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SUMMARY 
 
The work deals with the design of an autonomous interface using Neural Network that helps a mobile 
robot to navigate in space autonomously. This paper presents a unique design for a autonomous 
interface using Behavioral Cloning for the process of training the robotic-system, to teach the robot 
how to navigate in space and avoid obstacles.  Designing of AISRA was an end to end process, this 
document holds the details of data accumulation, preprocessing of data, neural network architecture 
and inferencing. Unlike the existing camera-mounted stimulated model, AISRA design is based on the 
laser scan information and leveraging the power of neural networks. The analysis study is about 
analyzing laser scan information for input to the system augmented with Neural Network instead of 
the existent camera-mounted stimulated models.    
 
In a traditional behavioral cloned system, training data set fed to the system will contain recorded 
decisions a human will make to turn the steering wheel to overcome the obstacles ahead.  So, a study 
is conducted using a Robot Operating System based mobile robot Turtlebot 3 Burger, to run in a real-
time environment accumulate to gather the data. Turtlebot 3 comes with a Laser Distance Sensor that 
when used for SLAM operations which helps us to gather Laser Distance Range data for 360-degree 
circumference. The system contains Keras deep learning library used for architecting the neural 
network and evaluating its performance. The final trained model is transferred to Nvidia’s Jetson to 
inference the data in real time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
 

SANTRAUKA 
 
 
Darbe nagrinėjama autonominio roboto valdymo sąsaja, naudojant neuroninį tinklą, kuris padeda 

mobiliam robotui autonomiškai naviguoti vidaus erdvėse. Algoritmas skirtas išmokyti robotą judėti 

erdvėje ir išvengti kliūčių. Ataskaita pateikiama duomenų kaupimo, duomenų išankstinio apdorojimo 

aprašai, neuroninių tinklų architektūros ir  eksperimentų rezultatai. Skirtingai nuo tipinio modelio, 

AISRA dizainas paremtas lazerinio erdvės skenavimo informacija ir neuroninių tinklų galios sverto 

efektu. Sistema analizuoja lazerio nuskaitymo informaciją, klasifikuoja įvestį neuroniniu tinklu, taip 

formuojant kliūčių vengimo valdymo algoritmą. Tyrimas atliekamas naudojant robotų operacinę 

sistemą (ROS), naudojant "Turtlebot 3" "Burger" robotą, siekiant kaupti duomenis realiuoju laiku. 

Turtlebot 3 yra komplektuojamas su lazeriu atstumo jutikliu, naudojamu SLAM operacijoms ir skirtu 

rinkti duomenis apie 360 laipsnių perimetrą. Sistema paremta "Keras" giliojo mokymosi biblioteka. 

Galutinis apmokytas modelis perduodamas "Netscape" "Jetson" platformai, kurioje yra apdorojami 

realiu laiku. 
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CNN: Convolution Neural Network 
ANN: Artificial Neural Network 
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1. INTRODUCTION 

Autonomous Interface for Robust Stimulus Applications -  AISRA 

  Autonomous behavior is rapidly increasing in every engineering discipline. Machine learning and AI 

is benchmarking its potential in all aspects, right from modeling a pen tip till exploring Mars and beyond. 

Machine Learning has done wonders in automating various functionalities that were considered complex 

and nearly impossible only a few decades ago.  

During this period of the shift from manual process to automation, bringing intelligence to embedded 

devices is growing exponentially. Autonomous vehicles are one of the significant areas of research and 

essential inventions which gradually increased from a decade.  

Today there are self-driving cars, flying drones, mobile robots, and rockets. Autonomous behavior is a 

term that is used to refer unmanned vehicles that can make decisions on its own decision-making ability or 

through a method of decision making pre-programmed into it. For example: A self-driving car will typically 

have three cameras- left, right and center camera. These cameras will snapshot the images of road that will 

be used to train the neural network. Also, image processing requires high-end computational hardware such 

as mutli-core processors that have GPU enabled for real-time image processing. 

In the recent times, the research area of the autonomous vehicles has certainly got the mainstream boost 

with governments and multinational companies showing their interest to invest in the field. However, since 

its inception, the concept of unmanned vehicles is majorly dependent on the camera-mounted models. The 

currently existing camera-mounted models with no doubt have achieved to address the needs of primary 

input that the neural network model needs and have achieved considerable accuracy in obstacle avoidance. 

However, using image processing for primary input needs will always be a challenge in situations where 

camera fails to capture necessary images for navigation, or in dim-lit areas, or in spaces where it is required 

to navigate without camera input. In such circumstances, the existing models fail to obtain their purposes. 

1.1. Aim: 
 

The aim of this research is to determine the possibilities of obstacle avoidance and navigating 

autonomously using just laser sensors   

a) To create an end to end system to model the object avoidance system which can be deployed to any 

robot which has an LDS sensor 

b) Investigate the inference mechanism with ROS and development embedded board called Jetson 

 

My proposal to contribute to this area of research brings me to design an interface to which a mobile 

robot can autonomously navigate in a space based on the laser scan information and leveraging the power 

of neural networks. Whereas, Lidar based system can run on simple ARMs 64 bit processor such as 

Raspberry Pi also. 
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  I have used Behavioral cloning as the process of training the system to teach it how to navigate in space 

and avoid obstacles, designing AISRA was an end to end process, this document holds the details of data 

accumulation, preprocessing, neural network architecture and inferencing. 

 We used ROS based mobile robot Turtlebot 3 Burger, to run in a real-time environment accumulate to 

gather the data. Turtlebot 3 comes with an LDS scanner that when used for SLAM operations helps us to 

gather Laser Distance Range data for 360-degree circumference. Thanks to Keras, deep learning library 

which made our lives easier in architecting the neural network and evaluating its performance.  

 
1.2. Document structure: 
 
 This paper consists of three chapters, references and appendices. The first chapter will introduce to 

the concepts and overall idea of the proposal. Followed by the chapter which demonstrated how the data is 

collected, preprocessed, rendered to neural network and explains the inference with ROS and Nvidia’s 

Jetson   
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2. LITERATURE SURVEY 
 
2.1. Behavioral Cloning: 
 

According to the Encyclopedia of Machine Learning, Behavioral cloning [6] is a method of 

monitoring human cognitive skills and remapping into computer program. As the human subject performs 

the skill, his or her actions are recorded along with the situation that gave rise to the action. A log of these 

records is used as input to a learning program. [6]. The learning agent tries to reproduce with certain 

behavioral rules to mimic human. Behavioral cloning can be used to automate certain complex tasks where 

human intervention would be needed [6].  

Behavioral cloning can be termed as training a system to mimic a human behavior. For E.g.: In a self-

driving car a human will drive the car around for long hours to capture the images of road ahead and record 

the decisions taken by the driver when it comes across obstacles. This data is then pre-processed and fed 

into the system to train the system to make decisions on its own. 

 The existing models of behavioral cloning mostly uses a camera-mounted stimulated model that will 

help capture the input data required to train the system. The decisions taken by human driver to turn the 

steering wheel such as the steering angle when an obstacle is encountered will also be recorded to train the 

model. Once the model is trained, the network will be able to generate steering commands based of the 

video images from the cameras.  

 
Autonomous Behavior: Autonomous behavior is a term in reference to self-driving cars and autonomous 

vehicles.  A system that is truly autonomous in behavior might look feasible in theory but is indeed 

complicated to construct and train in with datasets that will account for all the different known situations 

and certain unknown situations that it will encounter during its life cycle.  Autonomous behavior brings in 

a certain amount of conscious to a system that lets the machine make its own decisions without any human 

intervention [6].  

 Autonomous behavior relies on adequately training the system with exhibiting the data of the very 

behavior the system should mimic. So, it is crucial to spend adequate time to pre-process the data and 

randomize it as much as possible to train the system for better decision-making abilities. Exploring the data 

to train the model on and adding relatively few constraints will surely help in avoiding pitfalls and dead-

ends but also give insights to build better models and strategies [6].  
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2.2 Neural Networks 
 

An ANN is a network architecture which is stimulated as a human brain to the content and 

information. The critical notion of this paradigm is a complex architecture to process information[5]. This 

architecture is composed of a larger number of sophistically connected neurons to solve specific problems  

 Most conventional computing systems use an algorithmic approach to solve problems.  The use of 

algorithmic approach means the conventional computers will follow a set of instructions to solve a problem. 

Conversely, if the specific set of instructions are not available, the computer systems cannot come to any 

conclusion in solving problems.  That restricts the computers to solve problems that we already understand 

and know how to solve. The conventional computing systems cannot extend their problem-solving 

capabilities beyond the cognitive approach where the way the problem is to be solved must be known and 

broken down into small unambiguous steps. These instructions primarily converted into a high-level 

language program and then to machine-code will be fed to the systems to process. [5] 

 Neural networks will provide the power and ability for computing systems to tap into the unknown 

dimension of conventional computing which allows us to solve problems that are not entirely understood 

or to the problems which do not have a ready-made solution. Neural networks approach the problem and 

process information very similar to that of a human brain. Neural networks are computers modeled based 

on the human brain and nervous system. Hence, the neural networks will learn and acquire decision-making 

capabilities as a human does that is by reaching rational decisions based on prior experience and 

continuously learning and adapting to the new situations the system comes across. Investigation and 

similarities will help the neural networks in decision making. [5] 

 
2.3 Architecture of Neural Networks 

 
The architecture of neural networks can be broken down into the following essential elements:  

Feed-forward networks: As the name suggests the signals are feed forward [26] in these networks. The 

signals in feed-forward ANN’s travel unidirectionally. The signals travel only from the input layer to output 

layer. There are no feedbacks(loops) to the layers which means that the output of any layer will not affect 

the same layer. Hence, there are also called top-down or bottom-up networks. Feed-forward networks are 

used mainly in pattern recognition. [5] 
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Figure 1 Example of feed-forward neural network[5] 

 
Feedback networks: Unlike feed-forward networks, the signals can travel bi-directionally in feedback 

networks. Feedback network scan have signals traveling both the side by introducing loops into the network. 

Having loops in the networks makes them exceedingly powerful and can also get significantly complicated. 

The state of feedback networks is dynamic, i.e., [5]their states keep continuously changing until they reach 

an equilibrium point. This state remains unchanged until the input changes and requires calculation of a 

new equilibrium point. Feedback networks are also called interactive or recurrent networks. Recurrent 

networks are used to denote feedback connections in single layer organizations. [5] 

 

 

Figure 2 Example of feedback network 
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Network Layer: Every neural network consists of three basic units: the input unit, the hidden unit, and an 

output unit. So, typically a neural network will contain a layer of input units connected to a layer of hidden 

units, which is [5]connected to a layer of output units.  

● Input neurons processes the raw input in to the model  

● Hidden layer is the sum of weights between the hidden units and the input nodes  

● The output layer depends on the summed weights between the nodes of the hidden layer with the nodes 

of the output layer  

 

The simple network comprises of single layer of neural network, the hidden layer makes the neural 

network complex in architecture. The weight between the input layer and hidden layer denotes which nodes 

of the hidden layer is active  

Neural network comprises of single layer neural network and multilayer neural network. Single layer 

network, in which all nodes are interconnected. Multilayer networks, the nodes are numbers based on the 

depth of the layer instead of global numbering 

 

Perceptron: The most prominent work on neural networks in the 60's spread beneath the headline of 

'perceptron' a term coined by Frank Rosenblatt. The perceptron [5] Figure 3 transposes to be an MCP model 

(neuron with weighted inputs) with some additional, fixed, pre-processing. The units labeled A1, A2, Aj, 

and Ap are called association units, and their task is to extract specific, localized featured from the input 

images. Perceptron mimic the fundamental concept behind the human visual system. They were chiefly 

used in pattern recognition even though their capabilities stretched much further. 

In 1969 Minsky and Paper wrote a book in which they outlined the limitations of single layer 

Perceptrons. It revealed mathematically that single layer perceptron [5] could not do some basic pattern 

recognition operations like determining the parity of shape or determining whether a shape is connected or 

not. It was in the 80's that researchers apprehended, that given the appropriate training, multilevel 

perceptron can do these operations. 

 
Figure 3 The perceptron 
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The Learning Process  

 
The process of pattern recognition and the consequent response of the network is categorized into 

two general archetypes: associative mapping and regularity detection [5]. 
 
Associative Mapping is the process of analyzing particular patterns on the set of inputs passed through the 
input layer against the already existing patterns in the input nodes. The associative mappings can be further 
divided into categories    
 
• Auto-association:  Auto-association [5] is the mechanism where an input pattern is associated with itself 

and the states of input and output units coincide. The purpose of auto association is to render the pattern 

in the network, that is, to output a pattern when a similar match of input data is found. In the second 

case, the network is responsible for saving the pairs of patterns exhibiting the associations between them  

• Hetero-association: Hetero-association [5] is related to two recall mechanisms: 

o Nearest-neighbor recall: Outputs of the network are related to the patterns found in the input 

node which is stored, which is the closest represented pattern  

o Interpolative recall: Output patterns has a similarity dependent interpolation of the patterns saved 

with respect to pattern presented. Another perspective of interpolative cell, which is a form of 

associative mappings responsible for classification, that is only when defined number of categories 

for which each input can be classified [5] 

 

Regularity Detection is the process in which units learn to respond to distinct attributes of the input 

patterns. Whereas in associative mapping [5]the network collects the relationships among patterns, in the 

sequence of regularity detection, every response of the particular unit has a definition This workflow od 

learning process is much essential and required attribute for feature discovery and knowledge representation 

In every layer of the network, knowledge possessed between the nodes which is transmitted are in the 

form of weights. [26] Modifying the knowledge which is saved in the network as a function of learning by 

experience implies the rule for its process of changing its weights. 
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Figure 4 Regularity Detection Weight Matrix [5] 

  

Information stored in the weight matrix W of a neural network. Learning is the determination of the 

weights. [5]Based on the learning performed, we can distinguish two major categories of neural networks: 

● Fixed networks in which the weights cannot change, i.e. 𝑑𝑊
𝑑𝑡

= 0 In such networks, the weights are 

fixed a priority according to the problem to solve. 

● Adaptive networks which can change their weights, i.e. 𝑑𝑊
𝑑𝑡

 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0  

 

The classification of all learning methods used for adaptive neural networks can be narrowed down 

to two major categories: 

 

Supervised learning:  Supervised learning [5]incorporates an external teacher to instruct each output units 

what its desired response to input signals ought to be.  There might be a requirement of global information 

during the learning process. Perspectives of supervised learning comprises of minimizing the error, 

reinforcement learning and stochastic learning. 

An important issue concerning supervised learning is the problem of error convergence, i.e., the 

minimization of error between the desired and computed unit values. The aim of the supervised learning is 

to minimize the error between the predicted values to the actual values using the methods of optimization. 

The most popular ones are Least Mean Square and Root Mean Square  
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Unsupervised learning: Unsupervised learning is a form of learning in which it has no reference or to the 

output variables. [5] So basically, it has no teacher to train its network to predict the output values. It is 

self-organized among itself in finding clusters and patterns.  Unsupervised learning is totally a competitive 

learning. Usually supervised learning uses offline method of training their data, whereas unsupervised 

learning has [5] to be open to all the incoming data to recognize the patterns, so the training usually is made 

online 

 

2.4 Multi-layer Perceptron 

 
Perceptron [5]is a relative term coined in the 50s that indicated how the future perception of machine 

learning looked back then. Perceptron is a simple algorithm that performs binary classification operation 

which predicts if the inputs belong to a particular category or not. The perceptron endures a unique spot in 

the history of neural networks and artificial intelligence. Because the initial hype about its performance led 

to a rebuttal by Minsky and Papert, and widespread resentment that cast a cloak on neural network research 

for decades, a neural net winter that wholly thawed only with Geoff Hinton’s research in the 2000s, the 

results of which have since cleared the machine-learning community. 

A perceptron [5]is a linear classifier algorithm.  This algorithm linearly separates the data points in 

to two classes with a straight line. Input is typically a feature vector x multiplied by weights w and added 

to a bias b: y = w * x + b. A perceptron will produce single output for the linear classifier based on the real 

number input by forming a linear combination of weights. Mathematically its written as shown in eq 1. 

𝑦 =  𝜑(∑ 𝑤𝑖 + 𝑏𝑛
𝑖=1 ) = 𝜑(𝑤𝑇𝑥 + 𝑏)                                                  (1) 

where w denotes the vector of weights, x is the vector of inputs, b is the bias and 𝜑 is the non-linear 

activation function. 

The original perceptron built by Rosenblatt was a single-layer perceptron. Rosenblatt's hardware-

algorithm [5]was a shallow neural network because it did not include multiple layers, which allow neural 

networks to model a feature hierarchy. Single-layer perceptron prevented his perceptron from performing 

non-linear classification, such as the X-OR as Minsky and Paper showed in their book. [5] 

A multilayer perceptron (MLP) [5]is a deep learning, ANN. It is packed up with more than one 

perceptron. The architecture of MLP is same as a perceptron which has an input layer, the difference which 

makes is the stacking of hidden layers. Then comes the output layer which makes the prediction based on 

the input received. MLPs with one hidden layer are capable of approximating any continuous function 

because of its hidden layers. 

A multilayer perceptron (MLP) [5] is a sub-category of feedforward neural networks. A multilayer 

perceptron comprises a minimum of three layers of nodes: input node, hidden node, an output node. Apart 
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from the input nodes, every node in the neural network uses a nonlinear activation function. A multilayer 

perceptron employs a supervised learning algorithm procedure called backpropagation for training the 

network. Linear Perceptron uses direct activation whereas multilayer perceptron has multiple layers and 

uses non-linear activation.  A multilayer perceptron can recognize data that is non-linearly separable. 

Multilayer perceptron’s with a single hidden layer are seldom vaguely attributed to as "vanilla" neural 

networks. 

 

Layers: A multilayer perceptron typically comprises three minimum layers: an input and an output layer 

including one or more hidden layers. An MLP is termed a deep neural network because of these layers of 

nonlinearly-activating nodes. Considering multilayer perceptron’s are wholly connected, every node in 

individual layer connects with a particular weight to each node in the subsequent layer [5]. 

 

Activation Function: When a linear activation function is included in each node of a multilayer perceptron, 

that is, the weighted inputs are mapped to the output of each node through a linear function. Every layer 

can be compressed into a two-layer input-output model with linear algebra. Certain nodes in multilayer 

perceptron’s make use of a nonlinear activation function. [14]Nonlinear activation function was developed 

to illustrate the recurrence frequency of action potentials of the nodes or triggering of neural network nodes.  

The activation functions are two sigmoid which are described by: 

𝑦(𝑣𝑖) = tanh(𝑣𝑖) 𝑎𝑛𝑑 𝑦(𝑣𝑖) = (1 + 𝑒−𝑣𝑖)-1                                       (2) 

Where the first function is a hyperbolic tangent that ranges from -1 to 1, while the other is the logistic 

function that ranges from 0 to 1,  is the is the output of the th node (neuron), and   is the weighted sum 

of the input connections. [14] 

A model which uses a linear function (i.e., a model with no activation function) is impactful only for 

a single layer and will be unable to make sense of complicated data, such as, speech, videos, and so on. An 

activation function is used to introduce non-linearity into a network. Thus, it enables to model a class label 

that varies non-linearly with independent variables. Any linear combination of inputs cannot replicate the 

output resulted from the non-linearity. This allows the model to learn complex mappings from the available 

data, and thus the network becomes a universal approximator. [14]  
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The most extensively utilized neural network activation functions are as follows: 

● Tanh: Tanh is a non-linearity activation function which maps the output to zero centered value by 

taking the input and converting its form ranging from negative one to positive one  

𝑓(𝑥) = tanh(𝑥) =  2
1+𝑒2𝑥 − 1                                                     (3)    

   
Furthermore, the gradients for tanh are steeper than sigmoid, but it suffers from the vanishing gradient 

problem. Tanh is commonly referred to as the scaled version of the sigmoid. Generally, this equation 

holds: [14] 

tanh(𝑥) = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1                                                    (3) 
The gradient is stronger for tanh than sigmoid (derivatives are steeper). Deciding between the sigmoid 

or tanh will depend on your requirement of gradient strength. 

 
● Sigmoid: Sigmoid activation is majorly used for multi-class classification. The sigmoid or logistic 

activation function maps the input values in the range (0,1), which is often their probability of 

belonging to a class. The output it produces is not zero-centered, which causes difficulties during 

optimization. It also has a low convergence rate. However, like tanh, it also suffers from the vanishing 

gradient problem. [14] 

𝐴 =  
1

1 + 𝑒−𝑥 

In the following graph of sigmoid function, we can notice that the gradient has almost 

disappeared towards the either end. This indicates that at these points the network refuses to learn 

further or is drastically slow (depending on use case and until gradient /computation gets hit by floating 

point value limits). 
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● ReLU: ReLU is extensively used in convolutional neural networks. ReLU or the rectified linear unit 

has the output 0 if its input is less than or equal to 0; otherwise, its output is equal to its input. It is 

biologically accurate, and superior to the sigmoid and tanh activation function, because it does not 

suffer from the vanishing gradient problem. Thus, it allows for faster and effective training of deep 

neural architectures. [14] 

 𝐴(𝑥) = 𝑀𝑎𝑥(0, 𝑥)                                                                   (5) 
  

However, being non-differentiable at 0, ReLU neurons tend to become inactive for all inputs. 

This behavior is caused due to high learning rates and can thus reduce the model’s learning capacity. 

Hence, this behavior is referred to as the “Dying ReLU” problem. [14] 

 
 

● SoftMax: SoftMax function is widely used in multiple classification logistic regression models. The 

SoftMax function’s output indicates the probabilities that any of the [14] classes are true, so it produces 

values in the range (0,1). It highlights the largest values and tries to suppress values which are below 

the maximum value, and its resulting values always sum to  
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𝜎(𝑥𝑗) = 𝑒𝑥𝑗/∑𝑖 𝑒𝑥𝑖                                                                (6) 
 

From the SoftMax activation graph, it can be comprehended that the sigmoid function value will 

continue to rise towards the peak score of 1 with the rise in the input values. In the graph, the values in 

the range of 0.9 to 0.99, which are the peak most values are meeting at the tip. [14] 

 
 

2.5 Back-propagation Algorithm: 
 

 In order to train the network. The model has to correct its weights to prioritize the nodes for next 

recursive operation. In such way the error between the predicted value and the actual value can be 

determined. In other way it must calculate the weights when the respective errors decrease or increases. 

This approach is basically known for error weight manipulation [5]  

The process of learning in perceptron occurs by changing connection weights after every piece of data 

is processed, based on the measure of error in the output compared to the expected result. This instance 

proves the supervised learning is carried out through this process of backpropagation by root mean square 

in the linear perceptron [5]  

The error in output node [5] represented as  in the th data point (training example) by 

 where  is the target value and   is the value produced by the perceptron. The 

node weights are adjusted based on corrections that minimize the error in the entire output in eq 6, given 

by: 

𝜖(𝑛) = 1
2

∑ 𝑒𝑗
2(𝑛)𝑗                                                                      (6) 

By applying gradient descent algorithm to the above equation, the change in the weight of each unit 

can be calculated by the following equation 7: 
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∆𝑤𝑗𝑖(𝑛) = −𝑛 𝛿𝜀(𝑛)
𝛿𝑣𝑗(𝑛) 𝑦𝑖(𝑛)                                                            (7) 

Where  is the rate of learning, (the rate of learning is chosen to guarantee that the participating weights 

immediately focalize into a response, without any oscillations) and is the output of the previous node. 

The derivative is calculated based on the induced local field  which usually keeps varying. [5] 

The above derivative for any output node can be reduced to: 

                                                           (8) 

Where is the above described activation function derivative (the activation function on its own does 

not oscillate).  Estimating the error weight derivative for a hidden node is exceedingly tricky to analyze. 

The hidden node error derivative can be represented by the following simplified equation: [5] 

                                             (9) 

The derivative is completely dependent on the variation in weights of the th nodes. These nodes denote 

the nodes of the neural network model's output layer. The weights of the output node layer vary with respect 

to the derivation of the output layers’ activation function. This variation, in turn, changes the weights of the 

hidden layer nodes. Hence, this algorithm renders a backpropagation of the activation function. 

When each node in the neural network model is a linear perceptron, the backpropagation algorithm can 

be understood placidly. In such cases, the algorithm will have to compute the derivative of error weights 

for every node. [5]To do so, the changes in the activity of each node with respect to the error weights of 

those nodes has to be calculated. The algorithm computes each error derivative of the weights(EW) by first 

computing the EA, the rate at which the error changes as the activity level of a unit changes. For output 

units, the EA is merely the difference between the actual and the desired output. 

To compute the error approximation for the hidden nodes of the network which is stacked before the 

output layer, initially we need to figure out which nodes in the hidden layer is connected to output layer. 

Then we multiply those weights with EA’s other layers in the network by backpropagating. For the hidden 

network node, the EA are summed up. Propagating between the layers in the opposite direction activates 

the weights through the whole network.  Once the EA is computed for a node, no it’s the same process of 

computing EA for future upcoming nodes in the network. EW is the multiple of EA and the activity for the 

future connections ahead [5] 

As stated before, the backpropagation algorithm is straightforward to comprehend for networks to learn 

from when all nodes involved are linear. However, when the neural network models have nonlinear nodes, 

an additional step will be included in the backpropagation algorithm. That is, before back-propagating, the 
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EA [5]must be converted into the EI (the rate at which the error changes as the total input received by a 

unit is changed). 

To make the neural networks predict the imminent decisions that have to be taken in order to achieve 

the functionality it was designed for, the neural networks have to be trained with the right set of data. 

Finding the right set of data for training the neural networks is always a tedious job. Moreover, even the 

network trained with the most accurate data will fall short in predicting accurate decisions in some 

unforeseen situations. So, while selecting the data set to train the neural network, it is of foremost 

importance to pick the [5]datasets in which the weights of units can be adjusted in the most optimal way to 

reduce the error in weights between the actual output the system predicts and the desired output that the 

system is expected to predict. Therefore, the neural network model should calculate how the error weight 

changes with a slight increase or decrease in the weights of each unit. 

By employing backpropagation algorithm to measure the error weights, it is easy to train the system 

whether it be either supervised or semi-supervised learning. The connection weights are varied after each 

dataset is processed by the model based on the measure of the difference in error of the obtained output 

weights and the desired output weights. Once we get the error weight of the dataset unit, we calculate the 

error derivative of weights obtained by neural network model.  In vague words, we can term 

backpropagation algorithm to be the generalization of the least mean square algorithm that is used in case 

of the linear perceptron. [5] 
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2.6 Robot Operating System 
 
ROS is made up of couple of components such as Master, Parameter Server, ROS Services, ROS Topics, 

ROS Bags. [2] 

● Nodes:  Robot System comprises series of nodes which constitutes the architecture of ROS, Nodes are 

also called as the processes that perform the various tasks. For instance, LDS Sensor, which will be a 

node responsible of publishing the data, cmd_vel will be a node responsible for publishing velocities. 

[2] 

● Master: ROS Master provides the lookup table for all the available nodes which are active. It forms a 

directory-based ledger to map all the services, nodes, topics, and handing messages between the nodes. 

ROS mater must start initially to activate all the nodes and create handshake property between nodes 

and messages published between them. ROS masters are started using roscore command [2] 

● Parameter Server: Parameter server acts as dictionary to set all the required parameters between nodes 

exchange. It is currently part of a Master node [2] 

● Messages: Nodes interact between two nodes in Publisher and Subscriber mechanism. Nodes 

communicate between messages. ROS Messages provides the data structures for data exchange.  

● Topics: Messages are routed via a transport system with publisher subscriber mechanism. A node talk 

to publishers and subscribers between them using a channel. There may be any number of publishers 

over a topic and any number of subscribers. Single node publisher may also have many subscribers. In 

general, publishers and subscribers are not aware of each other existence. The idea is to decouple the 

production of information from its consumption. [2] 

● Services: Publisher and Subscribers models has a flexible message exchange paradigm, its architecture 

supports 1 to 1, 1 to n or just one-way communication. Thou one-way communications doesn’t support 

request and response cycle. Certain times in robots needs a perspective to work as a webserver which 

accepts requests and deliver responses. For instance. To instruct robot to click a picture of yours. ROS 

services also works as RPC when calling the function available in the other nodes 

● Bags: Bags serves as containers to save all the data published by the robot. These bags are further used 

in debugging any algorithms built on top of ROS or inside ROS with having robot to publish data every 

time to test the algorithms [2]   

 

ROS Master has a ROS Computation graph. The ROS master saves all the information about the 

parameters servers and tracks all the topics and delivers messages between the nodes. The nodes in the 

master communicate their registration information [2].  
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2.7 Existing workflows 
 
2.7.1 Navigation Stack in ROS  
 

ROS is a moderately complicated piece of middleware, at its heart, navigation stack of ROS is a system 

that enables the robot to navigate around the place without crashing into the obstacles.  

 The position of the robot in the space is called pose, which is represented by coordinates of the map 

by its orientation and position. The initial erudition navigation stack performs is the creation of a global 

cost map. [2] Global cost map indicates how good or bad the robot is positioned away from the collision 

on the map.  

The global path is one of the paths the robot has to follow on its map, but it moves along with the local 

planner. The local planner assists the global path in balancing to avoid local obstacles. The global path 

supported by the local planner, which receives inputs that are not on the map based on the sensor inputs 

will balance avoiding local obstacles [2]. 

 

2.7.1.1 ROS Path finding algorithms:  

Navigation in the mobile robots has to undergo sequence of maneuvers to move from the initial position 

to the goal position without crashing obstacles. There are two algorithms to find the optimal path planning 

included in ROS navigation stack [23]  

1) Graph based navigation 

2) Occupancy grid-based navigation 

Graph based navigation:  Navigation takes place in the form of graphs; each graph will have possible 

directions to move around. All the places are defined as vertices of the graph. So, during moving around 

places in the space, graphs basically take the traversing between the edges of the graph. Selecting the points 

to navigate in space depends on the weights between the edges of the graphs. Finding the shortest path 

between those graph vertices specifies the initial position and the destination position. [23] 

There are various types of approaches in calculating trajectory, path planning, and path following. 

Search of optimal minimal path depends on the sum of weights of all edges in the graph from the robots 

initial position to the goal position. The standard optimal path finding algorithms based on graphs in 

robotics are A*, D* or Dijkstra algorithm. [23]    

 

 

 

 

 



23 
 

 

 

Occupancy Grid based Navigation: This method of navigation divides the space into map pixels or map 

grid. Once the map grid is taken into consideration, an algorithm will mark the cells which are free or 

occupied with an entity or an obstacle. Further, the map is marked with robot’s initial position and goal 

position. So, the path planning will be trajectory that is based on finding the shortest distance without falling 

on any occupied cell. 

Occupancy Grid in ROS: In ROS it is possible to move the robot around a path when the map is 

optained.so then the map is converted into occupancy grid. For example, using a slam gmapping tool to 

create the occupancy grid. There is an inbuilt path finding package in ROS called move_base which holds 

the move_base node which is responsible for navigation  

This move_base node will be subscribed to the node which publishes the required velocities called 

cmd_vel. Once the robot receives the information about the velocities, it also further publishes the 

transformation information between robot’s initial position. 

move_base node creates an occupancy grid cost map. So, every cell in this grid map will be marked 

with an obstacle or an empty space in it and the cost is defined between these cells to the obstacles around 

it depending on the distance between them. Move_base makes use of two types of maps for finding the 

path, local map for determining the current executing motions and the global cost maps for long distance 

trajectory-based planning. 
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2.7.2 End-to-End Learning for Self-Driving Cars 
 
Collected the data samples from images which maps the image pixels into steering commands. 

Architecture from Nvidia stated that using Convolution Neural network for this approach will be extremely 

powerful, with minimal training on the samples from cameras mounted to the car and watch humans drive 

in traffic, local roads, on highways and even on the roads with no line markings for reference.     

The system learns Internal representation by convolution operations by detecting features only with steering 

angle as training signal [10] 

 
2.7.2.1 Convolutional Neural Networks to Process Visual Data 

 
CNNs have transformed the pattern recognition [24] process. Before the widespread adoption of 

CNNs, most pattern recognition tasks were accomplished using a primary stage of handcrafted feature 

extraction followed by a secondary stage classifier. The critical breakthrough of Convolution neural 

networks is that features are now learned by itself during the learning process. The CNN is benchmarked 

for image classification task by its internal architecture and the powerful combinations of Feature 

extractions and pooling. By using the convolution kernels to scan an entire image, relatively few parameters 

need to be learned compared to the total number of operations. [10] 

The adoption of CNNs has exploded in recent years because of two significant developments: 

● Large, labeled data sets such as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

are now broadly available for training and validation. 

● CNN learning algorithms are implemented on massively parallel graphics processing units (GPUs) that 

tremendously accelerates the learning and inference ability. [10] 

 

2.7.2.2 Data Collection 
 

The data was acquired by taking a car on a drive with cameras mounted to it. In 2016, a team of 

engineers in Nvidia used Ford Focus with three cameras mounted on. The system was designed as such 

there is no dependencies about the vehicle vendor or manufacturer. With careful attention the drivers drive 

around 72 hours on various environment conditions. [10] 

 
2.7.2.3 Neural Network Architecture 
 

The overall design of the Neural network was focused on minimizing the error between the steering 

angles which is output of network. The neural network architecture, which has 9 layers, including 

normalization and five convolution layers, and three FC Layers. Input of CNN is an image which is the 

spilt into YUV planes and passed to the network [10]  
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The first layer of the network performs image normalization. The normalizer is hard-coded and is not 

adjusted in the learning process [24]. Performing normalization in the network allows the normalization 

scheme to be altered with the network architecture, and to be accelerated via GPU processing. (Reference) 

The convolution layers are designed to map the kernels filters to handle feature extraction which are chosen 

based on series of tests and experiments that vary based on the layer configurations. The configuration uses 

2x2 strides for first three layers to perform its convolution operation and 5x5 kernel and 3x3 for last two 

layers of convolutions. [10]  

The five convolution layers are followed by three FC layers followed by its output layer which 

predicts the inverse radians of turning angles. The FC are designed to function as a controller setting for 

steering angles It is possible to make a clean break between which parts of the architecture are dedicated 

for feature extraction and which will be served as a controller [10] 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 CNN for Nvidia's Self driving Car 
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2.7.2.4 Training process 
 

1. Data Selection: The first process of the training will be selecting the frames in the video which would 

support the training of neural network. The collected data is labelled with the type of the road the care 

is driven in, weather condition and the activities of the person driving the car. Like when the person is 

crossing the road or changing the line. For instance, to train the car to drive in the lane, the frames are 

selected from the video at 10 FPS in which the driver stays in lanes and rest are discarded. To eliminate 

the bias towards driving straight, the training data includes a higher proportion of frames that represent 

road curves. [10] 

2. Augmentation: Once we have a final set of frames for training process. The dataset is augmented by 

adding shifts and rotations to make the network learn how to recover from poor position to its orientation. 

The magnitude of the vectors which is created by these perturbations is chosen randomly from normal 

distribution. The standard deviation is twice as the human drivers who drove the car. 

3. Simulation: The simulator inputs the frames from the camera facing towards the road, which is 

connected to human driven data acquisition process. During this data acquisition process cameras 

onboard vehicle generate frames mapping to the steering commands of the vehicle. These test videos are 

time-synchronized with the recorded steering commands generated by the human driver. [10] 

4. Evaluation: The neural network is evaluated in two various ways. One using the simulator and second 

on the road test. In the environment for simulating the network, the car in the simulator is driven for 

couple of hours or many laps as possible. [10]The test data depends on the various lighting conditions 

and weather conditions and includes highways, local roads, inside residential areas [10] 

5. Simulation Tests: Estimate the percentage of the time the network could drive the car according to 

equation 10 by counting the simulated human interventions [10] that occur when the simulated vehicle 

departs from the centerline by more than one meter. For instance, in real time driving with the human 

intervention, would need six seconds; time to take over the control of dragged car towards off road and 

bring it back to center of the road and start cruising again. According to equation 10. Estimating the error 

percentage is taking a count of these scenarios and multiply six seconds and divide it by total number of 

stimulated test and subtract it by 1. To map the inverse steering ratios  

𝑎𝑛𝑎𝑡𝑜𝑚𝑦 = (1 −  # 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠[𝑠𝑒𝑐𝑜𝑛𝑑𝑠]
𝑡𝑖𝑚𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑[𝑠𝑒𝑐𝑜𝑛𝑑𝑠]

). 100                                                 (10) 

 
Thus, if we had 10 interventions in 600 seconds, we would have an autonomy value of 

 

(1 −
10.6
600 ).100 = 90% 
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2.7.2.5 Visualization of CNN State 
 

The figures below show the activations of two kernel maps of two different input samples. An unpaved 

road from a forest may have too much of noise due to its proportionality and uneven   features on roads. 

So, the network has no useful information to learn from this image. The demonstration that CNN learned 

to detect useful information from the roads which it has seen during training on its own. We never trained 

on the outlines of the roads explicitly [10]   

 
Figure 6 CNN's Visualization of an unpaved road. Top: Subset of the camera image to the CNN. Bottom left: 

Activation of the first layer feature maps.  Bottom right: Activation of the second layer feature maps 

 

 
Figure 7 CNN's Visualization of image with no road. The activations of the first two feature maps appear to 

contain mostly noise, i.e. the CNN doesn't recognize any useful features in this image 
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2.7.2.6 Conclusion 
 
 

NVIDIA demonstrated the CNNs are able to learn the entire task of lane and road following without 

manual decomposition into road or lane marking detection, semantic abstraction, path planning, and control.  

CNN is able to extract the features from the visible roads and learn to predict the traffic signs, cross roads 

and unpaved roads. The model learns to understands geometry of the roads with respect to the edge line of 

the road and the curve of the road without need of explicit mapping to its training labels. The future work 

is to enhance and improve the efficiency of this model. [10] 
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2.7.3 A Deep Learning Solution Towards Model-less Obstacles Avoidance 
 

 
Obstacle avoidance is the known problem in mobile robots. Navigating in autonomous environments 

will be hard unless the robot is mapped to its environment. Initial approaches were designed to construct 

the maps based on global maps and cost maps. In the era of machine learning, algorithms have made 

significant improvement in cognitive tasks such as visual recognition and pattern matching. Neural 

networks are designed to mimic the architecture of brain to control the environment and decision making. 

Taking the advantages of deep learning into account, we take obstacle avoidance as an example to show 

the effectiveness of a hierarchical structure defuses CNN with decision making. The network accepts the 

depth images as input and generates control commands as class probabilities. This approach had a 

significant impact while avoiding the obstacles during navigating. [11] 

 
2.7.3.1 Neural Network Architecture  

 
 

 
 

Figure 8 The proposed model which combines CNN with fully connected Neural Network for Robot control 

CNN is a type of hierarchical neural architecture which is benchmarked for visual processing and image 

analysis. Feature extraction is the important functionality of CNN’s.  By backpropagating the error 

difference and update those weights. The framework allows to learn a multistage feature hierarchy. Each 

stage of the network has a feature extraction layer which has a convolution, non-linear activation and 

pooling layer. [11]  

𝑦𝑖𝑗𝑘 = (𝑤𝑖. 𝑥)𝑗𝑘 + 𝑏 

Convolution: Image filtering mimics the operation on kernel filtering or convolution operation. It takes the 

summed weights of the pixels in the image and forms the 3D grid of its representation.   

 

Non-Linear Activation:  After kernel filtering, there must be an activation function to trigger the node the 

network. This is inspired by the nervous system in the human brain. where synapse is responsible for this 
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process stimulated by neurons. Synapse function is mimicked by the activation functions such as Tanh, 

sigmoid, SoftMax, recent additions to process which stood out was ReLU. [11]    

𝑓(𝑥) = 𝑚𝑎𝑥 (0: 𝑥) 

A neuron employing the rectifier is also called a rectified linear unit (ReLU) [18]. Due to its piece-

wise linear property, the rectifier executes faster than the previous two non-linear functions for activation. 

 

Pooling: The operations takes the maximum and average of the values in images patches in the operational 

stride values. There are various pooling methods, ranging from Max Pooling, Mean Pooling and much 

more. This pooling mainly focuses on eliminating noise and improving robustness of the network [11] 

 

Stride: The stride [18] parameter exists in the convolution layer as well as pooling layer. It means the step 

over pixels of convolution by patch-by-patch scanning. When stride s > 1, the output feature maps is down-

sampled by a factor of s. By introducing the stride parameter, the parameter size of the whole network is 

reduced. [11] 

 

2.7.3.2  Sample Results and Evaluation 
 

In all trails the robot does not collide with obstacles. However, we consider this does not reflect the 

true performance of the system sufficiently. To evaluate the performance of the system, we study the 

similarity of the robot decision and human decision under the same situation. 

Firstly, the model uses the soft max classifier to predict the drive classes. Total sample of 1104 depth 

images were used to train the network which were entirely based on the indoor driving maneuvers. These 

images were categorized into five driving controls which had a uniform distribution of training samples and 

test samples according to the paper, training took place on 750 images and was tested on 354 images. The 

result is shown in figure. We could see that the overall accuracy of the test set is 80.2% [18]. The class 

accuracy is 79.76%, i.e. the mean accuracy of each class. Furthermore, regarding mis-classification, there 

is quite low chance for our system to generate totally opposite decision, e.g. to mis-classify “left” as “right”. 

A large portion of misclassifications could be mis-classifying a “turn-half-left” to a “turn-full-left” or “go-

straightforward”. The results prove the effectiveness of the model’s confidence score, in terms of error 

distributions. [11] 
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Figure 9 Confusion Matrix on the Test Set. The green-to-red color-map indicates the accuracy of inference. Note 

that the outcome is equivalent to the five labelled classification problems 

 
 
. 
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3 PROTOTYPE DEVELOPMENT APPROACH  
 

Our approach towards designing this interface consists of two parts. The first part consists of data 

preprocessing and training, which gathers the sensor reading and process it to a neural network. The second 

is the inference, process of integrating the intelligence into a real time environment.    

 

 
Figure 10 Architecture of AISRA 

 
3.2 Overview of AISRA architecture 
 

The architecture of AISRA makes use of the Multilayer Perceptron Neural network: 

o perceptron arranged in layers: the input layer, hidden layer and the output layer. 

o Each perceptron in one layer is connected to every perceptron on the next layer. Hence information 

is invariably "fed forward" from one layer to the next. 
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3.2.1 Use cases for AISRA  
 

 
Figure 11 Use case diagram of AISRA 

 AISRA is an end to end process in making a robot navigate itself, there are two actors on screen  

● A person who holds the experience in ROS and Machine learning profile 

Roles:  

o Preprocess Data 

o Train the neural network 

o Inference logic 

● A person who is skilled in writing helper functions 

Roles: 

○ Drive the robot around to collect the dataset  

○ Write helper functions to filter dataset  

○ Write helper functions in ROS Nodes  

 

 



34 
 

 

3.2.2 Robot Operating System (ROS) 
 

ROS is complex piece of middleware which embedded between the operating system and the kernel. 

Name may specify it as an operating system, but it is mainly built for cluster-based methodology which 

includes hardware configuration, device control, manipulation of kernel scripts, message passing between 

user defined process states. Running ROS is a graph-based process which denotes all the active nodes and 

those nodes are interconnected between them using topics active. Even ROS is not an RTOS but we can 

map ROS to Realtime code leveraging the power of publisher and subscriber mechanism     

Software in the ROS Ecosystem can be separated into three groups: 

● language-and platform-independent tools used for building and distributing ROS-based software. 

● ROS client library implementations such as roscpp, rospy, and roslisp. 

● packages containing application-related code which uses one or more ROS client libraries. 

 

3.2.3 Input Sequence 
 

The input layer of AISRA comprises three major components:  

● LDS: Laser Distance Sensor is used to procure input data from the environment to be fed into the 

system. 

● Database: The raw data procured from LDS is exported into CSV files based on timestamps of 

publishing. This data is saved for future processing. 

● Data preprocessing: The raw data is then preprocessed using various ROS functionalities. 

 

3.2.4 Middleware Sequence  
 

The middle layers have no connections with the external world and are thus called the hidden layer. 

The hidden layer contains of three components: 

● Neural network architecture: System specific neural network architecture that comprises of 360 

input nodes, 194 hidden nodes and 9 output modes. 

● Model Evaluation: The model configured was evaluated using K-Fold evaluation metric. 

● Hyper parameter tuning: Hyper-parameters are parameters that are not directly learned within 

estimators. Hyperparameters must be set explicitly before training and tuned to train the system to 

predict probabilities in the cases that were not already present in the training dataset. 
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3.2.5 Inference Sequence  
 

The output layer performs logical operations based the outputs from hidden layer so that the whole 

network classifies the input layers into specified units. By varying the number of nodes in the hidden layer, 

the number of layers, and the number of input and output nodes, one can classification of points in arbitrary 

dimension into an arbitrary number of groups. Hence feed-forward networks are commonly used for 

classification. 

The two main functionalities happening in the models output layer are: 

● Activation function: The function used in the model for activation of output nodes is SoftMax. SoftMax 

activation is used to show the highest probability among the 9 nodes to the given instance of the row 

data. 

● Inference: We need high-end configured systems to initially train the neural network models. From this 

trained model we get the neural network model architecture and model weights.  Once we have the 

pre-trained model, we can download the model summary and model weights to deploy the model on 

Nvidia Jetson predict computational results. 

 

 
Figure 12 Flowchart AISRA 
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3.3 Data Preprocessing  
 

We used Turtlebot 3 from Robotics for data collection and inferencing 
 

          
Figure 13 Turtlebot 3 Burger 

 
We took our robot on a drive in various environments, such as a pathway, house and a room with full 

of obstacles. Map images as shown in figure 14 and figure 15. The robot was mounted with an LDS sensor 

and data was recorded overtime. 

 

 
Figure 14 Map of Room with obstacles 

 
 

 
Figure 15 Map of Longest Floor 

 

A bag [19] is a file format in ROS for storing ROS messages data. Bags (so named because of them. 

bag extension) have an important role in ROS, and a variety of tools have been written to allow you to store, 

process, analyze, [2] and visualize them. ROS Bags serves as a container to record all data which are 

published by various sensors and feedback signals. ROS provides a mechanism to record all the data with 

its internal component called ROS Bags.  
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Figure 16 Data processing Phase 

ROS Bags works as a tool to record and replay to debug various algorithms, since every time you see 

the same data during playing the bags which helps to isolate and fix the errors. ROS bags has graph of 

publishing messages which is similar to one when it was recorded. Though it may face the synchronize 

issues, to handle this ROS bags provides the attribute called stimulated clocks to publish data along with 

the timestamp. [2] 

The bag file [2] format is very efficient for both recording and playback, as messages are stored in 

the same representation used in the network transport layer of ROS. All the data during the data 

accumulation process is collected as rosbags containers. 

 
Raw Inputs: To procure the raw data required for training the neural network model, we played the ros 

bags to export joystick values and LDS Sensor data to a CSV files based on timestamps of publishing and 

saved the recorded data as individual files for future data processing. Both the datasets obtained from 

joystick values and LDS sensors have unique timestamps which served us to merge the datasets into a single 

output file after data processing and feature extraction. 
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3.3.1 Preprocessing Raw Data inputs 
 

ROS provides an open source package called ps3joy that can work with PS3 Controllers and is 

suitable for teleoperation of robots. This ROS Package returns the Joy axis values and button trigger values 

for every action taken. 

 

 
Figure 17 Terminal screenshot of Joy Values 

 
 Process Drive Directions: 
 

 
Figure 18 Joy Stick axis movements 

 
The exported values from Joy controller is saved in form of CSV files according to the timestamp 

values. Every stream of data received from the Joy controller is parsed in the format of JSON which returns 

axis values and triggered button values.  

For the intent of processing drive directions, we extract the values from the 16 and 17 axis movement 

ranging its value from 0 to 1.  Once we have the extracted values from the returned object, we categorize 

the movement into nine different drive states. That is, up, down, left, right, up-left, up-right, bottom-left, 

bottom-right and stop.  
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Once we have all the drive directions for all the data, we create a data column in the dataset which 

has the equal joy stroke values to its instance of axis values. This column serves as Y axis for our future 

data file or our supervised learning model.  

 

3.3.2 Processing LDS Scanned Data 
 

The system needs to sense its environment in more the depth manner to understand the geometry of 

its environment, looking out to some distance to find obstacles and build a map that is useful for performing 

tasks it is designed for. LDS Sensors are designed to measure distances between the robot to the obstacle 

or object passing by. These lasers may range from 10 meters to 3000 meters based on the purposed of usage. 

LDS are mainly used for localization in the space and perform navigation without colliding with objects    

LDS Sensor provides the 360-degree circumference of its environment that collects the data for robot 

to localize itself in the MAP and navigate around the environment. The Simultaneous Localization and 

Mapping, or SLAM, [16]is a technique to draw a map by estimating current location in an arbitrary space. 

[16] 

● The LDS-01 is used for TurtleBot3 Burger, Waffle and Waffle Pi models. 

● It supports USB interface(USB2LDS) and is easy to install on a PC. 

● It supports UART interface for embedded board. 

 

Machine Learning models use LDS as their primary sensor for mapping, localization, and obstacle 

avoidance. 360 Laser Distance Sensor LDS-01 is a cost-effective way to overcome all these shortages 

without compromising the performance of the laser sensor. [16] 

Table 1 Hardware Specification of LDS Sensor 

Operating supply voltage 5V DC ±5% 

Light source Semiconductor Laser Diode(λ=785nm) 

LASER safety IEC60825-1 Class 1 

Current consumption 400mA or less (Rush current 1A) 

Detection distance 120mm ~ 3,500mm 

Interface 3.3V USART (230,400 bps) 42bytes per 6 degrees, 
Full Duplex option 

Ambient Light Resistance 10,000 lux or less 

Sampling Rate 1.8kHz 

Dimensions 69.5(W) X 95.5(D) X 39.5(H)mm 
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Table 2 Performance of LDS Sensor 

Distance Range 120 ~ 3,500mm 

Distance Accuracy 
(120mm ~ 499mm) 

±15mm 

Distance Accuracy 
(500mm ~ 3,500mm) 

±5.0% 

Distance Precision 
(120mm ~ 499mm) 

±10mm 

Distance Precision 
(500mm ~ 3,500mm) 

±3.5% 

Scan Rate 300±10 rpm 

Angular Range 360° 

Angular Resolution 1° 

 
The LDS sensor will scan the environment is it placed in all 360 degrees. Each scan from LDS sensor 

returns 360 values specifying its range of distance in each degree. We extract just the required columns 

from the dataset which holds just the ranges of data which serves as a feature for supervised model. . [16] 

 

 
Figure 19 Screenshot of RAW LDS Values 
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3.3.3 Final Dataset 
 

As of now, there are two data blocks available to us which have to be merged to get the full-fledged 

dataset for the model to be trained. Timestamps of publishing the data will act as a key to merge both of the 

datasets, thanks to python package pandas for this handy tool to perform this operation. 

 
Table 3 View of Joy axis data table 

Time stamps axis_0 axis_1 axis_2 axis_3 axis_4 axis_5 axis_6 axis_7 … axis_19 
20180518040434 1 0 0 0 0 0 0 0 … 0 
20180518040435 0 1 0 0 0 0 0 0 … 0 
20180518040436 1 -0.9 0 0 0 0 0 0 … 0 
20180518040437 0.2 1 0 0 0 0 0 0 … 0 
20180518040438 1 1 0 0 0 0 0 0 … 0 

 

Table 4 View of LDS data table 

timestamps range_0 range_1 range_2 range_3 range_4 range_5  range_360 
201805180404

34 
2.5050001

1 
2.5009999

3 
2.5339999

2 
2.4470000

3 2.546 
2.4760000

7 
.. 2.5669999

1 
201805180404

35 
2.4979999

1 
2.5360000

1 
2.5050001

1 
2.4779999

3 
2.4800000

2 
2.5580000

9 
.. 2.5050001

1 
201805180404

36 
2.5009999

3 
2.4900000

1 
2.5399999

6 2.454 
2.5320000

6 
2.4930000

3 
… 2.4760000

7 
201805180404

37 
2.5299999

7 
2.5399999

6 
2.5179998

9 
2.5220000

7 
2.4379999

6 
2.5669999

1 
… 2.5090000

6 
201805180404

38 
2.4860000

6 
2.4779999

3 
2.3840000

6 
2.5090000

6 2.4289999 
2.5160000

3 
… 2.5399999

6 
 

After completion of merging of the data from two data blocks, timestamps values and axis values that 

are merged from joy drive dataset is dropped from the final dataset. So final dataset holds the range values 

and the joy strokes which has all the dependent and independent columns for our neural network. 

 
Table 5 View of preprocessed data table 

range_0 range_1 range_2 … range_360 Joy strokes 

2.50500011 2.50099993 2.53399992 … 2.47600007 Up 

2.50500011 2.50099993 2.53399992 … 2.47600007 Up 

2.50500011 2.50099993 2.53399992 … 2.47600007 Left 

2.50500011 2.50099993 2.53399992 … 2.47600007 Down 

2.50500011 2.50099993 2.53399992 … 2.47600007 up 
 

 
We have collected over 365000 rows of LDS data instances, during the mapping process.  
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Final Dataset for model training 
 

Following is the brief outlook on the data sample from the final dataset and its subsequent number of 

collected data rows with respect to the data sample's joy strokes. 
Table 6 Category based data collection 

Directions Samples count 
Up 85517 
Left 81297 

Right 68276 
Up-Right 5173 
Up-Left 2174 
Down 1313 

Bottom-Right 849 
Bottom-Left 538 

 
I went ahead further and divided the dataset into X and Y values. X values will hold the range features, 

and Y values will hold the classes of joy strokes.  

 
3.3.4 Stratified sampling  
 

Until now we had a random sampling method when dividing the dataset into a train and split sets. 

However, in our classification problem, we have 8 different classes, and random sampling method will 

work if we have the large dataset for this. However, the dataset which is gathered is a relatively smaller one 

compared to the distribution of data to 8 different classes. If the training data is not prepared correctly, we 

may run into high bias.  

So, we decided to collect the data evenly from every different class and form a dataset for training. 

So, we have data from all the drive directions to train the neural network. Therefore, it learns every class to 

its best accuracy.  

For this method, we use Stratified sampling method from sci-kit learn library.  
 
from sklearn.model_selection import StratifiedShuffleSplit 
spilt_data = StratifiedShuffleSplit(test_size=0.25, random_state=42) 
for train_index, test_index in spilt_data.split(x_dataset, y_dataset): 
     x_train,x_test = x_dataset.iloc[train_index],x_dataset.iloc[test_index] 
    _   y_train, _y_test = y_dataset.iloc[train_index], y_dataset.iloc[test_index] 
 

Stratified shuffle split provides the test and training indices for our dataset. Stratified Shuffle split 

is an object that concatenates two methods in its process. Stratified KFold and Shuffle Split   
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 Stratified sampling takes few parameters: 

● test size: we define the test size of the data sampling process. Whereas in our purpose, we have 

separated over 25% of overall dataset for the testing purpose.  

● train size: we define the training data set size here, in our case as we declared the testing size the 

rest will be allocated for training data.  

Now we are ready to do stratified sampling based on the classes. We get all the training and testing 

variables which we can process for training and testing of neural network 

 
3.3.5 Encode the output variable 
 

When modeling the multi-classification architecture using neural networks, it is always a good practice 

to reshape the output attribute from a vector that contains the values of each class into a matrix that contains 

the Boolean values of those classes. This process is called One Hot encoding.  

ML algorithms prefer to work with numerical values rather than text attributes because with text 

attributes we cannot compute its median. However, the primary issue with numerical representation is the 

that ML algorithm will assume that two nearby values are more similar than two distant values.  

A standard solution to overcome this shortage is to create one binary attribute per category: one 

attribute is equal to 1 when it belongs to a particular category (and 0 otherwise), another attribute equal to 

1 when it belongs to another particular category (and 0 otherwise), and so on. This categorization is referred 

to as one-hot encoding because only one attribute will be equal to 1 (hot), while the other will be 0 (cold). 

Scikit-Learn provides an encoder called ‘OneHotEncoder’ which helps in converting integer 

categorical values into one-hot vectors. The output of this encoder will be a SciPy sparse matrix, instead of 

a NumPy array. This is particularly of great help when we have categorical attributes with thousands of 

categories. Both transformations (from text categories to integer categories, then from integer categories to 

one-hot vectors) in one shot can be applied using the LabelBinarizer class. 

 
encoded = LabelEncoder() 
encoded_y_train = encoded.fit_transform(y_train) 
encoded_y_test = encoded.fit_transform(y_test) 
 
y_train = np_utils.to_categorical(encoded_y_train,9) 
y_test = np_utils.to_categorical(encoded_y_test,9) 
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3.3.6 Feature scaling of LDS Scan data  
 

Feature scaling is one of the most significant transformations applied in data transformation step. It 

is rare that Machine Learning algorithms perform well when the input, numerical attributes have very 

different scales. So, it is at most necessary to get all attributes of the same scale. 

It is crucial to fit the scalers to the training data only and not to the full dataset. There are two ways 

to get all attributes on the same scale: min-max scaling and standardization. [12] 

 

Min-max scaling (or normalization) is a simple method used to scale attributes. All the values are shifted 

and re-scaled to range from 0 to 1. Scikit-Learn provides a transformer called MinMaxScaler to perform 

this transformation.  

● MinMax scaling logic: subtract the min value and divide by max minus min.  

 

Standardization is different from min-max scaling because it does not bind values to a specific range. So, 

it is much less affected by outliers. However, not binding values to a range might be a problem in case of 

algorithms that expect an input value ranging from 0 to 1. Scikit-Learn provides a transformer called 

StandardScaler for standardization. 

● Standardization logic: subtract the mean value and divide by the variance so that the resulting 

distribution has unit variance. 

Most ML algorithms expect an input data in range 0 to 1. This is the reason Machine Learning model 

learns fast when the values range from 0 to 1. Hence, I have used MinMaxScaler from Scikit-Learn to 

process this step.  

 
Figure 20 Min Max Scaling 
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All the features extracted in the earlier step goes through to MinMaxScaler. So, each value will range 

from 0 to 1.  
 

 
Figure 21 Minmax Scaling code Snippet 
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3.4 Neural Network Architecture 
 

 
Figure 22 Architecture of Neural Network 

 
  The neural network architecture of AISRA can be broken down into three fundamental layers: the 

input layer, the hidden layer, and the output layer. The nodes within each layer are independent of one 

another. However, every node in one layer is connected to every other node in the subsequent layer. This 

means that every node in the input layer is connected to every node in the hidden layer and every node in 

the hidden layer is connected to the output layer. The data is processed in one stage and forwarded to the 

next, which means there are no loops in the system. The signals always traverse unidirectionally making 

this a feed-forward system.  

The neural network receives its input from the LDS Sensor which will render 360 inputs to the 360 

input nodes of the system. Input nodes will hold the current detail range information about the 360-degree 

circumference of the space scanned by LDS Sensor.  The input layer is connected to the hidden layer which 

is activated by rectified linear function ('ReLU').  The model is evaluated using K-Fold evaluation metric 

and hyper parameter tuning.  The output layer uses the SoftMax activation function which outputs the 

probabilities for nine different categories available. 

Neural networks produce multiple outputs in multiclass classification problems. However, they do 

not have the ability to produce exact outputs; they can only produce continuous results. We would apply 

some additional steps to transform continuous results to exact classification results. Categorical cross 

entropy is a loss function that minimizes the loss between two different instances of a data row, so it gets 
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nearer to the prediction level. We use categorical cross entropy with SoftMax activation function, so it 

predicts every probability of every class. 

 
3.4.1 Training Process:  

 
Figure 23 Sequence diagram of training process 

 
This process constitutes of four main objects  

• Pre-processing : This object just focuses on the preparation and manipulations of data.  

• Training phase: Neural network training and configuring of parameters, this object constitutes under 

goes series of evaluations and sends the trained model to inference object, if in case the trained model 

doesn’t work as expected. The model is again trained by tweaking the data manipulation by calling the 

pre-processing object. 

• Inference Phase: it is responsible for Realtime predictions from the Realtime input from the sensors.  

• Prediction Phase: This phase has a scaled and pre-processed inputs which holds LDS sensor data 

which streams the input data  
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3.4.1.1 System Setup: 
 

Keras is a High-Level API written in python and built on top of TensorFlow or Theano. It was 

developed to test the ANN rapidly and deployment for testing. Keras supports two versions of python .i.e. 

2.7 and 3.5 and later. Because of the architecture of TensorFlow and Theano, Keras also runs on CPU and 

GPU enabled system for training and inference. Keras was developed and maintained by François Chollet, 

[8]a Google engineer using four guiding principles: 

• Modularity: Keras API provides sequence modelling and functional modelling of the neural network 

do it can run as a graph or a standalone sequence stack. Model can be even further manipulated using 

concatinating models and much more 

● Minimalism: The library provides just enough to achieve an outcome, no frills and maximizing 

readability. 

● Extensibility: New components are designedly easy to add and use within the framework, intended 

for researchers to trial and explore new ideas. 

● Python: Uses native Python. No separate model files with custom file formats. [8] 

 

Theano Library: Theano is base library for neural networks which is written in python, which can be 

used to architecture deep learning models or create wrappers for other libraries to simplify the application 

building process 

Theano is much mathematical flavored coding in python. It basically translates the structures into a 

native code for numpy, dynamic libraries as BLAS and native C++ which can run on both GPU and CPU 

clusters. [15] 

The syntax of Theano is much of symbolic representation, where the mathematical expression is much 

defined in more abstract way, compiled and later made used to calculate. Theano is much preferred for 

complex neural networks or very deep neural network more than three to four hidden layers.  It is considered 

as one of the standards for Deep learning research and development [15] 

Keras is a wrapper on Theano and hides its code completely. It provides an easy accessible API to 

create neural network models. It completely isolates the wrapper from another most popular computational 

library called TensorFlow [15] 
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Figure 24 Process flow of neural network training 

 
Training Process takes place in the Floyd hub cloud, due to the architecture of Theano and large 

dataset. Training takes places in computational Nvidia’s GPU cluster. Once the data is trained the model 

files are transferred to Jetson TX2. 

Once the model is configured and final model would look as illustrated under model summary  

Model Summary  
 
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
dense_1 (Dense)              (None, 184)               66424      
_________________________________________________________________ 
dense_2 (Dense)              (None, 184)               34040      
_________________________________________________________________ 
dense_3 (Dense)              (None, 3)                 1665       
================================================================= 
Total params: 102,129 
Trainable params: 102,129 
Non-trainable params: 0 
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3.4.2 Hyperparameter Tuning 

 
While the system learns the model parameters through training, hyperparameters must be set 

explicitly before training. Hyper-parameters are parameters that are not directly learned within estimators. 

In scikit-learn, they are passed as arguments to the constructor of the estimator classes. Scikit-Learn 

implements a set of sensible default hyperparameters for all models, but these are not guaranteed to be 

optimal for a problem. The best hyperparameters [28] are usually impossible to determine ahead of time, 

and tuning a model is where machine learning turns from science to trial-and-error based engineering. 

It is inferred to search the hyper-parameter [28] space for the best cross-validation score. Any 

parameter provided when constructing an estimator can be optimized. A search consists of:  

● an estimator (regressor or classifier such as sklearn.svm.SVC()). 

● a parameter spaces. 

● a method for searching or sampling candidates. 

● a cross-validation scheme. 

● a score functions. 
  

Important functions used for searching are: 

● Parameter Grid [28] generates all the combinations of a hyperparameter grid. 

● sklearn.model_selection.train_test_split[28] is a utility function to split the data into a 

development set usable for fitting a GridSearchCV instance and an evaluation set for its final 

evaluation. 

● sklearn.metrics.make_scorer[28] makes a scorer from a performance metric or loss function. 

 

 Scikit-learn uses the wrappers to provide by Keras [7]  models to make use of sci-kit functionality 

for feature adoptions. Keras classifiers and Keras regressors are two mainly used wrappers with Scikit-

learn. To make use of these classifiers and regressors the model has to be defined in the way of writing a 

function which holds the parameters for model training. The constructor for the KerasClassifier class can 

take default arguments that are passed on to the calls to model, such as the number of epochs and the batch 

size. The following wrapper is used to implement the Scikit-Learn classifier interface. [7] 

keras.wrappers.scikit_learn.KerasClassifier(build_fn=None,**sk_params) 

Grid search is a model hyperparameter optimization technique [20]. The grid search provided by the 

scikit-learn class, GridSearchCV exhaustively generates candidates from a grid of parameter values 

specified with the param_grid parameter. It performs an exhaustive search over specified parameter values 

for an estimator. When constructing this class, render a dictionary of hyperparameters to evaluate in the 

param_grid argument. This is a map of the model parameter name and an array of values to try. [7] 
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By default, accuracy is the parameter which has to be on focused and optimized. But other scores can 

be mentioned in the attributes of the GridSearchCV class. Also, by default GridSearch will use one thread 

the couple of available cores in the processors, specifying n_jobs are equal to -1 will activate all the cores 

of the processor to run simultaneously [7] 

Grid Search will form a grid which will have all the parameters which will be trained on. It forms all 

the combinations of available parameters and run one after one. Cross validation will have a number of 

splits in which the case will be evaluated on. 

The return values of gridsearch are the best parameters and their accuracy scores. Gridsearch fits the 

model function and observes the best parameters and returns a dictionary with all the values   

The batch size defines the subsets of the entire dataset exposed to the network. It is also an optimization of 

training function. The number of Epochs defines the numbers of times the dataset is iterated during the 

training process.  

● Optimizer tuning: An optimizer is one of the two arguments required for compiling a Keras model. An 

optimizer is either instantiated before passing it to model.compile() or called by its name. In the second 

case, the default parameters for the optimizer will be used. [7]   

For example: 

  model.compile(loss='mean_squared_error', optimizer='sgd') 

  keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)  

● Batch size tuning: Batch size defines the number of samples that will propagate through the network. 

It generally requires less memory. Since the train network uses less number of samples, the overall 

training procedure requires less memory. It is especially important in the cases dataset does not fit in 

memory. Typically, the networks train faster with mini-batches. That is because of the update weights 

after each propagation. The smaller the batch, the less accurate estimate of the gradient. Stochastic is 

just a mini-batch with batch size equal to 1. Gradient changes its direction even more often than a mini-

batch. [7] 

    

● Initializers (Neural network weight’s) tuning: Initializations define the way to set the initial random 

weights of Keras layers. The keyword arguments used for passing initializers to layers will depend on 

the layer. It usually is kernel initializer and bias_initializer. Small random values were used to initialize 

Neural network weights. Tune the selection of network weight initialization by evaluating all of the 

available techniques. [20] 

For example: 

model.add(Dense(64,kernel_initializer='random_uniform', bias_initializer='zeros')) 
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The same weight initialization method is used on each layer. Ideally, it may be better 

to use different weight initialization schemes according to the activation function used 

on each layer. [7] 

 

● Epoch tuning: An “epoch” describes the number of times the algorithm sees the entire data set. So, each 

time the algorithm has seen all samples in the dataset, an epoch has completed. One epoch is one forward 

pass and one backward pass of all the training examples. Updating the weights with a single pass or one 

epoch is not enough.  We use a limited dataset and to optimize the learning and the graph using Gradient 

Descent which is an iterative process. One epoch leads to underfitting of the curve in the graph. As the 

number of epochs [20] increases, the number of times the weights are changed in the neural network 

increases, and the curve goes from underfitting to optimal to overfitting curve. 

 

Once we have the model with all the required architecture we wrap the neural network into Keras 

classifier to support Scikit Learn GridSearchCV module [12] 
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3.4.2.1 Hyper parameter test cases  
 
We have run the test cases to tune the hyper parameter for the following configurations. 
 
Case 1: For 200 EPOCHS   

 
Table 7 Case 1: For 200 EPOCHS 

 Epoch Kernels Optimizer Batch size Accuracy Loss 
1 200 glorot_uniform adam 32 0.963467 0.00266 
2 200 glorot_uniform rms_prop 64 0.961867 0.002407 
3 200 glorot_uniform adam 64 0.963067 0.002927 
4 200 normal rms_prop 128 0.964267 0.002175 
5 200 uniform rms_prop 128 0.920667 0.014611 
 
Looking at the table 7 we can see that all the optimizers did their best job in minimizing the loss. 

But I found that adam optimizers bench marked this process for 200 epochs with 96% of accuracy with 

0.002927 of loss. 

 
Case 2: For 150 EPOCHS  
 

In this case much we find much better performance with all the instances, especially for adam 

optimizer most of the test variables suits to perform more then 96% all the time. But when considering even 

loss into accountability adam optimizer throws up lower loss then compared to other instances when paired 

up with glorot_uniform with 64 batch sizes. 
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Table 8 Case 2: For 150 EPOCHS 

 
 

Case 3: For 100 EPOCHS 
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 Epoch Kernels Optimizer Batch size Accuracy Loss 
1 150 normal rms_prop 32 0.9644 0.003116 
2 150 normal adam 32 0.963733 0.002853 
3 150 glorot_uniform adam 64 0.964267 0.00262 
4 150 uniform adam 64 0.963733 0.002473 
5 150 glorot_uniform rms_prop 128 0.959333 0.001969 
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Table 9 Case 3: For 100 EPOCHS 

 
In this test case we found out that the rms_prop does perform very low compared to other cases. 

The accuracy of the model falls down to 30% where still adam optimizers benchmarks even this test case 
with 96% 
 
Selections of best hyper parameters based on the Grid CV Results  
 

After analysis the complete test cases for various epoch conditions, we found that following hyper 
parameters will train the neural network with best accuracy and minimize the error to the lowest value.  
 
Table 10 Selection of best hyperparameters 

Variables Hyper Parameters 

EPOCHS 200 

KERNELS GLOROT UNIFORM 

OPTIMIZER ADAM 

 
3.4.3 Model Evaluation:  
 

Cross validation is a model of evaluation that is better than residuals. The actual problem with these 

residuals is that they don’t give an insight of how the model would work on unseen data. The learner will 

be asked to make the new predictions based on the model which is trained. To supersede this problem, is 

that not to use the whole dataset for training purpose. The better approach is to divide the dataset into 

training and tests sets. So, when the training set after the spilt function undergoes the network training. So 

now the model will be evaluated for the test dataset to get the accuracy of the model which is trained. . [23] 

1. We should train the model on a large portion of the dataset. Otherwise we’ll fail to read and 

recognize the underlying trend in the data. This will eventually result in a higher bias 

2. We also need a good ratio of testing data points. As we have seen above, less amount of data points 

can lead to a variance error while testing the effectiveness of the model 

 Epochs Kernels Optimizer Batch size Accuracy Loss 
1 100 glorot_uniform adam 32 0.963467 0.003523 
2 100 uniform adam 32 0.963333 0.002739 
3 100 glorot_uniform adam 64 0.963867 0.00264 
4 100 normal adam 64 0.963867 0.00262 
5 100 glorot_uniform rms_prop 128 0.961733 0.003104 
6 100 uniform rms_prop 128 0.319733 0.4111163 

https://www.cs.cmu.edu/~schneide/tut5/node42.html
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3. We should iterate on the training and testing process multiple times. We should change the train and 

test dataset distribution. This helps in validating the model effectiveness properly 

For above configuration the model was evaluated using K-Fold evaluation metrics with 89% 

accuracy. K-fold cross validation is one way to evaluate the model with the test data. The data set is divided 

into k subsets, and the epochs are run k times. The process of this method is to divide the data into k subsets 

and epochs run on total k times specified during the KFold initialization process. This approach will give 

you the option to choose test size and how trails you average over. [23] 

 
Figure 25 K-Fold for 10 splits 

 
 

 
Figure 26 Code snippet of KFold validation 

 

Each time, the datasets have to be divided for training and evaluating the model. Among the available 

k subsets, k-1 subsets will be used for training the model whereas the remaining one set will be used for 

evaluating the model. Later the average of the training subsets and the evaluation subset will be analyzed 

to compute its efficiency.  The benefit of the aforementioned approach is that the division of data as training 

and test set does not cause any data loss because each data object will be treated as training set k-1 times 

and as a test set once. 

 

https://www.cs.cmu.edu/~schneide/tut5/node42.html
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Figure 27 KFold Accuracies 

 
Model evaluation is a process of running the model on test to check the performance accuracy and 

how predicts on unseen data.  
 

 
Figure 28 Accuracy on Trained Model 

 
Model was evaluated on a quick run with 20 epochs which never converged at any point when tested 

on 100 epochs. Model was successfully evaluated on the test data at 0.93 accuracy as shown in above Figure 

27 and Figure 28 illustrates the loss 0.19 Loss   

 
Figure 29 Loss function on model trained 
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Model validation on the training data: 
 

Keras has an inbuilt validation function during the call of fit method where we can separate an amount 

of data for validation on training set. This validation set will be used in the to evaluate the model 

performance during the training phase.   

 
Validation accuracy  
 

 
Figure 30 Validation Accuracy 

 
Model has validated over 93.06 % of performance accuracy on validation spilt data and 16% loss 

 
Validation Loss 
 

 
Figure 31 Validation Loss 
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3.4.4 Confusion matrix 
 

 

The confusion matrix is a well-known technique to understand and evaluate the classification model 

based on the visual mappings between the predicted classes and the actual classes. For instance, the 

performance of the neural network may benchmark the classification of dogs and cats but may literally be 

bamboozled when the classification takes places between dogs and wolves. 

Analysis of overall dataset to predict the confusion matrix to study the false positives and true negatives. 

Table 11 Dataset Samples based on categories 

Directions Samples count 
Up 85517 
Left 81297 

Right 68276 
Up-Right 5173 
Up-Left 2174 
Down 1313 

Bottom-Right 849 
Bottom-Left 538 

 
 
Confusion metrics  

To begin with, we sampled the results using SoftMax classifier for decision making; we gathered over 

245000 samples of lidar data into 8 categories which individually represent the drive direction after 

dropping the standby joystick stroke which held the rest of the data. 

 
Table 12 Confusion matrix values 

Based on the data collection samples and the training phase parameter tuning resulted in 90% of 

accuracy. Though the prediction angles would perform as expected to move the robot forward and turn 

right and left, there is still an amount of miss classification and a low chance of generating totally opposite 

direction and slight turning error precisions. 

 

 Bottom-
left 

Bottom- 
Right 

Dow
n Left Right Up Up-Left Up-Right 

Bottom-left 100 0 6 19 4 6 0 0 
Bottom-right 0 155 7 3 28 17 0 2 
Down 6 5 291 6 17 3 0 0 
Left 37 5 7 19190 137 904 43 1 
Right 0 28 3 138 16078 650 2 170 
Up 7 17 7 1639 787 18790 79 170 
Up-Left  0 0 0 138 38 98 267 3 
Up-Right 0 2 0 42 607 121 2 519 
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In our purpose, due to the imbalanced dataset for directions. We further planned to drop the other 

directions and mainly focused on having the data which can drive the robot around. 

Data Filtering.  

We filtered all the unwanted directions to make the model more robust and avoid bias conditions. 

k-fold validation results 

 

 
Figure 33 Data Filtering 

 
Now after filtering, our dataset holds following fields to drive the robot with less biased conditions with 

just going forward taking a left turn and a right turn.  

 
Table 13 Filter values for confusion matrix 

Directions Samples count 
Up 85517 
Left 81297 

Right 68276 
 
 
 
 
 
 
 

Figure 32 Confusion Matrix for entire dataset 
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Confusion Matrix 
 
Table 14 Confusion matrix values for filtered data 

Left 19205 136 983 
Right 142 16410 517 

UP 1516 953 18911 
 Left Right Up 

 
After re-filtering the dataset, we found that still there is bit confusion between the robot to take 

precisive directions and confuses sometimes between taking a left and going forward. We can still mutually 

avoid this by hard cording the logics on the robot, which will be not the focus on this research. 

 
Figure 34 Confusion Matrix for filtered data 

 
3.4.5 K-Fold validation results 
 

 
 

We ran a K-fold validation analysis on the data which was filter to just check its model performance 

it was significantly good with a standard deviation of 0.93 and mean value of 0.0026. 

0.922

0.924

0.926

0.928

0.93

0.932

0.934

0.936

1 2 3 4 5 6 7 8 9

K-Fold validation on filtered model
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3.5 Inference:  
 

Learning is associated with parameter estimation and is not explicitly thought of as an inference 

problem. Usually, an inference is more like making some prediction. For example, in linear regression, 

given some features and some learned parameters, we want to predict some real-valued variable. Learning 

the values of the latent variables for a specific example is inference. Fitting the "hyperparameters" of the 

model for all the examples is learning.  

Inference can’t happen without training. So, the model is first trained on Floyd Hub cloud. The 

trained model is transferred to a client machine for real-time driving classification based on the LDS Sensor 

readings. 

 
Deployment: 
 

NVIDIA DIGITS is used to interactively train network models on annotated datasets in the cloud 

or PC, while TensorRT, inference optimizer that delivers low latency and high- throughput for deep learning 

applications. Jetson are used to deploy runtime inference in the field. TensorRT uses graph optimizations 

and half-precision FP16 support to more than double DNN inferencing. Together, DIGITS and TensorRT 

form an effective workflow for developing and deploying deep neural networks capable of implementing 

advanced AI and perception. [13] 

 
       We deployed the trained model to Nvidia’s 

Jetson TX2, which is especially designed for 

embedded systems intelligence. Nvidia’s Jetson 

has 256 CUDA Cores which helps inferencing 

on the fly in parallel. Jetson is loaded with 

Ubuntu 16.04 LTS with Robot operating system 

and kernel is modified to meet the needs of 

turtlebot.  

 
 

Figure 35 Nvidia Jetson 
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3.5.1 Sequence for Inference process 
 

 
Figure 36 Sequence Diagram for inference process 

 
The process of inferencing is represented sequentially in the above UML diagram. 

The first object in the sequential diagram is the scan object that has an activation box where the execution 

begins. Next, we have the inference Twist object that has the ModelPredict () method that is looped with 

itself to make decisions on to predict the drive directions. The drive directions will do a synchronous call 

to the subsequent drive object that will map the drive commands the node cmd_vel.  

Consider the scenario where the neural network model comes across an obstacle such as a wall. The 

best course of action will be to turn right or left depending of the space and the available node information. 

At first, the model will scan for the data using the LDS Laser Scanner that will fetch the information about 

all the 360-degree mapping to the obstacle. Upon detecting an obstacle the inference Twist node will process 

that data and use ModelPredict() to make decisions based on the knowledge gained by training datasets. 

The function is looped to itself to map the data with relevant directions so that the robot can predict accurate 

drive directions that will be passed as a synchronous signal to the cmd_vel node. The node cmd_vel will 

subscribe to inferenceTwist that will convert the high-level messages to lower machine level velocities. The 

system will take the linear velocity of 1 m/s and angular velocity of 2 radians/degree that will be translated 

to machine code for the robot to drive around in the space. 
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ROS neural network architecture licenses decoupled operation. In such systems, the names are the 

chief medians through which more extensive and exceedingly complicated networks can be constructed. 

These names possess a significant role in the architecture: nodes, topics, services, and parameters all have 

names. All ROS client libraries support command-line remapping of names. This which means a compiled 

program can be reconfigured at runtime to operate in a different Computation Graph topology. [22] 

For instance, to measure a LDS Sensor laser rangefinder, start the lds_node driver, that communicates 

with the laser and publishes sensor_msgs/LaserScan messages on the scan topic. Write a node using 

laser_filters that subscribes to the messages on the scan topic to process the scanned data. The filter will 

automatically begin to receive messages from the laser after subscription. 

 

 
Figure 37 ROS Graph for turtlebot launch 

Observe how these pair nodes happen to be decoupled.  The turtlebot3_lds node always publishes 

scans notwithstanding to the fact if any node is subscribed to it or not. Whereas, the filter nodes always are 

subscribed to scans notwithstanding to the fact whether or not any node is publishing it. These two nodes 

can be started, killed, and restarted, in no specific order, without producing indefinite erroneousness 

conditions. 

 

Subsequently, the addition of an extra laser to the robot is comparatively less complicated. To do so, 

we have to reconfigure the system and remap the names that are used. Restart the turtlebot3_lds and remap 

the scan topic to base_scan and also the filter node to base_scan.  After starting, the lds_node and filter 

node will stop hearing messages on the scan topic but instead, communicate of the base_scan topic. Later 

we can ignite different lds_node for the latest laser rangefinder. 

Pipeline: Multiple estimators are chained into one using a pipeline. A pipeline is advantageous as there 

usually happens to be a fixed series of moves in processing the data, for instance, feature selection, 

normalization, and classification. Pipeline works for two goals here:  

 

● Convenience and encapsulation:  to fit a complete sequence of estimators, the methods fit and 

predict have to be called just once on the data. 
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● Joint parameter selection:  A pipeline is a chain of estimators this also allows us to grid search across 

parameters of every estimator within the pipeline at once. 

 

Pipelines help avoid leaking statistics from the test data into the trained model in cross-validation, by 

ensuring that the same samples are used to train the transformers and predictors. 

Every estimator inside the pipeline, besides the last estimator, has to be transformers (that is, the pipeline 

should always have a transform method) whereas, the last estimator can be any type (transformer, classifier, 

etc.,). 

 
 

 
Figure 38 ROS Launch for inference for turtlebot 

 
In the above figure 38, Under inference node twist-aisra the data is filtered and preprocessed into a 

scikit-learn’s Pipeline which applies MinMax scaling to the data and reshape it to the Keras model’s 

architecture and published to drive topic. 

The Probabilities from the classifier are further published to other node to map the probabilities to 

the drive commands. Once the key mapping in drive_lds_net is done, the drive velocities and angular ratios 

are published to cmd_vel to drive the robot around to avoid obstacles. 

 

3.5.2 Performance measures  
 

As the end to end model was training to deploy and inference on low level ARM based system. It is 

really important to measure its performance attributes in real time data. Nvidia Jetson TX2 comes inbuilt 

with 256 CUDA cores and its architecture supports inferencing with GPU and CPU together.  

Jetson TX2 embeds GPU and CPU in a single cluster, CPU has a dual core Denver 2 processor and 

4 cores of ARM cortex A57. So along with the GPU and 6 cores of CPU, the efficiency is similar to the 

full-scale desktop performance. Depending on the application requirements and power factor, one can take 

the cores on and turn it off. 

 

There are five available modes in nvpmodel as proposed by Nvidia   
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Table 15 NVP Modes of Nvidia Jetson TX2 

MODE MODE 

NAME 

DENVER 2 FREQUENCY ARM A57 FREQUENCY GPU 

FREQUENCY 

0 Max-N 2 2.0 GHz 4 2.0 GHz 1.30 GHz 

1 Max-Q 0  4 1.2 GHz 0.85 GHz 

2 Max-P Core-

All 

2 1.4 GHz 4 1.4 GHz 1.12 GHz 

3 Max-P ARM 0  4 2.0 GHz 1.12 GHz 

4 Max-P-

Denver 

2 2.0GHz 0  1.12GHz 

 

1) Max Q: Max Q uses all the cores of the ARM A57 at the optimal clock speed, it sets the power 

profile to 7.5W. So, it uses half the power of available in Jetson TX2. 

2) Max P: It uses only cores of ARM A57, but with faster clock rates. The power profiles set up 

to 15W 

3) Max N: it uses all the cores including ARM A57 and Nvidia Denver, Max N architecture strikes 

the clock field to the maximum clock speeds. 

The test comparison between Dell workspace system vs Jetson tx2 for 10 instances of a dataset from 

the LDS AISRA prediction pipeline. During the testcases, there were iterations ran over available various 

modes of nvpmodel available on the same dataset. 

 

 
Figure 39 NVP Mode test performance 
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Table 16 Performance Metrics 

Mode Name Test performance 
Clocks disabled 3.326122586021 
Clocks enabled 2.93640089035 

Max Q 3.6240298748 
Max P 4.24526786804 
Max N 3.10444998741 

Max P ARM 2.51240801811 
Max p- Denver 2.1092903033 

 
 

According to the test results, Max -P Denver outperforms all the other combinations with executing 

10 queries at 2.1 seconds where each incoming data can be predicted at 0.210 seconds 

 

 
Figure 40 Dell vs Jetson TX2 Inference comparison 

 
The same dataset was used to test inference prediction on dell and also Jetson, where dell workstation 

has i7 processor which is pretty nominal to execute the inference at 1.11 seconds for 10 data samples. But 

Jetson gives out 2.5 seconds for 10 instances which is better inference rate for an ARM processor  
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CONCLUSION  
 

In this paper, we proposed the design of an autonomous interface using Neural Network that helps a 

mobile robot to navigate in space autonomously using obstacle avoidance approach in indoor environments. 

The system is based on a complex MLP architecture and accomplished desired results in real-world 

demonstrations. The thoughtfully conducted experiments and detailed analysis prove that our system could 

successfully manage obstacle avoidance. 

The comparisons between resultant robot decisions and human decisions for obstacle avoidance 

exhibited high similarity. Nonetheless, there are still some limitations, when the ranges of different LDS 

scanners scale more than the trained ranges. This trained model can be various robots which support our 

minimal, but still robotic applications [11]. Moreover, a discrete classification which may render the angular 

velocity and linear velocity may not be precise enough for a continuous state space of the decisions. 

For further investigation on the subject: 

● A reinforcement learning irrespective of the space to learn autonomous navigation and obstacle 

avoidance will be developed.  

●  A CNN architecture will be concatenated to an existing model which can be adopted from the 

existing literature “A Deep-Network Solution Towards Model-less Obstacle Avoidance” [17] by 

Lei Tai. Such an add-on will make the model more robust and works with more accuracy. 

 

FUTURE SCOPE 
● Exploration can be automated based on the model to navigate autonomously just by infusing aisra 

into any robot irrespective to its geometry 

● Process of SLAM can be executed without human intervention by setting the map coordinates.  
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APPENDIX 
 

1) Hyper Parameter tuning  
 

EPOCH KERNEL OPTIMIZER BATCH SIZE Accuracy Loss 
200 glorot_uniform rms_prop 32 0.907067 0.00588 
200 glorot_uniform adam 32 0.963467 0.00266 
200 normal rms_prop 32 0.907067 0.00588 
200 normal adam 32 0.9632 0.002286 
200 uniform rms_prop 32 0.907067 0.00588 
200 uniform adam 32 0.9636 0.002673 
200 glorot_uniform rms_prop 64 0.965867 0.002407 
200 glorot_uniform adam 64 0.9628 0.00204 
200 normal rms_prop 64 0.9276 0.006299 
200 normal adam 64 0.964 0.001987 
200 uniform rms_prop 64 0.6176 0.413529 
200 uniform adam 64 0.963067 0.002927 
200 glorot_uniform rms_prop 128 0.942933 0.012438 
200 normal rms_prop 128 0.964267 0.002175 
200 uniform rms_prop 128 0.920667 0.014611 
150 glorot_uniform rms_prop 32 0.964133 0.003172 
150 glorot_uniform adam 32 0.907067 0.00528 
150 normal rms_prop 32 0.9644 0.003116 
150 normal adam 32 0.963733 0.002853 
150 uniform rms_prop 32 0.907067 0.00528 
150 uniform adam 32 0.963467 0.002494 
150 glorot_uniform rms_prop 64 0.9424 0.02235 
150 glorot_uniform adam 64 0.964267 0.00262 
150 normal rms_prop 64 0.913867 0.006369 
150 normal adam 64 0.964133 0.002778 
150 uniform rms_prop 64 0.914 0.006532 
150 uniform adam 64 0.963733 0.002473 
150 glorot_uniform rms_prop 128 0.959333 0.001969 
150 normal rms_prop 128 0.918133 0.013147 
150 uniform rms_prop 128 0.323333 0.412008 
100 glorot_uniform rms_prop 32 0.907067 0.00528 
100 glorot_uniform adam 32 0.963467 0.003523 
100 uniform rms_prop 32 0.907067 0.00528 
100 uniform adam 32 0.963333 0.002739 
100 normal rms_prop 32 0.907067 0.00528 
100 normal adam 32 0.964133 0.003172 
100 glorot_uniform rms_prop 64 0.954533 0.005555 
100 glorot_uniform adam 64 0.963867 0.00264 
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100 normal rms_prop 64 0.6312 0.423161 
100 normal adam 64 0.963867 0.00262 
100 uniform rms_prop 64 0.9132 0.009488 
100 uniform adam 64 0.9648 0.000864 
100 glorot_uniform rms_prop 128 0.961733 0.003104 
100 normal rms_prop 128 0.924533 0.009635 
100 uniform rms_prop 128 0.319733 0.411163 
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