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1. Introduction 
 

The target design life of deteriorating load-
carrying structures and their components must be defined 
in an early design stage of buildings, construction works 
and technological equipments. The value of this life must 
serve as a basis for the selections of materials and struc-
tures. The target design life is related to destruction modes 
of materials and structural components and failure conse-
quences. In any case, higher durability requirements are 
applied to members which routine or preventive mainte-
nance and repairs require great efforts. 

Failures and collapses in load-carrying structures 
can be caused not only by irresponsibility of gross human 
errors of designers or erectors but also by some condition-
alities of recommendations and directions presented in 
design codes and standards. The Standards EN 1990 [1] in 
Europe and ASCE/SEI [2] in the USA require that load-
carrying structures to be designed with appropriate degrees 
of reliability. These Standards are based on the limit state 
concept and, respectively, on the methods of the partial 
factor design and the strength or allowable stress design. 
However, the structural design practice shows that it is 
impossible to verify the safety and economy parameters of 
deteriorating structures by using deterministic methods and 
their universal factors for loads and material properties. 

The reliability degree of deteriorating structures 
may be objectively defined only by fully probability-based 
concepts and models. Only probabilistic approaches may 
allow us explicitly predict uncertainties of analysis models 
of these structures. Besides, the probabilistic analysis of 
deteriorating members is indispensible in order to predict 
their destructions or failures and to avoid of economic and 
psychologic losses. However, the mathematical probabilis-
tic formats used in long-term reliability prediction of struc-
tures are based on rather complicated considerations [3-6]. 
Thus, the engineering modeling of survival probabilities of 
structures subjected to aggressive environmental actions 
and extreme live and climate loads are still unsolved. 

The main task of this paper is to present new 
methodological formats on probability-based safety predic-
tions of deteriorating members exposed to permanent loads 
and recurrent single or joint extreme service and climate 
actions. 
 
2. Resistances and safety margins of deteriorating 

members 
 

Multicriteria failure modes and safety of struc-
tural members (beams, slabs, columns, joints) may  be ob-
jectively assessed and predicted only knowing survival 
probabilities of particular members (normal or oblique 
sections, connections) for which the only possible failure 
mode exists. Predicted durability parameters for deteriorat-

ing structures depend on chemical diagnosis and the ac-
ceptable risk of serviceability failure associated with the 
damage levels and losses. Besides, the predictions of safety 
of deteriorating members and their systems will account 
for all extreme action combinations. In any case, it is ex-
pedient to divide the life cycle  (Fig. 1) of deteriorating 
structures into the initiation, t , and propagation, , 
phases [7]. The length of initiation phase is a random vari-
able depending on a feature of degradation process, an 
environment aggressiveness and quality of protective cov-
ers. The unvulnerability of structures may be characterized 
by the duration of this phase. When the degradation proc-
ess of the members is caused by intrinsic properties of ma-
terials, the phase 

nt

in prt

0=int . The propagation phase is delayed 
for structures protected by coats. 
 

 
( )tFig. 1 Degradation function ϕ (a) and dynamic model 

(b) for time-dependent safety analysis: 1 - unloaded 
members, 2 - loaded columns, 3 - loaded beams 

 
The resistance of particular members in the 

propagation phase is treated as a nonstationary random 
process 

( ) ( ) ( ) 0RtRttR in   (1) =ϕ =ϕ

( )twhere  is the initial value of member resistance, 0R ϕ  
denotes the degradation function depending on the rate of a 
resistance decrease induced by an artificial ageing and deg-
radation of materials. This function for corrosion affected 
particular members may be presented in the form 

( ) ( )binttat −−=1ϕ

b
a

  (2) 

where  defines nonlinearity of the deterioration function 
and  is degradation intensity factor. A shape of the deg-
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radation function is close to linear ( ) and parabolic 
( ) when corresponding degradation mechanisms are 
steel corrosion and aggressive environmental attacks [8, 9]. 
However, marine corrosion of steel structures is not linear 
function of time [10]. 

1≈b
2≈b

Action effects of structures are caused by perma-
nent loads g , sustained  and extraordinary 

 components of live loads 
( )tqs

( ) ( ) ( )tqtqtq se −= ( )ts  and 
wind, surf or seismic actions . The annual extreme 
sum of sustained and extraordinary live load effects 

( )tw
( )tEq  

caused by  and  may be modeled as a rectangu-
lar pulse renewal process described by Type I (Gumbel) 
distribution of extreme values with the coefficient of varia-
tion 

( )tqs ( )tqe

580.q =δ  and mean qkqm E.E 470= , where  is its 
characteristic value [11].  

qkE

It is proposed to model annual extreme snow and 
wind action effects by a Gumbel distribution with the mean 
values equal to ( s.sksm Ek/EE )δ9801+=  and 

( )w.wkwm Ek/EE δ9801+= , where  and  are the 
characteristic (nominal) values of action effects and  is 
the characteristic fractile factor of these distributions [7, 
12]. The coefficients of variation of snow and wind ex-
treme loads depend on the feature of geographical area and 
are equal to 

skE wkE

980.k

7030 ..s −=δ  and 5020 ..w −=δ . 
The durations of extreme floor and climate ac-

tions are:  days for merchant and 1-3 days for 
other buildings,  days and  hours. 
Renewal rates of annual extreme actions are equal to 

141−=qd
2814 −=sd 128 −=wd

year/1=λ . Therefore, the recurrence number of two 
joint extreme actions during the design working life of 
structures, in years, may be calculated by the formulae nt

( ) 212112 λλddtn n +=   (3) 

where λλλ t/121 == are the renewal rates of extreme 
loads. Thus, the recurrence numbers of extreme concurrent 
live or snow and wind loads during years period 
are quite actual to  and 

50=nt
0220 ..nqw −= 0402 ..nsw −= . The 

bivariate distribution function of two independent extreme 
action effects may be presented as their conventional joint 
distribution function with the mean mmm EEE 2112 += and 

the variance  [13]. 2
2

1
2

12
2 EEE σσσ +=

According to probability-based approaches (de-
sign level III), the time-dependent safety margin of deterio-
rating particular members exposed to extreme action ef-
fects may be defined as their random performance process 
and presented as follows 

( ) ( )[ ] ( ) −−−==
sqqggR EEtR,tgtZ θθθθX    

( ) ( ) ( ) =−−− tEtEtE wwssqq e
θθθ   

( ) ( ) ( ) ( )tEtEtEtR ggR 2211 θθθθ −−−=   (4) 

where  and ( )tX θ  are the vectors of basic and additional 
variables, representing respectively random components 
(resistances and action effects) and their model uncertain-

ties; ( ) ( ) ( )tEtEtE
es qq +=1  and ( ) ( )tEtE s=2  or 

( ) ( )tEtE w=2 . The mean values and standard deviations of 
additional variables of the safety margin are: 

041990 ..Rm −=θ , 100050 ..R −=σθ  and 001.Em ≈θ , 
100.E ≈σθ [11, 12]. 
Gaussian and lognormal distribution laws is to be 

used for member resistances. The permanent actions can be 
described by a normal distribution law [13,14]. Therefore, 
for the sake of simplified but quite exact probabilistic 
analysis of deteriorating members, it is expedient to pre-
sent Eq. (4) in the form 

( ) ( ) ( )tEtRtZ c −=   (5) 

where 

( ) ( ) ggRc EtRtR θθ −=   (6) 

is the conventional resistance of members the bivariate 
probability distribution of which may be modeled by 
Gaussian distribution 

( ) ( ) ( )tEtEtE 2211 θθ +=   (7) 

is the conventional bivariate distribution process of two 
stochastically independent annual extreme effects [15]. 

Inspite of analysis simplifications, the use of con-
tinuous stochastic processes of member resistances consid-
erably complicates the durability analysis of deteriorating 
structures exposed to intermittent extreme gravity and lat-
eral variable actions along with permanent ones. The dan-
gerous cuts of these processes correspond to extreme load-
ing situations of structures. Therefore, in design practice 
the safety margin process Eq. (5) may be modeled as a 
random geometric distribution and treated as finite de-
creasing random sequence 

n,n,...,,k,ERZ kckk 121 −=−=   (8) 

where 

gginRkck ERR θθϕ −=   (9) 

is the conventional resistance of deteriorating members at 
the cut  of this sequence (Fig. 1) and n is the recurrence 
number of single or coincident extreme action effects, , 
given by Eq. (7), i.e. 

k
kE

kkk EEE 2211 θθ += . 
When extreme action effects are caused by two 

stochastically independent variable actions, a failure of 
members may occur not only in the case of their coinci-
dence but also when the value of one out of two effects is 
extreme. Therefore, three stochastically dependent safety 
margins should be considered as follows 

1 1 , 1, 2,...,k ck k 1Z R E k n= − =   (10) 

2 2 , 1, 2,...,k ck k 2Z R E k n= − =   (11) 

3 12 1 2 , 1, 2,...,k ck k ck k k 12Z R E R E E k n= − = − − =   (12) 

where the number of sequence cuts is calculated by 
Eq. (3). 

12n
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3. Transformed conditional probability method 
 

For particular and structural members of deterio-
rating structures subjected to extreme action effects, more 
than one limit state situations are considered. The number 
of these situations is equal to recurrence numbers  or  
and  of single and coincident extreme action effects, 
respectively. 

1n 2n

12n

The statistical dependences among failure prob-
abilities of particular members at any time  or any cut k  
of rank sequence and their survival probabilities at previ-
ous extreme loading situations exist. Therefore, the instan-
taneous failure probability of these members at sequence 
cut , assuming that they were safe at cuts [

kt

k 11 −k, ], may 
be presented in the form: 

 

( ) [ ]{ } ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∈∃≤=≤

−

=
∩

1

1
10

k

i
ikkckk SFPn,kERPZP  

 
where  denotes the failure event of members at cut k  
and  denotes the event of their survival at previous cut i  
of a sequence. Therefore, the instantaneous failure prob-
abilities of particular members at cuts 1  of their 
safety margin sequences are: 

kF

iS

, 2,3,...,n
( ) ( 11 0 FPZP =≤ )  

( ) ( ) ( ) ( )−=−==≤ 212122 10 FPFFPSFPZP ∩∩    

( ∩ 12 FFP− )
)

)
)

)

)

2

)

3

)

)

n

  (13) 

( ) ( ) ( ) ( −−==≤ ∩∩∩ 1331233 0 FFPFPSSFPZP   

( ) ( ∩∩∩ 12323 FFFPFFP +−   (14) 

( ) ( ==≤ −− ∩ ∩ ∩ ∩∩ 12210 SS...SSFPZP nnnn    

( ) ( ) ...FFPFP
n

i
inn +−= ∑

−

=

1

1
∩   

( ∩∩ ∩ ∩∓ 121 FF...FFP... nn −   (15) 

The time dependent failure probabilities of dete-
riorating particular and individual members as auto-
systems during times  may be expressed as nt,...,t,t,t 321

( ) ( ) ( 111 0 FPZPtTP =≤=<   (16) 

( ) ( ) ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=≤+≤=<

=
∪

1
21 00

k
k2 FPZPZPtTP    

( ) ( ) ( ∩ 1221 FFPFPFP −+=   (17) 

( ) ( ) ( ) ( )−++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=<

=
321

1
FPFPFPFPtTP

k
k3 ∪    

( ) ( ) ( +−−− ∩∩∩ 231312 FFPFFPFFP    

( ∩ ∩ 123 FFFP+   (18) 

( ) ( )−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=< ∑

=
k

k
kn FPFPtTP ∪

1
   

( ) ( ...FFFPFFP
klm

klm
kl

kl −+− ∑∑ ∑ )∑∑
>>>

∩ ∩∩    

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±

=
∩

n

k
kFP...

1
  (19) 

Thus, according to probabilistic approaches, the 
prediction of time dependent survival probabilities of load-
carrying particular members may be based on the analysis 
of decreasing sequences of random safety margins (Fig. 2), 
i.e. can be written as 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=≥

==
∪∩

n

k
k

n

k
kn FPSPtTP

11
1   (20) 

When the sequence consists of two dependent 
cuts, the probability that either or both of two failure 
events of a series system occur is expressed by Eq. (17). 
An the evaluation of the probability of a second order in-
tersection of failure events  and , i.e. 2F 1F ( )∩ 12 FFP , 
may be carried out by rather uncomfortable for structural 
engineers methods of numerical integrations or Monte 
Carlo simulation. It is more expedient to use in design 
practice the unsophisticated method of transformed condi-
tional probabilities (TCTM). According to its approaches, 
the intersection probability 

( ) ( ) ( )21212 FFPFPFFP =∩   (21) 

where the conditional failure probability 

( ) ( ) ( ) ( ) ( )[ ]12121121
2 FPFP/FPFPFFP x −+= ρ   (22) 

 The indexed correlation factor of two sequence 
cuts, , characterizes an effect of their statistical de-
pendence on the intersection probability . 

2
21
xρ

( )∩ 12 FFP
 

 
Fig. 2 Safety margin sequences with dependent elements 

 
When sequence cuts are independent, i.e. 
, the conditional, intersection and failure probabili-

ties of members from Eqs. (22), (21) and (17) are defined 
as: 

02
21 =xρ

( ) ( )121 FPFFP = ; ( ) ( ) ( )1212 FPFPFFP =∩ ;  

( ) ( ) ( ) ( ) ( 121212 FPFPFPFPFFP −+=∪ ) . 
When sequence cuts are fully correlated, i.e. 

, these probabilities are: 12
21 =
xρ ( ) ( ) ( )2121 FP/FPFFP = ; 

( ) ( )112 FPFFP =∩ ;  ( ) ( )212 FPFFP =∪ . 

When the factor  is between 0 and 1, the in-
tersection and failure probabilities by Eqs. (21) and (17) of 
two cut sequences become as 

2
21
xρ

( ) ( ) ( ) ([{ }111 2211212
2 −+= FP/FPFPFFP xρ∩ ) ]   (23) 
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    ( ) ( ) ( ) ( ) ( )×−+= 121212 FPFPFPFPFFP ∪
( )[{ 111 212

2 −+× FP/xρ ]}

]

  (24) 

Analogically to Eq. (23), the probability of an in-
tersection of three failure events may be presented as 

( ) ( ) ( ) ( )×= 123123 FPFPFPFFFP ∩ ∩    

( )[ ]{ } ( )[{ }111111 3213221
32 −+−+× FP/FP/ x
,

x ρρ   (25) 

where the correlation factor . The 
correlation factor and its bounded index are considered in 
Section 5. 

( )3132213 50 ρρρ +≈ .,

 
4. Instantaneous survival probability 

 
The instantaneous survival probability of particu-

lar members with respect to their single failure mode at 
sequence cut , if they were safe at cuts 1-k-1 i.e. 

, can be modelled us-

ing multidimensional integral as 

k

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==>

−

=
∩

1

1
10

k

i
ikkk SFPSPZP

 
( ) ( ) [ ]

( )
dxfZPZP

k
k

g
kkk ∫

>

=≤−=>
0

010
θX

X X θθ  

 
For design convenience, the structural safety analysis of 
deteriorating members may be based on the limit state cri-
teria  or 0>− kck ER ( ) 02 >+− kkqck EER

s
 and, 

 where  is defined from Eq. (6). 
Therefore, the instantaneous survival probability may be 
expressed as 

( ) 021 >+− kkck EER ckR

( ) [ ]{ n,kERPSP kckk 10 }∈∃>−=   (26) 

 The conventional resistance  and single ex-
treme action effect may be treated as statistically inde-
pendent variables of random safety margins. 

ckR

kE

 

 
Fig. 3 Schematic representation of an instantaneous sur-

vival probability analysis 
 
Therefore, the instantaneous survival probability 

of deteriorating members can be expressed by convolution 
integral as 

( ) [ ]{ } ( ) ( )dxxFxfn,kERPSP
kck ERkckk ∫

∞

=∈∃>=
0

1  (27) 

where ( )xf
ckR  is the density function of resistance and 

( )xF
kE  is the cumulative distribution function of their ac-

tion effect (Fig. 3). 
 
5. Long-term survival probability 
 

Decreasing resistance of particular members must 
be treated as a nonstationary process. Therefore, it is rather 
complicated to define the failure probability of multicut 
sequences in easy perceptible manner. However it is fairly 
simple to calculate the survival probability of deteriorating 
members by TCPM. According to Eq. (20), the survival 
probabilities of these members exposed to two, three and 

 extreme loading situations may be expressed as follows n

( ) ( ) ( =−==≥ ∪∩ 12212 1 FFPSSPtTP )    

( ) ( ) ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+= 111

1
1221

2

SP
SPSP xρ   (28) 

( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=≥

==
∪∩

3

1

3

1
3 1

k
k

k
k FPSPtTP    

( ) ( ) ( ) ( ) ×
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+= 111

1
21321

2

SP
SPSPSP xρ  

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+× 111

21
213
3

∩SSP
x
,ρ   (29) 

( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=≥

==
∪∩

n

k
k

n

k
kn FPSPtTP

11
1    

( ) ( )

( ) ××
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+×

××
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+=

−
−

=
∏

...
S...SP

...
SP

SP

k

x
k...,k

x
n

k
k

k 111

111

11
11

1
21

1

2

∩∩
ρ

ρ

  

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+×

−
− 111

11
11 ∩∩ n

x
n...,n S...SP

nρ   (30) 

For the sake of simplified but fairly exact prob-
ability-based analysis of deteriorating structures, the condi-
tional survival probability of higher order 
( )∩ ∩ 11 −kk S...SSP  for particular members may be defined 

as the probability ( )1−kk SSP . Therefore, the component 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

−
− 111

11
11 ∩∩ k

x
k...,k S...SP

kρ  of  Eq. (30) may be 

changed by the factor ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+

−
− 111

1
11

k

x
k...,k SP

kρ . Then, 

Eq. (30) may be rewritten in the form 

( ) ( )×≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=≥ ∏

==

n

k
k

n

k
kini SPSPtTP

11
∩   

( )
2

21
1

11 1x

P S
ρ

⎧ ⎫⎡ ⎤⎪ ⎪ ...× + −⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

× ×  
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( ),1... 1
1

11 kx
k k

kP S
ρ −

−

⎧ ⎫⎡ ⎤⎪× + − × ×⎢ ⎥⎨
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

1 ...⎪
⎬   

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+×

−
− 111

1
11

n

x
n...,n SP

nρ   (31) 

where ,…, ,…,( )1SP ( 1−kSP ) ( )1−nSP  are the instantaneous 
survival probabilities of members by Eq. (27). The correla-
tion factor of dependent sequence cuts, 11 −k...,kρ , is formed 
from th row of quadratic matrix of basic coefficients of 
correlation 

k

 

[ ]

1

1

1
1

1121

121

21

−−

−

=

n,nk,nnn

k,kkk

......
..................

...
............

ρρρρ

ρρρ

ρ

Ρ  

 
It may be defined as 

( ) ( 112111 −+++≈ −− k/... k,kkkk...,k )ρρρρ   (32) 

The coefficient of correlation of rank safety margin cuts is 
calculated from the equation 

( ) ( ) ≈×= lklkkl ZZ/Z,ZCov σσρ   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≈

k

k
lk R

S
/ 2

2

1
σ
σ

ϕϕ   (33) 

where and ( )lk Z,ZCov lk Z,Z σσ are an auto covariance and 
standard deviations of safety margin values. 

Then long term survival probabilities of members 
are calculated by Eq. (31), the bounded index, , of cor-
relation factors of random multicut sequences may be ex-
pressed as 

kx

( ) ( ) ([ ≈−+= −−
21

1111 9801454 /
k...,kk...,kkk ./.SPx ρρ )]

)]
   

( ) ([ 21
11980158 /

k...,kk ./.SP −−≈ ρ   (34) 

 For highly reliable load-carrying members, the 
instantaneous survival probability  and its effect 
on bounded indices may be ignored. 

( ) 1≈kSP

The acceptability of this index in design practice 
is corroborated by Fig. 4, where the position of points for 
decreasing sequences with two, three and four cuts is cal-
culated by Monte Carlo simulation method. These points 
belong to the safety margin MRZ kk −= 0ϕ , where kϕ  is 
its degradation function with reference values 0.97, 0.92, 
0.87 and 0.82;  is the initial bending resistance and 0R
M is the bending moment. The means and variances of its 
independent variables are: = 200 kNm, 

= 1600 (kNm)
mR0

0
2Rσ 2 and = 60 kNm, = 36, 144, 

576, 1296 (kNm)
mM M2σ

2. 
 

 
Fig. 4 The indexed correlation factor of series systems 

versus its basic value 

kx
kρ

kρ  
 

When extreme action effects are caused by two 
independent loads and three safety margins (10), (11) and 
(12) are considered, the long-term survival probability of 
particular members as series stochastic systems may be 
expressed as 

( ) ×
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=≥ 111

1
21321

2

P
PPPtTP x

n ρ    

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+× 111

2
213
3

P
x
,ρ   (35) 

where the ranked survival probabilities  are 
calculated by Eq. (31) and the correlation factor 

321 PPP >>

( )3231213 50 ρρρ += ., . 
The survival probability of members may be also 

introduced by the generalized reliability index 

( ){ }ntTP ≥= −1Φβ   (36) 

where ( )•−1Φ  is the cumulative distribution function of the 
standard normal distribution. The target reliability index 
βmin of the structural members depends on their reliability 
classes by considering the human life, economic, social 
and environmental consequences of failure or malfunction 
[1, 15]. For persistent design situations, the values of βmin 
are equal to 3.3, 3.8 and 4.3 for reliability classes RC1, 
RC2 and RC3 of structural members. The value of βmin for 
particular members should be not less. However, for mem-
bers of hyper static structures, it may be decreased to 1.64 
[16]. 

According to TCPM, the total survival probabili-
ties of structural members (beams, columns, plates, 
trusses) as series, parallel and mixed microsystems may be 
calculated by the equations 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+== 111

1
212121

2

P
PPSSPP x

ser ρ∩   (37) 
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( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−+== 111

1
21212121

2

P
PPPPSSPP x

par ρ∪  (38) 

( )== ∩ ∩ 321 SSSPPmix    

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= 111

3
2133
3

par/

x
,par P

PP ρ   (39) 

where  is the greater value from the probabilities  
and  by Eq. (38). 

par/P3 3P

parP
 
6. Numerical example 
 

Consider the long-term survival probability and 
reliability index of deteriorating roof steel beams of a scrap 
metal shed exposed to atmosphere corrosion conditions 
induced by environmental cold, wet and dry actions 
(Fig. 5). The indicative design working life of beams is 25 
year. The initiation degradation phase of beams 0=int  and 
the degradation function of their bending resistance 
( ) t.t 0037501−=ϕ . 

 

 
Fig. 5 Traversing underslung crane 

 
The bending moments of beams ,  and 

 are caused by permanent load G  of steel roof struc-
tures and hanging crane crabs, variable loads  and  of 
scrap metals and snow depth. The means and coefficients 
of variation of basic variables of a beam safety margins 
are: kNm, 

GM QM

SM
Q S

53630 .R m = 0800 .R =δ ; kNm, 020.M gm =

100.M g =δ ; kNm, 749.M qm = 200.M q =δ ; 
kNm, 350.M sm = 50.M s =δ . The statistics of additional 

variables of beam safety margin are: 01.MmRm ==θθ , 

, . 002502 .R =θσ 02 =Mθσ
The means and variances of the beam parameters are: 

( ) 53630 .R mR =θ  kNm,  

 (kNm)

( ) ( ) +×= 2
0

2 5363080 ..RRθσ

21176002505363 2 ... =×+ 2; 

( ) 020.M
mgM =θ  kNm,  ( ) ( ) =×= 22 020100 ..M gMθσ

04.=  (kNm)2; 
( ) 749.M

mqM =θ  kNm,  ( ) ( ) =×= 22 749200 ..M qMθσ

898.=  (kNm)2; 
( ) 350.M msM =θ kNm,  ( ) ( ) =×= 22 350500 ..M sMθσ
5632.=  (kNm)2. 

These parameters are described by normal ( and 
), lognormal ( ) and Gumbel ( ) probability dis-

tributions. The instantaneous and long-term survival prob-
abilities are calculated by Eqs. (26) and (31) and the reli-
ability index is defined by Eq. (36). Their decreases in time 
are presented in Fig. 6. 

R
gM qM sM

 

 
Fig. 6 The decreases of instantaneous (1) and long-term (2) 

survival probabilities of beams and their reliability 
index (3)  

 
According to code recommendations [1], the 

minimum value for reliability index of beams is 
33.min =β . Therefore, their technical service life is equal 

to 17 years. 
 

7. Conclusion 
 

The prediction of time-dependent safety of dete-
riorating structures subjected to aggressive environmental 
conditions and recurrent extreme service and climate loads 
can be formulated and solved within unsophisticated prob-
ability-based approaches. It is expedient to base the analy-
sis of survival probabilities and reliability indices of dete-
riorating particular members (sections, bars, connections) 
on the concept of random decreasing multicut sequences. 
The position of stochastically dependent cuts of these se-
quences is matched with extreme loading situations of 
structures. 

The method of transformed conditional probabili-
ties (TCPM) may be successfully introduced into the prob-
ability-based design of deteriorating particular and struc-
tural members in a simple and easy perceptible manner. 
This method help us predict the safety parameters of struc-
tural members (beams, columns, plate, trusses) as stochas-
tical series, parallel and mixed microsystems. 

A closer definition of technical service lives of 
deteriorating structural members allows us avoid un-
founded premature replacements and unexpected damages. 

The represented methodological formats on sur-
vival probability and technical service life prediction are in 
force for deteriorating structures subjected both to single 
and joint extreme loads. 



 11

References  
 
1. EN 1990. Eurocode - Basic of structural design. CEN, 

Brussels, 2002.-87p. 
2. ASCE/SEI 7-05. Minimum Design Loads for Build-

ings and Other Structures, 2005.-388p. 
3. Rackwitz, R. Risk acceptance and optimization of ag-

ing but maintained civil engineering infrastructures.  
-Safety and Reliability for Managing Risk, 2006, 
p.1527-1534. 

4. Noortwijk, J.M., Kallen, M.J., Pandey, M.D. Gamma 
processes for time-dependent reliability of structures.  
-Advances in Safety and Reliability, 2005, p.1457-
1464. 

5. Joanni, A.E., Rackwitz, R. Stochastic dependencies in 
inspection, repair and failure models. -Safety and Reli-
ability for Managing Risk, 2006, p.531-537. 

6. Kuniewski, S.P., van Noortwijk, J.M. Sampling in-
spection for the evaluation of time-dependent reliability 
of deteriorating structures. -Risk, Reliability and Socie-
tal Safety, 2007, p.281-288. 

7. JCSS. Probabilistic Model Code: Part 1- Basis of de-
sign. -Joint Committee on Structural Safety, 2000.  
-65p. 

8. Mori, Y., Nonaka, M. LRFD for assessment of dete-
riorating existing structures. -Structural Safety 23: 
2001, p.297-313. 

9. Zhong, W.Q. &Zhao, Y.G. Reliability bound estima-
tion for R.C. structures under corrosive effects.  
-Collaboration and Harmonization in Creative Systems. 
-London, 2005, p.755-761. 

10. Melchers, R.E. Probabilistic model for marine corro-
sion of steel for structural reliability assessment.  
-Journal of Structural Engineering, 2003, v.129(11), 
p.1484-1493. 

11. Rosowsky, D., Ellingwood, B. Reliability of wood 
systems subjected to stochastic live loads. -Wood and 
Fiber Science, 1992, 24 (1), p.47-59. 

12. Vrowenvelder, A. C. Developments towards full prob-
abilistic design codes. -Structural safety, 2002, v.24,(2-
4), p.417-432. 

13. ISO 2394. General principles on reliability for struc-
tures. Switzerland, 1998.-73p. 

14. Vaidogas, E.R., Juocevičius, V. Reliability of a timber 
structure exposed to fire: estimation using fragility 
function. -Mechanika. -Kaunas: Technologija, 2008, 
Nr.5(73), p.35-42. 

15. Kudzys, A. Survival probability of existing structures. 
-Mechanika. -Kaunas: Technologija, 2005, Nr.2(52), 
p.42-46. 

16. Jankovski, V., Atkočiūnas J. Matlab implementation 
in direct probability design of optimal steel trusses.  
-Mechanika. -Kaunas: Technologija, 2008, Nr.6(74), 
p.30-37. 
 
 

A. Kudzys, O. Lukoševičienė 
 

SILPNĖJANČIŲ KONSTRUKCIJŲ SAUGOS 
PROGNOZAVIMAS 
 
R e z i u m ė 
 

Nagrinėjamas agresyvios aplinkos ir pavienių ar 
sutampančių ekstremaliųjų apkrovų stačiakampio atsinau-
jinančio pulsinio proceso veikiamų konstrukcijų saugos 
prognozavimo inžinerinis modeliavimas. Silpnėjančių ypa-
čiųjų elementų saugos ribos modeliuojamos atsitiktinėmis 
mažėjančiomis sekomis. Ilgalaikės konstrukcijų išlikties 
tikimybės prognozavimas remiasi nesudėtingu transfor-
muotų sąlyginių tikimybių metodu. Tikimybinį silpnėjan-
čio elemento projektavimą iliustruoja skaitinis pavyzdys. 
 
 
A. Kudzys, O. Lukoševičienė 
 
ON THE SAFETY PREDICTION OF DETERIORATING 
STRUCTURES 
 
S u m m a r y 
 

Engineering modeling of safety prediction of the 
structures subjected to aggressive environmental actions 
and rectangular renewal pulse processes of single and co-
incident extreme loads is considered. The safety margins of 
deteriorating particular members are modeled as a random 
decreasing sequences. The prediction of long-term survival 
probabilities of structures is based on the unsophisticated 
method of transformed conditional probabilities. The prob-
ability-based design of deteriorating members is illustrated 
by the numerical example. 
 
 
А. Кудзис, О. Лукошевичене 
 
О ПРОГНОЗИРОВАНИИ БЕЗОПАСНОСТИ 
ОСЛАБЛЯЮЩИХСЯ КОНСТРУКЦИЙ  

Р е з ю м е 

Рассматривается инженерное моделирование 
прогнозирования безопасности конструкций, подверг-
нутых воздействию агрессивной среды и прямоуголь-
ных восстановляющихся пульсирующих процессов 
одиночных и совмещенных экстремальных нагрузок. 
Запас прочности ослабляющихся частных элементов 
моделируется случайной снижающейся последова-
тельностью. Прогнозирование вероятностной долго-
вечности конструкций основано на несложном методе 
трансформированных условных вероятностей. Вероят-
ностное проектирование ослабляющегося элемента 
иллюстрируется численным примером. 
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