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Abstract: This paper reports on numerical modeling and simulation of a generalized 

contact-type MEMS device having large potential in various micro-sensor/actuator 

applications, which are currently limited because of detrimental effects of the contact 

bounce phenomenon that is still not fully explained and requires comprehensive treatment. 

The proposed 2-D finite element model encompasses cantilever microstructures operating in 

a vacuum and impacting on a viscoelastic support. The presented numerical analysis focuses 

on the first three flexural vibration modes and their influence on dynamic characteristics. 

Simulation results demonstrate the possibility to use higher modes and their particular points 

for enhancing MEMS performance and reliability through reduction of vibro-impact  

process duration.  

Keywords: MEMS; vibro-impact; contact; finite element analysis; nodal points;  

vibration modes 
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1. Introduction 

 

Many traditional devices of microelectromechanical systems (MEMS) do not include contacting 

surfaces. However in recent years there is an increasing interest in various microsensors and 

microactuators that employ contact interaction in their normal mode of operation. This trend is 

determined by the new developments in MEMS technology and new market demands. Among such 

devices, the fast development of microswitches is very promising. However, insufficient mechanical 

reliability is one of the main obstacles for wider successful application of these microdevices [1,2]. 

Interrelated parasitic vibro-impact effects (bouncing) and stiction (a contraction for ‗static friction‘) are 

one of the major reasons that degrade their reliability [1-7]. Due to the elastic response of contacting 

microstructure of a microswitch, at each on/off cycle, its tip bounces over the substrate a number of 

times upon contact, as already been reported by K. Petersen in 1979 [8]. This effect is not unexpected, 

since these switches are essentially a microscopic copy of mechanical relays, in which contact bounce is 

a well-known phenomenon. It is harmful since it induces pitting and hardening due to the repeated 

impacts, causes a severe damage of contact surfaces by mechanical hammering and electrical arching 

(especially during ―hot switching‖ at high current densities), thus promoting the initiation and 

subsequent propagation of subsurface cracks, facilitating material transfer during detachment of 

contacting microstructure. Such progressive degradation of the contact interface can eventually lead to 

stiction and make the device non-functional. Stiction is usually defined as unintentional permanent 

attachment of compliant microstructure surfaces occurring during contact when restoring elastic forces 

are unable to overcome adhesive interfacial forces [9-11]. Bouncing degrades device operational speed 

by increasing actual switching time defined as the time at which a continuous electric current flow can 

be achieved. MEMS switches must be capable to operate for billions of cycles during their life-time. 

Limiting of bouncing is crucial since it would increase the reliability and improve their performance by 

reducing switching time. Many researchers emphasize that in order to achieve these goals a deeper 

understanding is required in the field of vibro-impact interactions [2,6,7,12,13]. Consequently, to 

enhance the mechanical reliability of microswitches (like those developed by MEMS research group at 

Kaunas University of Technology [14]) and other contact-type microdevices, besides a correct selection 

of the interfacial materials [15], it is of fundamental importance to model and thoroughly analyze 

characteristic dynamic effects related to complex vibro-impact phenomena. Different research groups 

throughout the world employ different simulation strategies and numerical models of varying 

complexity and dimensionality for investigation of contact-type microdevices. The predominant trend is 

to concentrate modeling efforts on certain aspects of device operation such as electrostatic actuation 

(e.g., [16]) or viscous air damping (e.g., squeeze-film damping [17]). The other research trend is to 

pursue development of comprehensive computational models accounting as precisely as possible for all 

of the major physical processes and coupled-field interactions taking place in operation of contact-type 

MEMS devices. In this respect some researchers rely on application of classical beam theories with 

finite difference schemes to model microswitch dynamics by including electrostatic forces, squeeze-film 

damping and contact bouncing effects [6,7] simulated either by simple linear spring approach [7] or by 

additionally incorporating adhesive interaction into contact model [6]. The finite element (FE) method is 

increasingly employed as the multiphysics capabilities of FE software are improving at a rapid pace. A 
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successful example of the latter strategy is a research work by Guo et al. [18], where a complex 3-D FE 

model is developed within ANSYS, accounting simultaneously for electrostatic actuation, squeeze-film 

damping, modeled by compressible Reynolds equation, and nonlinear contact including adhesion based 

on Johnson–Kendall–Roberts (JKR) theory. The authors analyze influence of air damping and actuation 

voltage on bouncing process and demonstrate how modification of the damping and tailoring of the 

voltage can be used to mitigate the process. Czaplewski et al. also applied the FE method for 

generation of 3-D model of a microswitch including electrostatic actuation but excluding mechanical 

contact and squeeze-film damping [19]. This approximation is used because the authors focused their 

attention on electrostatic-structural interaction with a purpose of designing actuation waveform that 

would completely eliminate contact bouncing. FE analysis is also used by Lishchynska et al. in an 

attempt to simulate bouncing effect in a microswitch [20]. Air damping is not considered by the authors, 

which simulate electromechanical behavior and propose effective voltage controller scheme for 

stabilizing off-stage oscillations. However, the authors emphasize that more research work is still 

required in the field of bouncing reduction in order to achieve stable dynamic behavior during 

microswitch closure.  

A review of the literature on contact bounce in microswitches suggests that extensive research 

efforts are still needed in this field and that scientific results on underlying dynamical aspects of this 

detrimental phenomenon are relatively scarce. Modification of electrostatic control mechanism is a 

predominant approach used for reduction of bouncing however we believe that there is still enough 

undisclosed potential in the mechanical domain alone, which could be beneficial in tackling the 

considered problem. Therefore in this paper a contact-type microdevice is analyzed purely from 

mechanical point of view, thereby concentrating on intrinsic dynamic properties of elastic structures 

such as natural vibration modes and their advantageous utilization.  

2. Finite Element Model of Impacting Cantilever Microstructure 

Figure 1a illustrates a generalized model of common electrostatic contact-type MEMS device 

operating in ambient air. The device is based on cantilever microstructure, though fixed-fixed 

configuration is frequent as well. The goal of the current research work is to focus on the impact 

process alone and carry out detailed investigation of important dynamic aspects of this complex 

phenomenon. Therefore in this paper electrostatic forces are not considered and it is assumed that the 

microstructure is operating in vacuum, thus squeeze-film damping is neglected as well (the research of 

these phenomena have been reported earlier [21-23]). Exclusion of gas environment from the presented 

numerical model is justified by a preference to avoid ambient gas in device operation since it creates 

favorable conditions for electrical arching. For simulation purposes a 2-D modeling approach is applied 

since: a) flexural vibration modes have a much more significant influence on vibro-impact process in 

comparison to torsional modes and b) it is computationally more cost-effective. Figure 1b presents a 

schematic of the developed 2-D finite element (FE) model of impacting cantilever microstructure. The 

following parameter values were used for numerical analysis: microstructure length l = 117 m, width  

w = 30 m, thickness t = 2 m, Young‘s modulus, density and Poisson‘s ratio for Nickel- E = 207 GPa, 

 = 8,902 kg/m
3
 and  = 0.31 respectively. The model consists of i = 1,2,...,m linear beam elements 

located in a single layer and j = 1,2,...,k motion limiters or supports (0 < k < 2 m) that are located in  
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i = 1,2,...,m nodes. Each beam element has two nodes with three degrees of freedom (DOF) at each one 

(displacement in x- and y-axis directions and rotation in x0y plane). The model was meshed manually 

with number of finite elements m equal to 50, thereby resulting in 150 total DOFs. The sufficiency of 

this particular mesh density was confirmed by comparative simulations presented in Section 2 and 

summarized in Figures 4–5. Impact modeling is based on contact element approach and makes use of 

Kelvin-Voigt (viscoelastic) rheological model, in which linear spring is connected in parallel with a 

damper–the former represents the impact force and the latter accounts for energy dissipation during 

impact.  

Figure 1. Schematic of: (a) generalized model of common electrostatic contact-type MEMS 

device operating in ambient air, (b) developed 2-D finite element model of impacting 

cantilever microstructure. 

 
(a) 

 

 
(b) 

After proper selection of generalized displacements in the inertial system of coordinates, model 

dynamics is described by the following equation of motion given in a general matrix form: 

 

[ ]{ ( )} [ ]{ ( )} [ ]{ ( )}

{ ( )}, { } { ( )} { } { ( )} ( , , ) 0;

{ ( )} { ( , , )}, { } { ( )} { } { ( )} ( , , ) 0

i i

j i j i i i i

i i

j i j i i i i

M y t C y t K y t

Q t if y t y t f y y t

Q t F y y t if y t y t f y y t

  

       


       

 



 

 (1) 

where [M], [C], [K] are mass, damping and stiffness matrices respectively,    )(,)(,)( tytyty  —

displacement, velocity and acceleration vectors respectively.   tQ  is a vector representing the sum of 

external forces acting on the microstructure. Since external electrostatic and air pressure forces are not 

considered here, this vector is used as a mechanical load during simulations of free impact vibrations 

presented in Section 2.  

y 
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The initial conditions are defined as: 

 0)}0({ yy   , i

jy )}0({  (2) 

where )},,({ tyyF  —vector of impact interaction between cantilever microstructure and the support. 

Components ),,( tyyf iii
 represent the reaction of the impacting microstructure and are expressed as: 

   )()(),,( tyCtyKtyyf i

i

ji

i

j

i

jiii
   (3) 

where i

jK , i

jC —stiffness and viscous friction coefficients of the support, i

j —distance from the i-th 

nodal point of the microstructure to the j-th surface of the support located at the corresponding  

nodal point. In the case of the considered model the assumption of proportional damping is adequate 

therefore internal damping is modeled by means of Rayleigh damping approach [24]: 

      KMC dKdM    (4) 

where dM, dK are mass and stiffness damping parameters respectively that are determined from the 

following equations using two damping ratios 1 and 2 that correspond to two unequal natural 

frequencies of vibration 1 and 2 [24]: 

 
.2

,2

22

2

2

11

2

1








 (5) 

The presented FE model of the vibro-impact microsystem was implemented in FORTRAN.  

3. Numerical Analysis of Impact Vibrations of Cantilever Microstructure 

Free impact vibrations of elastic microstructures constitute one of the operation modes of  

contact-type MEMS devices. Complete vibro-impact process consists of free vibrations of the 

microstructure in the intervals between the impacts and its vibration during the impacts. Therefore, 

thorough analysis of free and impact vibrations of elastic microstructures is essential. For this purpose 

special FORTRAN numerical codes were written and used for running detailed dynamic simulations 

with the developed FE model of the cantilever microstructure that undergoes impacts against  

the support.  

The modes of natural transverse vibrations of the microstructure (Figure 2) consist of transverse 

displacements Y (Figure 2a) and torsions Ф around the axes perpendicular to the plane of vibrations 

(Figure 2b). The first five modes (I, II, III, IV, V) were obtained, which form nodal points in the 

intersection with the axis line. These points are denoted by numbers that express the ratio (x0/l) between 

the distance x0 from the anchor of the cantilever microstructure and its whole length l. The letters Yij 

and Φij denote the values of the maximum amplitudes (deflections) of the flexural and rotational modes. 

The process of free impact vibrations of the microstructure for the case when the support is located 

at the free end of the cantilever is presented in Figure 3. Free impact vibrations were obtained by: (a) 

displacing free end of the microstructure upwards to a certain height (static analysis) and (b) releasing 

the microstructure from its statically-deformed position thereby allowing it to impact the support 

(transient analysis). The obtained complex vibro-impact motion is a result of self-excitation of several 

vibration modes of the microstructure. 
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Figure 2. Natural vibration modes of the cantilever microstructure: (a) flexural, (b) 

rotational. x0/l denotes ratio between the distance x0 from the anchor of the cantilever and 

its whole length l, Yij and Φij—maximum amplitudes of the flexural and rotational modes 

respectively: index i—number of vibration mode, j—sequence number of the maximum 

amplitude point with respect to the anchor point. 
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The simulated yl trajectory was matched to the experimental one by variation of the contact stiffness 

and damping values in the viscoelastic impact model. Initial guesses of these values were performed 

empirically based on the available data on material properties of the microstructure and contact surfaces. 

Thereby the developed FE model of the impacting cantilever was adjusted until an acceptable level of 

accuracy was achieved. The accuracy of the model was checked quantitatively by using simulated and 

experimental values of period of free impact vibrations T and calculating relative error  

 = ((Texp  T)/Texp
 
)  100. Simulated vibro-impact process in Figure 3 yields T  5.1 s, while the 

corresponding measured value is equal to Texp  4.9 s. This gives   4%. This discrepancy is 

sufficiently small and allows us to consider the developed model to be adequate to the physical one. 

Temporal characteristics that are most typical for the free impact vibrations are: Tp—duration of the 

transient vibro-impact process, T—period of free impact vibrations, T1—duration of vibrations between 

two impacts, T2—impact duration. The accuracy of simulation results is significantly influenced by the 

density of the finite elements mesh. Figure 4 presents the dependence of the maximum amplitude of the 

post-impact rebound lyz /maxmax   on the position of the support for the FE mesh having different 
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number of finite elements m. When m = 50, the obtained minimums of rebound amplitudes obviously 

coincide with the nodal points of some vibration modes, which is not so obvious for m = 10. 

Figure 3. Simulated typical process of free impact vibrations of the cantilever with 

characteristic parameters: Tp—duration of transient vibro-impact process, T—period of free 

impact vibrations, T1—duration of vibrations between two impacts, T2—impact duration, 

ymax—rebound amplitude. 

 

Figure 4 reveals that the smallest rebound amplitudes are obtained when the support is located in 

points coinciding with x0/l = 0.87 or x0/l = 0.67. A slight decrease in the rebound amplitude is also 

observed at x0/l = 0.78. The lower curve in Figure 4 that asymptotically approaches the axis line 

corresponds to the deflection of the free end of the microstructure during the impact with the support. 

Figure 4. Dependence of dimensionless rebound amplitude of the microstructure 

lyz /maxmax   on the position of the support expressed as a ratio between the distance x0 

from the anchor of the cantilever and its whole length l.  
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Figure 5 illustrates temporal characteristics of free impact vibrations in the case of different FE mesh 

density. It indicates that when the support is placed in points x0/l = 0.87, 0.78, 0.67, the duration of 

transient vibro-impact process p = 1Tp (1 - first circular natural frequency of the cantilever) may be 

reduced. The remaining characteristics are less sensitive to variations of support position. 

Figure 5. Temporal characteristics of free impact vibrations of the microstructure as a 

function of support position: p = 1Tp (for m = 50), 0 = 1Tp (for m = 10),  = 1T,  

1 = 1T1, 2 = 1T2. 1—first circular natural frequency of the cantilever. 
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The points x0/l = 0.78, 0.87 coincide with the nodal points of the 2
nd

 and the 3
rd

 flexural vibration 

modes, while x0/l = 0.67—with the maximum amplitude point of the 3
rd

 mode. These points will be 

referred to as particular points of natural vibration modes. The subsequent numerical analysis will be 

confined to the consideration of the first three modes since they significantly influence the dynamic 

characteristics of the vibro-impact process. In order to clarify the nature of these characteristics it was 

necessary to determine vibration modes of the microstructure during the impact on the support. 

Figure 6 provides dependencies of the location of nodal points of the modes on the position of the 

support for the case of supported microstructure. The nodal points yij and ij of the displacement mode 

Yi and rotational vibration mode Φi are designated by two indices: i refers to the number of vibration 

mode, j—to the sequence number of the nodal point with respect to the anchor point of the 

microstructure. In comparison to unsupported microstructure, an additional nodal point (i = 0) is added 

to each mode for the case of supported microstructure. In Figure 6 the diagonal line represents the 

shifting of the support from the anchor of the microstructure to the free end. It is obvious that the 

position of the support determines the position of nodal points of the mode. When the support is located 

at the anchor, the modes and nodal points coincide with those of the unsupported microstructure, which 

is demonstrated by the nodal points indicated on the vertical axis x0
’
/l. This distribution of locations of 

nodal points characterizes the microstructure before the impact. However, when the support is shifted, 

portion of the nodal points of the displacement modes Yi are shifted together, though this is not 

characteristic for rotational modes. This phenomenon is related to the pin-joint support of the 

microstructure. 



Sensors 2009, 9              

 

 

10209 

Figure 6. Dependence of nodal points of the displacement (yij) and rotational (ij) vibration 

modes of the supported cantilever microstructure on the position of the support: i—number 

of vibration mode, j—sequence number of the nodal point with respect to the anchor point 

of the microstructure. 

 

Simulated curves presented in Figure 6 enable explanation of the cause of changes in the dynamic 

characteristics of the considered vibro-impact microsystem in that case when the support is located in 

point x0/l = 0.87: the 2
nd

 nodal point of the 3
rd

 vibration mode of the supported microstructure coincides 

with the same point for the case of unsupported one (x0/l = 0.87). This implies that in the process of 

impact vibrations this point does not change its position either before or during the impact. This mode is 

amplified when the force of impact is applied to this nodal point. Consequently, the amplitude of the 3
rd

 

mode increases resulting in more intensive energy dissipation in the material of the microstructure since 

it is considered [24] that energy dissipated by the structure that vibrates in the higher mode exceeds 

energy dissipated by the structure vibrating in its fundamental mode as many times as is the ratio of 

natural frequencies of the modes. Thus, the energy dissipated in the microstructure that vibrates in the 

fundamental mode is nearly 17/ 13   times less than in the case of vibrations in the 3
rd

 mode. It is 

evident that intensification of the amplitude of the 3
rd

 mode by locating the support at its nodal point 

does not cancel the first two modes. The fact that nodal points y31 and φ21 coincide in the case when the 

support is located at point x0/l = 0.87 suggests the possibility of amplification of the 2
nd

 mode as well. 

However, the advantages achieved in the considered case are first of all related to the intensification of 

the amplitude of the 3
rd

 vibration mode (during vibro-impact process cantilever vibrations in a wide 

frequency range are excited). The advantages achieved when the support is positioned in point  

x0/l = 0.78 are related to the intensification of the 2
nd

 vibration mode amplitude because this is the point 

in which the nodal points of the 2
nd

 vibration mode of the supported and unsupported microstructure are 

located (x0/l = 0.78). As Figure 6 indicates, the intersection of the trajectories of nodal points y20 and 

x0
’/l 
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φ31 when the support is located in point x0/l = 0.78 also enables to intensify amplitude of other flexural 

modes. 

The presented explanation is also confirmed by the dependences of the maximal amplitude points of 

separate vibration modes on the position of the support (Figure 7). The relationship of amplitudes of 

displacement modes Y11 with respect to support locations (Figure 7a) demonstrates that when the 

support is located in point x0/l = 0.87, the amplitude of the 3
rd

 displacement mode Y33 is maximal 

whereas other amplitudes do not reach their maximal values in this point. Positioning of the support in 

the point of the maximum amplitude of the 3
rd

 vibration mode (x0/l = 0.67) amplifies the displacement 

amplitude Y32 that coincides with the said point of maximum amplitude.  

Figure 7. Dependence of maximum amplitudes of the flexural (Yij) and rotational (Φij) 

modes on the position of the support: (a) flexural, (b) rotational. Index i—number of 

vibration mode, j—sequence number of the maximum amplitude point with respect to the 

anchor point. 
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Amplitudes Y30 and Y31 are increased as well, whereas amplitude Y33 is reduced. When the support 

is positioned in the nodal point of the 2
nd

 displacement mode, the displacement amplitude Y22 increases 

whereas other amplitudes of the 2
nd

 mode decrease. Similarly, the amplitudes of rotational vibration 

modes Ф11 are intensified as well (Figure 7b). Due to the impact of the cantilever on the support located 

in one of the particular points of vibration modes, the associated amplitudes increase even further 

thereby amplifying separate vibration modes. 

After the performed analysis of the behavior of the nodal points and the points of maximum 

amplitude with respect to the support location, it is important to investigate the dependence of the 

frequencies of separate vibration modes on the position of the support. Figure 8 illustrates simulated 

dependences of the ratio between circular natural frequencies of the supported microstructure ωi and 

those of the unsupported one ωiin. It may be observed that the 1
st
 natural frequency of the supported 

microstructure reaches the maximum value when the support is located in point x0/l = 0.78 whereas  

the 2
nd

 and the 3
rd

 natural frequencies reach their maximum values when the support is located in  

other positions.  

Therefore, in order to ensure maximum vibrational stability of a contact-type MEMS device 

containing a supported cantilever microstructure, the support must be positioned in point x0/l = 0.78. In 

this case the resonance frequency of the microsystem is maximum and, additionally, it becomes possible 

to amplify the amplitudes of the 2
nd

 mode of natural vibrations and to dissipate a significant portion of 

kinematically-transferred energy in the material of the microstructure. Furthermore, when the support is 

located in point x0/l = 0.78, the difference between the 1
st
 and the 2

nd
 natural frequencies of the 

supported microstructure is maximum, and by selecting the stiffness of the support to be located in the 

given point, the 1
st
 natural frequency may be brought closer to its 2

nd
 natural frequency thereby 

increasing its vibrational stability under external kinematical excitation, which may be very important 

when microdevice is located on the moving object. 

Figure 8. Dependences of the ratio between the circular natural frequencies of the 

supported microstructure ωi and those of the unsupported one ωiin on the position of the 

support (i = I, II, III). 
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Common contact-type MEMS devices incorporate gaps between compliant and fixed 

microstructures. However, feasible MEMS designs may be also based on usage of prestress of 

contacting links. Therefore it is crucial to select the prestress in such a way that minimal rebound 

amplitudes are achieved resulting in reduced energy consumption during device control. Figure 9 

presents simulated maximum rebound amplitudes lyz /maxmax   as a function of prestress ∆/l, when the 

support is located at the free end of the cantilever microstructure. The diagonal line indicates the 

position of the support when it is vertically moved from the boundary position to the position of 

maximum prestress. The dashed lines at zero level represent the equilibrium position of the 

microstructure (vertical) and zero prestress (horizontal). 

As the simulation results in Figure 9 demonstrate, minimum rebound amplitudes with respect to the 

equilibrium position are characteristic in the case of small prestress magnitudes (point B, when  

∆/l = 0.01). By drawing a perpendicular from point B to the diagonal line, minimum amplitudes of the 

microstructure rebound are determined. Thus, in order to obtain the smallest bouncing that ensures 

minimum power consumption, the prestress should be selected in accordance to point B. 

In addition to the amplitude-frequency characteristics of free impact vibrations, it is essential to 

determine the velocities and the forces induced during the impact. Figure 10 demonstrates the 

dependence of the pre-impact velocity (continuous lines) and original contact pressure force P (dashed 

line) on the position of the rigid support at zero prestress during the first three impacts (I, II, III) of the 

microstructure on the support. When the support is located in the particular points of the 3
rd

 flexural 

mode of the cantilever microstructure, a decrease in the velocity and original contact pressure force is 

observed, which is related to the increase in the dissipated energy in the material. 

Figure 9. Dependence of maximum rebound amplitudes of the cantilever microstructure 

lyz /maxmax   on the magnitude of dimensionless prestress ∆/l. Δ refers to prestress, i.e., 

distance of the displacement of the cantilever free end in the direction perpendicular to the 

contact surfaces. 
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Figure 10. Dependence of impact velocity z' (continuous lines) and contact pressure force P 

(dashed lines) on the position of the support. 
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Simulations results (Figure 11) also reveal that during the microstructure impact on the support 

positioned in point x0/l = 0.87 the contact pressure force is lower in the first stage of impact than in the 

second one, as compared with the opposite characteristics of the pressure force when the support is 

located at x0/l = 1.  

Figure 11. Dependence of contact pressure force P of the cantilever microstructure on the 

position of the support. 2 = 1T2, T2—impact duration, 1—first circular natural frequency 

of the cantilever.  
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4. Conclusions 

In this paper we have presented a 2-D finite element model of cantilever microstructure impacting 

against viscoelastic support thereby representing a general case of contact-type MEMS devices. The 
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model was developed within FORTRAN environment. Impact is modeled by means of contact-element 

approach that uses Kelvin-Voigt rheological element taking into account both contact stiffness and 

damping. Values of these parameters were selected empirically to match experimentally-obtained  

vibro-impact trajectories. Results of numerical analysis of characteristic vibro-impact process–free 

impact vibrations–were reported by considering three stages of the studied process: pre-impact, impact 

and post-impact. Obtained numerical results are provided in a dimensionless form and therefore are 

applicable across all scales ranging from macro to nano. 

Numerical analysis is centered around the consideration of the first three flexural modes of the 

cantilever microstructure since they have a major effect on dynamic characteristics of the vibro-impact 

process. Investigation of influence of support position (along horizontal axis of the microstructure) on 

maximum post-impact rebound amplitudes indicates that the smallest values are obtained when the 

support is located in specific points coinciding with the nodal points of the 2
nd

 and the 3
rd

 flexural 

vibration modes (x0/l = 0.78 and 0.87 respectively) as well as with the amplitude peak of the 3
rd

 mode 

(x0/l = 0.67). Simulations reveal that support (contact point) positioning in these so-called particular 

points of vibration modes results in reduction of transient vibro-impact process thereby enabling to 

increase MEMS device operational speed as well as to enhance its reliability by diminishing detrimental 

consequences of this process. In-depth numerical analysis was conduced in order to reveal the physical 

nature of the aforementioned findings. For this purpose vibration modes of the microstructure during 

the impact on the support were determined. It is known that the position of the support determines the 

position of nodal points of the mode: when the support is shifted, portion of the nodal points of the 

flexural modes are shifted together. However it was revealed that in the process of impact vibrations the 

aforementioned particular points do not change their position either before or during the impact. This 

implies that the 2
nd

 and 3
rd

 modes are amplified when the force of impact is applied to these points. The 

effect is particularly pronounced in the case of the 2
nd

 nodal point of the 3
rd

 flexural mode (x0/l = 0.87). 

Consequently, the amplitude of the 3
rd

 mode increases resulting in more intensive energy dissipation in 

the material of the microstructure (energy dissipated is 17/ 13   times larger than in the case of 

microstructure vibrating in its fundamental mode). Increase of dissipated energy in the material at this 

particular point is also confirmed by observed reduction of the induced velocity and contact pressure 

force during impact.  

Numerical study of influence of support position on the natural frequencies of separate vibration 

modes indicates that maximization of vibrational stability of contact-type MEMS devise containing 

supported microstructure is achieved by placing support at x0/l = 0.78 due to maximization of the 1
st
 

natural frequency of the supported microstructure. By selecting the stiffness of the support to be located 

in the given point, the 1
st
 natural frequency may be brought closer to its 2

nd
 natural frequency thereby 

increasing the vibrational stability.  

Obtained results of numerical analysis reveal huge potential of advantageous usage of higher 

vibration modes with their particular points for suppressing harmful bouncing process in contact-type 

microdevices resulting in improved reliability and performance. Therefore further research efforts are 

necessary in this field in order to identify different approaches for control of impact-related processes 

thereby enabling designers to develop innovative MEMS sensors and actuators that operate in  

contact mode. 
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