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Abstract: The increased popularity of brain-computer interfaces (BCIs) has created a new demand
for miniaturized and low-cost electroencephalogram (EEG) acquisition devices for entertainment,
rehabilitation, and scientific needs. The lack of scientific analysis for such system design, modularity,
and unified validation tends to suppress progress in this field and limit supply for new low-cost
device availability. To eliminate this problem, this paper presents the design and evaluation of a
compact, modular, battery powered, conventional EEG signal acquisition board based on an ADS1298
analog front-end chip. The introduction of this novel, vertically stackable board allows the EEG
scaling problem to be solved by effectively reconfiguring hardware for small or more demanding
applications. The ability to capture 16 to 64 EEG channels at sample rates from 250 Hz to 1000 Hz and
to transfer raw EEG signal over a Bluetooth or Wi-Fi interface was implemented. Furthermore, simple
but effective assessment techniques were used for system evaluation. While conducted tests confirm
the validity of the system against official datasheet specifications and for real-world applications,
the proposed quality verification methods can be further employed for analyzing other similar EEG
devices in the future. With 6.59 microvolts peak-to-peak input referred noise and a −97 dB common
mode rejection ratio in 0–70 Hz band, the proposed design can be qualified as a low-cost precision
cEEG research device.

Keywords: biomedical signal processing; electroencephalogram; brain-computer interface;
analog front-end; acquisition device

1. Introduction

The increasing awareness of brain–computer interfaces (BCI) for brain signal analysis has sparked
new interest in electroencephalogram (EEG) acquisition device development. Various rehabilitation [1],
entertainment, and even security [2] applications can be implemented by post-processing [3–5] such
electrical signals recorded from the human scalp. However, developing a BCI is a challenging task due
to the noisy and variable nature of the EEG signal itself. The lack of validation, design knowledge,
and analysis for such systems impede progress in this field. Even if there were inappropriate trials
to use mobile devices for such a problem [6], professional high-quality and high-resolution analog
front-ends are required to capture the non-stationary brain signals in microvolt ranges. With the
introduction of dedicated EEG low-noise programmable analog-to-digital converters (ADCs) such
as the ADS1298, such tasks can be achieved more easily. Professional and high-quality EEG capture
systems are available from multiple vendors such as G.Tec and TMSi, etc. Due to their more than four
thousand US dollar price (Table 1), these devices are not meant for general public use or entry-level
development and, thus, prevent wider BCI adoption and research. Furthermore, there is minimal
knowledge of design or operational information on how these devices are actually validated and
achieve their proclaimed specifications. Additionally, to our best knowledge, there are no compact
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EEG systems allowing the scaling and reconfiguration of hardware based on problem requirements
(up to 64 or more channels). Achieving this would help manage and reduce complexity and also,
minimize runtime costs.

Table 1. State-of-the-art professional brain–computer interface (BCI) systems.

System Sampling
Speed, Hz

# of
Channels Accuracy CPU Electrodes I/O CMRR Price €

g.tec [7]
Nautilus 500 64

24-bit, <60 nV
(LSB), <0.6 µV

RMS
TI DSP Active-dry/gel Wireless 2.4

GHz/USB >90 dB >4.5 k

g.tec HIamp 38.4 k 256
24-bit, <60 nV
(LSB), <0.5 µV

RMS
TI DSP Active-dry/gel USB >90 dB >31 k

TMSi [8]
Mobita 2000 32 24-bit, <24 nV N/A Passive dry Wi-Fi IEEE

802.11 b/g >100 dB N/A

TMSi [9]
Porti 2048 32 22-bit, <1 µV

RMS N/A Active-shielding Bluetooth/
optic fiber >90 dB N/A

TMSi Refa 2048 136 22-bit, <1 µV
RMS N/A Active-shielding Optic fiber >90 dB N/A

With respect to the previously mentioned problems, this paper presents a new low-cost modular
and vertically stackable development board that can be used for entry-level EEG signal acquisition.
Furthermore, the proposed design allows the system to be easily scalable and adapted to various
EEG tasks, while maintaining significant cost savings. Simple but effective validation methods are
presented for acquisition and overall design assessment.

The next sections of this paper give a more detailed review of the proposed solution. Section 2
reviews state-of-the-art designs and approaches found in the literature. Section 3 provides system
architecture view and discusses various technical decisions. Methods for system board evaluation and
validation, along with experiments are described in Section 4. Result review and comparison with
other similar systems are discussed in Section 5. Final conclusions and directions for the future are
presented in the last Section 6.

2. Related Work

More than a few papers exist that describe the developed prototypes of EEG acquisition systems.
F. Pinho et al. [10] presented a computationally powerful, wearable system with 32 active dry electrodes
(based on TLC272 precision op-amp) for long-term epileptic patient monitoring. The battery-powered
design featured a 24-bit resolution analog-to-digital conversion unit ADS1299 capable of sampling up
to 1 ksps. EEG data could be processed real-time on a dedicated 1 GHz ARM CPU or sent to a host
PC over Wi-Fi 802.11 b/g for analysis and post-processing. Even though the focus of the work was
to create a standalone system with a higher performance CPU, the maximum battery life of 25 h was
the main limitation while running under maximum load. Since the device was not optimized for size,
this required longer wires and use of active electrodes.

A similar approach was used by S. Feng [11] in designing their EEG acquisition system for solving
a steady state, visually evoked potentials (SSVEP) problem. A 16-channel cape for a Beagle Bone Black
development board (having an AM3358 ARM Cortex-A8 1 GHz CPU) has been developed with two
ADS1299 ADCs and capable of sampling at the speed of 1 ksps. The authors claimed their system was
superior due to its provided embedded processing power and ability to work up to 12 h on two lithium
batteries. However, while the produced cape consumed only 5% (101.2 mW) of the total required
power under maximum load, the use of such system for portable battery powered applications is
currently still a big challenge.

B. Senevirathna et al. [12] designed a low-cost 7-channel, small size and battery-powered EEG
solution for long-term monitoring of schizophrenic patients. The board used a single ADS1299 ADC
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that was controlled using SAM G55 microcontroller. Authors claimed their system captured analog
data at 250 Hz sample rate and sent it over Bluetooth using 230.4 k baud. The power consumption
of 69 mA was reported with all channels active. Similarly, T.T. Vo et al. [13] introduced a low-cost
8-channel EEG recording device for BCI applications. Having an STM32F4 microcontroller, a single
ADS1299, and capable of sending data over Bluetooth, the design was dedicated to favor small size and
low power usage. A sampling speed of 250 Hz was used to record EEG via wet, gold-cup electrodes.
Despite successful validation, both previously mentioned devices lack spatial resolution for EEG and
overall board expandability was not considered.

A new re-design for an ECG acquisition system featuring a 24-bit ADS1298 ADC was done by
D. Campillo [14]. The author interfaced the 8-channel analog-to-digital converter to an MSP430F5529
microcontroller running at 12 MHz. The presented system board was capable of sampling at 500 Hz
rate, the intrinsic channel noise (ICN) was 9 µV, and the common mode rejection ratio (CMRR) was
94 dB. The board was tested for more than 12 h of continuous use. The main limitation of the system
for EEG use was the lack of channels for good spatial resolution.

M. Wild et al. [15] presented a tiny 4-channel, in-ear proof of concept EEG acquisition device.
Built upon OpenBCI project ideas, authors designed a BCI board with ADS1299 ADC that was
interfaced using an Atmega328 microcontroller. The raw EEG data were sent over Bluetooth to remote
a PC host for processing. Another 16-channel EEG recording device using dry electrodes has been
developed by V. Nathan et al. [16] and tested with SSVEP, P300 speller, and motor imagery BCI tasks.
The recorded raw EEG data were sent to the host PC via Bluetooth for final processing.

3. System Architecture

This section gives a detailed overview of the main components along with the integration and
communication mechanisms that were used to develop the system board.

3.1. Analog Front-End

Designing a reliable, high-accuracy, precision analog front-end (AFE) is not a trivial task [17]
that is why commercial, off-the-shelf solutions should be considered first. There exist multiple AFE
devices in the market that are capable of discretizing the analog EEG signal. Since main brain EEG
oscillatory waves propagate in a low-frequency range of 0–40 Hz, a high-sampling performance AFE is
not required. Thus, the main focus should be directed to AFEs with a maximum number of supported
channels, noise reduction capabilities, and high acquisition resolution. E. Mastinu et al. [18] have
compared two popular production grade AFEs—ADS1299 and RHA2216—and found that they give
similar results, although slightly better noise performances and higher myoelectric pattern recognition
(MPR) accuracy was measured for the ADS1299. D. Acharya et al. reviewed an ADS1299 development
board produced by Texas Instruments [19] for EEG task. Based on the evaluation given in their paper
the ADS was recommended for EEG acquisition due to low power use, low input referred noise
(0.205 µVrms–6.5 µVrms), and overall improvement over provided features in same device segment.

In addition, the OpenBCI development board, which is popular among researchers [20] and
entry-level enthusiasts, uses the ADS1299 device for the AFE. According to M. Zieleniewska et al. who
compared OpenBCI to a top-class EEG amplifier from TMSi [21], the signal quality was comparable to
the commercial EEG amplifier and sufficient for research and advanced BCI applications despite the
board and electrode shielding problems.

Due to its extensive features, wide use in the industry, and many applications, the ADS1299 and
the alternative ADS1298 were selected as the AFE for the developed system. Free samples of the
ADS1298 were acquired from Texas Instruments.

The ADS1298/9 is a device [22] for biopotential measurements and medical instrumentation
(electrocardiogram (ECG), electromyogram (EMG) and EEG) with eight low-noise, programmable gain
amplifiers (PGAs) and eight high 24-bit resolution Delta-Sigma ADCs. The device has self-test,
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temperature, and lead-off detection mechanisms. Although similar and designed for the same
application, the main differences between the devices are given in Table 2.

Table 2. Main differences of ADS1298/9 devices.

Parameter ADS1298 ADS1299

Sample Rate (max), ksps 32 16
Input Type Differential or Single-ended Differential

Power Consumption, mW 6 41
Min analog voltage, V 2.7 4.75

SNR, dB 112 121
Max programmable gain 12 24

CMRR, dB −115 −110

3.2. Host Microprocessor

There are no general solutions for choosing the host processor for interfacing the AFE. In the
literature [10–21], depending on the use case and required computational performance, the host
processor ranges from microcontrollers to embedded microprocessors with 1 GHz or higher frequency.
It is inappropriate to choose high-performing CPU for such battery-powered EEG recording devices.
All intensive computations, such as machine learning should be carried out remotely on a host PC.
The CPU in this work was chosen so that the required maximum analog front-end sampling speed of
1 ksps and the communication with wireless device modules speed would be reached.

For the initial system version (Figure 1), an Atmega2560 microcontroller (MCU) has been selected
running at 16 MHz. Interrupt based serial peripheral interface (SPI) communication for ADC sampling
and data transmission over wireless connection has been implemented. Two ADS1298 AFEs were
tightly packed (top and bottom) on a single 4-layer printed circuit board (PCB) (Figure 2a) giving
a total of 16-channel EEG in the standalone system. Additional general purpose inputs-outputs
(GPIOs) were broken out by two headers. For wireless communications, two add-on boards were
used—Bluetooth 4.0 Low Energy HM-11 (top) and a popular ESP8266 Wi-Fi module (bottom).
Additionally, an accelerometer and gyroscope MPU 6050 module controlled over I2C bus was added
into the system. Local data storage was implemented using a micro SD card slot. The image of a
finished initial system board version can be seen in Figure 2b. The dimensions of the credit card sized
board are 10 cm × 5 cm.
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Figure 2. The designed PCB (a) Top and bottom of the board; (b) Initial version of finished system PCB
(dimensions are 10 cm × 5 cm).

To achieve expandable and modular architecture, an SPI header was exposed on the PCB for
stacking additional boards up to a total count of four, thus, reaching a total of 64 EEG channels.
All ADS1298 devices were connected using the cascaded configuration mode (Figure 3). The other
supported “Daisy-Chain” configuration type was not acceptable due to limitation–inability to read
and write each ADS registers and was not used in this work.
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3.3. Wireless Communication

To decouple the system board from various AC and other noise sources, the EEG data must
be sent to host PC over a wireless connection. Furthermore, wireless transfer is the main solution
for replacing long electrode cable braids and limiting the cable swing introduced signal noises and
artifacts [23]. Multiple alternatives exist for such a task. The most common approach is to send data
over Bluetooth due to the very low power consumption of such technological devices. However,
the short connection range and low data rates (baud) are the main bottlenecks of this technique when
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higher sample rate or higher count of EEG channels are used. Another approach is to use higher
bandwidth communication technologies [24] such as Wi-Fi 802.11. By employing Wi-Fi, the bottleneck
changes and then the limiting factor is the speed of the MCU.

Both technological approaches were used in the proposed EEG system. The Bluetooth component
was implemented using mini HM-11 BLE 4.0 module that is limited to a maximum baud of 230,400.
The Wi-Fi component was implemented using ESP8266-12E module via universal asynchronous
receiver-transmitter (UART) and SPI interfaces that are limited to maximum baud of 921,600 and MCU
speed, respectively. The required baud rate (Table 3) in bits for sending uncompressed EEG data of
different sampling speed Fs and number of EEG channels Nch can be computed using Equation (1):

Bw = 24·(Nch + 1)·Fs (1)

Table 3. Bandwidth requirements for raw electroencephalogram (EEG) data.

# of EEG Boards Sampling Speed, Hz # of Channels BAUD, BPS BLE 4.0 UART ESP8266 UART/SPI

1 250 16 96,000 Yes Yes/Yes
2 250 32 192,000 Yes Yes/Yes
2 500 32 384,000 No Yes/Yes
2 1000 32 768,000 No Yes/Yes
4 250 64 384,000 No Yes/Yes
4 500 64 768,000 No Yes/Yes
4 1000 64 1,536,000 No No/Yes

3.4. Electrode System and Head Cap

A prototype acrylonitrile butadiene styrene (ABS) plastic head cap (Figure 4a) based on the
popular open-source Ultracortex OpenBCI model was printed using a 3 D printer and used in tests.
The placement of electrodes in the head cap conforms to the international 10–20 electrode system.
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Since gel-based electrodes require the application of conductive paste and tend to dry out when
used for prolonged times. Reusable dry type EEG electrodes (Figure 4b) from Florida Research Institute
were tested instead. Dry electrodes must have good contact with skin to limit resistance to 10 kΩ
or less [25]. Pressing the electrode against the skin surface tends to improve the contact with skin.
To prevent skin–electrode contact degradation (and thus impedance increase) and due to advances in
3 D printed part usage for EEG [26], a spring tension system (Figure 4c) for each electrode was used in
screwable socket type holders to hold the electrode in place.
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3.5. Accelerometer

The introduction of an accelerometer and gyroscope into the acquisition system allowed the
detection of artifacts in the EEG signal (as in Reference [27]) that were introduced due to the movement
of the patient. It is not always possible for the subject to stay still for long periods of time. Due to the
high component integration, it was optimal to use a pre-existing MPU-6050 module package for the
initial version of the system PCB.

3.6. Part Costs

The developed system consists of easily obtainable hardware parts. The initial goal was to design
the PCB from only the essential pieces that are required for an EEG acquisition board. Table 4 shows
the parts used, their prices, and a possible source for building a single board (16-channels) without
including manufacturing cost. To build a system with 64 channels, four such boards must be produced.
The total price for a single board is about 114 € at the time of writing this paper. This opens more
possibilities for researchers and the general public to experiment with BCI. These significant savings
come at the expense of performance and have no professional support for hardware and software.

Table 4. Bill of materials of a single EEG board.

Part# Item Usage Source Count Price/Pcs, Eur Total, Eur

1 4 layer PCB board Base for mounting SMT devices Seeed 1 8.00 8.00
2 ADS1298IPAG Analog front-end chip Mouser 2 31.00 62.00
3 ESP8266-12E Wi-Fi module ebay 1 1.40 1.40
4 MPU6050 GY-521 Accelerometer+gyro module ebay 1 0.92 0.92
5 Atmega2560 Main CPU ebay 1 4.20 4.20
6 HM-11 Bluetooth 4.0 module ebay 1 1.34 1.34
7 SN74LVCC3245 TTL to 3V3 level shifter Mouser 1 0.98 0.98
8 LM2664 Voltage inverter Mouser 1 0.73 0.73
9 MCP1825S 5 V LDO/0.5 A Mouser 1 0.50 0.50

10 MCP1825S-3V3 3.3 V LDO/0.5 A Mouser 1 0.50 0.50
11 MIC5219-2.5 2.5 V LDO/0.5 A Mouser 1 0.88 0.88
12 TPS72325 −2.5 V LDO/0.2 A Mouser 1 2.23 2.23

13 Other components Capacitors, resistors, diodes,
buttons, pin headers, sockets Mouser 1 30.00 30.00

Total (€): 82.68 113.68

4. Evaluation

This section presents the EEG acquisition system board evaluation techniques and tests done to
validate the operational correctness. While there are methods to verify the system using high-priced
third-party test equipment [28], simpler techniques exist to assess the system. The proposed methods
are detailed in further sections. A stacked, four board system was validated with 64 electrodes.
Validation tests were done using a high-resolution (HR) mode with PGA gain of one and sample rate
of 500 Hz, while a 1 kHz sampling rate was used for Wi-Fi bandwidth evaluation.

4.1. Internal ADC Tests

The ADS1298 analog front-end device contains several internal operation modes for validating
the internal ADCs. Validation and calibration of ADCs are crucial for correct EEG recordings. The ADS
registers (CONFIG1, CONFIG2 and CONFIG3) were programmed to connect internal test signal
output to each channel ADC input (INT_TEST = 1). If the channel ADCs are working correctly,
the corresponding signal will be seen on each channel output. Three different signal generation modes
were tested: Slow 1 Hz square wave (TEST_FREQ = 0), fast 2 Hz square wave (TEST_FREQ = 1),
and “DC” mode which allowed a constant high voltage (VCC) to be set for each channel.

For each signal type, a several second recording has been captured using a 500 Hz sample rate.
An example of the 8-channel data from each test is shown in Figure 5. The recordings presented typical
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1 Hz and 2 Hz square waves and DC pattern. This allowed us to conclude that the ADCs were working
properly. To validate the system integrity, each time the ADS1298 was started the same signals were
used for device calibration.
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4.2. Lead-Off Detection

Lead-off detection allowed us to validate ADS function to properly recognize the addition or
removal of electrodes from the human scalp. This function ensures electrodes have contact with the
scalp skin before any EEG recording is made. Lead-off detection has been validated by enabling
lead-off detection for each of the EEG channels in ADS registers (LOFF_SENSP = 0xFF). The electrodes
were placed on the subject’s scalp, and the status of LOFF_STATP register was checked. The value
of 0xFF for the register was expected for proper subject skin contact and a value of 0x00 if all the
electrode leads were removed. Additionally, each individual channel was checked using the same
routine. The device passed lead-off detection test for all channels successfully.

4.3. EEG Capture Software

An open-source OpenBCI graphical user interface (GUI) was modified (Figure 6) to support
the board developed in this work. The GUI was used for monitoring, recording, and testing
purposes. All the raw EEG signal filtering (low-pass, high-pass, and notch filters for 50/60 Hz [29])
was implemented in the software. Support for up to 64 channels has been introduced along with
accelerometer data visualization.
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Figure 6. The OpenBCI graphical user interface (GUI) used for validating each ADS1298.

4.4. Teeth Clenching and Eye Blinks

One type of EEG signal artifacts that can be easily captured during a recording session is muscle
induced teeth clenching and eye blinks [30]. The existence of these unwanted artifacts allows us to
validate the sensitivity of the analog front-end. An EEG recording session has been initiated to see the
artifact influence on the system. For this reason, eight electrodes were placed on the subject’s scalp
(based on electrode placement system 10–20), and two different states were recorded: Teeth clenching
and eye blinks. The resultant EEG trace of the experiment is shown in Figure 7. Clenching artifacts are
clearly visible (samples 270–450) while harder to recognize eye blinks have notable periodic behavior
(samples 525–700). The recording shows that the analog front-end is susceptible to muscle movement
artifacts and also, confirms the sensitivity of the system.
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4.5. Alpha Waves

Another common technique for EEG recording system validation is to analyze alpha waves [31].
These waves can be recorded in a wakeful human subject during relaxation when the subject’s eyes
are closed.

Detection and recording of alpha waves were tested by connecting electrodes (O1, Oz, O2 from
10–20 electrode placement system) to the subject’s scalp and asking them to relax, open their eyes for
30 s and then, to stay relaxed with closed eyes for one minute. During the closed eyes interval an
increased activity in the 7.5–12.5 Hz region in frequency domain showed a typical alpha wave signal
(Figure 8) of the brain occipital lobe area. The acquired results proved that the system was able to
successfully record EEG signal of such phenomenon.
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4.6. ECG Signal Detection

One of the simpler tests that can be initiated to validate any instrumental ADC is to record the
activity of the heart (electrocardiogram or ECG). A healthy patient ECG was recorded using three
leads. An example of a 78 bpm ECG diagram is shown in Figure 9. Typical periodic QRS complexes
are visible in the 2 mV peak signal, which denotes proper functioning of the signal capture front-end.
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4.7. Input Referred Noise

Input referred noise is each channel’s characteristic showing the noise generated by internal
ADS1298 chip circuitry and ADCs. The noise level for each channel was checked by shorting all
channels inputs via ADS1298 register CHnSET = 1 (where n = 1 to 8) configuration and recording the
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noise floor for 10 s to a micro SD card using different PGA and sampling rate settings. The averages of
each channel noise are given in Table 5.

An example of noise floor recording for a single channel is given in Figure 10. The average channel
input-referred noise value for this signal was 6.59 µVpp.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 17 

 

An example of noise floor recording for a single channel is given in Figure 10. The average 

channel input-referred noise value for this signal was 6.59 μVpp. 

 

Figure 10. Single channel input-referred noise signal (Fs = 1000 Hz, PGA = 3). 

Table 5. Average channel input-referred noise µVpp. 

Sampling Frequency Fs, Hz 
   PGA    

1 2 3 4 6 8 12 

32,000 2876 1883 937 753 617 357 283 

16,000 710 285 152 152 101 66 48.83 

8000 118 43.90 33.62 33.09 21.65 15.66 11.54 

4000 47.49 27.70 15.41 11.49 11.08 10.72 8.94 

2000 31.70 13.88 10.25 10.25 6.32 5.70 5.74 

1000 16.56 8.67 7.82 6.04 4.55 5.23 3.38 

500 14.85 5.92 4.92 4.77 3.94 3.13 2.87 

It can be seen that the noise is effectively cancelled as the sampling rate is decreasing (due to 

averaging done by ADS). A maximum noise decrease of around 1883/5.92 = 318 times has been 

observed for PGA = 2. High sampling frequency is not required for EEG applications, so rates up to 

1 kHz are more than enough to confidently capture brain oscillations in 7–30 Hz range. Further, 

higher gain value allows a reduction in the input-referred noise. A maximum noise reduction of 

around 710/48.83 = 14.5 times has been seen in experiments for Fs = 16 kHz. 

4.8. SNR and Precision 

Signal-to-noise ratio (SNR) shows the ability of the system to discern effective signals from 

background noise. When working with EEG signals, it is a requirement to have as high an SNR as 

possible since the valuable signal is in the same micro-volt range as the noise. The SNR in decibel 

scale is defined as shown in Equation (2): 

SNR = 20 log10 (
Asignal

Anoise
), (2) 

where the Asignal and Anoise are the root-mean-square (RMS) amplitudes of the signal and noise 

respectively. To evaluate the SNR of the designed system, an EEG recording experiment was 

conducted. First, a noise signal of 1 min length was recorded on all ADS1298 channels using 250 Hz 

sampling speed, and the average noise RMS amplitude was calculated from all data. Next, a known 

amplitude effective 10 Hz sine signal was generated as input on each channel, and the same length 

recordings were taken. These acquired signals were used to calculate the average RMS amplitude 

and finally, the SNR value. The input sine signal amplitude was scaled from 0 dB (100% VCC) to −100 

dB (0.001% VCC) to fully capture system behavior for very large and very small signals. The same 

Figure 10. Single channel input-referred noise signal (Fs = 1000 Hz, PGA = 3).

Table 5. Average channel input-referred noise µVpp.

Sampling Frequency Fs, Hz
PGA

1 2 3 4 6 8 12

32,000 2876 1883 937 753 617 357 283
16,000 710 285 152 152 101 66 48.83
8000 118 43.90 33.62 33.09 21.65 15.66 11.54
4000 47.49 27.70 15.41 11.49 11.08 10.72 8.94
2000 31.70 13.88 10.25 10.25 6.32 5.70 5.74
1000 16.56 8.67 7.82 6.04 4.55 5.23 3.38
500 14.85 5.92 4.92 4.77 3.94 3.13 2.87

It can be seen that the noise is effectively cancelled as the sampling rate is decreasing (due to
averaging done by ADS). A maximum noise decrease of around 1883/5.92 = 318 times has been
observed for PGA = 2. High sampling frequency is not required for EEG applications, so rates up to
1 kHz are more than enough to confidently capture brain oscillations in 7–30 Hz range. Further, higher
gain value allows a reduction in the input-referred noise. A maximum noise reduction of around
710/48.83 = 14.5 times has been seen in experiments for Fs = 16 kHz.

4.8. SNR and Precision

Signal-to-noise ratio (SNR) shows the ability of the system to discern effective signals from
background noise. When working with EEG signals, it is a requirement to have as high an SNR as
possible since the valuable signal is in the same micro-volt range as the noise. The SNR in decibel scale
is defined as shown in Equation (2):

SNR = 20 log10

(Asignal

Anoise

)
, (2)

where the Asignal and Anoise are the root-mean-square (RMS) amplitudes of the signal and noise
respectively. To evaluate the SNR of the designed system, an EEG recording experiment was conducted.
First, a noise signal of 1 min length was recorded on all ADS1298 channels using 250 Hz sampling
speed, and the average noise RMS amplitude was calculated from all data. Next, a known amplitude
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effective 10 Hz sine signal was generated as input on each channel, and the same length recordings were
taken. These acquired signals were used to calculate the average RMS amplitude and finally, the SNR
value. The input sine signal amplitude was scaled from 0 dB (100% VCC) to −100 dB (0.001% VCC)
to fully capture system behavior for very large and very small signals. The same technique was
repeated for 500 Hz sample rate. Results of the experiment are shown in Figure 11. It can be noted,
that over 100 dB SNR is reached for input signals whose amplitude is greater than −12 dB (>25% VCC).
For typical 10–100 µV (−100 dB to −80 dB) EEG signals the SNR value varies from 12 dB to 35 dB.
A lower sampling rate gives higher SNR due to higher ADS1298 signal averaging/oversampling
(noise cancellation).
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ADC precision evaluation used the same previously recorded data. Each of the recorded signal
samples was compared with the original sine input signal values to find the conversion error. Results
of this experiment can be seen in Figure 12. The average obtained error was 0.07% with a 0.22%
standard deviation. The obtained results show a good match with the ones published in official TI
ADS1298 datasheet and allows us to qualify the system as a properly working device.
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4.9. Common Mode Rejection Ratio

The ability to reject common mode signal is crucial for EEG recording systems. A higher common
mode rejection ratio (CMRR) ensures that less common-mode signals will appear in the measurements.
CMRR is a property of a differential amplifier [32]. The output of such an amplifier can be modeled as
a sum of differential and common mode components as shown in Equation (3):

Vout = AdVin + AcmVcm, (3)
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where the Ad is the differential and Acm is common mode gains expressed as Equations (4) and (5),
respectively:

Ad ≈ Vout/Vin, (4)

Acm ≈ Vout/Vcm (5)

where
Vin =

(
Vp −Vn

)
, (6)

Vcm =
(
Vp + Vn

)
/2 (7)

with Vp being the voltage on positive input and Vn being the voltage on negative input. While Acm = 0
and Ad → ∞ for ideal amplifiers. In real applications the Acm 6= 0 and Acm � Ad. Equation (5)
equality holds only when the same common mode signal is fed to both amplifier inputs as the
differential gain component is eliminated due to Vin → 0 . CMRR can be calculated by evaluating
Equation (8):

CMRR = 20 log
(

Ad
Acm

)
. (8)

The test was performed by connecting each channel differential inputs INxP, INxN (for x = 1, 8)
and generating an external fixed frequency sine input common mode signal. The voltages were
measured, and the average CMRR computed using Equation (8). The test was done for different gain
values 1, 2, 4, 12 and frequencies FROM 1 Hz to 1 kHz. Results of CMRR evaluation can be seen in
Figure 13.
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Test results show that the increase in gain from 1 to 12 allows a ~15 dB better rejection ratio for
1–10 Hz signals to be achieved despite a much quicker decline seen from 15 Hz to 1 kHz. It should be
noted, that the smallest gain value of one provides a stable CMRR of ~97 dB for signals up to ~70 Hz.
To achieve the highest stable CMRR for EEG signals in 7–30 Hz frequency range, a gain value of four
should be used.

5. Discussion

The implemented system exposes similar characteristics to other state-of-the-art implementations
while introducing new expandability features. The summary of functionality and comparison between
other systems found in the literature is given in Table 6.
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Table 6. Comparison with existing boards.

Property Proposed System Pinho et al. [10] Campillo et al. [14] Boquete et al. [33] Myung et al. [24]

Modular Yes No No No No

Channels 64 32 8 8 16

Sampling
frequency, Hz 1000 1000 500 400 512

Electrodes Passive dry Active dry Passive dry Ag/AgCl
adhesive Wet gel

Resolution, bits 24 24 12 12 24

I/O BLE 4.0, Wi-Fi 802.11 b/g/n Wi-Fi 802.11 b/g/n UART Zig-bee 802.15.4 Wi-Fi 802.11 d

CPU Atmega2560 DM3730 MSP430 Atmega2560 STM32F103

Clock frequency,
MHz 16 1000 12 16 72

CMRR, dB −110 −115 −94 - -

Max gain 12 24 12 10 k -

Datastore MicroSD MicroSD No No No

Local processing No Yes No No No

Power, mAh 250 500 - 100 80

It should be noted, that most of the systems are designed to be non-expandable/modular from the
start. Having a configurable system allows scale on demand and control to be achieved, minimizing
the complexity for each problem. Thus, modularity has been taken into account while designing the
proposed system. Since ADS1298 can to be easily cascaded, such chip property was exploited.

Furthermore, EEG applications require a moderate number of electrodes to reliably capture brain
oscillations. High-end commercial systems are capable of recording 256 channels EEG. However,
this creates a significant complexity and is harder to analyze and process later. The proposed design
incorporates a configurable number of available channels, up to 64 (four stacked boards) while starting
from eight channels (single sided board). Such an electrode count is commonly used in literature for
capturing EEG data with adequate head scalp coverage.

Some of the compared systems use active electrodes instead of passive or active shielding to
remove cable swing/movement induced artifacts. The 3D printed head cap allows the minimization of
the length of cables and to fix them into position, thus, also limits movement-related artifacts. To fully
suppress such artifacts, a switch from passive to active electrodes should be made. Since ADS1298 is
not designed to work with an external pre-amplification stage, other AFE solutions will be necessary.

The maximum sampling resolution is denoted by the AFE used for each device. Currently, a lot of
the devices use a 24-bit AFE to record fine details of the EEG signal. However, it is hard to reach such
high discretization resolution due to various PCB designs and physical issues. So, the real resolution is
usually much lower due to noise in the least significant bits (LSBs).

Depending on the application the EEG signal processing can be done online or offline. Since
mobile EEG devices usually run off battery power (to avoid additional common-mode and other noise
from power sources), the power usage must be minimized. Selection of a low-power microprocessor,
such as Atmega2560, running at 16 MHz and drawing ~30 mA@5 V on full load still allowed the
required 1 kSPS bandwidth to be handled from 8x ADS1298. The power consumption of 8x ADS1298
was ~48 mA@5 V and MPU 6050 accelerometer ~2 mA@5 V, while the most energy was wasted for the
Wi-Fi connection ~170 mA@3.3 V. This added up to 250 mAh for the whole four board stack running at
maximum load. With a typical 3000 mAh LiPo battery, the system can function up to 12 h.

Maintaining a cost-efficient solution, while providing sufficient quality, is an important topic
worth discussion. Since the first-ever EEG devices were made, the most critical analog system part
has shrunk and has been embedded inside the silicon chip of the ADC, such as ADS1298. By doing
this, higher quality for noise suppression and other parameter controls were achieved. In addition,
the integration part got simpler since the microprocessor only needs to interface with the ADC chip.



Sensors 2018, 18, 2140 15 of 17

The bill of materials (BOM) has shrunk, and the most expensive part of the EEG system is the ADC
chip itself. With the increasing integration level, the future of EEG systems could evolve into a single
programmable chip. With this extreme level of integration, further finer control of acquisition system
properties could be achieved.

6. Conclusions

This paper presented a modular biopotential acquisition system design capable of recording up to
64 EEG channels by exploiting a novel, stackable configuration. Full board tests have been completed,
and results showed correct working behavior of each of the system components. The selected system
architecture and ADC chip for EEG acquisition proved to be a successful choice for building a compact
and modern system. The proposed simple evaluation techniques allowed the system ability to correctly
and effectively capture EEG signal to be validated while it also gave needed feedback for further
development of the board.

Past internal ADC tests were the initial step for verifying device correctness. An in-range to
official ADS1298 datasheet input referred noise value of 6.59 µVpp and average CMRR of −97 dB in
0–70 Hz band was received in other performed tests. The ability to correctly capture EEG alpha waves
phenomenon or ECG, also signaled that the system was working as expected. A 12–35 dB SNR for
10–100 uV EEG signals and greater than 100 dB SNR for signals with amplitudes bigger than 25% VCC
were measured during experiments. SNR and precision were found to closely match the proclaimed
device characteristics as stated in official Texas Instruments datasheet. With a maximum power
consumption of ~250 mAh on full load and more than 10 times lower cost (compared to commercial
devices), the proposed system can be a portable device for cEEG or ECG acquisition and monitoring.

System comparison with other developed boards found in literature showed similar or better
performance. However, compared to commercial grade hardware, the system lacked better noise
suppression, and further improvements are needed. Since enhanced noise suppression is required for
such high-resolution, AFEs further research and development will be directed towards active electrode
implementation and shielding.
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