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Abstract. The asymmetric cipher protocol, based on decomposition problem in matrix semiring M
over semiring of natural numbers N is presented. The security of presented cipher protocol is based
on matrix decomposition problem (MDP), which is linked to the problem of solution of multivariate
polynomial system of equations. Compromitation of proposed scheme relies on the solution of
system of multivariate polynomial system of equations over the semiring of natural numbers N .
The security parameters are defined, security analysis and implementation is presented.
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1. Introduction

In recent years the public key cryptosystems are spreading into some application areas
such as smart cards and e-commerce. There are some new results in the field of key
exchange protocols and authentication schemes (Liu and Huang, 2010; Yoon and Yoo,
2009; Tseng, 2008). But nevertheless the asymmetric ciphers implementation in such a
memory and computational power restricted devices seems to be also perspective. Except
the smart cards the other examples of public key cryptosystems application can be con-
sidered. Among them are the mobile phones for the secret mobile communications. It is
desirable to avoid the arithmetical operations with large integers in such a computational
power restricted devices since they require a special co-processors.

In this paper we consider just another approach to construct the asymmetric cipher
avoiding the arithmetical operations with large integers.

The asymmetric cipher constructing must be based on certain one-way function. Ac-
cording to general definition, OWF is a function, when computing its value for any argu-
ment is easy, but its inversion is not, i.e., this problem is intractable. Hence the security
of asymmetric cipher relies on the complexity of OWF inversion.

New ideas in public key cryptography using hard problems in infinite non-commutative
groups and semigroups appeared in Sidelnikov et al. (1993). One realization of these
ideas appeared in Ko et al. (2000), using the braid group as a platform. The security of
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this cryptosystem was based on conjugator search problem. But according Shpilrain and
Ushakov (2004) this approach is not sufficient and necessary to achieve proper security.

Lately the idea to use matrix group conjugacy problem together with matrix discrete
logarithm problem for the one way function construction is presented in Sakalauskas
et al. (2007).

We propose to construct new asymmetric cipher using decomposition (double coset)
problem in matrix semiring M over the semiring N of natural numbers. We will make a
conjecture supported by our analysis, that this decomposition problem is intractable and
hence is a candidate to be as OWF.

In this paper we analyze security aspects of decomposition (double coset) problem in
matrix semiring M over the semiring N of natural numbers.

The construction of asymmetric cipher protocol with a brief mathematical background
is presented in Section 2.

Section 3 provides considerations on the security analysis and implementation issue.
The main conclusions about security analysis and implementation of proposed algo-

rithms are outlined in Section 4.

2. Asymmetric Cipher Protocol

We consider an infinite multiplicative matrix semiring M over the semiring of natural
numbers N = {0, 1, 2, . . .}. The elements of M are m-dimensional square matrices
with entries in N . Let P = {pi()} is a set of all polynomials over N . Then the subset
ML ⊂ M we define as a set of all matrices of all polynomial functions in P with
argument ML ∈ ML and MR ⊂ M as a set of all polynomials functions with arguments
MR ∈ MR. In other words MR and ML are generated by ML and MR respectively,
using polynomials functions from P .

Hence for some non-commutating matrices ML and MR in M we can construct two
subsets ML and MR of mutually commutating matrices respectively. Implicitly these
sets can be defined as ML = {pi(ML) | pi() ∈ P } and MR = {pj(MR)|pj() ∈ P }.

Two pairs of mutual commuting matrices ML1, ML2 and MR1, MR2 must be ran-
domly generated in block diagonal form as follows:

ML1 =
(

L1 Θ
Θ l1I

)
, ML2 =

(
l2I Θ
Θ L2

)
,

MR1 =
(

R1 Θ
Θ r1I

)
, MR2 =

(
r2I Θ
Θ R2

)
. (1)

All block matrices Θ, L1, L2, R1, R2 and I are square matrices of dimension m/2.
Scalars l1, l2r1 and r2 are in N and are chosen at random. A Θ is matrix with all zero
elements, I is identity matrix with all zero elements except the main diagonal consisting
of unit elements. Matrices L1, L2, R1 and R2 are chosen at random with elements in N .
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To avoid arithmetic with big integers, the elements of these matrices should be bounded,
e.g., their values does not exceed some number r ∈ N , e.g., r = 9.

According to this special construction in (1) we have that two pairs of block diagonal
matrices ML1, ML2 and MR1, MR2 are mutually commuting due to its block diagonal
structure.

ML1ML2 = ML2ML1; MR1MR2 = MR2MR1. (2)

These identities could be easily verified. Mutually commuting are also matrices
ML1, MR2 and ML2, MR1, but this property is not used in our construction.

For example, randomly generated 4th order (m = 4) matrices in (1) with r = 4 could
be of the following form:

ML1 =

⎛
⎜⎜⎝

1 1 0 0
3 4 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠ , ML2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 4 2
0 0 4 3

⎞
⎟⎟⎠ ,

MR1 =

⎛
⎜⎜⎝

2 1 0 0
2 4 0 0
0 0 3 0
0 0 0 3

⎞
⎟⎟⎠ , MR2 =

⎛
⎜⎜⎝

4 0 0 0
0 4 0 0
0 0 3 2
0 0 3 1

⎞
⎟⎟⎠ .

Using randomly generated matrices ML1, ML2 and MR1, MR2 of the form (1), the
following polynomial matrices can be calculated:

X = pX1(ML1) · pX2(ML2), (3)

Y = pY 1(MR1) · pY 2(MR2), (4)

U = pU1(ML1) · pU2(ML2), (5)

V = pV 1(MR1) · pV 2(MR2). (6)

where, as mentioned above, all polynomials are in P . All coefficients a1 = (a10, a11, . . . ,

a1n), a2 = (a20, a21, . . . , a2n), b1 = (b10, b11, . . . , b1n), b2 = (b20, b21, . . . , b2n),
c1 = (c10, c11, . . . , c1n), c2 = (c20, c21, . . . , c2n), d1 = (d10, d11, . . . , d1n), d2 =
(d20, d21, . . . , d2n) of polynomials pX1, pX2, pY 1, pY 2, pU1, pU2, pV 1, pV 2 are gener-
ated at random in N . For generation process their values should be bounded, i.e., their
values do not exceed some number s ∈ N .

It can be easily verified, that matrices X, U and Y, V are commuting: XU = UX ,
and Y V = V Y . Since due to special form of matrices ML1, ML2 and MR1, MR2, the
following identities takes place

XU = pX1

(
ML1

)
· pX2

(
ML2

)
· pU1

(
ML1

)
· pU2

(
ML2

)
=

n∑
i=0

a1iM
i
L1 ·

n∑
j=0

a2jM
j
L2 ·

n∑
k=0

c1kMk
L1 ·

n∑
l=0

c2lM
l
L2
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=
n∑

i,j,k,l=0

( X︷ ︸︸ ︷
a1iM

i
L1 · a2jM

j
L2 ·

U︷ ︸︸ ︷
c1kMk

L1 · c2lM
l
L2

)

=
n∑

i,j,k,l=0

( U︷ ︸︸ ︷
c1kMk

L1 · c2lM
l
L2 ·

X︷ ︸︸ ︷
a1iM

i
L1 · a2jM

j
L2

)

=
n∑

k=0

c1kMk
L1 ·

n∑
l=0

c2lM
l
L2 ·

n∑
i=0

a1iM
i
L1 ·

n∑
j=0

a2jM
j
L2

= pU1

(
ML1

)
· pU2

(
ML2

)
· pX1

(
ML1

)
· pX2

(
ML2

)
= UX.

For the protocol construction we choose any fulfilled square m-dimensional matrix Q

in M. We choose also at random secret vectors of polynomials’ coefficients and calculate
matrices X ∈ ML and Y ∈ MR by formulas (3), (4). Then compute matrix:

A = XQY. (7)

The asymmetric cipher public parameters we declare: sets M and P , and matrices
ML1, ML2, MR1, MR2. For the public key (PuK) we can define the matrices A and Q

and for the private key (PrK) consist matrices X and Y . In brief these keys we denote by
PuK = {A, Q} and PrK = {X, Y } correspondingly.

By introducing matrices ML1, ML2, MR1 and MR2 in such a special way, we achieve
not only the required commutation condition but we can also reduce the length of private
key (PrK). Instead of storage matrices X and Y , represented by its elements, it is enough
to store the coefficients of polynomials pX1, pX2, pY 1, pY 2. Then for the ciphering pro-
cedure matrices X and Y must be computed using (3) and (4). This has some sense since
PrK must be carefully stored in some memory restricted electronic device. Then instead
of storing matrices X, Y with 2m2 its elements in N , we can store the only 4 (n + 1)
numbers in N , representing the coefficients of polynomials pX1, pX2, pY 1, pY 2.

The recommended secure key lengths are presented below in Section 3.
We present below the estimated number of operation to compute the matrix A. Let

the multiplication of two matrices can be performed by the O(m3) time algorithm, where
m is a matrix order. According to (3), (4) and (7) for the computation of matrix A it is
required to compute matrix X and Y . Since they are the polynomial functions of matrices
ML1, ML2, MR1, MR2 then assuming that the order of polynomials is n the asymptotic
time of computing both X and Y is O(nm3/4).

Then computation of matrix A can be performed by the O(nm3/2) time algorithm.

EXAMPLE 1. For a generation PuK and PrK we choose an artificially small the fol-
lowing initial parameters: m = 4, n = 2, s = 3, r = 3. We generate at ran-
dom the following matrices ML1, ML2, MR1, MR2, Q and coefficient of polynomials
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a1 = (a10, a11, a13), a2 = (a20, a21, a23), b1 = (b10, b11, b13), b2 = (b20, b21, b23):

ML1 =

⎛
⎜⎜⎝

1 1 0 0
3 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , ML2 =

⎛
⎜⎜⎝

3 0 0 0
0 3 0 0
0 0 3 3
0 0 1 3

⎞
⎟⎟⎠ ,

MR1 =

⎛
⎜⎜⎝

3 1 0 0
3 1 0 0
0 0 3 0
0 0 0 3

⎞
⎟⎟⎠ , MR2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 2
0 0 2 1

⎞
⎟⎟⎠ ,

Q =

⎛
⎜⎜⎝

2 2 3 1
1 1 2 1
1 2 1 3
1 1 1 1

⎞
⎟⎟⎠ ,

a1 =
(

0 2 3
)
, a2 =

(
1 0 2

)
,

b1 =
(

1 2 2
)
, b2 =

(
0 0 1

)

With generated variables we can compute X, Y by (3), (4) and then A by (7):

X = pX1 (ML1) · pX2 (ML2) =

⎛
⎜⎜⎝

2090 1210 0 0
3630 2090 0 0

0 0 545 900
0 0 300 545

⎞
⎟⎟⎠ ,

Y = pY 1 (MR1) · pY 2 (MR2) =

⎛
⎜⎜⎝

121 40 0 0
120 41 0 0
0 0 949 1022
0 0 1022 949

⎞
⎟⎟⎠ ,

A = XQY =

⎛
⎜⎜⎝

1613040 930600 289735 486445
1607320 927300 289190 485545
14718990 8487710 2234895 3882505
14718990 8640280 2278695 3962075

⎞
⎟⎟⎠ .

With this toy example we are able to encrypt to encrypt more than 400 bits information
since the matrix A is represented by 400 bits.

To describe the ciphering processes we need to introduce the definition of encryp-
tor and decryptor operators, using two randomly chosen secret matrices U ∈ ML and
V ∈ MR. These matrices are calculated by formulas (5), (6) using polynomials with
randomly chosen secret coefficients.
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DEFINITION 1. Encryptor ε is an element in M, which is calculated by following equa-
tion:

ε = UAV. (8)

DEFINITION 2. Decryptor δ is an element in M, which is calculated by following equa-
tion:

δ = UQV. (9)

Since the finite elements of N can be transformed to the binary form, we define the
bitwise XOR operation in N for any finitely presented numbers.

DEFINITION 3. The bitwise XOR operation ⊕ of numbers in N is a sum modulo 2 of
bits of these numbers presented in binary form.

Let Alice wants to send Bob a message t, encrypted by asymmetric cipher. For en-
cryption Alice uses Bob’s public key PuK = {A, Q}. The decryption is provided by the
Bob’s private key PrK = {X, Y }.

At first, to encrypt a message t Alice must perform an encoding t by the set of finite
numbers in N and to form a m-dimension encoded matrix T , corresponding to t.

The asymmetric cipher encryption algorithm is the following:
Step 1: Alice takes ML1, ML2, MR1, MR2 matrices, chooses four polynomials in P

with secret random generated coefficients and using (5), (6) calculates matrices U and V .
Step 2: Alice takes Bob’s PuK and using (8) calculates encryptor ε.
Step 3: Alice calculates decryptor δ using (9) in a similar way.
Step 4: Alice obtains the cyphertext C computed by the formula:

C = ε ⊕ T = UAV ⊕ T. (10)

Step 5: Alice sends to Bob the following data D = (C, δ).

Decryption algorithm:
Bob gets data D = (C, δ) and using his private key PrK = {X, Y } calculates the

encoded plaintext T by equations:

XδY ⊕ C = T. (11)

The last equation is valid since the following identities holds

XU = UX and V Y = Y V ,

and

XδY ⊕ C = X (UQV ) Y ⊕ C = X (UQV ) Y ⊕ UAV ⊕ T

= XUQV Y ⊕ UXQY V ⊕ T = UXQY V ⊕ UXQY V ⊕ T = T.

Then Bob, using the known decoding procedure recovers the initial message t from T .
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3. Security Analysis and Implementation

The full system of equation available for the adversary to break the system is the follow-
ing matrix equations:

⎧⎨
⎩

XQY = A,

UQV = δ,

UAV ⊕ T = C.

Hence we have three matrix equations with five unknowns matrices X, Y, U, V

and T . In scalar form, we have 3m2 bi-quadratic equations with unknown coeffi-
cients (a10, a11, . . . , a1n), (a20, a21, . . . , a2n), (b10, b11, . . . , b1n), (b20, b21, . . . , b2n),
(c10, c11, . . . , c1n), (c20, c21, . . . , c2n), (d10, d11, . . . , d1n), (d20, d21, . . . , d2n), of poly-
nomials pX1, pX2, pY 1, pY 2, pU1, pU2, pV 1, pV 2 and unknown elements of encoded ma-
trix T . Hence by considering the above system of three matrix equations we have 8(n+1)
unknown polynomials coefficients and m2 encoded matrix T elements {tij }. In total we
have 8(n + 1) + m2 unknowns.

To solve this total system is too cumbersome and not required for the adversary since it
has too large number of equations and unknowns. We can see that the first matrix equation
is independent of other two equations and hence it can be considered independently. Let
as consider the second and the third system of matrix equations.

To decrypt C he (she) must find the exact matrix T and hence any two matrices U ′

and V ′, related with T . If adversary tries to find an arbitrary matrix T ′ and correspond-
ing arbitrary matrices U ′ ′, V ′ ′ this attack has no sense. If the adversary finds the exact
matrix T and any two matrices U ′ ′, V ′ ′ this attack does not totally break the system but
only decrypts the ciphertext C. Hence the solution of only second and third equations is
cumbersome and they must be solved for every ciphertext C.

For the total breaking of the system it is enough to solve the only first matrix equation
XQY = A and to find any unknown matrices X ′ and Y ′. This equation is independed
from other two equations since it has different unknowns and hence can be treated inde-
pendently of remaining other two matrix equations.

The adversary can concentrate his attempt to solve only this one matrix equation not
only to decrypt the ciphertext C, i.e., to find encoded matrix T but also to break totally
the system by finding other forged system’s private key X ′ and Y ′. This allows adversary
to decrypt any ciphertext C.

Hence we concentrate our attempt to this simplified method of attack.
According Garey and Johnson (1979) the solution of multivariate algebraic equations

in field is NP-complete problem. For further analysis we must define the matrix decom-
position problem (MDP), which is linked to the problem of solution of multivariate al-
gebraic equations. We will show that on the complexity of MDP relies the security of
proposed cipher algorithm.

DEFINITION 4. The computational matrix decomposition (or double coset) problem
(MDP) is to find any matrices X ′ and Y ′, when given matrices Q and A from the follow-
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ing equation:

X ′QY ′ = A. (12)

In addition to this MDP formulation the extra conditions to the matrices X ′, Y ′ are
introduced, i.e., the satisfiability of certain commutation conditions. For certain matrices
U, V the matrices X ′ and Y ′ must satisfy the commutation identities X ′U = UX ′ and
Y ′V = V Y ′.

The solution of (12) without any restriction to the matrices X ′ and Y ′ over the field
is trivial. Indeed if we choose any matrix Y ′ = Y0 then we can find the suitable matrix
X ′ by denoting QY0 = R and solving the following linear system of equations, written
in matrix form:

X ′R′ = A. (13)

We will consider the MDP problem, when (12) is defined over semiring N and com-
pare it with the MDP problem defined over finite ring and finite field.

Notice, that in any case if the matrices X ′ ∈ ML and Y ′ ∈ MR could be found, the
adversary can decrypt message, using the following identities:

X ′δY ′ ⊕ C = X ′(UQV )Y ′ ⊕ C = U(X ′QY ′)V ⊕ UAV ⊕ T

= UAV ⊕ UAV ⊕ T = T. (14)

DEFINITION 5. The decisional (YES/NO) MDP is to get an answer, if there are any
matrices X ′ and Y ′ in M satisfying (11) for given Q and A.

DEFINITION 6. The MDP is strong one way function (OWF) if either determination of
any X ′ is infeasible when given A, Q and Y ′ or determination of any Y ′ is infeasible
when given A, Q and X ′.

Security of cipher algorithm relies on the complexity of computational MDP. It
can be considered as a problem to find any vectors a′

1 = (a′
10, a

′
11, . . . , a

′
1n), a′

2 =
(a′

20, a
′
21, . . . , a

′
2n), b′

1 = (b′
11, b

′
12, . . . , b

′
1n) and b′

2 = (b′
21, b

′
22, . . . , b

′
2n) of coefficients

of polynomials pX1, pX2 and pY 1, pY 2 to compute the matrices X ′ and Y ′. In this case
system (12) can be rewritten in the following way:

X ′QY ′ =
∑

i,j,k,l

(a′
1ia

′
2jb

′
1kb′

2lM
i
L1M

j
L2QMk

R1M
l
R2). (15)

This matrix equation corresponds to the m × m system of polynomial equations with
fourth order unknown monomials denoted by a′

1ia
′
2jb

′
1kb′

2l. Hence there are m2 equations
and 4 (n + 1) unknowns in every equation. Depending on m2 and 4(n + 1) ratio, this
system is:

a) under defined, when m2 < 4(n + 1);
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b) equal defined, when m2 = 4(n + 1);
c) over defined, when m2 > 4(n + 1).
The proposed cipher’s algorithm depends on the following parameters:

– dimension m of matrices;
– maximum range r of matrices’ (ML1, ML2, MR1, MR2, Q) elements (the number

of digits for matrices element representation);
– maximum order n of polynomials;
– maximum range s of polynomials’ coefficients.

Hence security of proposed cipher algorithm is based the solution of system of multi-
variate equations of fourth order.

So far there is some known methods as Grobner bases, linearization, XL and XSL
that are dealing with a problem of solution of multivariate polynomial system of equa-
tions (Courtois et al., 2000; Courtois and Pieprzyk, 2002; Biryukov and Canniere, 2003;
Cid and Leurent, 2005). They efficiency depends on the concrete system properties and
hence these methods are mainly ad-hoc methods. Moreover, the problem of multivariate
polynomial system solution over the semiring is much worse than in case of the field and
the methods of solution are not known yet. In our cases we have a non-sparse system
of multivariate polynomial equations and hence we do not know any ideas on how to
effectively realize the methods listed above.

The one way to analyze the complexity of (12) system solution, we think is the es-
timation of number of possible solutions, i.e., to find the set {a1, a2, b1, b2} of vectors
satisfying (12) using mathematical modeling. It is infeasible to investigate this question
in general, or the real working examples. So we performed our investigation in reduced
system dimensions for under, equal and over defined system’s cases:

a) for under define case (m2 < 4(n + 1)) modeling was performed with m = 4 and
n = 4;

b) for equal define case (m2 = 4(n + 1)) modeling was performed with m = 4 and
n = 3;

c) for over define case (m2 > 4(n + 1)) modeling was performed with m = 4 and
n = 2.

To provide modeling experiment the certain values of parameters m, n, r, s should
be chosen. They define under, equal or over defined cases. After that matrices
ML1, ML2, MR1, MR2 must be generated in predefined form (1). To construct matri-
ces X and Y the n + 1 coefficients for each polynomial pX1, pX2, pY 1, pY 2 should be
chosen at random. Using (3) and (4) we calculate matrices X and Y and by (7) formula
we compute matrix A.

The number of possible solution X, Y of equation XQY = A was investigated using
total scan to find the set of other matrices X ′ and Y ′, satisfying the equation X ′QY ′ = A,
where X ′ and Y ′ are defined by the polynomial coefficients.

Surprisingly but the mathematic modeling for these low dimension systems has
showed, that when considering the systems of equations over semiring N in every case
it has only one true solution. The other mathematical model was carried out in the case,
when systems of equations were over the ring ZN and N was a composite number. In this
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case considerable big set of solutions was found in under defined system. Hence there is
no-negligible probability to guest the solution in this case.

The other question is to investigate the complexity of this system, from the point of
view of complexity theory. The valuable tool is to use the Shafer’s dichotomy theorem
(Shaefer, 1978). Schaefer examined satisfiability of propositional formulas for certain
syntactically restricted formula classes. Each such class is given by a set S of Boolean
functions (logical relations) allowed when constructing formulas.

DEFINITION 7. S-formula is any conjunction (&) of relations R1&R2 . . . &Rk.

DEFINITION 8. The SAT(S) problem is the problem of deciding whether a given S-for-
mula is satisfiable.

Schaefer proved Dixotomy theorem which characterizes the complexity of SAT(S)
for every finite set S of logical relations. The most striking feature of this characterization
is that for any such S, SAT(S) is either polynomial-time decidable or NP-Complete.

According to these considerations, only one sensible method to estimate the security
of proposed scheme is to choose the algorithm parameters preventing brute force attack.
This approach is reasonable since the solution of system of multivariate polynomial equa-
tion over the field in most cases is comparable with a total scan of solutions.

The distinguishing line between these two extreme classes is characterized by the
following conditions defined below relations (Couceiro, 2003).

DEFINITION 9. The relation Ri is said to be:

(a) 0-valid if when zero (false) values (0, . . . , 0) are assigned to the vector
(y1, . . . , yL) then Ri = 1;

(b) 1-valid if when unit (true) values (1, . . . , 1) are assigned to the vector (y1 . . . , yL)
then Ri = 1;

(c) Horn if Ri(y1, . . . , yL) is logically equivalent to some CNF (Conjunctive normal
form) formula having at most one unnegated variable in each conjunct;

(d) co-Horn if Ri(y1, . . . , yL) is logically equivalent to some CNF formula having
at most one negated variable in each conjunct;

(e) bijunctive if Ri(y1, . . . , yL) is logically equivalent to some CNF formula having
at most 2 literals in any conjunct;

(f) affine if Ri(y1, . . . , yL) is logically equivalent to some system of linear equations
over two-element field Z2 = {0, 1}.

There are corresponding criteria to check whether any relation Ri in S satisfies the
properties (c)–(f) (Shaefer, 1978; Courtois and Pieprzyk, 2002; Biryukov and Canniere,
2003). The relation Ri is said to be:

(c’) Horn, iff for all vectors x, y ∈ Ri the vector x&y (obtained by, component-wise
conjunction) is also in Ri;

(d’) co-Horn, iff for all vectors x, y ∈ Ri the vector x ∩ y (obtained by, component-
wise disjunction) is also in Ri;
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(e’) bijunctive, iff for all vectors x, y, z ∈ Ri the vector maj(x, y, z) (obtained by,
component-wise majority) is also in ∈ Ri;

(f’) affine, iff for all vectors x, y, z ∈ Ri the vector x+y+z (obtained by, component-
wise triple sum) is also in Ri;

The mathematic modeling was performed in the cases when the (12) system of equa-
tions was under, equal and over defined over ring Z6:

(a) for under define with parameters m = 4 and n = 4;
(b) for equal define with parameters m = 4 and n = 3;
(c) for over define with parameters m = 4 and n = 2.

For the verification of conditions (a)–(f) in this case the same set of parameters
were used as above. The total scan was performed in the set of all possible polyno-
mial pX1, pX2, pY 1, pY 2 coefficients. In this way the total set of X ′ and Y ′ matrices
was scanned. The conditions (a)–(f) were verified for the matrices X ′ and Y ′ satisfying
the equation X ′QY ′ = A.

Practical verification of condition (a)–(f) was performed in similar way, as described
above.

The results showed, that for this instance, no one condition (a)–(f) was satisfied. Intu-
itively we can make a conjecture, that for instances with a higher dimension matrices and
larger fields N (N > 6) to satisfy the conditions (a)–(f) is even harder.

Since for a higher dimensions and N > 6 the total scan of (y1, . . . , yL) assignments
is infeasible, mathematical modeling showed that there was not found the assignments
(y1, . . . , yL) satisfying (a)–(f) by scanning billions of randomly choosing assignments.
Hence proposed function can be a good candidate for a one-way function.

The one of possible attack to find any matrices X ′ and Y ′ in (12) is to simulate them
by other matrices choosing from the set {N i · M j ; i, j ∈ 0 . . . n} in order to reduce
number of variables to be searched.

Modeling results showed, that in this case there was found no any solution in the case,
when system of equation was defined over N . The main security parameters we choose
the maximum order n of polynomials and maximum range s of polynomials’ coefficients.
The reasonable values for the security parameters for our construction we choose those
ones that prevent the brute force attack since the known methods for the solution of
multivariate polynomial system of equations are comparable with the total scan of the
possible solutions set. The total scan to find unknown coefficients of the polynomials
requires performing the number η of verification operations, which can be expressed as
follows:

η = s4n+4. (16)

The greater values s, n are, the higher security against the brute force attack can be
achieved, but at the same time they increase the volumes of the PrK and PuK lengths.
Hence s and n can be treated as security parameters.

Let, for example, choose the values: s ∈ [0, . . . , 63] (6 bit representation);
r ∈ [0, . . . , 3] (2 bit representation); n = 3; m = 8, then number of verification opera-
tions is η = 2128. Since the private key PrK= {X, Y } can be represented by the vectors
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of polynomials coefficients, then |PrK| = 128 bits. The representation of PuK= {A, Q}
requires 4608 bits. Hence the PrK compromitation by applying the brute force attack has
2128 complexity.

4. Conclusion

1. In this paper the new asymmetric cipher scheme based on the matrix decomposition
(dual coset) problem over the semiring of natural numbers N is proposed.

2. According to preliminary investigations based on the Shafer’s dichotomy theorem
and mathematical modeling, we can make a conjecture that the security of proposed
scheme relies on the complexity of generalized satisfiability problem, which is
reckoned as NP-complete.

3. Moreover, the compromitation of proposed scheme relies on the solution of sys-
tem of multivariate polynomial system of equations over the semiring of natural
numbers N . The degree of monomials of system of equations is four. It is known
(Garey and Johnson, 1979) that even the solution of multivariate quadratic polyno-
mial system of equation over any field is NP-complete problem.

4. The security parameters of proposed scheme are presented taking into account the
3rd conclusion and the fact that the problem of multivariate polynomial system
solution over the semiring is much more worse than in case of the field and the
methods of solution are not known yet. Therefore we propose the security param-
eters preventing brute force attack.
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Asimetrinio šifravimo algoritmo, paremto matricos dekompozicijos
problema, saugumo analizė

Andrius RAULYNAITIS, Eligijus SAKALAUSKAS, Saulius JAPERTAS

Šiame straipsnyje yra pasiūlytas asimetrinio šifravimo algoritmas, paremtas matricos dekom-
pozicijos problema. Asimetrinio šifravimo algoritmo saugumas paremtas matricos dekompozicijos
algoritminiu uždaviniu, kuris susij ↪es su daugelio kintam ↪uj ↪u algebrini ↪u lygči ↪u uždavinio sprendimu
natūrali ↪uj ↪u skaiči ↪u pusžiedyje. Taip pat yra pateikta saugumo analizė, apibrėžti saugumo paramet-
rai.


