
119

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.2

A SOFTWARE TESTING APPROACH BASED ON
BEHAVIORAL UML MODELS

Dominykas Barisas, Eduardas Bareiša
Software Engineering Department, Kaunas University of Technology

Studentų St. 50, LT−51368 Kaunas, Lithuania
e-mail: eduardas.bareisa@ktu.lt

Abstract. The aim of this paper is to describe a systematic way to construct tests from a formal software specifica-
tion for validating a system implementation. In order to achieve this goal, the specification could be extended to create
UML states that directly address those aspects of the system we wish to test. The presented technique generates test
cases from UML communication and state machine diagrams which allow testing a correct class integration of object-
oriented software. UML state machine diagrams provide a good way for test generation in a form that can be easily
manipulated. The concept of the technique and an example model are presented.

1. Introduction

Model-based testing has become popular not only
in software design and development, but is widely
used for testing. There is a number of advantages as
well as difficulties and shortcomings of various
model-based approaches. Many object-oriented tech-
niques have been used as solutions to address the in-
creasing demand for assuring software quality.

Many researches were done to ensure the correct
software object functionality, however a large amount
of errors are introduced by object integration. Many
different UML models have been used for object
integration testing including state machine, sequence
and communication diagrams [1, 2, 3]. Object-orien-
ted systems are based on their object interactions and
incorrect behaviors are observed during integration
such as missing functions, various conflicts between
objects.

The technique we will present in this paper im-
proves integration testing of object-oriented software
by taking into account all class states interacting in a
communication diagram. There are many researches
made on testing system state-based behavior using
state machine or UML interaction diagrams for the
interacting behavior [4, 5, 6, 7]. In this paper, system
object interactions in all possible states will be
modeled using state machine and communication
diagrams.

2. The Testing Technique Proposal

We propose a testing model which is created by
generating communication and state machine diag-
rams. The main focus is on testing all possible state
interactions between objects in the model [8]. As men-
tioned before, our approach can be used to test the

object integration, therefore it should be applied
during the class integration phase.

2.1. The Testing Process Concept

The process can be separated into these activities:
• Construction of UML communication diagram.
• Defining state machine diagrams corresponding to

the objects from communication diagram.
• Test path generation based on all path coverage

criteria [9] and test execution. Paths from the test
model are executed and object states before and
after execution of each message in a test path are
stored [10]. States of the objects are defined using
state invariants.

• Comparison of the object states after test execution
and the expected states from the model. The test
case is considered to have failed in case the object
state is not in the expected state [11].
Figure 1 illustrates the described approach with

more details.
There is a need to specify guard conditions (state

invariants), which is done by using OCL [12, 14].
Each object in the communication diagram corres-
ponds to an instance of a class and should have a
corresponding state machine diagram. Connections in
the proposed model can emerge between objects in the
communication diagram and between states in the
state machine diagram. Connections in the commu-
nication diagram should have a unique number, opera-
tion, receiver and sender objects. Connections bet-
ween states include a unique number, operation,
accepting state and sending state as shown in Figure 2.
An extra effort is needed to specify this in a model.

D. Barisas, E. Bareiša

120

Test path
generator

Collaboration
diagram Statecharts Generated test

data

Stored resultsTest paths
in OCL

Execute tests Result
comparison

Test results

Invariants of
states

Figure 1. A chart representing a concept of the proposed testing process

-senderClass:Class
-receiverClass:Class
-number:int
-operation:int

ConnCollaboration

-acceptingState:State
-sendingState:State

ConnState
1 0..n

Figure 2. Class diagram representing connections in the test model

2.2. Building UML Test Model

An example of the described model will be pro-
vided in this section. The simulation of an Automated
Teller Machine application will be modeled [13]. The
system is started up when the operator turns the
operator switch to the "on" position. A session is star-
ted when a customer inserts an ATM card into the card
reader slot of the machine. The ATM pulls the card
into the machine and reads it. (If the reader cannot
read the card due to an improper insertion or a
damaged stripe, the card is ejected, an error screen is
displayed, and the session is aborted). The customer is
asked to enter his/her PIN, and is then allowed to
perform one or more transactions, choosing from a
menu of possible types of transaction in each case.
When the customer is through performing trans-
actions, the card is ejected from the machine and the
session ends. A transaction is aborted due to a number
of invalid PIN entries or after the “Cancel” button is
pressed by user.

A transaction is started within a session when a
customer chooses a transaction type from a menu of
options. If PIN is valid, any steps needed to complete
the transaction will be performed. If the bank reports
that the customer's PIN is invalid, then an attempt will
be made to continue the transaction. If the customer's
card is retained due to too many invalid PINs, the
transaction will be aborted, and the customer will not
be offered the option of doing another one.

If a transaction is cancelled by the customer, or
fails for any reason other than repeated entries of an
invalid PIN, a screen will display the information for
the customer about the reason of the transaction
failure. The customer may cancel a transaction by
pressing the Cancel key as described for each indivi-
dual type of transaction below.

A corresponding communication diagram is shown
in Figure 3.

Objects from communication diagram have corres-
ponding state machine diagrams representing different
states of the objects as illustrated in Figure 4 to 6.

DisplayManager Transaction

Session

[cardEntered=true] initTransaction():void

[transaction=true] initSession():void

start():void

1. 3.

2.

Figure 3. Simplified ATM application communication diagram

A Software Testing Approach Based on Behavioral UML Models

121

OFF

IDLEServingCustomer

turnOn() [off=true]turnOff() [off=false]

showIdle() [activeSession =0]

showCustomer() [activeSession =1]

Figure 4. DisplayManager state machine diagram

Sending to Bank

Completing TransactionHandling Invalid PIN

send() [specificsCorrect=true]

checkPIN(pin:int) [pin!=myPIN]

checkPIN(pin:int) [pin=myPIN]

checkPIN(pin:int)
[pin=myPIN]

Getting Specifics

Figure 5. Transaction state machine diagram

The communication diagrams model focuses on
the use case execution by calling system level opera-
tions. The object state machine diagram contains its
states and the messages the object can receive in those

states. There is a set of messages with state informa-
tion of each object in the communication diagrams.

The goal of the model is to create a graph combi-
ning communication and state machine diagrams.
There is a number of vertices created for the classes.
They represent different states in which the message
can be received. Vertices belonging to the same class
are grouped in the box. In this way the graph is built
combining communication and state machine diag-
rams. The example graph of ATM application is
shown in Figure 7. All objects in the graph have
information about the class name and state. Con-
nections between objects in communication diagram
have unique numbers identifying them. State machine
diagram connections contain information about the
condition.

Performing Transaction

Choosing TransactionReading PIN

readPIN() [cardRead=true]

end() [calcel=true || invalidPIN>3]

Ejecting Card

Reading Card

getTransaction(transactioId:int)
[userValidated=true]

startTransaction(transactioId:int)
[userValidated=true]

end() [calcel=true
|| invalidPIN>3]

end() [calcel=true
|| invalidPIN>3]

end()
[cardRead=false]

Figure 6. Session state machine diagram

Start

1.

3.2.

Performing Transaction

Choosing TransactionReading PIN

[cardRead=true]

[calcel=true || invalidPIN>3]
Ejecting Card

Reading Card

[userValidated=true]

[userValidated
=true]

[calcel=true || invalidPIN>3]

[calcel=true || invalidPIN>3]

[cardRead=false]

Sending to Bank

Completing TransactionHandling Invalid PIN

[specificsCorrect=true]

[pin!=myPIN]

[pin=myPIN]

[pin=myPIN]

Getting Specifics

OFF IDLE

ServingCustomer

[off=true]

[off=false]

[activeSession =0]

Figure 7. Test model graph

D. Barisas, E. Bareiša

122

2.3. Covering Paths in the Graph

The generated test paths test communication bet-
ween classes, each of them having states. This testing
path starts from the first graph node and has a set of
messages for the communication. When constructing a
path, only those state machine diagram connections
are selected which are valid for the corresponding
connection in the communication diagram. However,
it is not always possible to execute all paths due to the
guard conditions.

The main steps to generate test paths are presented
in Figure 8. Every generated path is stored as a string
containing a chain of connections between objects in
appropriate states. These tests paths can be presented
as an OCL set of strings. Every connection contains
detailed information about the message, therefore
messages in test paths are identified by numbers and
names. Each message contains information regarding
the test path, the condition which is needed for condi-
tional messages only, message and class names, state,

guard, result state. They are combined in the following
way:

Sequence_nr:[iteration][Condition]msg_name@class
name@state_id->[Guard]result_state

The whole test path is composed of a set of such
messages combined with each other. In order to test
the integration of application completely using the
proposed approach, each state connection of the
diagram has to be executed at least once. Then
generated test paths are parsed in order to identify
objects and states. The result of one test path
generation for ATM application would look like as
follows:

1. start$DisplayManager@IDLE-
>[activeSession=0]ServingCustomer

2. transaction=true]initSession$Session@Reading
Card->[cardRead=false]Ejecting Card

3. cardEntered=true]initTransaction()$
Transaction@Getting Specifics->
[specificsCorrect=true]Sending to Bank

Figure 8. A test path construction algorithm

Every path is read to identify the classes and their
initial states. The sequence numbers in a test path de-
termine the sequence of sending the messages. Execu-
tion of each test path requires test data. These data

have to be provided by the user or generated automa-
tically.

TestPaths: a sequence of test paths
MessageEdges: a sequence of message edges in model
TransitionEdges: a sequence of transition edges corresponding to a message edge
messageEdgeModel: a message edge in model
transitionEdgeModel: a transition edge in model
messageEdge: a part of test path corresponding to a message edge
transitionEdge: a part of test path corresponding to a transition edge of the message
edge

1. TestPaths ::= []
2. MessageEdges ::= Model.messageEdge
3. for each messageEdge in MessageEdges
4. messageEdge ::= messageEdgeModel.constraint +

messageEdgeModel.associatedOperation+”$” + messageEdgeModel.receiverClass+”@”
5. if TestPaths.length = 0
6. TestPaths->insertAt(1,messageEdge)
7. else
8. for (i = 1 to TestPaths.length)
9. TestPaths.insertAt(i, join(TestPaths.at(i), messageEdge))
10. end for
11. end if
12. TransitionEdges ::= messageEdgeModel.transition
13. n ::= TestPaths.length
14. for (j=1 to TransitionEdges.length-1)
15. for (i=1 to n)
16. TestPaths.append(TestPaths.at(i))
17. end for
18. end for
19. n ::= 0
20. for (i=1 to TransitionEdges.length)
21. for j=1 to TestPaths.length/ TransitionEdges.length
22. transitionEdgeModel ::= TransitionEdges.at(i)
23. transitionEdge ::= transitionEdgeModel.sourceState+”->” +

transitionEdgeModel.guard + transitionEdgeModel.targetState

A Software Testing Approach Based on Behavioral UML Models

123

2.4. Test Execution and Test Result Assessment

After the model has been created, the test
paths are generated and executed using the provided

test data, results are evaluated and saved in a file. Test
paths are composed from the sequences of messages
starting from the first and ending at final nodes in the

graph. UML model has to be presented in XMI
format, so that it can be parsed and needed objects

identified. Each message is retrieved from the
communication diagram. Further all states of the

sending objects are stored. Only those objects states
are selected which are capable to receive the message.

Figure 9 shows the static structure of test execution
environment.

In order to be able to execute test paths, test data
using a state invariant have to be generated manually.

These test data include initial message parameter
values and class variables needed to set states for the
objects in communication diagram. The user can add
test values manually by picking random values from
the state invariants and saving them in a data file. Test
data are provided for the methods called in test paths,
then the application is tested and results are stored in a
result file. This file contains object states before and
after each test path message. Afterwards, the test
results are compared with the expected results. Object
states before and after the message in the test path
compose the expected result. The test path is success-
fully passed if all object states are equal. Test results
and message names are saved in a file.

+displayResult()
+saveToFile(in fileName : string)
+execute()

-state : int
Top Package::Model

+getPath() : string

-className : string
-functionName : string
-beforeGuard : string
-beforeState : string
-afterState : string
-stateGuard : string
-resultState : string
-error : string

Top Package::Path

+execute(in paths : string) : void
+getResult() : string
+getErrors() : string
+createPath() : Path

-paths : string
-results : string

Top Package::PathExecutor

-value : string
Top Package::Message

-value : string
Top Package::Transition

-value : string
Top Package::Vertex

-value : string
Top Package::OCLConstraint

1 1..n «interface»
AbstractElement

+readData() : string
-element : string

Top Package::ModelReader

1

1

+execute() : void
-operationType : int
Top Package::Operation

1 *

Figure 9. Class diagram of the testing framework implementation

All test path combinations have to be generated to
fully cover all possible sequences in the graph. The
number of combinations depends on the model size as
it is illustrated in Figure 10.

Figure 10. Number of test paths dependence on the number

of classes assuming that each object has three states

It is obvious that the number of different com-
binations of test paths can grow exponentially when
the software system is large. This disadvantage of the
proposed technique needs to be improved in the
future.

3. Conclusions and Future Work

This paper presented a formal technique for the
testing process based on UML model consisting of
communication and state machine diagrams. Using
this approach, the object graph is generated and the
system is tested by checking communication between
objects in different states. The proposed technique is
suitable for the systems where the functionality of one
object depends on the state of another object. The
accomplished tasks are the construction of UML
model, implementation of test graph generation and
assessment of results.

The testing approach presented in this paper is
rather complex and needs to be simplified in order to

D. Barisas, E. Bareiša

124

use it for integration testing widely. In real software
systems, the number of state transitions can grow ex-
ponentially, therefore the testing process may become
difficult and time consuming.

One of the future investigations could be finding a
solution to identify a set of paths which has the high-
est possibility to detect faults in the system. Another
improvement of this technique would be finding a way
for the automated generation of test data.

References
 [1] A. Abdurazik, J. Offutt. Using UML Collaboration

Diagrams for Static Checking and Test Generation.
Third International Conference on the Unified Model-
ling Language, York, UK. 2000, Vol.1939, 383 - 395.

 [2] L.C. Briand, M. Di Penta, Y. Labiche. Assessing
and Improving State-Based Class Testing: A Series of
Experiments. IEEE Transactions on Software Engi-
neering. 2004, Vol.30, 770 - 783.

 [3] L. Briand, Y. Labiche. A UML-Based Approach to
System Testing. Proceedings of the 4th International
Conference on The Unified Modeling Language, Mo-
deling Languages, Concepts, and Tools, 2001, Vol.
2185, 194 - 208.

 [4] S.K. Kim, L. Wildman, R. Duke. A UML Approach
to the Generation of Test Sequences for Java-based
Concurrent Systems. Proceedings of the Australian
Software Engineering Conference, IEEE, 2005, 100 -
109.

 [5] Y. Jiong, W. Ji, C.Huowang. Deriving Software
Statistical Testing Model from UML Model. Third
International Conference on Quality Software, Dallas,
Texas, USA, IEEE, 2003, 343.

 [6] S. Rayadurgam, M.P.E. Heimdahl. Test-Sequence
Generation from Formal Requirement Models. 6th
IEEE International Symposium on High Assurance
Systems Engineering. 2001, 23 - 31.

 [7] P. Chevalley, P. Thevenod-Fosse. Automated Gene-
ration of Statistical Test Cases from UML State Diag-
rams. Proceedings of the 25th Annual International
Computer Software and Applications Conference,
IEEE, 2001, 205 - 214.

 [8] M. Badri, L. Badri, M. Naha. A Use Case Driven
Testing Process: Towards a Formal Approach Based
on UML Collaboration Diagrams. Formal Approaches
to Software Testing, LNCS. ISBN/ISSN: 3-540-20894-
1. 2004, Vol. 2931, 223 - 235.

 [9] J. Offutt, A. Abdurazik. Generating Tests from UML
Specifications. UML’99 – The Unified Modeling Lan-
guage. Beyond the Standard. Proceeding of the Se-
cond International Conference, Fort Collins, CO,
USA, 1999, Vol.1723, 416 - 429.

[10] P. Fröhlich, J. Link. Automated Test Case Genera-
tion from Dynamic Models. ECOOP 2000 – Object-
Oriented Programming, LNCS, ISBN: 978-3-540-
67660-7. 2000, Vol.1850, 472 - 491.

[11] S. Ali, L.C. Briand, M.J. Rehman, H. Asghar, M.Z.
Iqbal, A. Nadeem. A State-based Approach to Integ-
ration Testing based on UML Models. Information
and Software Technology, 2007, Vol.49, 1087 - 1106.

[12] M. Benattou, J.M. Bruel, N. Hameurlain. Genera-
ting Test Data from OCL Specification. Internal Re-
search Report R2I-02-01, Universite de Pau et des
Pays de l'Adour, France, 2002.

[13] R.C. Bjork. ATM Simulation. Gordon College, Wen-
ham, MA, 2004.

[14] Š. Packevičius, A. Ušaniov, E. Bareiša. The use of
model constraints as imprecise software test oracles.
Information technology and control, Kaunas Univer-
sity of Technology, Kaunas: Technologija. ISSN 1392-
124X. 2007, Vol.36, No.2, 246 - 252.

Received October 2008.

