation is that it requires less than 1% cells to be initially excited in 
order to form self-organized patterns (Fig. 2.7). 

 
Fig. 2.7. Initial cell state conditions (a) and the resulting pattern after 20 iterations (b).  

Parameter 𝜈 is set to 0.5; 𝜏 = 20. 

The computational efficiency of the numerical AF scheme can be enhanced 
even further by decreasing real pacing times 𝜏 of the cells. Optimal pacing time 𝜏 
depends on the number of initially excited cells and on the length of simulation. If 𝜏 
is excessively small, not all plane cells become excited, thus the pattern does not 
fully form. Otherwise, a too long refractory period results in a relatively static 
pattern since the process cannot evolve freely. 

2.2.2. Initial Conditions 
The initial states of all the cells are set as randomly uniformly distributed 

numbers over the real interval [0; 1]. Connections between cells in the transversal 
direction are distributed randomly as well. A pseudo-random number generator can 
be used for the reduction of the amount of information needed to define a unique 
configuration of the AF model. The benefit of such an approach is that a single seed 
of the random number generator defines all the states and connections between cells. 

Let us consider a regular grid with periodic boundary conditions. The chaotic 
logistic map (Eq. (4)) with the initial value 𝑎଴ = 0.02 is used to generate a chaotic 
sequence; the generated discrete values of the sequence are sequentially assigned to 
every node on the grid (row by row). The resulting digital image is illustrated in 
Figure 2.8 (here, 0 corresponds to the black color; 1 denotes the white color; all the 
intermediate values are depicted by the appropriate grayscale levels). 

The initial cell dichotomous states are now defined by a simple binary rule. A 
cell is set to be in the excited state if the value of the grid node is lower than 𝛿;  0 < 𝛿 ≪ 1. Thus only 𝛿 ⋅ 100% cells would be excited in the initial state. 



44 

 
Fig. 2.8. Pseudorandom initial conditions generated sequentially by the Logistic map;  

the initial value of the Logistic map 𝑎଴ is set to 0.02. 

The same rule is used to generate the connection map; yet, the transversal 
connection probability 𝜈 is used instead of 𝛿 to describe transversal connections. In 
addition, a different 𝑎଴ could be used in this Logistic map. 

2.2.3. Parameters of the AF Model 
The resulting SOP governed by the AF model depends on a few parameters:  
1. The cell excitation probability 𝛿 (in random initial conditions);  
2. The connection map with the corresponding probability of transversal 

connections 𝜈;  
3. Refractory period 𝜏;  
4. The number of time-forward iterations 𝑛.  
Some of the typical patterns are illustrated in Figure 2.9. It is clear that 

different connection maps result in the apparent effect of stretching – smaller values 
of 𝜈 result in a rather rhombus-like form of patterns; the larger values of 𝜈 result in 
more horizontally stretched shapes (Figs. 2.9 (a, b)). 

Another important parameter is the number of time-forward iterations 𝑛. It 
appears that the richest pattern is formed when 𝑛 is close to the refractory period 𝜏 
(Fig. 2.9 (d)). Only some of the cells are excited in a small number of time-forward 
iterations (Fig. 2.9 (c)). Relatively large regions of cells remain unexcited. The 
boundaries of these black regions seem to be discontinuous due to the complexity of 
interactions between cells. All cells start converging to the resting state when the 
number of time-forward steps considerably exceeds the refractory index 
(Fig. 2.9 (e)). 

 
Fig. 2.9. Comparison of self-organizing patterns (SOP) for different values of parameters.  

(a) 𝜈 = 0.1, 𝜏 = 20, 𝑛 = 20, 𝛿 = 0.001; (b) 𝜈 = 0.9, 𝜏 = 20, 𝑛 = 20, 𝛿 = 0.001;  
(c) 𝜈 = 0.5, 𝜏 = 20, 𝑛 = 10, 𝛿 = 0.001; (d) 𝜈 = 0.5, 𝜏 = 20, 𝑛 = 20, 𝛿 = 0.001;  

(e) 𝜈 = 0.5, 𝜏 = 20, 𝑛 = 30, 𝛿 = 0.001. 

Refractory period 𝜏 cannot be too short – a sufficient number of cells must be 
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excited for the formation of an interpretable self-organized pattern. On the other 
hand, the number of initially excited cells is too high, and the developed patterns are 
too scrambled if probability 𝛿 is too high (Fig. 2.10 (a)). The formation of such a 
pattern does not require a long refractory period; however, the pattern becomes static 
after a few iterations, and then it fades out altogether (Fig. 2.10). We should note 
that all the patterns illustrated in Figure 2.10 are normalized to the full grayscale 
range – therefore some patterns appear brighter whereas some others seem to be 
darker. 

 
Fig. 2.10. Iterative processes at 𝜈 = 0.5, 𝜏 = 10, 𝛿 = 0.1. (a) 𝑛 = 1; (b) 𝑛 = 2;  

(c) 𝑛 = 3; (d) 𝑛 = 4; (e) 𝑛 = 5; (f) 𝑛 = 8; (g) 𝑛 = 11. 

Cell excitation probability 𝛿 is closely related to the number of iterations 𝑛 (in 
terms of the richness of the pattern). In general, it is better to fix the number of 
iterations so that the formation of static images can be prevented. In this particular 
case, the best results are produced at 𝜏 = 𝑛. 

2.2.4. A Communication Scheme Based on Self-Organizing Patterns 
As mentioned above, SOPs can be successfully employed to transmit secret 

visual information between the communicating parties. A typical communication 
scenario is presented in a scheme that consists of the following steps. 

Initially, the Sender and the Receiver must use an asymmetric (arbitrary) 
protocol in order to determine the initial value 𝑎଴ and the number of time-forward 
iterations 𝑛 (parameters 𝜈, 𝜏, 𝛿, 𝐿௫, 𝐿௬ must be determined beforehand).  

1. The Sender generates pseudo-random matrices of the initial cell excitation 
states and the connection map by using the Logistic map with the initial value 𝑎଴; 
the size of the matrix is set to 𝐿௫ × 𝐿௬; the parameters of the AF model are 𝜈 and 𝛿. 
The initial random matrix is dichotomous (its cells contain binary values 0 or 1); the 
connections between cells are random. 

2. The Sender modifies the pseudo-random matrix of the initial cell excitation 
states by inverting pixels corresponding to the dot-skeleton representation of the 
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secret image. 
3. The Sender executes 𝑛 time-forward iterations starting from the modified 

matrix of the initial conditions and sends the image of the self-organized pattern to 
the Receiver. 

4. The Receiver generates the identical copy of pseudo-random matrices of the 
initial cell excitation states and the connection map by using the chaotic Logistic 
map with the initial value 𝑎଴ and the parameters of the AF model (specifically, 𝜈 
and 𝛿); the size of the matrix is 𝐿௫ × 𝐿௬ (this is an identical copy of the matrix 
generated by the Sender in Step 1). 

5. The Receiver executes 𝑛 time-forward iterations starting from the non-
modified initial conditions. 

6. Finally, the difference (see Section 1.3.4) between the digital images of the 
patterns produced by the non-modified and modified initial conditions reveals the 
secret.  

Unfortunately, a straightforward inversion of the pixel values in the areas 
occupied by the secret image (in the digital image of the initial conditions) does not 
work well in general (Fig. 2.11). The ‘secret’ image is shown in Figure 2.11 (a); the 
digital image representing the initial conditions (with inverted pixels in the zones 
occupied by the secret information) is shown in Figure 2.11 (b). The self-organized 
pattern is illustrated in Figure 2.11 (c). It is clear that such a pattern is not safe – 
even a naked eye can detect the contours of the secret original image. The difference 
image is shown in Figure 2.11 (d); the binarized difference image (Section 1.3.1) is 
shown in Figure 2.11 (e). Thus the image hiding scheme proposed by (Ziaukas et al., 
2014) cannot be used with the AF model. However, single dot (1 × 1 pixel) 
inversions in the initial conditions are not interpretable in self-organized patterns 
(Fig. 2.11) – thus the further image communication scheme is based on the single 
pixel inversion strategy. 

 
Fig. 2.11. Big clusters of initially excited cells result in interpretable self-organized patterns 
(𝜈 = 0.5, 𝑛 = 𝜏 = 20, 𝛿 = 0.01). (a) The secret image; (b) initially excited cells (shown in 

white); (c) the self-organized pattern; (d) the difference image;  
(e) the binarized initially excited cells. 

A huge difference in the shape of the ‘secret’ images can be seen in Figure 
2.11 (a, e). It is clear that not all of the parameters considered in the SOP model (𝑎଴, 𝜈, 𝛿) are equally applicable for the proposed communication scheme (even if an 
adequate formation of the self-organizing pattern is ensured). Firstly, the initial 
random background used for the initial excitation should be close to uniform (or 
homogeneous) in order to avoid empty spaces and larger initial cell clusters. 
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Secondly, 𝛿 directly affects the clearness of the resulting image (Fig. 2.11 (c)) as 
well as the easier interpretation of the difference image (Fig. 2.11 (d)). Meanwhile, 
probability 𝜈 does not have a major effect except for stretching; however, it is 
recommended to keep it within the range (0,1) and not to use the trivial cases  
(0 or 1). 

Let us consider four groups of dots presented in a regular array (Fig. 2.12 (a)). 
The dots in four groups are respectively 15, 10, 5, 3 pixels away from each other. 
Figure 2.12 illustrates the difference images at different values of parameter 𝛿. It can 
be seen that, depending on the cell probability to be excited (parameter 𝛿), the 
required minimum distance from the dots (in the secret image) varies. A better 
information visibility of the decoded image is ensured by higher values of 𝛿. 
However, the denser initially excited cells lead to a lower number of resting cells – 
and this results in a lower number of iterations required for a fully developed 
pattern. On the other hand, a smaller number of iterations results in smaller changes 
in the initial image. 

The secret visual communication scheme based on SOP in the AF model can 
be illustrated in Figure 2.13 (𝜈 = 0.2, 𝜏 = 𝑛 = 20, 𝛿 = 0.08). Before the 
transmission takes place, the original secret image is transformed into a dot-skeleton 
equivalent. System parameters 𝜈, 𝜏, 𝛿, 𝐿௫, 𝐿௬ must be determined beforehand. 
Finally, the pseudo-random number seed 𝑎଴ and the number of iterations 𝑛 are 
transmitted by using secure communications channels. 

 
Fig. 2.12. The initial dot-skeleton image (a) and SOP at different 𝛿: the first row represents 

the initial conditions; the second row shows patterns; the third row contains binarized 
difference images. (a) 𝛿 = 0.001 (b) 𝛿 = 0.01 (c) 𝛿 = 0.1 (d) 𝛿 = 0.2. 

The original secret image is shown in Figure 2.13 (a). Its dot-skeleton 
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equivalent is illustrated in Figure 2.13 (b). By using parameter 𝑎଴ (as well as 
parameter 𝛿), the Sender generates initially excited cells (Fig. 2.13 (c)). The initial 
states of the cells are inverted according to the dot-skeleton representation (Fig. 2.13 
(d)). The resulting self-organizing pattern is shown in Figure 2.13 (f). This pattern 
can be placed on top of the standard cover image (Fig. 2.13 (e)) by using the least 
significant bit (LSB) steganographic technique (Fridrich et al., 2001). This is a 
standard spatial domain steganographic technique which manipulates the LSB of 
pixels in order to embed the secret information in the cover image (Section 1.1.3). 
The final cover image ready to be sent over to the Receiver via an open 
communication channel is shown in Figure 2.13 (g). 

 
Fig. 2.13. The flow chart diagram of the communication algorithm. Original image (a); 
dot-skeleton representation (b); initial conditions (c); perturbed initial conditions (d);  

cover image (e); perturbed self-organizing pattern (f); perturbed cover image (g);  
self-organizing pattern (h); binarized difference image (i). 

The Receiver obtains the cover image (Fig. 2.13 (g)) and reproduces the 
pattern (Fig. 2.13(f)) by using a clean copy of the cover image (Fig. 2.13 (e)). 

The remaining procedure for the Receiver is to simply re-generate the initial 
array of pseudo-randomly excited cells (as shown in Figure 2.13 (c)) and to generate 
the pattern (the parameters of the AF model are privately known in advance) – the 
alternative pattern is illustrated in Figure 2.13 (h). Finally, the difference image 
between the two (Fig. 2.13 (f) and Fig. 2.13 (h)) reveals the secret message as shown 
in Figure 2.13 (i). 

2.2.5. The Sensitivity of the Communication Scheme to Perturbations of System 
Parameters 

The proposed communication scheme does actually work well with a 
preselected set of system parameters. Slight changes in the parameter values (when 
the Sender and the Receiver use different parameters) would compromise the 
communication system. Figure 2.14 illustrates the sensitivity of the communication 
system to perturbations; all the illustrations represent difference images in the 
enhanced contrast mode. We set initial parameters to: 𝑛 = 20, 𝜏 = 20, 𝜈 = 0.2, 𝛿 =0.08, 𝑎଴௘௫ = 0.02, 𝑎଴௖௢௡ = 0.02, where 𝑎଴௘௫ is the initial value of the chaotic logistic 
map used to select the initially excited cells, and 𝑎଴௖௢௡ is the initial value of the 
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transversal connection map. 
The Sender uses all the system parameters as preset in the computational 

experiment illustrated in Figure 2.13 – but the Receiver uses 𝑎଴௘௫ = 0.021 instead of 𝑎଴௘௫ = 0.02 (Fig. 2.14 (a)). The chaotic Logistic map is sensitive to small 
perturbations – thus it is natural to expect that the evolving patterns from different 
initial conditions would result in a different SOP image. The correct initial cell 
excitation map is essential in order to show the embedded secret (Fig. 2.13 (a). 
However, the AF model construction allows some perturbations in the connection 
map (Fig. 2.14 (b)); thus a different map does not completely break down the 
results, and visual interpretation of the embedded secret is still possible. 

 
Fig. 2.14. The sensitivity of the communication scheme to the perturbation of the system 

parameters. The difference images are shown when: (a) 𝑎଴௘௫ = 0.021 is used instead of 0.02;  
(b) 𝑎଴௖௢௡ = 0.021 is used instead of 0.02; (c) 𝑛 = 21 is used instead of 20;  

(d) 𝜏 = 19 is used instead of 20. 

Perturbations can be introduced in the number of iterations 𝑛 and in the 
refractory period of the cells 𝜏. It can be noted that differences are only visible when 𝜏 < 𝑛. Otherwise, the model does not reach the breaking point when cells finish 
their relaxation period. As it can be seen in Figure 2.14 (c, d), changes by one 
time-step do hide most of the embedded image, but if the change is even higher, the 
difference image does not reveal any secret. 

2.3. Digital Image Communication Scheme Based on the Breakup of Spiral 
Waves8 

All the previously discussed digital image communication schemes are based 
on some sort of modification of the initial conditions in a self-organizing pattern 
formation. The secret image is represented in the form of a dot-skeleton 
representation and is embedded into a spatially homogeneous random initial state far 
below the noise level (Saunoriene et al., 2011; Ishimura et al., 2014; Subsections 2.1 
and 2.2). Dichotomous pixels in the initial conditions are inverted in the regions 

                                                      
 
8 The results presented in this section have been published as: 

Digital Image Communication Scheme Based on the Breakup of Spiral Waves. 
Vaidelys M., Lu C., Cheng Y., Ragulskis M. 
Copyright © 2016 Elsevier B.V. 
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corresponding to the secret image (Ziaukas et al., 2014). These self-organized 
patterns in digital image communication schemes are induced by spatially 
homogeneous random initial conditions. The generation of initial conditions is an 
integral part of all these communication schemes. For example, Subsection 2.2 
shows that a slight variation in the random initial conditions completely 
compromises the communication algorithm. 

In other words, the generation of random initial conditions and an appropriate 
modification of these initial conditions lies in the backbone of the discussed 
communication algorithms. Therefore, the parameters determining the generation of 
random initial conditions are an integral part of the set of private and public keys of 
the communication algorithm. The ability to avoid the necessity of using random 
initial conditions for the generation of a self-organizing pattern would be a serious 
enhancement in terms of the security of the communication scheme. On the other 
hand, it would be advantageous if the communication scheme could avoid the use of 
the perturbation of initial conditions. That would prevent the cheating attack against 
the communication scheme – and also an eavesdropper would not be able to embed 
fake secret images – even if all the keys of the communication scheme had been 
compromised (i.e., known to the eavesdropper). 

The main objective of this Subsection is to develop such a digital image 
communication scheme based on self-organizing patterns that would neither use 
random initial conditions nor require any perturbations of the initial conditions. 
Clearly, a new approach is required for the physical model governing the formation 
of self-organizing patterns as well as for the concept of the communication scheme 
itself. 

2.3.1. The Formation of the Difference Image 
Several different perturbation models in the initial conditions are used to 

illustrate the formation of difference images 𝐷 (see Section 1.3.4) in the spiral wave 
with the breakups model presented in Subsection 1.2.4. The parameters of the 
system are kept the same as described in Fig. 1.10; the time interval used for the 
evolution of the pattern is set to 𝑇 = 70. The initial values of the 𝑣-field are kept the 
same as in Fig. 1.10; the initial values of the 𝑢-field are modified by changing the 
numerical value in the right part of the field from 1 to 0.99. Such perturbation of the 
initial conditions is similar to the perturbation used in (Ziaukas et al., 2014) where 
an inversion of a single pixel does not change the self-organizing pattern, and 
manipulation with blocks of pixels is required for generating any changes in the 
difference image. 

The left image in row (a) in Fig. 2.15 shows unmodified pattern 𝑃 (this is the 
same image as the rightmost pattern in Fig. 1.10). The middle image in row (a) in 
Fig. 2.15 is pattern 𝑃෨ evolved from the modified initial conditions. The right image 
in row (a) in Fig. 2.15 is the difference pattern between 𝑃 and 𝑃෨. It can be seen that 
the perturbation in the initial conditions spread across the whole domain. Moreover, 
this perturbation is clearly visible in the difference image – no contrast enhancement 
techniques are required to visualize the pattern in the difference image. This is a 
serious improvement compared to the previously proposed digital image 
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communication schemes where contrast enhancement of the difference image is an 
integral part of these schemes (Saunoriene et al., 2011; Ishimura et al., 2014; 
Ziaukas et al., 2014; Subsections 2.1 and 2.2). 

However, it appears that the evolution of spiral waves to breakups is sensitive 
to perturbations even at one single pixel of the initial conditions. The middle image 
in row (b) in Fig. 2.15 shows the pattern that evolved from the initial values 
identical to the ones used in Fig. 1.10 except for one pixel at the center of the image 
– its value was perturbed from 1 to 0.99. Remarkably, the complexity of the 
difference image is comparable to the one in the previous computational experiment 
(Fig. 2.15 row (a)). 

 
Fig. 2.15. The formation of patterns is sensitive to a perturbation of even one pixel in the 
initial conditions. Part (a) shows the pattern which forms from the initial 𝑢-field when the 
whole right part of the 𝑢-field is perturbed from 1 to 0.99. Part (b) shows the pattern which 

forms when a single pixel of the 𝑢-field is inverted. Remarkably, the complexity of the 
resulting difference images is not significantly different. 

A simple perturbation of the initial conditions would not be applicable for the 
construction of the digital image communication scheme based on the breakup of 
spiral waves – a slight perturbation of a single pixel results in the alternation of the 
complete pattern. That can be explained by a long time required for the evolution of 
the pattern and the unpredictable avalanche-type formation of the breakups. 
However, shorter time intervals cannot be used either – the pattern is simply 
undeveloped then (Fig. 1.10). Another type of algorithm should be designed in order 
to replicate the communication scheme presented in (Saunoriene et al., 2011; 
Ishimura et al., 2014; Ziaukas et al., 2014; Subsections 2.1 and 2.2). 

2.3.2. The Experimental Scheme 
The straightforward approach of the presented hiding scheme could be created 

of multiple patterns (as presented in Fig. 1.9) concatenated into one. By using this 
approach, the hiding of a more complex secret image could be accomplished easily 
with one spiral representing one bit of information. Obviously, the information 
capacity is very low, and the resulting pattern should be large enough to hide 
valuable visual information.  

In the subsequent examples, the same initial conditions as described in 
Subsection 1.2.4 will be used. Multiple experiments showed that the initial 
configuration of 𝑢 and 𝑣-field presented in (Barkley, 2008) is the best option. 
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Neither the angle nor the color intensity or random initial conditions as used in the 
models described earlier results in a spiral wave with breakups. One of the reasons is 
the way how the formation of a single spiral wave starts. The single spiral wave 
always initiates between the intersection of 𝑢 and 𝑣-field ‘edges’; what regards the 
overlapping order of the fields, the spiral starts spinning clockwise or 
counter-clockwise (Fig. 2.16). Other parts of the initial conditions as well as random 
noise applied on the initial fields are unable to induce any significant formation. The 
experiment demonstrated in Fig. 2.16 uncovers the capacity properties of the 
possible concatenated pattern, and consequently one intersection of two 𝑢 and 𝑣-
fields stripes results in 4 autonomous spirals. 

 
Fig. 2.16. Four intersection points of 𝑢 and 𝑣-field borders result in autonomous spiral 

waves: spinning clockwise or counter-clockwise. 

This idea can be extended with multiple stripes used as the initial conditions to 
generate larger patterns as shown in Fig. 2.17 (a, row 1). However, each field 
intersection is identical, and, as expected, such initial conditions result in a regular 
pattern (Fig. 2.17 (c, row 1)), which is not feasible considering information hiding 
applications. If any alternation in the initial conditions is introduced, the whole 
pattern becomes compromised as shown in Fig. 2.15. This drawback could be 
eliminated by adding uniform random noise all over the 𝑢-field as shown in 
Fig. 2.17 (a, row 2). 

The resulting pattern seen in Fig. 2.17 ((c), row 2) is more convenient for 
information hiding than Fig. 2.17 ((c), row 1) because the whole area is chaotic, and 
small changes are invisible to a naked eye. As only small perturbation is required to 
change the whole evolution of the single spiral wave (Fig. 2.15), this pattern could 
be used to create the information hiding scheme in the same manner as previously 
presented models without diminishing the security. 

The results of this hiding scheme are presented in Fig. 2.18. Different pattern 
formation periods are presented: at 𝑇 = 35, the spirals only start to break, and each 
bit of information is clearly distinguished; at 𝑇 = 50, patterns already start 
interacting but some mirroring is still visible; and, only at 𝑇 = 70, the pattern 
becomes a continuous one. In all the three demonstrations, the secret information is 
visible in the difference images (part (c)) and could be exposed (part (d)) by using 
some enhancement method. 
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Fig. 2.17. Initial conditions (𝑢-field (a) and 𝑣-field (b)) and the corresponding patterns (c). 

The full pattern consists of 3x3 concatenated patterns of size 𝐿 = 100.  
Without noise (row 1), with uniform random noise covering 1% of the 𝑢-field (row 2). 

 
Fig. 2.18. A comparison of difference images (c) between two patterns (a) and (b) evolved 
from different initial conditions. Each row represents different evolution time while hiding 
the same secret (d). The grid in part c bounds the theoretical area of a single spiral wave. 

However, this simple approach compared with the previously mentioned 
methods does not give any advantage regarding the steganographic security, speed 
or visual information quality. Despite the interesting features of spiral wave 
formation, a new idea of employing spiral waves is required. 
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2.3.3. The Proposed Scheme 
As mentioned previously, a perturbation of the initial conditions cannot be 

employed for hiding a secret image in the self-organizing pattern produced by the 
breakup of spiral waves. And, while the evolution of the first pattern from the 
random initial conditions is not altered, the evolution of the second pattern should be 
perturbed in a different way compared to (Saunoriene et al., 2011; Ishimura et al., 
2014; Ziaukas et al., 2014; Subsections 2.1 and 2.2). A possible solution is to 
perturb the second pattern not at the beginning of its evolution but rather at some 
moment before the evolution of both patterns is terminated. 

2.3.3.1. Delayed Perturbation at a Discrete Point 
Let us repeat the computation experiment presented in Fig. 2.15 – except that 

the perturbation into the second pattern is introduced at time moment 𝑇 = 57.5, and 
the evolution of both patterns is terminated at 𝑇 = 60 (the initial conditions are the 
same as earlier; 𝐿 = 50; 𝜀 = 0.1; 𝑎 = 0.7; 𝑏 = 0.06; 𝑔 = 𝑢ଷ − 𝑣; 𝑑𝑡 = 0.05). We 
do perturb one pixel at the center of the second pattern by adding 5% to its value at 𝑇 = 57.5 (Fig. 2.19). The unperturbed pattern at 𝑇 = 57.5 is shown in Fig. 2.19 (a); 
the perturbed image is presented in Fig. 2.19 (b) (the perturbation is so small that it 
is invisible to a naked eye). The perturbation point is clearly visible in the difference 
image at 𝑇 = 57.5 in Fig. 2.19 (c) – the grayscale range is automatically adjusted to 
the max-min levels in the image. 

 
Fig. 2.19. Perturbation is introduced at time 𝑇 = 57.5 by adding +5% to the 𝑢-field at the 

center point of the image. Part a) shows the unperturbed pattern at 𝑇 = 57.5; b) demonstrates 
the perturbed pattern at 𝑇 = 57.5 (the white cross denotes the perturbed pixel); c) visualizes 
the difference image between the perturbed and the unperturbed patterns at 𝑇 = 57.5. The 
unperturbed view, the perturbed pattern, and the difference image at 𝑇 = 60 are shown in 
parts d), e) and f). The decay of the maximum value of the 𝑢-field in the difference image 

over time is illustrated in part g). 

The maximum value of the 𝑢-field in the difference image in Fig. 2.19 (c) is 
0.0372 and is illustrated in Fig. 2.19 (g) at 𝑇 = 57.5. Fig. 2.19 (d) shows the 
unperturbed pattern; Fig. 2.19 (e) demonstrates the perturbed pattern at 𝑇 = 60. The 
initial perturbation at one pixel (Fig. 2.19 (c)) diffuses as the patterns continue to 
evolve (Fig. 2.19 (f)). However, the maximum value of the 𝑢-field in the difference 
image quickly decreases as the time goes on (Fig. 2.19 (g)). The only reason why the 
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diffused region is well visible in Fig. 2.19 (f) is due to the automatic adjustment to 
the max-min levels (it is the same procedure as used in Fig. 2.19 (c)). 

However, it appears that the decay of the contrast of the perturbed pixel is not 
always monotonic, and it depends on the location of the pixel in respect to the 
breaking waves (Fig. 2.20). Two pixels are perturbed at 𝑇 = 57.5 (Fig. 2.20 (b)). 
However, the evolution of the perturbations in the difference image is completely 
different (Fig. 2.20 (g)). This effect can be explained by the interaction between the 
perturbation and the propagating front of the breaking spiral wave. The top left point 
remains in the calm zone during the whole time interval of evolution 57.5 ≤ 𝑇 ≤ 60 
(Fig. 2.20 (b and e)). On the contrary, the bottom right point is located in the region 
of the formation of the breakup wave. It appears that the interaction of the 
perturbation with the propagating wave front causes a temporary amplification of the 
perturbation effect and a complex pattern formation in the difference image around 
the perturbation point (Fig. 2.20 (f)). Moreover, the effects caused by the 
perturbation at the top left point are completely overwhelmed by the effects caused 
by the perturbation at the bottom right point (Fig. 2.20 (f)). Therefore, the evolution 
of the pattern in the difference image is sensitive to the geometrical location of the 
perturbation point in respect to the evolving front of the propagating breakup wave. 
It is clear that a strategy based on straightforward perturbations of the evolving 
pattern at a preselected set of points would not be applicable for hiding a secret in 
the difference image. 

 
Fig. 2.20. The perturbation at the top left point is introduced in the area where no new 

breakup waves occur during the rest of the simulation; thus the maximum intensity of the 
spot in the difference image decreases monotonically. However, the bottom right 

perturbation point is located in the area where multiple breakup waves pass until the 
simulation is terminated. That results in the fluctuation of intensity of the spot in the 

difference image. 

2.3.3.2. The Equalization of Maximum Intensities in the Difference Image 
A possible solution to the problem associated to different decay rates of the 

perturbation intensities at different locations of the evolving pattern could be based 
on the variation of time moments of perturbations at different points. Such 
equalization of maximum intensities at the difference image in Fig. 2.20 (f) is 
illustrated in Fig. 2.21. We repeat the computational experiment but only the bottom 
right point is perturbed at 𝑇 = 58 (the difference image is shown in Fig. 2.21 (a)). 
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The intensity of the perturbation at the bottom right point starts to decay – and we 
perturb the top left point at 𝑇 = 59.55 (Fig. 2.21 (b)). The perturbation at the bottom 
right point starts interacting with the propagating front of the breakup wave – and 
the intensity of the difference image around this point starts increasing; the 
maximum intensities of perturbations around two points in the difference image 
become equal at 𝑇 = 60 (Fig. 2.21 (c)). 

 
Fig. 2.21. The equalization of the maximum intensities of perturbations in the difference 

image. The perturbation at the bottom right point (𝑝ଵ) is performed at 𝑇 = 58 (a);  
the perturbation at the top left point (𝑝ଶ) is performed at 𝑇 = 59.55 (part b).  

The perturbations evolve differently due to different interaction  
with the propagating front of the breakup waves (c). 

It is clear that the selection of proper time moments of the perturbation is a 
difficult problem – everything depends on the location of the perturbation points and 
on the particular dynamical distribution of the evolving pattern of breakup waves. 
The complexity of the problem is illustrated in Fig. 2.22. All the parameters of the 
system (including the geometrical locations of the two perturbation points) are kept 
the same. The only varying parameter is the time moment of the perturbation at the 
top left point (denoted as 𝑇௣ଶ in Fig. 2.22). Point (𝑝ଵ) is perturbed at 𝑇 = 58 
(Fig. 2.22 (a)). Then, five independent computational experiments are executed by 
perturbing the pattern at point (𝑝ଶ) at 𝑇 = 58.5 (Fig. 2.22 (b)); 𝑇 = 59 
(Fig. 2.22 (c)); 𝑇 = 59.25 (Fig. 2.22 (d)); 𝑇 = 59.5 (Fig. 2.22 (e)) and 𝑇 = 59.75 
(Fig. 2.22 (f)). Figures at the top row show the difference image at the moment of 
perturbation; figures at the bottom row demonstrate the difference image at 𝑇 = 60. 
As mentioned previously, the evolution of a perturbation depends on the interaction 
with the propagating front of the breakup wave. Anyway, it is possible to find such 𝑇௣ଶ where the maximum intensities of the evolved perturbations in the difference 
image at 𝑇 = 60 are almost the same (cf. Fig. 2.22 (e)) – even though the 
‘deformations’ around points 𝑝ଵ and 𝑝ଶ are different. 

However, on the larger scale, where more pattern points are perturbed, the 
contrast equalization becomes a complex task, and sometimes it is not possible to 
achieve. The following experiment considers a pattern of the size of 100×100 pixels 
and 100 points perturbed at 𝑇 ∈ [68, 69.5] time interval. Two strategies are studied: 
where points are perturbed as early as possible (Fig. 2.23 (b)) and as late as possible 
(Fig. 2.23 (c)) with the intention to achieve the closest equivalent contrast of each 
point’s surrounding.  
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Fig. 2.22. A comparison of difference images when the bottom point (𝑝ଵ) perturbation is 
fixed at time 𝑇 = 58, and the top point (𝑝ଶ) perturbation time varies. The corresponding 

difference image (at 𝑇 = 60) is provided in the second row of images. 

 
Fig. 2.23. Perturbation time selection of 100 points in a 100×100 pixel pattern.  

a) All the points are perturbed at the same time 𝑇௣; b) patterns are perturbed ‘as early as 
possible’ and c) ‘as late as possible’. 

The difference images of the two patterns where all the selected points in the 𝑢-field are perturbed at the same time (𝑇 = 68.5, 69, 69.5) are shown in the top row 
of Fig. 2.23, i.e., Fig. 2.23 (a). The results of Fig. 2.23 represent previous remarks 
regarding the intensity and size where some points dominated over others, and 
earlier perturbation times resulted in bigger affected areas. Both strategies do have 
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their own advantages and disadvantages. The strategy ‘as early as possible’ (Fig. 
2.23 (b)) uncovers more perturbed points if a longer window for perturbation is 
given, but, on the other hand, points also spread wider. The strategy ‘as late as 
possible’ (Fig. 2.23 (c)) works the opposite way, and it provides better results if the 
time window is shorter. In both cases, there are about 5% of points that disappear 
because of the same effect described in Subsection 2.3.3.1, thus a better point 
selection method should be considered. 

2.3.3.3. The Equalization of both Intensities and Shapes 
Such manipulation with time moments of the perturbation at different points of 

the evolving pattern can yield the same maximum intensity at all (or at least the 
majority of) points in the difference image. However, the size of the deformations 
around the perturbed points (in the difference image) is clearly different (Fig. 2.21 
(c)). It would be almost impossible to use such a perturbation strategy for a 
meaningful hiding of the secret image. A new perturbation strategy should be used 
in order to overcome this limitation. 

We continue the same computational experiment as described in Fig. 2.21 – 
however, we change the perturbation around point 𝑝ଶ. Instead of perturbing the 
evolving pattern at a single pixel, we perturb 6 adjacent pixels around 𝑝ଶ (Fig. 2.24 
(b)). We should note that the intensity of perturbations is kept the same at all 6 
pixels; the specific geometrical location of the perturbed pixels is adjusted 
experimentally in order to produce such a difference image that both intensities and 
geometric shapes of the deformations are almost identical in the difference image 
(Fig. 2.24 (c)). 

 
Fig. 2.24. The adaptive perturbation strategy helps to equalize both the intensities and shapes 

of spots in the difference image. The location of the perturbation points is the same as in 
Fig. 2.20. The perturbation at the bottom right point (𝑝ଵ) and the top left point (𝑝ଶ) is 
performed at 𝑇 = 58.7. Six pixels around point 𝑝ଶ are perturbed; the intensity of the 

perturbation at all the pixels is the same as before. 

2.3.3.4. The Formation of Geometric Primitives in the Difference Image 
The ability to control the shape and the intensity of the deformations in the 

difference image allows a possibility to construct different shapes and geometrical 
primitives. We continue the computational experiments with the same set of 
parameters – except that the dimensions of the area used for the pattern formation 
are now 500×500 pixels (Fig. 2.25). The intensity of perturbations is kept the same 
by adding +5% to the 𝑢-field – but instead of perturbing a single point we do perturb 
all the points on the circle (Fig. 2.25 (a)). The perturbation is performed at 𝑇 = 145; 



59 

the system continues to evolve until 𝑇 = 150. The final pattern produced after the 
perturbation is shown in Fig. 2.25 (b); the difference image is presented in 
Fig. 2.25(c). 

It is natural to expect that the produced ring in the difference image is 
discontinuous – the formation of the difference image is sensitive to the geometrical 
locations of the propagating fronts of the breakup waves. One of the possibilities to 
make the geometric object more comprehensible in the difference image is to 
increase the area of perturbation (Fig. 2.25 (d)). However, even though the 
discontinuities become less prominent, the differences between the highest and the 
lowest intensities in the difference image are still large (Fig. 2.25 (d)). 

2.3.3.5. Adaptive Perturbation Strategy 
A strategy for the equalization of intensities and shapes is also required for 

geometric primitives in the difference image. A possible adaptive solution to the 
problem is schematically illustrated in Fig. 2.25. Let us assume that the perturbation 
(Fig. 2.25 (a)) results in the difference image as shown in Fig. 2.25 (b). The 
discontinuities in the difference image can be detected by using manual, 
semi-automatic or even completely automatic means. Then, the perturbation must be 
adaptively tuned in order to eliminate the discontinuities (Fig. 2.25 (c)). In general, 
the variation of the perturbation is sensitive to almost all the parameters of the 
system – including the moment of the perturbation and the final time moment when 
the evolution of patterns is terminated. In our computational setup, it is enough to 
enlarge the width of the perturbation line from a one-pixel line to a 5-pixel line 
(Fig. 2.25 (c)). That is sufficient to ensure that the discontinuities in the difference 
image disappear (Fig. 2.25 (d)). 

 
Fig. 2.25. An illustration of the iterative process of the formation of the perturbation. A thin 
line type perturbation (part (a)) yields the difference image with an undeveloped inner part 
(part (b)). The perturbation is strengthened in those parts where the difference image is not 

clear enough (part (c)), and the computational experiment is repeated again till the difference 
image is clear enough (part (d)). 

The same adaptive strategy is now applied to the computational experiment 



60 

presented in Fig. 2.26. The discontinuities and zones of lower intensity are detected 
in Fig. 2.26 (c); the perturbation is adaptively corrected (Fig. 2.26 (d)). The resulting 
difference image now clearly represents a regular geometric shape (Fig. 2.26 (f)). 
The resulting image Fig. 2.26 (c and f) can be further enhanced by applying the 
image enhancement technique as described in Section 1.3.3. In the current 
implementation, the discontinuities are detected by human inspection, but special 
algorithms could be employed to automate the process. 

We should note that the presented adaptive strategy of the perturbation does 
not exploit the variation of time delays used to perform the perturbation at different 
locations of the digital image. The application of such features could enhance the 
difference image even more – but we limit the functionality of the proposed 
communication algorithm by excluding these time-related aspects. 

 
Fig. 2.26. The adaptive perturbation strategy for the formation of a ring in the difference 

image. A thin circle-type perturbation (part (a)) is applied to the pattern at 𝑇 = 145.  
The resulting pattern at 𝑇 = 150 is shown in part (b); the difference image (at 𝑇 = 150) is 

demonstrated in part (c). The adaptive perturbation strategy is used to modify the 
perturbation (part (d)). The resulting pattern (at 𝑇 = 150) is shown in part (e);  

the difference image is presented in part (f).  
The set of the system parameters is as follows: 𝜀 = 0.1; 𝑎 = 0.7; 𝑏 = 0.06. 

2.3.4. The Communication Algorithm 
The proposed communication algorithm based on the breakup of spiral waves 

is illustrated by the following diagram (Fig. 2.27). Let us consider two 
communication parties – the Sender and the Receiver. The Sender transmits a secret 
digital image to the Receiver. The action steps to be taken by the Sender are 
bordered by a thick dashed line; the steps to be taken by the Receiver are enclosed 
into a gray-shaded area (Fig. 2.27). 

2.3.4.1. Encoding of the Secret Image 
Initially (at 𝑇 = 0), the Sender selects the initial conditions of the 𝑢-field and 

the 𝑣-field (the initial parameters of reaction-diffusion equations (8)) as shown in 
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Fig. 2.27. We should note that generation of random initial conditions is not required 
for this communication scheme – which is a serious advantage compared to other 
communication algorithms based on the self-organizing patterns. 

Then, the Sender stops the evolution of the spiral waves at 𝑇 = 145 and 
perturbs it at the points corresponding to the secret image (by adding 5% to the 
appropriate pixels of the 𝑢-field). The Sender continues to evolve the perturbed 
pattern until 𝑇 = 150 (100 time forward steps from the moment of perturbation). At 
the same time, the Sender evolves the pattern from the initial conditions without any 
perturbations until reaching the final time moment 𝑇 = 150. That allows the Sender 
to check what the difference image between the perturbed and unperturbed patterns 
looks like (Fig. 2.27). 

 
Fig. 2.27. The schematic diagram of the digital image communication scheme  

based on the breakup of spiral waves. 

Now, the Sender uses the adaptive perturbation strategy and repeats the 
computational simulation of the perturbed and unperturbed patterns. The proper 
adjustment of the perturbation points ensures that the difference image is sufficiently 
clear and representative (Fig. 2.27). Then, the Sender transmits the perturbed pattern 
to the Receiver. We should note that the perturbation is performed at 𝑇 = 145 and 
the transmitted pattern is fixed at 𝑇 = 150. Moreover, 100 forward time steps do 
completely hide the perturbation in the pattern of spiral waves. No algorithms 
(statistical or deterministic) could detect any perturbation in this pattern. Also (even 
in the cases when all the system parameters are known to the eavesdropper), the time 
backward evolution of the model is still impossible due to the nonlinearity of the 
governing evolutionary equations. The secret digital information is securely 
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embedded into the pattern of spiral waves. 

2.3.4.2. Decoding the Secret Image 
The decoding process is straightforward. The Receiver uses the identical initial 

conditions and evolves the pattern until 𝑇 = 150. Then, s/he simply computes the 
difference image between the evolved and the received patterns, and the resulting 
image reveals the secret (Fig. 2.27). 

2.3.4.3. Sensitivity of the Communication Scheme to the Perturbation of 
Parameters 

The presented decoding process does function only when all the system 
parameters are preset and available both to the Sender and the Receiver. Slight 
changes of these parameters (when the Sender and the Receiver use different 
parameters) may compromise the communication scheme. 

 
Fig. 2.28. Slight perturbations of the system parameters compromise the communication 

system. The set of parameters used by the Sender is: 𝑇 = 150; 𝜀 = 0.1; 𝑎 = 0.7; 𝑏 = 0.06. 
A slight perturbation of any of these parameters by the Receiver results in an uninterpretable 

difference image (a separate perturbation of a single parameter is used in every part, 
respectively): a) 𝑇 = 149.95; b) 𝑎 = 0.69; c) 𝑏 = 0.061. 

The sensitivity of the communication scheme to the initial parameters is 
presented in Fig. 2.28; all the illustrations represent difference images only. Initially, 
we perturb the pattern evolution time by a single integration step. The Sender creates 
the pattern by using the previously set parameters (𝑇 = 150; 𝜀 = 0.1; 𝑎 = 0.7; 𝑏 =0.06). However, the Receiver stops the evolution of this pattern evolution at 𝑇 =149.95 instead of 𝑇 = 150. Spiral waves evolve in every iteration – thus the 
Sender’s and the Receiver’s patterns are different enough to become useless 
(Fig. 2.28 (a)). 

The next computational experiment simulates the changes of parameters 𝑎 and 𝑏. The Receiver mistreats parameter 𝑎 by using 𝑎 = 0.69 instead of 𝑎 = 0.7. The 
change is crucial enough to make the difference image (Fig. 2.28 (b)) 
uninterpretable. Analogously, parameter 𝑏 = 0.061 is used instead of 𝑏 = 0.06. The 
resulting difference (Fig. 2.28 (c)) is meaningless. 

2.4. Concluding Remarks 
Self-organizing patterns can be used to conceal secret images; 

reaction-diffusion models and evolutionary spatial games which had been 
successfully exploited for these purposes previously. However, reaction-diffusion 
models do require long transients; evolutionary spatial games are not sensitive to 
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changes in the strategy of a single individual pixel in the initial state of the system. 
It appears that competitively and non-diffusively coupled nonlinear maps help 

to overcome the drawbacks of the above mentioned communication schemes. The 
secret image can be embedded into the spatially homogenous initial state in a form 
of a dot-skeleton representation – and far below the noise level of the initial random 
image. The parameters of the array of competitively coupled maps can be used as 
private and public keys thus enabling an efficient and secure communication system 
based on self-organizing patterns. 

It appears that the complex rules of self-organization and wave propagation in 
anisotropic atrial fibrillation media help to overcome such drawbacks of digital 
image communication schemes as long transients, relatively large primitives, or the 
relative simplicity of the cover pattern. The secret image can be embedded into the 
spatially homogeneous dichotomous initial state by inverting the dot-skeleton 
representation of the secret and thus enabling an efficient and secure communication 
scheme based on SOP. 

The proposed digital image communication scheme based on breaking spiral 
waves does not use random initial conditions for the pattern formation – nor does it 
use any perturbations of the initial conditions in order to conceal and transmit the 
secret digital image. Such a computational setup does have a number of serious 
advantages if compared to all alternative communication systems based on self-
organizing patterns which had been introduced so far. The sender and the receiver of 
the image do not need to worry about keeping any keys (private or public) which 
would determine the generation of the initial random conditions. Moreover, the 
communication algorithm does not use any perturbations of the initial conditions 
(any dot-skeleton representations or inversions of the dichotomous pixels). Such an 
approach could be considered as a serious step forward in respect of the security of 
the communication algorithm. 

The evolving pattern is perturbed – just not at the beginning but rather in the 
middle of the pattern formation process. It appears that this perturbation is sensitive 
to the geometrical locations of the travelling fronts of the breakup waves. Therefore, 
a special adaptive perturbation technique is required for the proper embedding of the 
secret image into the evolving pattern. However, this adaptive perturbation 
procedure does not impact the decoding of the secret image. The decoding process 
remains simple and straightforward – the receiver of the secret image needs just to 
reproduce the unperturbed pattern of breakup waves. 

So far, the adaptiveness of the perturbation has been employed only in the 
sense of the area of the perturbation in the zones where the difference image appears 
not to be clear enough. However, the perturbation could be adapted not only in space 
but also in time (as demonstrated in Fig. 2.24). The development of a fully 
automatic adaptive perturbation technique in space and in time remains a definite 
objective for the future research.  

The SOP communication scheme can be used without LSB steganography. 
However, a transmitted SOP image may draw attention from eavesdroppers. LSB 
steganography could eliminate this threat. However, LSB steganography alone is 
prone to steganalysis algorithms. The SOP communication scheme ensures the 
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security of the secret image even if LSB steganography had been compromised. 
Thus the synergy of the SOP communication scheme and LSB steganography offers 
the added security to the transmitted image.  

It is worth noting that the information hidden by using the LSB algorithm only 
could be easily detected with standard steganography detection tools, and secret 
information could be revealed by using statistical methods. Meanwhile, SOP creates 
an additional layer of security guaranteeing that even if the existence of secret 
information is detected, the information still remains secure.  

The three schemes outlined above provide specific advantages over each other. 
However, they should not be directly compared because of the differences in the 
models, the required initial conditions, the information embedding peculiarities and 
the decoding quality. The preference towards any of the schemes depends on the 
Sender’s/Receiver’s needs and are presented as almost equal alternatives. 
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3. DYNAMIC VISUAL CRYPTOGRAPHY SCHEME BASED ON FINITE 
ELEMENT GRIDS9  

Digital image communication schemes presented in Section 2 were based on 
the evaluation of SOP and on the decoding process requiring a comparative pattern 
to find the difference in order to uncover the secret. For example, the Sender 
produces one pattern, the Receiver generates the second one, and the secret 
information is only revealed when the difference between two patterns is calculated. 
The situation is similar to a classical VC introduced by Naor and Shamir (Naor et 
al., 1994) where one image is divided into 2 shares, and the secret is unveiled by 
overlaying the shares. Although in SOP each share is produced separately (which 
increases the security of the scheme), but the communication scheme still requires 2 
shares for the decryption of the secret. This restriction can be eliminated by DVC 
where is no need for 2 shares to reconstruct the secret. The DVC communication 
scheme (similarly to SOP) employs a physical process to form the patterns, but the 
process used is different, and in the DVC case, the physical deformations are 
required for the time-averaged moiré fringes to form. Thus, in this Section, the 
information hiding scheme is expanded to employ only one share by applying the 
concepts of DVC.  

The idea of information hiding in deformable moiré gratings is not new 
(Palivonaitė et al., 2014). The secret image is leaked from the cover image when it is 
deformed and averaged in time along the longitudinal coordinate of the stochastic 
moiré grating. Different image hiding schemes have also been studied (Subsection 
1.1.2), however, deformable moiré gratings in physical processes have not been 
studied yet. The main objective of this Section is to hide the secret information in a 
stochastic deformable moiré grating in such a way that only one share is required for 
the communication and that the physical process describing the oscillations of the 
system could be used as a decoding key. Such image hiding schemes would open up 
new possibilities for the optical control of MOEMS (micro-opto-electro-mechanical 
systems) where a stochastic cover moiré image could be formed on the surface of 
the cantilever or the diaphragm. The secret image would be leaked when the micro-
structure would oscillate at a predetermined law of motion. This property can be 
exploited for mechanical vibration testing, parameter monitoring and visual 
monitoring of micro-components and MEMS devices. 

An image hiding scheme based on time-averaged moiré fringes on finite 

                                                      
 
9 Some passages have been quoted verbatim from the following sources: 

Image Hiding in Time-Averaged Moiré Gratings on Finite Element Grids.  
Vaidelys M., Ragulskienė J., Aleksienė S., Ragulskis M.  
Copyright © 2015 Elsevier Inc. 

Dynamic Visual Cryptography Scheme on the Surface of a Vibrating Structure.  
Vaidelys M., Aleksienė S., Ragulskienė J. 
Copyright © 2015 JVE International Ltd. 
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element grids is proposed in this Section. The visual communication scheme is 
based on the formation of time-averaged moiré fringes in the digital dichotomous 
cover image when it is deformed according to a predefined Eigen-shape. The 
proposed scheme is practical because the decryption of the secret can be performed 
by the human visual system only. This section is organized as follows: a 
cryptography scheme based on harmonic oscillations of the deformable harmonic 
moiré grating is presented in Section 3.1 (Vaidelys et al., 2015b), a scheme based on 
time-averaged fringes generated by the Ronchi-type geometric moiré grating is 
presented in Section 3.2 (Vaidelys et al., 2015a), and conclusions are outlined in 
Section 3.3. 

3.1. Image Hiding in Time-Averaged Moiré Gratings on Finite Element Grids10  
The image hiding technique based on harmonic oscillations of the deformable 

moiré grating according to a pre-selected Eigen-shape of an elastic structure is 
presented in this Section. The initial phase scrambling and phase normalization 
algorithms are used to encode the secret in the cover image. The theoretical 
relationships between the amplitude of the Eigen-shape, the order of the 
time-averaged moiré fringe and the pitch of the deformable one-dimensional moiré 
grating are derived. Computational experiments are used to illustrate the efficiency 
and applicability of this image hiding scheme in practical applications (Vaidelys et 
al., 2015b). 

3.1.1. Preliminaries 
Let us consider a one-dimensional harmonic moiré grating (Kobayashi, 1993): 𝐹(𝑥) = 12 + 12 cos ൬2𝜋𝜆 𝑥൰, (34)

where 𝑥 is the longitudinal coordinate; 𝜆 is the pitch of the grating; the numerical 
value 0 corresponds to the black color, 1 represents the white color, and all the 
intermediate values correspond to the appropriate grayscale level. Let the moiré 
grating be formed on the surface of a one-dimensional deformable body. Let the 
deformation from the state of equilibrium at point 𝑥 at time moment 𝑡 be equal to 𝑢(𝑥, 𝑡). Then, the deformed moiré grating can be expressed in the explicit form:  𝐹(𝑥, 𝑡) = 12 + 12 cos ൬2𝜋𝜆 𝜇(𝑥, 𝑡)൰ (35)

if only independent variable 𝑥 can be explicitly expressed from the relationship:  𝑥 + 𝑢(𝑥, 𝑡) = 𝑧 (36)

                                                      
 
10 The results presented in this section have been published as: 

Image Hiding in Time-Averaged Moiré Gratings on Finite Element Grids.  
Vaidelys M., Ragulskienė J., Aleksienė S., Ragulskis M.  
Copyright © 2015 Elsevier Inc. 
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and converted into the form:  𝑥 = 𝜇(𝑧, 𝑡). (37)

Let us assume that function 𝑢(𝑥, 𝑡) does describe harmonic oscillation around 
the state of equilibrium (Ragulskis et al., 2009a): 𝑢(𝑥, 𝑡) = 𝑎(𝑥)sin(𝜔𝑡 + 𝜑), (38)

where 𝑎(𝑥) is the Eigenshape of in-plane oscillations; 𝜔 and 𝜑 are the circular 
frequency and the phase of harmonic oscillations. 

Let us linearize the function 𝑎(𝑥) around point 𝑥଴:  𝑎(𝑥) = 𝑎଴ + 𝑎ሶ଴(𝑥 − 𝑥଴) + 𝑂(𝑥 − 𝑥଴)ଶ, (39)

where 𝑎଴ = 𝑎(𝑥଴); 𝑎ሶ଴ = ௗ௔(௫)ௗ௫ ቚ௫ୀ௫బ . Without losing the generality we assume that 𝜔 = 1 and 𝜙 = 0. Then, Eq. (37) yields:  𝑥 ≈ 𝑧 − (𝑎଴ − 𝑎ሶ଴𝑥଴) sin 𝑡1 + 𝑎ሶ଴ sin 𝑡 . (40)

Thus the grayscale level of the deformed moiré grating at coordinate 𝑥 at time 
moment 𝑡 reads:  𝐹(𝑥, 𝑡) = 12 + 12 cos ቆ2𝜋𝜆 ⋅ 𝑥 − (𝑎଴ − 𝑎ሶ଴𝑥଴) sin 𝑡1 + 𝑎ሶ଴ sin 𝑡 ቇ. (41)

3.1.1.1. Non-Deformable Moiré Grating 
Different cases of 𝑎(𝑥) are examined in this and in the following sections. 

Firstly, let us assume that 𝑎(𝑥) = 𝐴 (𝐴 is a constant). In other words, the deflection: 𝑢(𝑥, 𝑡) = 𝐴 sin(𝜔𝑡 + 𝜑) (42)

describes the oscillation of a non-deformable body around the state of equilibrium 
(Ragulskis et al., 2009a). Then the instantaneous grayscale level of the moiré grating 
reads:  𝐹(𝑥, 𝑡) = 12 + 12 cos ቆ2𝜋𝜆 ⋅ (𝑥 − 𝐴 sin(𝜔𝑡 + 𝜑))ቇ. (43)

Now, let us assume that time-averaging techniques are used to register the 
time-averaged image of the oscillating moiré grating (Ragulskis et al., 2009a):  𝐹ത(𝑥) = lim்→ஶ 1𝑇 න்

଴ 𝐹(𝑥, 𝑡)𝑑𝑡 = 12 + 12 cos ൬2𝜋𝜆 𝑥൰ 𝐽଴ ൬2𝜋𝜆 𝐴൰, (44)

where 𝐽଴ is the zero order Bessel function of the first kind. We should note that the 
distribution of the grayscale level in the time-averaged image does not depend on the 
frequency or on the phase of harmonic oscillations. 
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Fig. 3.1. Harmonic oscillation of the inelastic one-dimensional moiré grating (𝜆 = 0.025) 

produces time-averaged fringes. A time-averaged image is shown on the left;  
the graph of 𝐽଴ is represented at the right part of the figure. 

Time-averaged moiré fringes form when 𝐽଴ ቀଶగఒ 𝐴ቁ = 0. This happens at 

amplitudes ଶగఒ 𝐴௞ = 𝑟௞, where 𝑟௞ are roots of 𝐽଴; 𝑘 = 1,2, …. The formation of 
time-averaged fringes is illustrated in Fig. 3.1. The 𝑥-axis in Fig. 3.1 stands for 
longitudinal coordinate 𝑥; the 𝑦-axis denotes amplitude 𝐴. A sharp high-contrast 
harmonic moiré grating is visible at 𝐴 = 0; gray time-averaged fringes are clearly 
visible at the amplitudes corresponding to roots 𝑟௞ (Fig. 3.1). One-dimensional 
moiré grating is formed only in a finite interval in Fig. 3.1 – blurred zones around 
the ends of that interval do occupy a region proportional to the amplitude of 
harmonic oscillations. 

3.1.1.2. Deformable Moiré Grating; Linear Deformation Field 
Let us assume that 𝑎(𝑥) = 𝐴𝑥. The deflection from the state of equilibrium is 

now proportional to coordinate 𝑥. In other words, a harmonic moiré grating can be 
formed on the surface of a one-dimensional body in the state of equilibrium – but 
the moiré grating will be deformed when the body performs oscillations in time. 
That is the principal difference from non-deformable moiré gratings (described in 
Subsection 3.1.1.1) where each point of the non-deformable one-dimensional body 
oscillates around the state of equilibrium at the same amplitude, and the moiré 
grating is not deformed. 

Linearization around 𝑥଴ yields: 𝑎(𝑥) = 𝐴𝑥଴ + 𝐴(𝑥 − 𝑥଴); 𝑎଴ = 𝐴𝑥଴; 𝑎ሶ଴ = 𝐴. 
Thus, Eq. (41) reads as:  
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𝐹(𝑥, 𝑡) = 12 + 12 cos ൬2𝜋𝜆 𝑥1 + 𝐴 sin 𝑡൰= 12 + 12 cos ቆ2𝜋𝑥𝜆 (1 − 𝐴 sin 𝑡 + (𝐴 sin 𝑡)ଶ − (𝐴 sin 𝑡)ଷ + ⋯ )ቇ= 12 + 12 cos ቆ2𝜋𝑥𝜆 ൫1 − 𝐴 sin 𝑡 + 𝑂(𝐴ଶ)൯ቇ≈ 12 + 12 cos ൬2𝜋𝜆 𝑥 − 2𝜋𝜆 𝐴𝑥 sin 𝑡൰. 
(45)

We should note that 0 < 𝐴 ≪ 1 (a singularity occurs at 𝐴 = 1 in Eq. (45)). 
Finally, the time-averaged image reads (Palivonaitė et al., 2014):  𝐹ത(𝑥) = lim்→ஶ 1𝑇 න்

଴ 𝐹(𝑥, 𝑡)𝑑𝑡 = 12 + 12 cos ൬2𝜋𝜆 𝑥൰ lim்→ஶ 1𝑇 න்
଴ cos ൬2𝜋𝜆 𝐴𝑥sin𝑡൰ 𝑑𝑡= 12 + 12 cos ൬2𝜋𝜆 𝑥൰ lim்→ஶ 1𝑇 න்

଴ 𝑒௜ଶగఒ ஺௫ ୱ୧୬ ௧𝑑𝑡= 12 + 12 cos ൬2𝜋𝜆 𝑥൰ 𝐽଴ ൬2𝜋𝜆 𝐴𝑥൰. (46)

 
Fig. 3.2. Harmonic oscillation of the deformable one-dimensional moiré grating (𝜆 = 0.015) 

produces time-averaged fringes. One period of harmonic oscillations with 𝐴∗ = 0.05 is 
illustrated in the top left image; a one-dimensional time-averaged image at 𝐴∗ = 0.05 is 

shown at the bottom on the left; the formation of time-averaged fringes at increasing 
amplitudes is illustrated on the right; 𝐴 = [0.001, 0.1]. 

Thus time-averaged moiré fringes form at ଶగఒ 𝐴𝑥 = 𝑟௞; 𝑘 = 1,2, … (Fig. 3.2). 
The oscillating moiré grating is shown in the left upper image. The left side of the 
one-dimensional moiré grating is motionlessly fixed; the right side of the deformed 
grating does oscillate at a preset amplitude 𝐴∗ = 0.05, the pitch of the moiré grating 
at the state of equilibrium is 𝜆 = 0.015. The left bottom part of Fig. 3.2 represents 
the time-averaged image of the one-dimensional grating at 𝐴∗ = 0.05; 
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time-averaged moiré fringes can be clearly seen in this image. The right part of 
Fig. 3.2 shows the time-averaged images of the one-dimensional moiré grating at 
increasing amplitudes 𝐴 (the higher is the amplitude of harmonic oscillations, the 
larger number of moiré fringes is visible in the time-averaged image). The horizontal 
dashed line represents amplitude 𝐴∗ = 0.05. 

3.1.2. Deformable Moiré Grating; Nonlinear Deformation Field 
The main objective of this Section is to develop an image hiding scheme based 

on deformable moiré gratings on finite element grids. In other words, deformation 
field 𝑎(𝑥) must be a nonlinear function. That requires the development of a complex 
inverse problem. 

Let us construct this inverse problem for the general case described by 
Eq. (41). We may wonder what should be the distribution of the pitch of the 
one-dimensional moiré grating 𝜆(𝑥) that the whole time-averaged image should be 
transformed into a time-averaged fringe regardless of the function 𝑎(𝑥). The 
argument of the cosine function in Eq. (41) can be arranged as follows: 𝑥 − (𝑎଴ − 𝑎ሶ଴𝑥଴) sin 𝑡1 + 𝑎ሶ଴ sin 𝑡 = (𝑥 − (𝑎଴ − 𝑎ሶ଴𝑥଴) sin 𝑡) ∙ 11 + 𝑎ሶ଴ sin 𝑡= (𝑥 − (𝑎଴ − 𝑎ሶ଴𝑥଴) sin 𝑡) ቀ(1 − 𝑎ሶ଴ sin 𝑡) + 𝑂(𝑎ሶ଴ଶ)ቁ. (47)

Let us denote 𝑎(𝑥) = 𝑎଴ + 𝑎ሶ଴(𝑥 − 𝑥଴). Then, Eq. (41) reads:  𝐹(𝑥, 𝑡) ≈ 12 + 12 cos ቆ2𝜋𝜆 ⋅ (𝑥 − (𝑎଴ − 𝑎ሶ଴𝑥଴) sin 𝑡 − 𝑎ሶ଴𝑥 sin 𝑡 + (𝑎଴ − 𝑎ሶ଴𝑥଴)𝑎ሶ଴ sinଶ 𝑡)ቇ= 12 + 12 cos ቆ2𝜋𝜆 ⋅ ൫𝑥 + (𝑎଴ − 𝑎ሶ଴𝑥଴)𝑎ሶ଴ sinଶ 𝑡 − (𝑎଴ + 𝑎ሶ଴(𝑥 − 𝑥଴) sin 𝑡)൯ቇ= 12 + 12 cos ቆ2𝜋𝜆 (𝑥 + (𝑎଴ − 𝑎ሶ଴𝑥଴)𝑎ሶ଴ sinଶ 𝑡)ቇ cos ൬2𝜋𝜆 𝑎(𝑥) sin 𝑡൰+ 12 sin ቆ2𝜋𝜆 (𝑥 + (𝑎଴ − 𝑎ሶ଴𝑥଴)𝑎ሶ଴ sinଶ 𝑡)ቇ sin ൬2𝜋𝜆 𝑎(𝑥) sin 𝑡൰. 
(48) 

We should note that lim்→ஶ ଵ் ଴்׬ sin ቀଶగఒ 𝑎(𝑥) sin 𝑡ቁ 𝑑𝑡 = 0 due to the 

oddness of the sine function. Also, lim்→ஶ ଵ் ଴்׬ sinଶ 𝑡 𝑑𝑡 = 0.5. Then, the 
time-averaged image reads:  𝐹ത(𝑥) = lim்→ஶ 1𝑇 න்

଴ 𝐹(𝑥, 𝑡)𝑑𝑡≈ 12 + 12 cos ቆ2𝜋𝜆 ൬𝑥 + 12 (𝑎଴ − 𝑎ሶ଴𝑥଴)𝑎ሶ଴൰ቇ lim்→ஶ 1𝑇 න்
଴ cos ൬2𝜋𝜆 𝑎(𝑥) sin 𝑡൰ 𝑑𝑡= 12 + 12 cos ቆ2𝜋𝜆 ൬𝑥 + 12 (𝑎଴ − 𝑎ሶ଴𝑥଴)𝑎ሶ଴൰ቇ lim்→ஶ 1𝑇 න்
଴ 𝑒௜ଶగఒ ௔(௫) ୱ୧୬ ௧𝑑𝑡= 12 + 12 cos ቆ2𝜋𝜆 ൬𝑥 + 12 (𝑎଴ − 𝑎ሶ଴𝑥଴)𝑎ሶ଴൰ቇ  𝐽଴ ቆ2𝜋𝜆 𝑎(𝑥)ቇ. 

(49)
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Thus time averaged moiré fringes form at ଶగఒ 𝑎(𝑥) = 𝑟௞; 𝑘 = 1,2, …. This 
equality corresponds well to the results produced in Subsections 3.1.1.1 and 3.1.1.2 
– but the equality is far from being trivial, and it does not follow directly from the 
formulation of the problem. We should note that the linearization is now performed 
at a preselected coordinate 𝑥 – while the whole field of amplitudes was linear by the 
definition outlined in Subsection 3.1.1.2. A successful implementation of a DVC 
scheme requires that a preselected area of the cover image should be transformed 
into a uniform time-averaged moiré fringe. The only controlled parameter of the 
cover image is pitch 𝜆(𝑥). Eq. (49) suggests that the distribution of the pitch should 
read:  𝜆(𝑥) = 2𝜋𝑟௞ 𝑎(𝑥), 𝑘 = 1,2, …. (50)

Relationship (50) comprises the linearized field of amplitudes 𝑎(𝑥). We shall 
use computational tools to test the conjecture that 𝑎(𝑥) can be replaced by 𝑎(𝑥) in 
Eq. (50). 

Let us assume that a one-dimensional elastic structure oscillates according to 
the law:  𝑢(𝑥, 𝑡) = 0.1 sin(𝜋𝑥) sin(𝜔𝑡 + 𝜑) , 0 < 𝑥 < 1. (51)

The above stated conjecture implies that a time-averaged moiré fringe must 
form in the whole domain of 𝑥 when the stationary moiré grating with the pitch  𝜆(𝑥) = 0.1 2𝜋𝑟ଵ sin(𝜋𝑥) (52)

is oscillated according to the law described by Eq. (51). Parameter 𝑘 is fixed to 1 
because the contrast around the first time-averaged moiré fringe (the first root of 𝐽଴) 
is the highest. 

We should note that the construction of a stationary moiré grating according to 
relationship (52) is a not very complex computational exercise – except for the 
regions around the boundaries where the pitch of the grating quickly converges to 
zero, and the size of the pixel is not small enough to represent the grayscale 
oscillation of the grating (as illustrated on the left side of Fig. 3.3). Now, instead of 
applying the oscillations of the moiré grating according to Eq. (51), we set the 
oscillation law to: 𝑢(𝑥, 𝑡) = 𝑏 sin(𝜋𝑥) sin(𝜔𝑡 + 𝜑) , 0 < 𝑥 < 1, (53)

where parameter 𝑏 varies from 0 to 0.2 (Fig. 3.3). It can be clearly seen that the 
time-averaged moiré fringe forms at 𝑏 = 0.1. Thus the conjecture stating that 
linearized field 𝑎(𝑥) can be replaced by 𝑎(𝑥) in Eq. (50) still holds even for such a 
complex non-linearized law of motion described by Eq. (51). 
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Fig. 3.3. Time-averaged image of the one-dimensional grating (the variation of the pitch is 

determined according to Eq. (52)); the variation of amplitude 𝑏  
is determined by Eq. (53). 

3.1.3. Dynamic Visual Cryptography Based on Deformable Moiré Gratings on 
Finite Element Grids 

In order to determine the 2D deformation fields used for the construction of 
time-averaged moiré fringes, the numerical model based on the finite element 
method is built. A thin structural steel plate (density 𝜌 = 7,850 kg/m3, Young’s 
modulus 𝐸 = 200 MPa) is considered as the structure; its length, width and 
thickness are 50×20×1 μm, respectively. The volume is meshed by 1976 tetrahedral 
volume elements resulting in 12237 degrees of freedom. The behavior law of the 
elements is the classical linear elasticity. Free boundary conditions are chosen for 
the finite element model. The obtained 5–20 natural eigenfrequencies of a 
rectangular plate are given in Table 3.1. Figure 3.4 shows the model and a 3D 
deflection shape of the plate for modes 10 and 12 as an example. 

Table 3.1. Numerical eigenfrequencies of 5–20 natural modes for a rectangular plate  
(length 50 μm, width 20 μm, thickness 1 μm, Young’s modulus: 200 MPa) 

Mode No. Num. freq. (kHz) Mode No. Num. freq. (kHz) 
5 0.074 13 13699 
6 0.141 14 14747 
7 2086 15 17191 
8 3139 16 18846 
9 5793 17 19196 
10 6749 18 24589 
11 11275 19 24681 
12 11297 20 28485 



73 

 
Fig. 3.4. A model of the plate and an example of the Eigen-shapes of the plate. The 

rectangular plate and the main geometrical parameters used in FEM simulation are shown in 
part (a). Example deformation shapes for 10 and 12 natural vibration modes (3D model) are 

presented in (b) and (c), respectively. The black edges indicate the non-deformed beam 
geometry; the color edges delineate the deformed geometry. 

Since one-dimensional moiré gratings have been used so far, a 2D field of 
deformations 𝑎(𝑥, 𝑦) determined by FEM computations is sliced horizontally, 
whereas one-dimensional pitch distributions are computed in adjacent moiré 
gratings. Therefore, every row of pixels in the digital image of 2D deformations is 
interpreted as a separate one-dimensional variation of amplitudes 𝑎(𝑥). This process 
is illustrated in Fig. 3.5. 

Fig. 3.5 (a) shows the twelfth Eigen-shape of a plate: the white zones stand for 
the maximum deformations from the state of equilibrium whereas the dark zones 
stand for the regions which do not oscillate at this resonance frequency. First of all, 
the maximum amplitude of oscillation must be set at the point of maximal 
deformations – the Eigen-shape is multiplied by a pre-determined constant. The next 
step is the formation of an array of one-dimensional moiré gratings. The resolution 
of Fig. 3.5 (a) is 500×500 pixels. Thus 500 horizontal one-dimensional moiré 
gratings are formed in Fig. 3.5 (b), and the variation of the pitch in the domain of the 
grating is constructed according to Eq. (50). The only exception is that the linearized 
deformation field 𝑎(𝑥) is replaced by 𝑘𝑎(𝑥) + 𝑏 where 𝑎(𝑥) represents the 
numerical values of the Eigen-shapes in the current grating while 𝑘, 𝑏 are positive 
constants greater than 0. Constant 𝑏 is required in order to avoid singularities at the 
points where amplitudes 𝑎(𝑥) become equal to 0; 𝑘 is required for the control of the 
range of numerical values of amplitudes. We set 𝑘 = 0.0025 and 𝑏 = 0.0075 in all 
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further computations – thus the initial range of the Eigen-mode [−1,1] is 
transformed into the working range of amplitudes [0.005,0.01]. 

 
Fig. 3.5. Harmonic oscillations according to the 12-th Eigen-mode of a free rectangular plate 

produce a gray two-dimensional image; part (a) shows the Eigen-shape; part (b) illustrates 
the stationary moiré grating (the pitch of the grating varies within interval  𝜆 = [0.013,0.026]; 𝜆(𝑥) = ଶగ௥భ 𝑎(𝑥); part (c) shows the cover image produced  

from the moiré grating; part (d) illustrates the time-averaged image  
when the cover image is oscillated according the 12-th Eigen-mode. 

We should note that the initial phase of all 500 one-dimensional gratings is set 
to 0 – thus the image in Fig. 3.5 (b) represents an interpretable array of lines which 
can reveal the Eigen-shape itself. The stochastic initial phase deflection algorithm 
(Ragulskis et al., 2009a) is used to confuse the image – the resulting image is shown 
in Fig. 3.5 (c). We should note that the variation of the pitch in every single 
one-dimensional grating is not altered in the process. 

Now, in-plane unidirectional oscillations according to the 𝑥-axis produce 
time-averaged moiré fringes in the domain of every one-dimensional grating – the 
resulting image in Fig. 3.5 (d) is completely gray. The exception is the right and left 
boundaries where the image becomes slightly uneven due to the white background 
color averaging with the default value. 

The secret image is embedded into the cover image by modifying the phase 
regularization algorithm introduced in (Ragulskis et al., 2009a). The functionality of 
this algorithm is illustrated in Fig. 3.6. Let us assume that the variation of amplitude 𝑎(𝑥) is described in Fig. 3.6 (a). The corresponding grayscale level of the 
one-dimensional moiré grating is illustrated in Fig. 3.6 (b). Let us assume that the 
‘secret’ information must be placed in the middle part of the grating. In other words, 
a time-averaged moiré fringe should form everywhere except for the region 
occupied by the middle interval. The field of amplitude governing the harmonic 
oscillation of the moiré grating is altered by multiplying it by constant 𝐶 which is 
little lower (or higher) than 1. The variation of amplitude 𝑎(𝑥) in Fig. 3.6 (c) is 
exactly the same as in Fig. 3.6 (a) – except that it is multiplied by 𝐶 = 0.8; the 
corresponding moiré grating is shown in Fig. 3.6 (d). 

Such an image hiding scheme can be effectively used for embedding 
dichotomous images into the cover image. It is important to note that the 
Eigen-shape of the structure serves as the secret key for the visual decoding of the 
secret. In other words, the secret image leaks from the cover image only if it is 
oscillated according to the Eigen-mode which was used to encode the image. 
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Fig. 3.6. A schematic diagram illustrating the encoding of the secret in a one-dimensional 

moiré grating. Part (a) shows the field of amplitudes 𝑎(𝑥) (according to a predefined 
Eigen-mode); part (b) illustrates the corresponding moiré grating. Part (c) shows the field of 
amplitudes used in the regions occupied by the secret; part (d) illustrates the corresponding 
moiré grating. The composite moiré grating uses the left and the right thirds from part (b) 

and the middle third from part (d). All the discontinuities in part (e)  
are eliminated by the phase regularization algorithm (part (f)).  

The time-averaged image of (f) is shown in parts (g), (h). 

 
Fig. 3.7. The secret image is shown in part (a); the static cover image with the embedded 
secret (in such a way that the secret image would leak when the cover image is oscillated 

according to the 12-th Eigen-mode) is shown in part (b)  
(the range of the pitch is from 0.013 up to 0.026). 

The following computation experiment is used to demonstrate the functionality 
of such an image hiding scheme based on dynamic visual cryptography. The secret 
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dichotomous image (shown in Fig. 3.7 (a)) is embedded into the cover image 
(Fig. 3.7 (b)) according to the twelfth Eigen-shape of the rectangular plate, and the 
stochastic initial phase and phase regularization algorithms are used to hide the 
secret. A naked eye could not identify the secret image from the cover image – 
moreover, the secret can be leaked only when the deformable cover image is 
oscillated according to the Eigen-mode which was used to encode the secret. 

In other words, the Eigen-mode itself can be considered as a key for the visual 
decoding procedure. Fig. 3.8 shows the results of visual decoding when the cover 
image is oscillated according to different Eigen-modes; contrast enhancement 
procedures (Section 1.3.2) are used to highlight moiré fringes in time-averaged 
images. 

 
Fig. 3.8. The Eigen-mode serves as the key for the visual decryption of the cover image.  
The first row shows different Eigen-shapes; the second row demonstrates time-averaged 

images; the third row features contrast enhanced time-averaged images. 

3.2. Dynamic Visual Cryptography Scheme on the Surface of a Vibrating 
Structure11  

The formation of a moiré grating with a harmonic variation of grayscale levels 
on a surface of a deformable structure (Section 3.1) becomes a challenging 
technological problem, especially if micro-electro-mechanical systems (MEMS) are 
considered. Thus the main objective of this Section is to construct the algorithms for 
the formation of cover images based on the Ronchi-type moiré grating (Petrauskiene 
et al., 2014). The envelope functions determining the motion induced blur of the 
Ronchi-type moiré grating depend on the characteristic features of the motion. Even 
                                                      
 
11 The results presented in this section have been published as: 

Dynamic Visual Cryptography Scheme on the Surface of a Vibrating Structure.  
Vaidelys M., Aleksienė S., Ragulskienė J. 
Copyright © 2015 JVE International Ltd. 
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though harmonic oscillations do not result in a completely uniform time-averaged 
image of the Ronchi-moiré grating, the initial phase scrambling and phase 
normalization algorithms are used to encode the secret in the cover image. 
Theoretical relationships between the amplitude of the Eigen-shape, the order of the 
not completely developed time-averaged fringe, and the pitch of the deformable 
one-dimensional Ronchi-type moiré grating is derived (Vaidelys et al., 2015a). 

3.2.1. Optical Relationships 
Let us consider a different one-dimensional geometric moiré grating from a 

previously presented harmonic moiré grating as shown in Eq. (34) in Section 3.1; a 
Ronchi-type moiré grating (Petrauskiene et al., 2014): 𝐹(𝑥) = 12 + 12 sign cos ൬2𝜋𝜆 𝑥൰ (54)

where 𝑥 is the longitudinal coordinate; 𝜆 is the pitch of the grating; numerical value 
0 corresponds to the black color; 1 represents the white color.  

Firstly, let us assume that these gratings are formed on the surface of a 
non-deformable structure which oscillates around the state of equilibrium according 
to the harmonic law of motion as described in Subsection 3.1.1.1. It was shown that 
harmonic moiré gratings are blurred due to these oscillations, and time-averaged 
moiré fringes are formed at the amplitudes corresponding to the roots of 𝐽଴: 𝑎௞ = 𝜆2𝜋 𝑟௞, 𝑘 = 1,2, …, (55)

where 𝑟௞ is the 𝑘-th root of 𝐽଴.  
However, relationship (44) does not hold for the Ronchi-type moiré grating – 

time-averaged fringes do not form at any amplitude of harmonic oscillations 
(Ragulskis et al., 2009c) (Fig. 3.9). Ronchi-type moiré gratings generate 
time-averaged fringes only if the waveform of the oscillation is triangular (Ragulskis 
et al., 2009c) – this phenomenon could be exploited as an additional factor serving 
for encoding security in DVC applications. 

The proof and the adaptation of this phenomenon on dynamic visual 
cryptography is split into two parts. Firstly, the provided idea is simplified by using 
a harmonic moiré grating instead of a Ronchi-type moiré grating which is oscillated 
according to the triangular wave-form function. Secondly, if amplitudes resulting in 
the formation of the fringes could be verified on the simplified version, the 
hypothesis that time-averaged fringes form under the same amplitude conditions in 
the case of the Ronchi-type moiré grating could be proved experimentally. 

The triangular wave-form function is defined as: 𝑢(𝑡) = 2𝜋 ൬𝑡 − 𝜋 ඌ𝑡𝜋 + 12ඐ൰ (−1)ቔ௧గାଵଶቕ, (56)

where the oscillation period is 2𝜋, and value ranges from –1 to 1. 
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Fig. 3.9. Oscillation of the inelastic one-dimensional moiré grating (𝜆 = 0.02) 

produces time-averaged fringes. A time averaged image is shown on the left; the 
RMSE errors from the equilibrium and the graph of sinc or the Bessel function are 
shown in the right part of the figure. Time-averaged fringes do form if a harmonic 

grating is oscillated according to the harmonic law (a).  
If the grating is oscillated according to triangular wave-form function (b),  

fringes form only at the sinc function’s roots. 

Let the deformation from the state of equilibrium at point 𝑥 at time moment 𝑡 
be equal to 𝑢(𝑥, 𝑡). Then, the explicit deformation of the moiré grating reads as 
defined in Eq. (35): 𝐹(𝑥, 𝑡) = ଵଶ + ଵଶ cos ቀଶగఒ 𝜇(𝑥, 𝑡)ቁ where 𝑥 can be explicitly 
expressed in form Eq. (37). 

Let us describe an oscillation around the state of equilibrium with function 𝑢(𝑥, 𝑡): 𝑢(𝑥, 𝑡) = 𝑎(𝑥) ∙ 𝑡. (57)

It is the simplified form of a triangular wave-form function where 𝑎(𝑥) is the 
Eigen-shape of in-plane oscillations and time 𝑡 ∈ [−1, 1]. The field of amplitudes 𝑎(𝑥) can be linearized around point 𝑥଴, the same as in Subsection 3.1.1, and 𝑥 yields 



79 

the following form: 𝑥 = 𝑧 − (𝑎଴ − 𝑎ሶ଴𝑥଴)𝑡1 + 𝑎ሶ଴𝑡 . (58) 

Finally, the grayscale level of the moiré grating at coordinate 𝑥 and time 
moment 𝑡 reads: 𝐹(𝑥, 𝑡) = 12 + 12 cos ቆ2𝜋𝜆 ∙ 𝑥 − (𝑎଴ − 𝑎ሶ଴𝑥଴)𝑡1 + 𝑎ሶ଴𝑡 ቇ. (59)

3.2.1.1. Non-Deformable Moiré Grating 
Let us assume that 𝑎(𝑥) = 𝐴 (𝐴 is a constant) and that the analyzed structure 

oscillates according to the triangular wave-form function. This means that the 
deflection which describes the oscillation of a non-deformable body around the state 
of equilibrium is 𝑢(𝑥, 𝑡) = 𝐴𝑡 (Ragulskis et al., 2009a). Then, the grayscale level of 
the moiré grating at time step 𝑡 reads:  𝐹(𝑥, 𝑡) = 12 + 12 cos ቆ2𝜋𝜆 ∙ (𝑥 − 𝐴𝑡)ቇ. (60)

Time-averaging techniques can be used to register the image of the grating 
(Ragulskis et al., 2009a, Kobayashi, 1993): 𝐹ത(𝑥) = 12 න 𝐹(𝑥, 𝑡)𝑑𝑡ଵ

ିଵ= 12 + 14 න ൤cos ൬2𝜋𝜆 𝑥൰ cos ൬2𝜋𝜆 𝐴𝑡൰ + sin ൬2𝜋𝜆 𝑥൰ sin ൬2𝜋𝜆 𝐴𝑡൰൨ 𝑑𝑡ଵ
ିଵ= 12 + 14 cos ൬2𝜋𝜆 𝑥൰ න cos ൬2𝜋𝜆 𝐴𝑡൰ 𝑑𝑡ଵ

ିଵ + 0= 12 + 14 cos ൬2𝜋𝜆 𝑥൰ 𝜆2𝜋𝐴 sin ൬2𝜋𝜆 𝐴𝑡൰ฬିଵ
ଵ

= 12 + 14 cos ൬2𝜋𝜆 𝑥൰ 𝜆2𝜋𝐴 2 sin ൬2𝜋𝜆 𝐴൰ = 12 + 12 cos ൬2𝜋𝜆 𝑥൰ sin ቀ2𝜋𝜆 𝐴ቁ2𝜋𝜆 𝐴= 12 + 12 cos ൬2𝜋𝜆 𝑥൰ sinc ൬2𝜋𝜆 𝐴൰, 

(61)

where sinc(𝑥) = ୱ୧୬(௫)௫  is the cardinal sine function. We should note that the 
distribution of the grayscale level in the time-averaged image does not depend on the 
characteristics of triangular wave-form function (57) and this is why the simple form 
could be used in the provided calculations. 

Gray time-averaged moiré fringes only form when ଶగఒ 𝐴௞ = 𝑟௞ =  𝜋𝑘, where 𝑟௞ = 𝜋𝑘 are the roots of sinc(𝑥) = 0, 𝑘 = 1,2, … (Fig. 3.9(b)). 
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3.2.1.2. Deformable Moiré Grating; Linear Deformation Field 
Next, let us assume that 𝑎(𝑥) = 𝐴𝑥. The principal difference from 

non-deformable moiré gratings (as described in Subsection 3.2.1.1) is that the moiré 
grating will deform proportionally to coordinate 𝑥 when the body is oscillated in 
time. However, a harmonic moiré grating can still be formed on the surface of the 
one-dimensional body in the state of equilibrium. 

Linearization around 𝑥଴ yields: 𝑎(𝑥) = 𝐴𝑥଴ + 𝐴(𝑥 − 𝑥଴); 𝑎଴ = 𝐴𝑥଴; 𝑎ሶ଴ = 𝐴. 
Thus Eq. (12) now reads: 𝐹(𝑥, 𝑡) = 12 + 12 cos ൬2𝜋𝜆 𝑥1 + 𝑎ሶ଴𝑡൰ = 12 + 12 cos ൬2𝜋𝜆 (1 − (𝑎ሶ଴𝑡 + 𝑂(𝑎ሶ଴𝑡)ଶ)𝑥൰≈ 12 + 12 cos ൬2𝜋𝜆 𝑥 − 2𝜋𝜆 𝐴𝑥𝑡൰ , 𝑡 ∈ [−1, 1]. (62) 

We should note that a singularity occurs at 𝐴 = 1 in Eq. (62). Thus it is 
assumed that 0 < 𝐴 ≪ 1. Finally, the time-averaged image reads: 𝐹ത(𝑥) = 12 න 𝐹(𝑥, 𝑡)𝑑𝑡ଵ

ିଵ= 12 + 14 න ൤cos ൬2𝜋𝜆 𝑥൰ cos ൬2𝜋𝜆 𝐴𝑥𝑡൰ + sin ൬2𝜋𝜆 𝑥൰ sin ൬2𝜋𝜆 𝐴𝑥𝑡൰൨ 𝑑𝑡ଵ
ିଵ= 12 + 14 cos ൬2𝜋𝜆 𝑥൰ 𝜆2𝜋𝐴𝑥 sin ൬2𝜋𝜆 𝐴𝑥𝑡൰ฬିଵ

ଵ
= 12 + 12 cos ൬2𝜋𝜆 𝑥൰ sinc ൬2𝜋𝜆 𝐴𝑥൰. 

(63)

 
Fig. 3.10. Deformable one-dimensional moiré grating produces time-averaged fringes when 
oscillated according to the triangular wave-form. One period (𝑡 ∈ [−1, 1]) of oscillations is 
shown in the top left image; one-dimensional time-averaged image at 𝐴∗ = 0.035 is shown 
at the bottom on the left; the formation of time-averaged fringes when employing different 

amplitudes is illustrated on the right; 𝐴 = 0.001, 0.07തതതതതതതതതതതതതത. 
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Here, time-averaged moiré fringes form at ଶగఒ 𝐴𝑥 = 𝑟௞ = 𝜋𝑘; 𝑘 = 1,2, …. 
Figure 3.10 shows the oscillating moiré grating in the left upper image. The 
one-dimensional moiré grating is motionlessly fixed on the left side whereas the 
right side of the grating deforms at amplitude 𝐴∗ = 0.035. The vertical dashed line 
marks the equilibrium state of the one-dimensional deformable structure; the pitch of 
the moiré grating is 𝜆 = 0.02. The right part of Fig. 3.10 shows time-averaged 
images of the one-dimensional moiré grating at different amplitudes 𝐴. The left 
bottom part of Fig. 3.10 illustrates time-averaged moiré fringes at 𝐴∗ = 0.035.  

3.2.1.3. Deformable Moiré Grating; Nonlinear Deformation Field 
In order to develop an image hiding scheme based on deformable moiré 

gratings on finite element grids, the deformation field 𝑎(𝑥) needs to be a nonlinear 
function. Let us set 𝑥଴ = 0 and denote 𝑎ത(𝑥) = 𝑎଴ + 𝑎ሶ଴𝑥. Then, Eq. (59) reads: 𝐹(𝑥, 𝑡) = 12 + 12 cos ൬2𝜋𝜆 𝑥 − 𝑎଴𝑡1 + 𝑎ሶ଴𝑡൰ ≈ 12 + 12 cos ቆ2𝜋𝜆 (𝑥 − 𝑎଴𝑡)(1 − 𝑎ሶ଴𝑡)ቇ= 12 + 12 cos ቆ2𝜋𝜆 ൫(𝑥 + 𝑎଴𝑎ሶ଴𝑡ଶ) − 𝑎ത(𝑥)𝑡൯ቇ. (64)

If 𝑎ሶ଴ ≪ 1 and 𝑡ଶ ≤ 1 then 𝑎଴𝑎ሶ଴𝑡ଶ ≪ 1 and: 𝐹෨(𝑥, 𝑡) = 12 + 12 cos ൬2𝜋𝜆 𝑥 − 2𝜋𝜆 𝑎ത(𝑥)𝑡൰= 12 + 12 cos ൬2𝜋𝜆 𝑥൰ cos ൬2𝜋𝜆 𝑎ത(𝑥)𝑡൰ + 12 sin ൬2𝜋𝜆 𝑥൰ sin ൬2𝜋𝜆 𝑎ത(𝑥)𝑡൰. (65)

We should note that ׬ sin ቀଶగఒ 𝑎ത(𝑥)𝑡ቁ 𝑑𝑡ଵିଵ = 0 due to the evenness of the sine 
function. Then, the time-averaged image reads: 𝐹ത(𝑥) = 12 න 𝐹(𝑥, 𝑡)𝑑𝑡ଵ

ିଵ ≈ 12 න 𝐹෨(𝑥, 𝑡)𝑑𝑡ଵ
ିଵ= 12 + 14 න ൤cos ൬2𝜋𝜆 𝑥൰ cos ൬2𝜋𝜆 𝑎ത(𝑥)𝑡൰ + sin ൬2𝜋𝜆 𝑥൰ sin ൬2𝜋𝜆 𝑎ത(𝑥)𝑡൰൨ 𝑑𝑡ଵ

ିଵ= 12 + 14 cos ൬2𝜋𝜆 𝑥൰ න cos ൬2𝜋𝜆 𝑎ത(𝑥)𝑡൰ 𝑑𝑡ଵ
ିଵ= 12 + 14 cos ൬2𝜋𝜆 𝑥൰ 𝜆2𝜋𝑎ത(𝑥) sin ൬2𝜋𝜆 𝑎ത(𝑥)𝑡൰ฬିଵ

ଵ
= 12 + 12 cos ൬2𝜋𝜆 𝑥൰ sinc ቆ2𝜋𝜆 𝑎ത(𝑥)ቇ. 

(66)

Thus time averaged moiré fringes form at ଶగఒ 𝑎ത(𝑥) = 𝑟௞ = 𝜋𝑘; 𝑘 = 1,2, …, 
which corresponds well to the results produced in Subsections 3.2.1.1 and 3.2.1.2. 
The next goal is to transform the whole image into a time-averaged moiré fringe 
(only by varying pitch 𝜆(𝑥)). Thus the distribution of the pitch (Eq. (50)) reads: 
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𝜆(𝑥) = 2𝜋𝑘 𝑎(𝑥), 𝑘 = 1,2, …. (67)

In the previous relationship, 𝜆 still depends on the linearized field of 
amplitudes 𝑎ത(𝑥). The conjecture that 𝑎ത(𝑥) can be replaced with 𝑎(𝑥) will be tested 
and validated by using computational tools. Let us assume that a one-dimensional 
elastic structure oscillates according to the following law: 𝑢(𝑥, 𝑡) = 0.1 sin(𝜋𝑥) ∙ 𝑡, 0 ≪ 𝑥 ≪ 1, 𝑡 ∈ [−1; 1]. (68)

The above stated presumption implies that a time-averaged moiré fringe must 
form in the whole domain of 𝑥 when the stationary moiré grating has the variable 
pitch in respect of 𝑥: 𝜆(𝑥) = 0.1 ∙ 2𝜋𝑟௞ ∙ sin(𝜋𝑥) , 𝑘 = 1,2, …. (69)

Parameter 𝑘 is fixed to 1 because the contrast around the first time-averaged 
moiré fringe is the highest (the first root of sinc is 𝑟ଵ = 𝜋). Now, instead of applying 
the oscillations of the moiré grating according to Eq. (68), the oscillation process is 
set to: 𝑢(𝑥, 𝑡) = 𝑏 𝑠𝑖𝑛(𝜋𝑥) ∙ 𝑡, 0 ≪ 𝑥 ≪ 1, 𝑡 ∈ [−1; 1], (70)

where parameter 𝑏 varies from 0 to 0.2 (Fig. 3.11). It can be clearly seen that the 
time-averaged moiré fringe does form at 𝑏 = 0.1. Thus the conjecture stating that 
the linearized field 𝑎ത(𝑥) can be replaced by 𝑎(𝑥) in Eq. (67) holds for the triangular 
wave-form law of motion. 

 
Fig. 3.11. Time-averaged image of the one-dimensional grating (the variation of the pitch is 
determined according to Eq. (69)); the variation of amplitude 𝑏 is determined by Eq. (70). 

3.2.2. Ronchi-Type Moiré Gratings on Finite Element Grids 
The main objective of this Subsection is to develop an image hiding scheme 

based on deformable Ronchi-type moiré gratings on finite element grids. In other 
words, the cover image should only have two colors: black and white. In 
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Subsection 3.2.1, it was proved that time-averaged fringes form when a harmonic 
moiré grating is oscillated according to the triangular wave-form function. This 
raises a hypothesis that the same should hold true with Ronchi-type moiré gratings 
(see Eq. (54)).  

This hypothesis can be confirmed experimentally by using the same 
experimental tools as in the case with harmonic moiré gratings. From Fig. 3.12, it 
can be seen that time-averaged fringes do form at 𝑟௞ = 𝜋𝑘 if a Ronchi-type moiré 
grating is oscillated according to the triangular wave-form function. We should note 
that a Ronchi-type grating is used in Fig. 3.12 instead of the harmonic grating 
presented in Fig. 3.9 (b). 

 
Fig. 3.12. Time-averaged fringes form if a Ronchi-type moiré grating is oscillated according 
to the triangular wave-form function. Time-averaged fringes form at sinc function’s roots. 

3.2.3. Dynamic visual Cryptography Based on Deformable Moiré Gratings on 
Finite Element Grids 

The nonlinear deformation field is used for the formation of time-averaged 
moiré fringes. The process of 2D deformation determined by FEM computations is 
illustrated in Fig. 3.13. 

 
Fig. 3.13. Triangular wave-form oscillations according to the 12-th Eigen-mode of a 

Ronchi-type moiré produce a gray two-dimensional image; part (a) shows the Eigen-shape; 
part (b) illustrates the stationary moiré grating (the pitch of the grating varies within interval 𝜆 = [0.002, 0.02]; 𝜆(𝑥) = 2𝑎(𝑥); part (c) shows the cover image produced from the moiré 

grating; part (d) illustrates the time-averaged image when the cover image is oscillated 
according to the 10-th Eigen-mode. 
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The 2D deformation field is shown in Fig. 3.13 (a) where the 12-th 
Eigen-shape of a plate is selected. The dark zones stand for no oscillation, and the 
white zones stand for maximum deformations from the equilibrium. The resolution 
of Fig. 3.13 (a) is 500×500 pixels; therefore, all further calculations are related to 
this size. As the provided model forms feature only one-dimensional time-averaged 
moiré, an array of 500 one-dimensional moiré gratings must be formed and 
concatenated vertically. This results in a 2D stationary moiré grating shown in 
Fig. 3.13(b). The pitch of the grating is constructed by using Eq. (69) where the 
linearized deformation field 𝑎ത(𝑥) is replaced by 𝑘𝑎(𝑥) + 𝑏. This transformation of 
the numerical values of the Eigen-shapes 𝑎(𝑥) is necessary in order to avoid 
singularities at the points where amplitudes 𝑎(𝑥) become equal to 0. 𝑘, 𝑏 are 
positive constants greater than 0, and all further computations are set to 𝑘 = 0.0045 
and 𝑏 = 0.0055. Thus if the initial range of the Eigen-mode is [−1, 1], after this 
transformation, the working range of amplitudes becomes [0.001, 0.01]. 

Now, we must take note that the initial phase of all 500 horizontal 1D gratings 
is the same and equals to 0. This results in an interpretable Eigen-shape function. In 
order to avoid this issue, the stochastic initial phase scrambling algorithm (Ragulskis 
et al., 2009a) should be used to complicate the pattern (Fig. 3.13 (c)) (during this 
process, the pitch in every single one-dimensional grating is not altered). 

After this preparation, every one-dimensional grating is time-averaged 
according to the 𝑥-axis by using the triangular function. These in-plane 
unidirectional oscillations result in an almost gray image shown in Fig. 3.13 (d). 
Thus we have experimentally proved that the Ronchi-type grating does actually 
result in time-averaged moiré fringes in the domain of every one-dimensional 
grating when the nonlinear amplitude function is used. 

The last step is to encode the secret image into the cover image, which is done 
by modifying the phase regularization algorithm introduced in (Ragulskis et al., 
2009a) (Fig. 3.14). The variation of amplitude 𝑎(𝑥) is depicted in Fig. 3.14 (a). The 
corresponding grayscale level of the one-dimensional moiré grating is illustrated in 
Fig. 3.14 (b). Let us place the block of ‘secret’ information in the middle of the 
grating, which means that the time-averaged moiré fringe should form everywhere 
except in the middle. Now, the white zones (the left and the right-third of Fig. 3.14 
(b) as well as the middle-third of Fig. 3.14 (d)) are taken into the composite grating 
illustrated in Fig. 3.14 (e). Direct copying results in a discontinuous grating with 
phase jumps at the joining points. Phase jumps are eliminated with the 
phase-regulation algorithm (Fig. 3.14 (f)). We should note that the variation of the 
pitch is not altered in this process. Lastly, the time-averaging of Fig. 3.14 (f) results 
in Fig. 3.14 (g) as it is oscillated by the law defined by Eq. (37) whereas the field of 
amplitudes 𝑎(𝑥) is determined by Fig. 3.14 (a). Time-averaged moiré fringes form 
in the middle-third of the time-averaged image; the left-third and the right-third of 
the image do clearly stand out from the gray background. 

In order to assure the functionality of this image hiding scheme in the 2D case, 
a secret dichotomous image Fig. 3.15 (a) is embedded into the cover image 
Fig. 3.15 (b). The cover image was generated according to the 12-th Eigen-mode 
where the initial phase is stochastic in all horizontal one-dimensional gratings, and 
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phase regularization algorithms are used to hide the secret. The encoding result is 
uninterpretable to naked eyes. 

 
Fig. 3.14. A schematic diagram illustrating the encoding of the secret in a one-dimensional 

moiré grating. Part a) shows the field of amplitudes 𝑎(𝑥). Part b) illustrates the 
corresponding moiré grating. Part c) shows the field of amplitudes used in the regions 

occupied by the secret. Part d) illustrates the corresponding moiré grating. The composite 
moiré grating uses the left and the right thirds from part b) and the middle third from part d). 

All the discontinuities in part e) are eliminated by the phase regularization algorithm 
(part f)). The time-averaged image of f) is shown in parts g) and h). 

 
Fig. 3.15. The secret image is shown in part (a); the cover image with the embedded secret 

according to the 12-th Eigen-mode is shown in part (b). 
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Fig. 3.16. The Eigen-mode serves as the key for the visual decryption of the cover image. 

The first row shows different Eigen-shapes; the second row presents time-averaged images; 
the third row contains contrast enhanced time-averaged images. 

Moreover, the dependency of the decoding process on the initial Eigen-shape 
of the structure introduces one more security feature: the secret information is 
inaccessible without using the correct Eigen-shape used to oscillate the cover image. 
Thus the Eigen-mode itself can be considered as a key for the visual decoding 
procedure. Such dependence is shown in Fig. 3.16 where visual decoding is 
executed by using different Eigen-modes. The contrast enhancement procedures 
(Ragulskis et al., 2009b) are used to highlight moiré fringes in time-averaged 
images. 

3.3. Concluding Remarks 
The image hiding scheme in time-averaged moiré gratings on finite element 

grids is presented in this section. An image encoding scheme in deformable one-
dimensional moiré gratings oscillating according to a predefined Eigen-mode is 
developed and implemented for the construction of two-dimensional digital 
dichotomous secret images. The secret is leaked from the cover image in the form of 
a pattern of time-averaged moiré fringes when it is oscillated according to a 
predefined Eigen-mode. The efficiency of the proposed scheme is illustrated by 
computational examples employing finite element grids. 

Two dynamic visual cryptography schemes are presented by using this 
technique. The first scheme is based on harmonic oscillations of the deformable 
harmonic moiré grating whereas the second one is based on Ronchi gratings 
deformed according to the triangular waveform function. Overall, harmonic moiré 
grating results in the better image hiding quality. However, the Ronchi-type grating 
has the advantage in the practical situations. Since the presented image 
communication scheme mimics physical processes, it can be adapted in the control 
of MOEMS. Ronchi grating makes it easier to form the stochastic cover moiré 
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image on the surface of a cantilever or a diaphragm. 
Defects of the grid as well as defects of the material (or the geometry) of the 

FEM model could be considered as the next step in the security of such a DVC 
scheme. The next step could be a FEM grid (or the FEM model in general) with a 
micro-crack. It is well known that Eigen-modes can be exploited for the detection of 
micro-cracks. Thus cover images could be constructed in such a way that the secret 
image would leak only if the FEM Eigen-mode corresponded to a structure with an 
exactly predefined micro-crack.  
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4. THE PSEUDO-ORDER OF A 2D SEQUENCE AND THE COMPLEXITY 
OF DIGITAL IMAGES12 

The application of the order of a two-dimensional (2D) sequence is introduced 
in this Section. The order of a 2D sequence is a natural but not trivial extension of 
the order of one-dimensional (1D) linear recurrent sequences (Telksnys et al., 2016). 
The extension of 1D LRS to two dimensions could open new possibilities for the 
analysis of digital images. It is demonstrated that the order of 2D sequences can be 
used to estimate the complexity of self-organizing patterns with respect to each 
spatial coordinate. This advantage could be used in analyzing the pattern’s state 
during its formation and to detect if the pattern is not under- or over-developed. 

It is clear that any real-world time series does not have a finite LRS-order 
simply because real world time series are inevitably contaminated by noise. 
Otherwise (if the LRS-order of a real-world time series were finite), the dynamics of 
the sequence would be governed by a deterministic law – which contradicts the 
definition of noise (Ragulskis et al., 2011b). Thus the concept of the pseudo-order is 
used to evaluate the order of a 2D sequence. 

4.1. Pseudo-Order of a 1D Sequence 
A computational framework for the determination of LRS pseudo-orders based 

on the SVD of the Hankel matrix is presented by (Landauskas et al., 2016).  
As the computation of the Hankel determinants (27) is numerically unstable, it 

is not feasible to use the definition of 2-LRS directly to determine if a given 2D 
sequence has a finite order. To provide a more stable evaluation of a 2D sequence’s 
order, the concept of the pseudo-order is used. 

For a 1D sequence ൫𝑝௝; 𝑗 ∈ 𝑍଴൯, the pseudo-order is computed by using the 
SVD by the following algorithm (Landauskas et al., 2016): 

1. A Hankel matrix 𝐻௄ is formed from the sequence ൫𝑝௝; 𝑗 ∈ 𝑍଴൯ by using the 
first 𝐾 elements. 

2. The SVD of 𝐻௄ is performed: 𝐻௄ = 𝑈𝑆𝑉், (71)

where 𝑈, 𝑉 are the matrices of the orthonormal eigenvectors of 𝐻𝐻், 𝐻்𝐻, 
respectively, and 𝑆 is a diagonal matrix containing the ordered singular values: 𝜎ଵଶ ≥ 𝜎ଶଶ ≥ ⋯ ≥ 𝜎௄ଶ ≥ 0. (72)

3. For a chosen 𝜀 > 0, define pseudo-order 𝐾෩ of the given sequence as the 
number of singular values that are greater than 𝜀: 
                                                      
 
12 The results presented in this section have been published as: 

The Order of a 2-Sequence and the Complexity of Digital Images.  
Telksnys T., Navickas Z., Vaidelys M., Ragulskis M.  
Copyright © 2016 World Scientific Publishing Company. 
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𝐾෩:  𝜎௄෩ଶ > 𝜀,   𝜎௄෩ାଵଶ ≤ 𝜀. (73)

It has been demonstrated by (Landauskas et al., 2016) that the pseudo-order of 
a sequence tends to the true order as 𝜀 → 0; however, setting 𝜀 = 0 would lead to a 
great sensitivity to noise in the sequence ൫𝑝௝; 𝑗 ∈ 𝑍଴൯. Thus, for real-world 
applications, it is recommended to choose 𝜀 > 0 and investigate the pseudo-order. A 
number of algorithms that use the concept of 1-LRS have successfully applied this 
approach (Landauskas et al., 2013, Landauskas et al., 2014, Landauskas et al., 
2016). 

4.2. Pseudo-Order of a 2D Sequence 
The concept of the pseudo-order outlined in the previous section cannot be 

applied directly to 2D sequences because they consist of two sets containing 
infinitely many 1D sequences. However, the problems that occur in the 1D case are 
magnified when considering 2D sequences. In particular, it is not immediately clear 
how to evaluate the row and column orders of a given real-world 2D sequence 
because the characteristic roots of each row (column) are influenced by noise. 

We propose the following approach to solve this problem by using the mean 
order of the rows (columns) of the given 2D sequence. Let 𝑋 = ൣ𝑥௝௥൧௝,௥ୀ଴ାஶ  be a 
2-LRS that is homogenous. This means that the differences between the 1D orders 
of rows (columns) are not large. Let us suppose that the row order of 𝑋 is equal to 𝑁. Then, order ൫𝑥௝௥;  𝑟 ∈ ℤ଴൯ = 𝑁௝ where 𝑗 ∈ ℤ଴. 

The limit of the mean order of all the rows is considered: 

𝑁ഥ = lim௝→ ାஶ 1𝑗 ෍ 𝑁௞௝ିଵ
௞ୀ଴ . (74)

Since 0 ≤ 𝑁௞ ≤ 𝑁, 𝑘 ∈ 𝑍଴, the mean order (Eq. (74)) can be written as: 

𝑁ഥ = lim௝→ ାஶ 1𝑗 ෍(𝑁 − 𝑞௞)௝ିଵ
௞ୀ଴  (75)

where 0 ≤ 𝑞௞ ≤ 𝑁. Equation (75) then yields: 𝑁 − max௝∈ℤబ 𝑞௝ ≤ 𝑁ഥ ≤ 𝑁 − min௝∈ℤబ 𝑞௝ (76)

which can be rearranged into: 𝑁ഥ + max௝∈ℤబ 𝑞௝ ≤ 𝑁 ≤ 𝑁ഥ + min௝∈ℤబ 𝑞௝. (77)

If the considered 2D sequence is homogeneous, the differences in order 
between rows 𝑞௝ are small, thus (Eq. (77)) yields the approximation: 𝑁ഥ ≈ 𝑁. (78)

By using Eq. (78) and the SVD, the row pseudo-order of a 2D sequence 𝑋 can 
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be evaluated by using the algorithm given in Section 4.1 with the same 𝜀 on each 
row and considering the mean value of the obtained pseudo-ranks. Thus the pseudo 
row rank 𝑁෩ of homogenous 2D sequence 𝑋 computed from the first 𝑚 rows is 
defined as: 

𝑁෩ ≔ 1𝑚 ෍ 𝑁෩௝௠ିଵ
௝ୀ଴ . (79)

Analogous computations can also be performed for the columns of a given 
homogenous 2D sequence 𝑋. 

4.3. A Synthetic Numerical Example 
Let us consider two digital images – a black-and-white image of bricks 

(Fig. 4.1 (e) denoted as image 𝐵) and a grayscale image of uniformly distributed 
random pixels (Fig. 4.1 (a) denoted as image 𝑁). Let us construct a sequence of 
digital images by assuming discrete values of parameter 𝑞 in the following equation: 𝐼(𝑞) = (1 − 𝑞)𝑁 + 𝑞𝐵, 0 ≤ 𝑞 ≤ 1. (80)

It is clear that 𝐼(0) = 𝑁, 𝐼(1) = 𝐵. The image of bricks evolves from the 
noise as 𝑞 varies from 0 to 1 (Fig. 4.1). 

 
Fig. 4.1. The digital image of bricks evolves from noise as parameter 𝑞 varies from 0 to 1. 

Digital images in parts a)–e) are shown at 𝑞 = 0, 0.25, 0.5, 0.75 and 1, accordingly. 

4.3.1.1. LRS Pseudo Order and Shannon Entropy 
It is well known that Shannon entropy 𝐻(𝑋) of a digital image determines the 

randomness of that image (Borda, 2011). We use standard techniques for the 
computation of the entropy: 𝐻(𝑋) = − ෍ 𝑝௞ logଶ 𝑝௞௠

௞ୀଵ , (81)

where 𝑝௞ is the histogram count for the 𝑘th of 𝑚 bins of the given digital image 𝑋. 
The entropy Eq. (81) is computed for a series of digital images as 𝑞 varies 

from 0 to 1 according to Eq. (80) (Fig. 4.2). We should note that we visualize the 
inverse of the entropy scaled to the interval [0, 1] in Fig. 4.2. Such a representation 
helps to clearly interpret the randomness of the evolving image. The entropy is 
maximal at 𝑞 = 0, and it monotonically decreases as the image of bricks becomes 
clearer (Fig. 4.2). 
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There exists a natural relation between the LRS order of a sequence and the 
algebraic complexity of that sequence (Ragulskis et al., 2011b). Therefore, one 
could expect a similar relationship between the 2-LRS order and the complexity of 
the digital image as well. 

We use the same series of digital images represented by Eq. (80) and compute 
the averaged LRS pseudo-orders for rows and columns while using the algorithm 
described in Section 4.1 (the dimension of the Hankel matrix is set to 80; 𝜀 is set to 
0.5). However, since the inverse of the entropy is visualized in Fig. 4.2, we also 
visualize inverse pseudo-orders in Fig. 4.2. 

 
Fig. 4.2. Evolution of entropy and row/column LRS pseudo-order as parameter 𝑞 varies from 
0 to 1. The left 𝑦-axis represents the inverse of entropy 𝐻(𝑋). The right 𝑦-axis represents the 

inverse of the average row and column LRS-pseudo-order. 

The 2-LRS pseudo-order for the image of noise is equal to (80, 80) – which 
corresponds to ቀ ଵ଼଴ , ଵ଼଴ቁ in Fig. 4.2 at 𝑞 = 0. Then, the LRS pseudo-orders for rows 
and columns monotonically decrease as 𝑞 varies from 0 to 1 (Fig. 4.2). However, the 
variation of the LRS pseudo-orders for rows and columns is not identical. The 
periodicity of the image of bricks along the rows is longer than the periodicity of 
this image along the columns (this is due to the shape of the bricks). The shorter 
average period results in a smaller LRS pseudo-order. The 2-LRS pseudo-order for 
the image of bricks (without noise) is equal to (22, 17) corresponding to ቀ ଵଶଶ , ଵଵ଻ቁ in 
Fig. 4.2 at 𝑞 = 1. 

Therefore, the variation of the 2-LRS pseudo-order of digital image 𝐼(𝑞) 
reveals not only the evolution of the complexity of the image but also the 
geometrical orientation of the evolving pattern. 

4.3.1.2. LRS Pseudo Order and Image Correlation 
Shannon entropy is a general measure of image randomness; thus, it cannot be 

used to measure randomness horizontally (along the rows) or vertically (along the 
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columns) in a given image. To perform measurements of randomness in horizontal 
and vertical directions, we use correlation, one of the Haralick’s features derived 
from co-occurrence matrices (Haralick, 1979): 

𝜌ு(௑): = 1𝜎௫𝜎௬ ቌ෍ ෍(𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇௫𝜇௬ே೒
௝ୀଵ

ே೒
௜ୀଵ ቍ, (82)

where 𝑁௚ is the number of gray levels in image 𝑋; 𝑝(𝑖, 𝑗) is the entry of the 
co-occurrence matrix (the probability that the pixel with gray level 𝑖 is adjacent to 
the pixel with gray level j); 𝜇௫, 𝜎௫, 𝜇௬, 𝜎௬ are the means and standard deviations of 
the partial probability density functions of the co-occurrence matrices. 

The horizontal and vertical adjacency is used to compute two correlations for 
each image by using Eq. (82); the correlation computed while using horizontal and 
vertical adjacency is referred to as row and column correlations, respectively. 

A comparison of row and column LRS pseudo orders and correlations of the 
image sequence of bricks (Fig. 4.1) is pictured in Fig. 4.3. As 𝑞 varies from 0 to 1, 
both row and column correlations increase – while row and column orders decrease 
monotonically. As it has been noted previously, the periodicity of the image 
sequence of bricks in Fig. 4.1 is not equal along the rows and columns. This effect 
can be explained because the period is longer along the rows. Thus the LRS pseudo 
order of rows is larger if compared with the pseudo order of columns. The LRS 
pseudo order for rows and columns is 22 and 17 respectively at 𝑞 = 1. A similar 
effect is observed with respect to the Haralick’s feature of correlation – row 
correlation is higher than column correlation because more adjacent pixels are of the 
same gray level. Row correlation is almost equal to 1 when 𝑞 > 0.9 and column 
correlation is 0.82 in the same range. 

This computational experiment demonstrates that LRS pseudo-orders do 
represent the evolution of complexity in the digital images along the horizontal and 
vertical axes. 

4.4. 2D Sequence Pseudo-Order of Self-Organizing Patterns 
We shall use the Beddington-de-Angelis-type predator-prey model with self- 

and cross-diffusion (Saunoriene et al., 2011, Wang et al., 2011): 𝜕𝑁𝜕𝑡 = 𝑟 ൬1 − 𝑁𝐾൰ − 𝛽𝑁𝐵 + 𝑁 + 𝜔𝑃 𝑃 + 𝐷ଵଵ∇ଶ𝑁 + 𝐷ଵଶ∇ଶ𝑃, (83)𝜕𝑃𝜕𝑡 = 𝜖𝛽𝑁𝐵 + 𝑁 + 𝜔𝑃 𝑃 − 𝜂𝑃 + 𝐷ଶଵ∇ଶ𝑁 + 𝐷ଶଶ∇ଶ𝑃, (84)

where 𝑡 is time; 𝑁 and 𝑃 are the densities of preys and predators; 𝛽 is a maximum 
consumption rate; 𝐵 is a saturation constant; 𝑤 is a predator interference parameter; 𝜂 represents the per capita predator death rate; and 𝜖 is the conversion efficiency of 
food into offspring. Nonzero initial conditions 𝑁(𝑥, 𝑦, 0) > 0; 𝑃(𝑥, 𝑦, 0) > 0 are set 
in a rectangular domain with periodic boundary conditions. The following set 𝐷ଵଵ = 
0.01, 𝐷ଵଶ =0.0115, 𝐷ଶଵ =0.01, 𝐷ଶଶ =1, 𝑟 = 0.5, 𝜖 = 1, 𝛽 = 0.6, 𝐾 = 2.6, 𝑤 = 0.4, 𝐵 = 
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0.3154 results in the evolution of a self-organizing pattern from the equilibrium 
point (𝑁∗, 𝑃∗) = (0.430580, 0.718555) which is perturbed by small random 
perturbation (Saunoriene et al., 2011). The computational reconstruction of the 
evolution of a self-organizing pattern of preys from random initial conditions is 
illustrated in Fig. 4.4. 

 
Fig. 4.3. Evolution of row/column correlation and row/column LRS pseudo-order as 

parameter 𝑞 varies from 0 to 1. The left 𝑦-axis represents the row/column correlations 𝜌ு(𝑋). The right 𝑦-axis represents the row/column LRS-pseudo-order. 

 
Fig. 4.4. The evolution of self-organizing Beddington-DeAngelis type patterns. Digital 

images in parts a)-e) are shown at 0, 15000, 25000, 50000 and 70000 time forward steps 
accordingly. 

We repeat the computational experiments with a sequence of images 
representing the evolution of self-organizing patterns (Fig. 4.5) with 𝜀 set to 0.5. 
Now, the evolution of the entropy is very complex and nonmonotonous (Fig. 4.5). 
However, the computation of 2-LRS pseudo-orders reveals the hidden rules of the 
complexity variation during the evolution of the self-organizing pattern.  

Initially, the image is random – so 2-LRS pseudo-order for the image of noise 
is equal to (80, 80) (Fig. 4.5). Then, the self-organizing pattern starts to evolve, and 
the complexity of the image decreases – 2-LRS pseudo-order is equal to (16.6, 13.7) 
at 𝑡 = 15000 (the time step of time forward iteration is 0.01). However, the 
complexity of the image suddenly starts to increase again at 15000 ≤ 𝑡 ≤ 25000. 
Astonishingly, the complexity of the fully developed pattern is higher compared to 
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the complexity of pattern in the middle stage of development (2-LRS pseudo-order 
is equal to (24.2, 21.2) at 𝑡 = 70000). 

Such an effect can be explained by a rather simple (though not trivial) 
consideration. The fully developed pattern is not a regular pattern. The distribution 
of stripes (and the shapes of stripes) in the fully developed image are governed by a 
large scale spatial chaos law. We should note that this pattern is unique for every 
initial condition – different random initial conditions result in different patterns of 
stripes. 

 
Fig. 4.5. Evolution of entropy and row/column LRS pseudo-order of the 

Beddington-DeAngelis type self-organizing pattern for 70000 time-forward steps.  
The left 𝑦-axis represents the inverse of entropy 𝐻(𝑋). The right 𝑦-axis represents the 

inverse of the average row and column LRS-pseudo-order. 

The initial random conditions could be considered as small scale spatial chaos 
in that respect. However, it is interesting to observe that the evolution from small 
scale spatial chaos to large scale spatial chaos is not straightforward. First, random 
initial conditions evolve into a seemingly regular pattern of spatial waves. However, 
Turing instability (Murray, 2013) deforms these almost regular waves into a 
complex irregular pattern of large scale stripes. 2-LRS pseudo-orders allow efficient 
and clear visualization of these complex processes of transformation. 

Nonmonotonous effects are observed in the evolution of the row and column 
correlation (Fig. 4.6). Both row and column correlations reach a peak value of 
almost 1 at 𝑡 = 20000. After this peak, both correlations dip slightly but do not 
fluctuate: they maintain values above 0.98 in the interval 20000 < 𝑡 ≤ 70000. We 
should note that the values of row and column correlations do not differ significantly 
one from another during the evolution of the image. This situation is completely 
different for row and column pseudo orders – they do separate one from another. 
This feature enables to draw conclusions about the complexity of the digital image 
in the horizontal and vertical directions.  

Moreover, 2-LRS pseudo-orders exemplify the orientation of stripes in 
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self-organized patterns. The bricks are elongated along the horizontal axis in 
Fig. 4.1. Thus the period along the rows is longer, and the mean LRS-order of the 
rows is larger compared to the columns (Fig. 4.2). The same effect can be observed 
for self-organizing patterns (Fig. 4.4). Figures 4.5 and 4.6 demonstrate that the mean 
row LRS-order is larger compared to the mean column LRS-order. This implies that 
the pseudo-period along the rows in Fig. 4.4 is longer compared to the columns.  

 
Fig. 4.6. Evolution of row/column correlation and row/column LRS pseudo-order of the 

Beddington-DeAngelis type self-organizing pattern for 70000 time-forward steps.  
The left 𝑦-axis represents the row/column correlations 𝜌ு(𝑋). The right 𝑦-axis represents the 

average row/column LRS-pseudo-order. 

4.5. Optimal Time Period of Pattern Formation13 
Let us employ 2-LRS pseudo orders to estimate the complexity of the 

self-organizing patterns based on the spiral waves model presented in Section 1.2.4. 
The initial conditions and parameters for the pattern formation are set the same as in 
Fig. 1.10, except that the domain size is increased to 𝐿 = 200, and 𝜀, which is 
required to define the pseudo order of the row (column), is set to 0.5. The pattern 
evolution and the corresponding order are shown in Fig. 4.7. 

A pattern warm-up period continues till 𝑇 = 25, when the column order is 
decreasing because of the vertical initial conditions. After the wave caused by the 
initial conditions propagates away, the order of both the row and the column starts 
increasing. Between 𝑇 = 60 and 80, there is a short stable period induced by wave 
reflection from the boundaries of the pattern followed by the second increase 
interval when the brakeage all over the domain starts forming. Since 𝑇 = 120, the 
                                                      
 
13 The results presented in this section have been published as: 

Image Hiding in Dynamic Unstable Self-Organizing Patterns. 
Vaidelys M., Lu C., Cheng Y., Vaideliene G. 
Copyright © 2017 JVE International Ltd. 
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formation of the pattern is almost complete, but the order is still slowly increasing; 
and, finally, at 𝑇 = 140, the pattern is complete. The subsequent interactions of the 
waves do not increase the complexity of the pattern, thus 𝑇 = 140 is the optimal 
time-period required to prepare the pattern. Similar pattern complexity with respect 
to each spatial coordinate guarantees no horizontal or vertical directionality. 

The 2-LRS based pattern complexity estimation can help finding an optimal 
pattern computational time-period. The optimal time-period 𝑇 = 140 is close to the 
one used in Section 2.3.3 where 𝑇 = 145 was selected upon visually inspecting many 
patterns. A 2-LRS estimator can eliminate the need for human inspection of the 
pattern and even make the pattern evolution shorter (Vaidelys et al., 2017a). 

 
Fig. 4.7. The complexity of an evolving pattern in time.  

Maximum pattern complexity is reached at 𝑇 = 140. 

4.6. Concluding Remarks 
The practical application of the order of a 2D sequence is presented in this 

section. It has been demonstrated that, while using the SVD, the concept of 2-LRS 
can be successfully applied for the analysis of image complexity. Because of the 
ability to measure complexity along the 𝑥 and 𝑦 axes, the row and the column 
2-LRS pseudo-orders provide a deeper insight into the complexity of images 
compared with Shannon entropy. 

2-LRS can also be used to analyze self-organizing patterns. It is shown that, 
unlike Shannon entropy, 2-LRS pseudo-order can be applied to detect the formation 
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of almost regular patterns which evolve from small scale spatial chaos and deform 
due to Turing instability as time moves forward and large scale spatial chaos 
appears. This advantage can be used to determine the optimal timing for the perfect 
pattern formation. 
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5. CONCLUSIONS 

1. It was demonstrated that self-organizing patterns can be used to conceal 
secret images and enable a secure communication scheme. Three communication 
schemes based on competitively and non-diffusively coupled nonlinear maps, an 
atrial fibrillation model and breaking spiral waves were developed, which helped 
overcome most of the drawbacks observed in previous implementations. 

2. The scheme based on breaking spiral waves proved to feature additional 
advantages. Firstly, no keys (private or public) which would determine the 
generation of the initial random conditions are required; secondly, it appears that 
perturbation, which is made in the middle of the pattern formation process, is 
sensitive to the geometrical locations of the traveling fronts of the breakup waves. 
To control the pattern formation, an adaptive perturbation technique is required, 
which adds a novel and additional security level. Despite the required adaptive 
perturbation procedure, the decoding of the secret image remains as simple and 
straightforward as before. 

3. An image encoding scheme in deformable one-dimensional harmonic moiré 
gratings oscillating according to a predefined Eigen-mode is developed and 
implemented for the construction of two-dimensional digital dichotomous secret 
images. The secret is leaked from the cover image when it is oscillated according to 
a predefined Eigen-mode in a form of a pattern of time-averaged moiré fringes.  

4. The main problem pertaining to the scheme is the formation of a moiré 
grating with a harmonic variation of grayscale levels on the surface of a deformable 
structure, which becomes a challenging technological problem in practical 
applications. Thus the formation of cover images based on Ronchi-type moiré 
grating is introduced. The resulting image communication scheme mimics the 
physical processes and could be implemented, e.g., in the optical control of MOEMS 
(micro-opto-electro-mechanical systems). 

5. It was demonstrated that, by using the SVD, the concept of 2-LRS can be 
successfully applied for the analysis of the image as well as self-organizing pattern 
complexity. Because of the ability to measure the complexity along the 𝑥- and 𝑦-axis, the row and column 2-LRS pseudo-orders provide a deeper insight into the 
complexity of images compared with Shannon entropy. Unlike Shannon entropy or 
row/column correlation, 2-LRS pseudo-order can be applied to detect the formation 
of almost regular patterns that evolve from small scale spatial chaos and deform due 
to Turing instability as time moves forward when large scale spatial chaos appears, 
which is an important criterion of the pattern formation when seeking to ensure the 
creation of a steganographically secure pattern. 
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