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Introduction 
 

Maximum relative Entropy (MrE) optimization 
principles were studied in previous paper [1] where convex 
optimization was performed incorporating model 
constraints resulting from one axis differential drive 
robot’s constraints such as the distance between wheels. 
MrE Lagrangian was constructed for just one discrete 
observation, so it had several things still to be considered. 

First, uniform prior was selected when applying 
Bayesian filter for recorded data. While principle of 
entropy maximization states that the distribution closest to 
a priori knowledge has to be selected. 

Second, resulting entropy multiple integral did not 
have analytical solution of its antiderivative. When solving 
this optimization problem had lead to the use of numerical 
integration. 

Third, observation data arrived in high volumes so 
having numerical iterations influenced method’s 
performance as soon as the number of observation data 
became large. 
 
Updating with observation data constraints 
 

What is a priori knowledge when having observation 
data and knowing the model on how different observation 
channels relate to each other? The answer is inferred from 
the knowledge collected so far. First thing which is known 
states that discrete observation’s estimate must have its 
expectation at the exact value observed, i.e. its mean has to 
fall right at the observed value, and it is not being able to 
become “unobserved” (see work by A.Giffin and 
A.Caticha for wider discussion regarding this [2]). Dirac 
delta function was used in previous work, but expectation 
constraint is used for simplicity here. So we already have 
four constraints 
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where a pair of two-axis accelerometers (z axis is not taken 
into account in this work) is represented by letters a and b. 
Thus 

obsyobsx aa ,, , are observations of x, y axis of 
accelerometer a. Consequently, 

obsyobsx bb ,, ,  are 
observations of x, y axis of accelerometer b. The very first 
entropy optimization is a simultaneous optimization taking 
into account the mathematical model between all four 
observation channels. 

A priori distribution is calculated using the measure 
of entropy for the continuous-variate Probability Density 
Function (PDF): 
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here ( ) ( ) ( ) ( )yxyx bPbPaPaP ,,,  as from formulas (1) – (4) are 
marginal PDFs respectively as follows 
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Then normal distribution’s normalization constraint is 
again incorporated into final Lagrangian as 
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All constraints have been enumerated except those of 
mathematical model. The mathematical model is necessary 
to infer the shape of PDF for every channel. In other 
words, if we have a mathematical model which shows how 
all four channels relate we can infer which current 
observation of all four channels fits the model better and 
which fits worse. Second thing, which has to be 
considered, is that so far constraints contained the updating 
of the first probabilistic moment, i.e. the expectation. The 
second probabilistic moment can be taken from the 
mathematical model, so it has to be selected with caution. 
 
Updating with model and observation data constraints 
 

An experiment was performed with two 
accelerometers mounted on a rigid body (robot). The main 
aim was to infer both accelerometers’ x axis zero bias from 
dynamic real time observation data. Axis y had a very 
small zero bias so it was neglected in zero bias. So it was 
decided to perform an autocalibration experiment. During 
it rigid body was being rotated around static rotation center 
where all geometrical distances were known (see figure 
(1)). 
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Fig. 1. Autocalibration experiment with two accelerometers 
mounted on rigid body (robot) and rotating about geometrically 
known rotation center 
 

In other words, instant center of rotation during the 
whole autocalibration experiment was kept constant and 
distances OA, OB and AB geometrical layout were known. 
Moreover, angular velocity w was being tried to be kept as 
constant as possible, so it was known that angular 
acceleration fluctuations were small and there was an 
initial honest knowledge that w did not exceed values wmax 
and wmin. Angular velocity and acceleration were derived 
from rigid body kinematics relations. One can derive two 
main relationships between all four observation channels 
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And this gives two more constraints which 
represented model constraints, i.e. 
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Constructing Lagrangian using (5) and the constraints 
(1) – (4), (10), (13), (14) require the definition of Lagrange 
multipliers kax, kay, kbx, kby for constraints (1) – (4), β for 
constraint (13) and ρ for constraint (14) respectively. 
Then it can be proved that the marginal PDFs are 
 

 

( ) ( ) ( )( )

( )ρβ
π ρβ

ρβρβ

211

222

2
3

21

1
2

21
2

1

2
2

2
1

2

2
kkcc

eP
norm

kk
cakkkkkak

c
kkkkkkk

ax

xbxaxaxxbxbyayayayby

−−
=

+
++++

+
−−−

, (15) 

 

 
( ) ( ) ( )( )

( )ρβ
π ρβ

ρβρβ

211

222

2
3

21

1
2

21
2

1

2
2

2
1

2

2
kkcc

eP
norm

kk
cakkkkkak

c
kkkkkkk

ay

ybyayayybybxaxaxaxbx

−−
=

+

++++
+

−−−

, (16) 

 

 
( ) ( ) ( ) ( )

β
π

ρβ

β
ρ

ρβ

1

42
3

1

2
2

2
1

2

21
2

2
cc

eP
norm

c
kkkkkkkbk

kbkbkb

bx

byayayaybyxax
xbxxx

−−−
+

+
−−+−

= , (17) 

 

 
( ) ( ) ( ) ( )

β
π

ρβ
β

ρ
ρβ

1

42
3

1

2
2

2
1

2

21
2

2
cc

eP
norm

c
kkkkkkkbk

kbkbkb

by

bxaxaxaxbxyay
ybyyy

−−−
+

+
−−+−

= , (18) 

 

where normalization constant cnorm, Lagrange multipliers, 
and constant c1 are 
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and Lagrange multipliers kay, kbx, kby are calculated 
similarly. Coefficients k1 and k2 depend on geometrical 
layout of accelerometers on the rigid body, i.e. they are 
calculated from OA, OB and AB distances. 

It can be seen from formulas (15) – (24) that 
antiderivative function for MrE PDF calculation is found. 
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So MrE optimization when finding a priori PDF is an O(1) 
operation, which makes this method practical. An attentive 
reader would notice that 
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and it means that Maximum Likelihood (ML) estimate falls 
at the observation reading just like expectation does, and it 
confirms that the approach to treat likelihood included in 
the a priori PDF was correct indeed, see work [2]. In other 
words, 
 

 ( ) ( ) ( )bybxayaxxoldaxoldaxxold ccccaPcPcaP ,,,|, ⋅= ,  (29) 
 

where model constraints (11) and (12) are updated with 
constraints moments. 
 
Updating time series distributions with model 
constraints 
 

Time series observation data can contain not only a 
static noise which can be filtered with regular 
autoregression efforts, but also a dynamic noise which 
could be a result of external forces like a hit to the wall 
when accelerometers had an instantaneous peak. Then 
averaging does not help even if a huge number of 
observation data is collected. There is one more property 
of accelerometers which has to be considered. Every axis 
has its zero bias. It can be observed by turning the axis to 
match the direction of Earth’s gravity force, but the 
problem is that this zero drift is also dynamic, i.e. zero 
might drift because accelerometer might be aging. Aging 
detection and causes are not explored in this paper, but the 
question whether the unbiased estimator can be found for 
calculation of current zero bias can be answered with yes. 
Not without the help of MrE updating with model 
constraints. Assume n readings are observed for every 
accelerometer’s channel, and assume that at the time 
moment i the following measurements are observed: caxi, 
cayi, cbxi, cbyi. 

Other coefficients and variables also have their 
notation with index i. Then Lagrangian can be constructed 
with relative entropy formula 
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where 
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and each multiplier is just a PDF taken from (15) – (18) 
for every channel respectively. This implies that 
noncommuting constraints (see work [1,2] for discussion 
on commutativity) will be used when comparing it to the 
observation data constraints. In other words, observation 
data plays its role for calculating MrE distributions for 
time moment i for each channel. And from pre-calculated 
Lagrange multipliers can be used for further inference. 

Important question is whether first or second 
probabilistic moment will be used for updating with model 
constraints. After multiple cases analysis it was found that 
updating with second probabilistic moment gives little 
benefit when finding an analytical posteriori. And updating 
with first probabilistic moment would help avoid time 
consuming antiderivative numerical calculations. After 
some manipulation with (11) and (12) it is found that these 
constraints could be rewritten as 
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which makes them acceptable as model constraints and 
preserves relatively easy calculation of antiderivative 
function of the entropy multiple integral (30). However, 
with n observations there are 4n unknowns and only 2n 
equations were at hand so far. Then two more model 
constraints are used which bring more constraints on time 
series over time domain, i.e. 
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where constant c3 and c4 are calculated using cubic spline 
derivations when three main inputs (in addition to rough 
geometrical layout distances) are taken into the account: ∆t 
which was a time period between two samples, wmin and 
wmin were maximum and minimum angular velocities 
during the whole autocalibration experiment according to a 
priori knowledge. 

A raw MrE calculation has a performance of O(n), 
but the problem is that the signs in formulas (32) and (33) 
are not known in advance. Because of that local 
optimization over a certain window has to be run first. The 
local processing window (LPW) is selected to contain 6 
samples, which give an asymptotic notation as ( )nn 2Log6O . 
Unlike particle filters methods [3], this method has the 
analytical representation of normalization constant. Also it 
shows how to extract more information from dynamic 
measurements (see work [4]). 

After the baseline of observation data was found 
satisfying all time-domain model constraints, the unbiased 
estimator for calculating zero bias can be approximated 
and found from Normal distribution as 
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where g is Earth’s gravity. 
 



46 
 

Conclusions 
 

Analytical and iterations-free antiderivative function 
has been derived for MrE optimization with model 
constraints. The estimated zero bias values are compared to 
the values observed from static bias when x axis is being 
pointed to the direction of Earth’s gravity direction, and it 
is found to be consistent. 

Multiple dependent cheap sensors can be used in 
inference with the same benefit which would be given by a 
single expensive sensor, when the sufficient number of 
observation data is available. Aging of a sensor can be 
monitored from dynamic observation data. 
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