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Abstract. The genetic information in cells is stored in DNA sequences, represented by a string
of four letters, each corresponding to a definite type of nucleotides. Genomic DNA sequences are
very abundant in periodic patterns, which play important biological roles. The complexity of ge-
netic sequences can be estimated using the information-theoretic methods. Low complexity regions
are of particular interest to genome researchers, because they indicate to sequence repeats and pat-
terns. In this paper, the complexity of genetic sequences is estimated using Shannon entropy, Rényi
entropy and relative Kolmogorov complexity. The structural complexity based on periodicities is
analyzed using the autocorrelation function and time delayed mutual information. As a case study,
we analyze human 22nd chromosome and identify 3 and 49 bp periodicities.
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1. Introduction

The genetic information in cells is stored in DNA sequences, represented by a string
of four letters, each corresponding to a definite type of nucleotides: adenine (A), gua-
nine (G), cytosine (C), and thymine (T). These letters can form different combina-
tions. The analysis of genetic sequences is one of the primary tasks of bioinformat-
ics. These sequences can be analyzed using applied mathematics, statistical, linguis-
tic, digital signal processing, etc., methods to enable finding and marking the genes
and other biological features in a DNA sequence, understand genome evolution, predict
gene expression, compare genomes and study evolutionary relationships between organ-
isms.

Although much research has been done in this area, still the function and pur-
pose of much of the DNA sequences is not fully understood. For example, over 95%
of DNA of the human genome has been designated as “junk” (Nowak, 1994). While
much of this sequence may be an evolutionary artifact that serves no present-day pur-
pose, some is believed to function in ways that are not currently understood. There-
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fore, the analysis of structural complexity features of DNA sequences, such as re-
peats (Herzel et al., 1994; Holste et al., 2003), motifs (Hancock and Armstrong, 1994),
patterns (Freeman et al., 1998; Larsabal and Danchin, 2005), periodicities (Herzel
et al., 1999; Fukushima et al., 2001) and long-range correlations (Li and Kaneko,
1992; Mansilla et al., 2004) is considered as an important task of computational ge-
nomics.

Complexity of a symbolic sequence reflects an inability to represent a sequence in a
compact form based on some structural features of this sequence. To evaluate complexity
of DNA sequences, several groups of methods have been developed: entropy measures
(Schurmann and Grassberger, 1996; Schmitt and Herzel, 1997; Holste et al., 2001; Frap-
pat et al., 2003; Vinga and Almeida, 2004), Shannon information and divergence (Chang
et al., 2005; Chen et al., 2005), alphabetical symbol frequencies (Wootton and Federhen,
1996), evaluation of the n-grams, combinatorial complexity and linguistic complexity
(Mantegna et al., 1994; Troyanskaya et al., 2002), modifications of the Lempel and Ziv
complexity (Chen et al., 1999; Gusev et al., 2003), Hurst exponent (Yu and Anh, 2001),
fractal dimension (Cristea and Popescu, 2003), stochastic complexity (Orlov et al., 2002),
grammatical complexity (Jimenez-Montano et al., 2002), correlation information (Hou,
2007) and approaches based on Kolmogorov complexity and compression algorithms (Ad-
jeroh et al., 2002).

The other approach to the analysis of the DNA sequences is converting the symbolic
DNA sequences into digital signals and applying digital signal processing (DSP) methods
such as Fourier Transform (Lyshevski and Krueger, 2004), mutual information functions
(Herzel et al., 1998; Grosse et al., 2000; Holste et al., 2003), power spectra (Voss, 1992;
Li and Kaneko, 1992; Li, 1997; Fukushima et al., 2002), auto-correlation analysis (Az-
bel, 1995; Herzel et al., 1998; De Sousa Vieira, 1999; Larsabal and Danchin, 2005),
wavelet analysis (Berger and Mitra, 2002), and detrended fluctuation analysis (Peng et
al., 1995; Buldyrev et al., 1995). Application of the DSP methods for the analysis of
symbolic genomic sequences can reveal the features of genetic sequences that would be
difficult to grasp using standard statistical analysis and pattern matching methods.

The aim of this paper is to analyze methods for estimating complexity of genetic
sequences and to use these methods to determine the structural features of the ge-
netic sequences. For analysis, the human 22nd chromosome (Dunham et al., 1999;
NCBI) was selected. It was the first fully sequenced human chromosome, which is of-
ten used as a benchmark in DNA sequence research (see, e.g., Cristea and Popescu,
2003).

The structure of the paper is as follows. Section 2 discusses the complexity of ge-
netic sequences, its definition, related concepts and specific types of complexity in DNA
sequences. Section 3 describes the complexity metrics used in this research. Section 4
presents an analysis of the human 22nd chromosome using information-theoretic and
frequency analysis methods. Section 5 evaluates the results. Finally, Section 6 presents
the conclusions.
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2. Complexity of Genetic Sequences

2.1. What is Complexity?

Complexity has proven to be a difficult concept to define. Different researchers use very
different definitions of complexity, and there are still no single agreed-upon definition.
Complexity of a system usually means that we cannot represent it in a short, comprehen-
sive description. Its opposite is simplicity – the ability of some general method of analysis
to express the content of a system in a short (compressed) form.

In general, the concept of complexity is related to such concepts as order, organiza-
tion, meaning, randomness, redundancy, compressibility and information. A finite-state
sequence is said to be random if all states have equal probabilities at all sequence po-
sitions. Thus, the random sequence has no recognizable meaning, structure, patterns or
order. Such random sequence is not compressible, which may indicate high complexity.
When a sequence contains some repeating patterns, some degree of redundancy emerges,
and a sequence becomes more ordered and less complex. Highly-complex systems ex-
hibit a hierarchical internal structure with fractal-like repeating fragments. The existence
of repeating fragments allows the sequence to be more compressible. Highly redundant
sequence, which contains a great number of simple repeating patterns, is highly ordered,
and compressible, but has low complexity. Summarizing, complexity represents a state
of an object (e.g., sequence) between order and randomness, which is related to a high
number of repeating patterns organized in a complex structure.

The most fundamental type of complexity is informational complexity. It is funda-
mental in the sense that anything that is complex in any way also must be informationally
complex. A complex object requires more information to specify it than a simple one.
The most distinguishing property of a complex system is its high information content.
In that sense, a highly-complex sequence may be undistinguishable from a random se-
quence: the fact that we cannot recognize the structural organization of a sequence does
not mean that there is no such. Thus, the informational complexity of a sequence ulti-
mately depends upon its meaning to the external observer, i.e., the amount of information
that can be extracted from the sequence. If the observer cannot extract any information
from the sequence, then its information content (and complexity) is low. If the observer
recognizes the meaning of the sequence and extracts some useful information, the in-
formational complexity of the sequence may be proportional to the amount of extracted
information. In other words, randomness and informational complexity of the sequence
is relative to the capacity of the observer to find a “meaning” in the analyzed sequence
(Crisan, 2004).

2.2. Complexity of DNA

Any DNA sequence looks like a text written in an unknown language, which is encoded
in a 4-letter alphabet {A, C, G, T}. Each letter in this text corresponds to a DNA base
pair: A – adenine, C – cytosine, G – guanine, and T – thymine. Despite the simplicity of
its alphabet, DNA exhibits a great degree of complexity.
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Genomic DNA sequence is very abundant in periodic patterns (e.g., isochores, in-
tergenic sequences, CpG islands, LINE (long interspersed elements) and SINE (short
interspersed elements) repeats, genes, exons, introns, tandem repeats, variable number
tandem repeats, Alu repeats, bend sites, satellite DNA, interstitial telomeric sequences,
and long-range correlations), which play important biological roles, such as gene expres-
sion, genome structural stabilization, and recombination (Buldyrev et al., 1995). A tan-
dem repeat is a type of periodic patterns, when a pattern of two or more nucleotides is
repeated and the repetitions are directly adjacent to each other. Tandem repeats are re-
lated to several genetic diseases. A variable number tandem repeat is a short nucleotide
sequence ranging from 14 to 100 nucleotides long that is organized into clusters of tan-
dem repeats, usually repeated in the range of between 4 and 40 times per occurrence.
Each of these structural elements has its different size distribution, nucleotide frequen-
cies, and laws of molecular evolution, so the correlations in the DNA sequence have very
complex structure, and are different for different species.

The analysis of statistical patterns in DNA sequences is important, since correlations
may reflect biologically significant features of primary structures. Among the short-
range periodicities that have strong biological significance the most important one is
f −1 = 3 bp (bp = base pairs), which is easily found in the genomes of all prokary-
otes and lower eukaryotes, but appears very dimly in the genomes of higher eukary-
otes due to low gene density in their genomes. This periodicity indicates the presence
of protein-coding genes in genomes, and can be used to distinguish between the cod-
ing and non-coding DNA sequences. The other important periodicity has a mean value
of f −1 = 10.5 bp and reflects DNA bendability and secondary structure of proteins
(Fukushima et al., 2002). Periodicities of f −1 = 102 bp can be explained by the nucle-
osomal structure in eukaryotes. Periodicities of about f −1 = 106 bp are a well-known
biological phenomenon related to the presence of isochores (regions of DNA with rela-
tively high G + C content; Buldyrev et al., 1995). Next significant periodicities at about
f −1 = 135 bp, f −1 = 165 bp and f −1 = 300 bp are related to Alu sequences, which do
not contain any coding sequences and can be recognized by the restriction enzyme AluI
(Holste et al., 2003).

The existence of structures at very large scales results in long-range correlations.
Long-range correlations extend over distances of hundreds of thousands to tens of mil-
lions of bp, i.e., up to the scale of whole chromosomes, and have a functional role in
the control of crossing-over and species separation (Peng et al., 1995). They also could
represent a trade-off between efficient information storage and protection against error in
the genetic code by adding some redundancy to the encoding. Long-range correlations
lack universality, i.e., they are different for different species. The periodicities of DNA
sequences are summarized in Table 1.

Genomic sequences contain numerous “layers” of information (Stanley et al., 1999).
These include specifications for mRNA sequences responsible for protein structure, iden-
tification of coding and non-coding parts of the sequence, information necessary for spec-
ification of regulatory (promoter, enhancer) sequences, information directing protein-
DNA interactions, directions for DNA packaging and unwinding. The genomic sequence
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Table 1

Periodicities in DNA sequences

Period (bp) Meaning References

3 Protein-coding genes Jimenez-Montano et al. (2002)

5–6 Telomeric/subtelomeric repeats Kim and Wu (1997)

10–11 DNA bendability (helical repeat structure) Fukushima et al. (2001)

Herzel et al. (1999)

48–50 Centromeric repeats Guy et al. (2003)

68 β satellite DNA Waye and Willard (1989)

102 Nucleosomal structure in eukaryotes Holste et al. (2003)

105–106 Isochores (DNA regions with low G + C content) Buldyrev et al. (1995)

∼135 Dimeric Alu repeat structure Holste et al. (2003)

∼165 Homopolymeric A-rich sequences within Alu repeats Holste et al. (2003)

171 α satellite DNA Haaf and Willard (1997)

∼300 Alu repeats Holste et al. (2003)

∼680 DNA bend sites Wada-Kiyama and Kiyama (1996)

is likely the most sophisticated and efficient information code created by nature through
the process of evolution. However, while means of encoding some of this information is
understood (e.g., the genetic code regulating amino acid assembly, directing intron/exon
splicing), still relatively little is known about other layers of information encrypted
in DNA.

According to Abel and Trevors (2005), DNA sequence complexity falls into three
categories: (1) random sequence complexity, (2) ordered sequence complexity, and (3)
functional sequence complexity.

(1) Random sequence complexity (in fact, sequence randomness) can be defined and
measured solely in terms of probabilistic combinatorics, e.g., in terms of Shannon en-
tropy. It has four components. (a) The number of “symbols” in the “alphabet” that could
potentially occupy each location of the sequence. (b) Equal probabilistic availability of
each “symbol” to each location. (c) The number of locations in the sequence. (d) Inde-
pendence of each symbol from prior symbols.

(2) Ordered sequence complexity is a linear string of elements linked in patterns. It
differs from random sequence complexity either by different probabilistic availability of
each “symbol” or by dependence (correlation) of symbols.

(3) Functional sequence complexity is a linear string of symbols, where each sym-
bol is a representation of a decision (selection) of a particular operation and a whole se-
quence can be defined as program (algorithm) for describing a certain sequence of actions
(events). DNA sequences are not merely complex sequences, but they are algorithmically
complex sequences, which could be analyzed not only as data, but also as programs.
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3. Complexity Metrics

The complexity metrics, which can be used to analyze DNA sequences, can be broadly
categorized into two groups: information-theoretic metrics (Shannon entropy, Rényi en-
tropy, Kolmogorov complexity) and frequency analysis metrics (time delayed mutual in-
formation and autocorrelation function).

3.1. Shannon Entropy

Treating a discrete information source (e.g., DNA sequence) as a Markov process, Shan-
non entropy H can be used to measure how much information is generated by such
process. The information source generates a series of symbols xi belonging to an al-
phabet with size N . If symbols xi are generated according to a known probability dis-
tribution p(xi), the entropy function H(X) of n-length sequence X = (x1, x2, . . . , xn),
xi ∈ {A, C, G, T} can be defined as

H(X) = −
n∑

i=1

p(xi) · log2 p(xi). (1)

Shannon entropy is a measure of the uncertainty associated with a random variable. If the
sequence consists of a series of symbols, entropy reaches a maximum, when the sequence
satisfies the statistical criterion that all possible subsequences should appear with roughly
equal probability and independent of prior options. In other words, entropy reaches ma-
ximum when the sequence is random. High entropy is an indicator of high randomness
of a sequence, i.e., of a “genetic noise” (non-coding DNA sequences). Low entropy of a
genomic sequence indicates low sequence complexity, which could be functionally im-
portant (Wan and Wootton, 2000; Chuzhanova et al., 2003). Low complexity regions
often containing some sequence repeats (Tautz et al., 1986).

If the probabilities of symbol types are not equal at any position in a string then
the information conveyed by the string is less than a maximum. The relative difference
between the theoretical maximum of entropy Hmax and the information contained in a
given string is called redundancy. Thus, redundancy is defined as

R = 1 − H

Hmax
. (2)

If redundancy is close to zero, the sequence is random.

3.2. Rényi Entropy

Rényi entropy is a generalization of Shannon entropy for quantifying the diversity, uncer-
tainty or randomness of a system. The Rényi entropy of order α, where α > 0, is defined
as

Hα(X) =
1

1 − α
log

( n∑
i=1

pα
i (xi)

)
, (3)
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where pi are the probabilities of xi ∈ {A, C, G, T}.
Second order Rényi entropy refers to the case α = 2, which is derived from Eq. (3)

as follows:

H2(X) = − log
n∑

i=1

p2
i (xi). (4)

The Rényi entropies are important in ecology and statistics as indices of diversity. They
also lead to a spectrum of indices of fractal dimension.

3.3. Kolmogorov Complexity

The main idea of Kolmogorov complexity is to measure the ‘complexity’ (i.e., informa-
tion content) of an object by the length of the smallest program that generates it (Li and
Vitanyi, 1997). In general case, we have a domain object X and a description system φ

that maps from a description w (i.e., a program) to this object. Kolmogorov complexity
Kφ(X) of an object X in the description system φ, is the length of the shortest program
in the description system φ capable of producing X on a universal computer such as a
Turing machine:

Kϕ(X) = min
w

{
‖w‖: ϕw = X

}
. (5)

Kolmogorov complexity Kφ(X) is the minimal quantity of information required to gen-
erate X by an algorithm, and is the ultimate lower bound of information content. Unfor-
tunately, it cannot be computed in the general case and must be approximated. Usually,
compression algorithms are used to give an upper bound to Kolmogorov complexity. Sup-
pose that we have a compression algorithm Ci. Then, a shortest compression of w in the
description system φ will give the upper bound to information content in X:

Kϕ(X) � C(X) := min
i

{
‖Ci‖, ϕCi = X

}
. (6)

The relative Kolmogorov complexity (or compressibility) of sequence X can be calcu-
lated as follows:

C̄(X) =
C(X)

‖X‖ , (7)

where ‖X‖ is the length of sequence X .
A sequence is considered random if it has no patterns and is incompressible

(C̄(X) ≈ 1), i.e., we cannot find a shorter algorithm for specifying it than the sequence
itself. If C̄(X) < 1, this indicates the existence of some repeated patterns in a sequence.

3.4. Autocorrelation

The autocorrelation function (ACF) of a process describes the correlation between the
parts of the process at different points in time (or position). Let Xt be the value of the
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Fig. 1. Behavior of ACF for the periodic, chaotic, and random sequences (Daw et al., 2003).

process at position t. If Xt has mean μ and variance σ2 then the theoretical ACF is defined
as follows:

R(t, s) =
E[(Xt − μ)(Xs − μ)]

σ2
, (8)

where E is the expected value operator.
If the statistical characteristics of Xt remain constant over time then the ACF depends

only on the difference between t and s and can be expressed as a function R(k) of a single
variable k. This function R(k) is an estimate of the theoretical ACF defined in Eq. (8)
and is calculated as follows:

R(k) =
1

(n − k)σ2

n−k∑
t=1

[Xt − μ] [Xt+k − μ] (9)

for any positive integer k < n, where k is the lag, and n is the length of the data series.
To calculate the ACF, the genomic data must be digitized first, i.e., the symbolic al-

phabet of 4 letters {A, C, G, T} must be converted to binary alphabet of 2 symbols {0, 1},
and whole sequence is treated as time series.

The typical behavior of the ACF for periodic, chaotic, and random sequences is pre-
sented in Fig. 1. For the random sequence, the ACF has a sharp peak at lag = 0, and
the ACF value is almost zero for other lag values, indicating lack of correlation. For the
chaotic sequence, the value of the ACF decays to a zero value after a finite lag. For the
periodic sequence, the ACF has peaks, which correspond to certain periodicities in the
data series (Daw et al., 2003). Here a chaotic sequence is understood as a non-random
sequence that appears to be random due to high sensitivity to nucleotide perturbations.

3.5. Time Delayed Mutual Information

The time delayed mutual information (TDMI) function (Fraser and Swinney, 1986) unlike
the autocorrelation function also takes into account the non-linear correlations in the data
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Fig. 2. Behavior of TDMI for the periodic, chaotic, and random sequences (Daw et al., 2003).

series:

S = −
∑
ij

pij(τ) ln
pij(τ)
pipj

, (10)

where pi is the probability to find a series value x in the i-th interval [xi, xi+1], and pij(τ)
is the joint probability that an observation falls into the i-th interval and the observation
later, after delay (lag)τ , falls into the j-th interval.

The typical behavior of the TDMI function for periodic, chaotic, and random se-
quences is presented in Fig. 2. For the random sequence, the TDMI function has a sharp
peak at lag = 0, and the TDMI value is almost zero for other lag values. For the chaotic
sequence, the value of TDMI slowly decays to a zero value after a finite time. For the
periodic sequence, the TDMI function shows peaks, which correspond to certain natural
periodicities in the data series (Daw et al., 2003).

4. Case Study: Analysis of the Human 22nd Chromosome

In a case study, we analyze DNA sequence of the human 22nd chromosome. The main
properties of the 22nd chromosome are given in Table 2 (acc. to Holste et al., 2001).

For analysis of the DNA sequence using Shannon entropy, the DNA sequence was
split into 1000, 2000, 5000 and 10,000 bp windows, and Shannon entropy was calculated
for each window using Eq. (1). The results were plotted against DNA sequence bp (see
Fig. 3). Note that here for representation purposes DNA sequence bp is given for contigu-
ous regions (DNA segments derived from a single genetic source) only (sequence gaps
are excluded).

The graphs show that most of the DNA sequence fragments have entropy values
close to 2 bits, which is maximum entropy for a message consisting of 4-letter alphabet
(log2(4) = 2). It means that the distribution of symbols within such fragments is close
to random and these fragments can be attributed to the non-coding regions of the DNA
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Table 2

Main properties of human 22nd chromosome

Feature Value

Length 33.8 × 106

(contiguous regions only)

G + C content 48%

Genes 546

Repeats 42%

No. of Alu repeats 22659

Alu repeats 17%

Fig. 3. Shannon entropy of DNA sequence: window size is (a) 1000 bp, (b) 2000 bp, (c) 5000 bp, and
(d) 10,000 bp.

sequence (“genetic noise” or “junk DNA”). The regions, where entropy is significantly
lower than 2 bits, point to lower complexity of the sequence. This lower entropy might
be explained by unequal probabilities (non-uniform distribution) of nucleotides caused
by repeats or patterns. Larger window size allows to smooth entropy graph and to isolate
larger fragments with anomalous distribution of nucleotides.
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For the entropy analysis of the DNA sequence using Rényi entropy, the DNA sequence
was also split into 1000, 2000, 5000 and 10,000 bp windows, and the second-order Rényi
entropy was calculated for each window using Eq. (4). The results were plotted against
DNA sequence bp (see Fig. 4). The graphs show that similarly to Shannon entropy, most
of the DNA sequence fragments have entropy values close to 2 bits. However, Rényi
entropy is much more sensitive to lower complexity regions, which allows identifying
them more easily.

For the estimation of relative Kolmogorov complexity, we use a zzip compressor
that implements a version of Burrows-Wheeler Transform (BWT) algorithm, which is
a block-sorting algorithm particularly suitable for compressing text information. The
DNA sequence was split into 1000, 2000, 5000 and 10,000 bp windows, which were
compressed, the compressibility of the sequence was calculated using Eq. (7) and the
results presented in Fig. 5. The theoretical maximum of the metric is 0.25, because
8-bit text symbols can be compressed to 2 bits, i.e., we can achieve a compression factor
of 4. In practice, the compressibility values can be higher than 0.25 due to the compres-
sion overhead. For regions with low complexity and repeating patterns of nucleotides,
relative Kolmogorov complexity can be as much as 2 times lower than a maximal value
(see Fig. 5a). Furthermore, the established regions with low complexity are not the same
regions as were obtained using Shannon and Rényi entropies.

Fig. 4. Rényi entropy of DNA sequence: window size is (a) 1000 bp, (b) 2000 bp, (c) 5000 bp, (d) 10,000 bp.
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Fig. 5. Relative Kolmogorov complexity of DNA sequence: window size (a) 1000 bp, (b) 2000 bp, (c) 5000 bp,
(d) 10,000 bp.

The comparison of results obtained using the information-theoretic metrics is given
in Table 3.

Next, we perform the frequency analysis of the DNA sequence. The sequence was
converted into binary code using simple mapping rules {A, T} → 1 and{G, C} → 0.

Table 3

Summary of DNA analysis using information-theoretic metrics

Metric Min. value in sequence fragment, when window size is

1000 bp 2000 bp 5000 bp 10,000 bp

Shannon (4,358,000–4,359,000) (3,950,000–3,952,000) (2,515,000–2,520,000) (840,000–850,000)
entropy 1.2706 1.3850 1.6647 1.7755

Rényi (2,520,000–2,521,000) (3,950,000–3,952,000) (2,515,000–2,520,000) (840,000–850,000)
entropy 1.1517 1.2061 1.4866 1.6641

Relative (659,000–660,000) (478,000–500,000) (545,000–550,000) (590,000–600,000)
Kolmogorov 0.1343 0.1447 0.1497 1.1744
complexity
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Then, Eq. (9) and Eq. (10) were used to calculate the ACF and TDMI values, which were
plotted against different lags (see Fig. 6). The results show that the entire DNA sequence
is not random, however the data series has a chaotic behavior with exponentially decaying
ACF and TDMI values. Only a periodicity of f −1 = 3 bp could be identified for sure.

Therefore, the straightforward application of the frequency analysis methods is not
beneficial, because the entire DNA sequence consists of many regions with different pe-
riodicities, which suppress each other and as a result, only the chaotic behavior of the
sequence could be established. For deeper analysis, we must select smaller DNA regions.

Fur further analysis, based on Table 3 we select two interesting regions: (1)
3,900,000–4,000,000 bp (for simplicity, we denote it as Region 1); and (2) 600,000–
700,000 bp (Region 2). The size of both regions is 100 Kbp. Region 1 was established
using both Shannon and Rényi entropy, while Region 2 was established using relative
Kolmogorov complexity. The results of the frequency analysis of Regions 1 and 2 are
presented in Figs. 7 and 8, respectively.

In Fig. 7, a periodicity of f −1 = 3 bp is clearly seen, as both the autocorrelation
function and time delayed mutual information (TDMI) have maximal values at multiples
of 3 bp (3, 6, 9 bp, etc.) It means that the analyzed fragment likely contains the protein
coding DNA sequence, i.e., the gene(s).

Fig. 6. Autocorrelation (left) and time delayed mutual information (right) of the entire DNA sequence.

Fig. 7. Analysis of DNA Region 1: autocorrelation (left) and TDMI (right).
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Fig. 8. Analysis of DNA Region 2: autocorrelation (left) and TDMI (right).

In Fig. 8, the periodicities of f −1 = 5 bp, which is characteristic to subtelomere
repeats, and f −1 = 49 bp (and its multiples: 98 bp, 147 bp, 196 bp, . . .) are clearly seen,
which means that this DNA sequence fragment can be attributed to a peri-centromeric
region. This region has no noticeable f −1 = 3 bp periodicity. Therefore, we can assume
that this sequence fragment contains no or very few protein coding genes.

5. Evaluation of Results

We can compare our analysis results with the actual database annotations of the 22nd
chromosome sequence given in the NCBI database (NCBI).

Region 1 (actual sequence position with gaps included: 18,480,000–18,580,000 bp)
contains 3 genes (RANBP1, ZDHHC8 and LOC388849), which in total have 37,289 bp
length, i.e., they occupy more than 37% of Region 1. That also confirms our analysis
results that this DNA sequence fragment is rich in protein-coding genes.

Region 2 (actual sequence position with gaps included: 15,030,000–15,280,000 bp)
contains only 1 gene (ABCD1P4), which is only 782 bp length, i.e., it occupies less than
0.8% of Region 2. That confirms our analysis results that this DNA sequence fragment is
poor in protein-coding genes.

Furthermore, Region 2 is close to the centromere of the chromosome as predicted by
our analysis results. The centromere is the thinnest region of a chromosome that plays a
role in cellular division and the control of gene expression. The centromere has no defined
DNA sequence, and it typically consists of large arrays of repetitive DNA (e.g., satellite
DNA), which can be detected using frequency analysis of DNA sequence.

Region 2 also belongs to the subtelomere of the 22nd chromosome. The subtelomeric
region is the chromosomal region just proximal to the telomere (the end of the chromo-
some) and composed of highly polymorphic repetitive DNA sequences that are typically
situated adjacent to the gene-rich areas. Identification of the subtelomeric regions is very
important, because mutations in these regions can cause mental retardation.
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6. Conclusions

Genetic sequences have very complex structure with different regions, which have differ-
ent periodicities or exhibit random behavior. The analysis of such sequences cannot be
performed with satisfactory results using a single method. Therefore, a combination of
different methods should be used. This paper proposes to analyze the DNA sequences in
two stages.

First, the information-theoretic methods (Shannon entropy, Rényi entropy, relative
Kolmogorov complexity) can be used to estimate their randomness or, inversely, their
repeatability and to detect smaller regions of particular interest (with lower complexity).
The results of a case study show that both coding and non-coding sequences can have low
complexity; and relative Kolmogorov complexity and entropies can establish different
low complexity regions. However, the information-theoretic methods do not measure the
structural organization of the sequence.

Second, the identified regions with low complexity can be further analyzed using the
frequency analysis methods such as autocorrelation or time delayed mutual information.
The latter methods allow detecting specific periodicities and other important structural
features of the DNA sequences such as telomers, subtelomers or gene-rich fragments.
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Genetini ↪u sek ↪u sudėtingumo ↪ivertinimas naudojant informacijos
teorijos ir dažni ↪u analizės metodus

Robertas DAMAŠEVIČIUS

Genetinė informacija l ↪astelėse saugoma DNR sekoje, kuri yra užrašoma kaip iš keturi ↪u skirting ↪u
nukleotid ↪u tip ↪u simboli ↪u sudaryta eilutė (seka). Genetinėse sekose gausu pasikartojim ↪u, kurie yra
biologiškai svarbūs. Genetini ↪u sek ↪u sudėtingum ↪a galima ↪ivertinti naudojant informacijos teorijos
metodus. Žemo DNR sekos regiono sudėtingumas rodo, kad jame yra pasikartojanči ↪u sekos frag-
ment ↪u. Šiame straipsnyje genetini ↪u sek ↪u sudėtingumas yra ↪ivertinamas naudojant Šenono entropij ↪a,
Renyi entropij ↪a ir santykin↪i Kolmogorovo sudėtingum ↪a. Struktūrinis sek ↪u sudėtingumas yra anali-
zuojamas naudojant autokoreliacijos funkcij ↪a ir uždelst ↪a bendr ↪aj ↪a informacij ↪a. Šios metrikos taiko-
mos žmogaus 22-osios chromosomos genetinės sekos tyrimui.


