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1. Introduction 
 

Dynamics of elastic plates and shells in fluid have 
been investigated for more than half century. The presenta-
tion of the numerical Immersed Finite Element Method 
and review of some related methods is given in [1] by 
Zhang, Gay. Numerical solutions of two-dimensional 
laminar flows over airfoil are presented by Hafez et al. [2]. 
Incompressible fluid flow is simulated using a Helmholtz 
velocity decomposition into potential and rotational com-
ponents. A Boundary Element and Finite Element Methods 
are coupled in Young‘s investigation [3]. The hydrodi-
namic and centrifugal forces affect elastic blade deforma-
tion and the surrounding flow field.  

Coincident with the development of numerical 
methods, the theoretical investigations are being continued. 
In Ergin, Temarel publication [4] partially filled or sub-
merged cylindrical shell is examined: the eigenmodes and 
associated frequencies are obtained using a boundary inte-
gral equation method together with the method of images. 
Eigenvalue problems and interaction between sloshing and 
bulging modes are considered by Amabili [5]. Analysis 
deals with compressible and incompressible fluids using 
Rayleigh-Ritz method. The Galerkin method for the hy-
droelastic vibration of a circular container bottom is ap-
plied by Cheung, Zhou [6]. Solution for the velocity poten-
tial of liquid motion is given by the method of separation 
of variables. The same method is applied in Xing‘s inves-
tigation [7], where two-dimensional structure-water inter-
action system is examined. The Sommerfeld radiation con-
dition at the infinity of the rectangle water domain is inves-
tigated. Natural vibrations of a beam-water interaction sys-
tem are considered by Xing et al. [8] with nondisturbance 
condition at infinity. A theoretical study, based on the 
Rayleigh-Ritz method and the finite Hankel transform, is 
presented by Jeong [9]. Dynamics of a part on a incom-
pressible and compressible air-cushion are analyzed by 
Bakšys, Ramonas [10,11]. 

In this paper dynamics of two plates, not con-
nected together, is investigated. But these plates interact 
with the same ideal incompressible fluid, assumed to be in 
two-dimensional finite or infinite rectangular domain. Vi-
brations of the plates in vacuo are independant, but be-
cause of the fluid an interconnected mechanical system is 
formed. The case when some of the eigenvalues in vacuo 
of different plates coincide (the multiple eigenfrequencies) 
is closely investigated. 

2. Vibrations of plates in vacuo and fluid influence 

Deflections of the two plates AB and CD (Fig. 1), 
supported at opposite edges, can be approximated 
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Fig. 1 Two plates AB, CD and rectangular fluid domain 
with free surface 

But this is not necessary condition. Any complete set of 
functions when ∞→n  can be used. 

Vibrations of the plates can be presented in the 
matrix equation [12] 

 0Dq Cq+ =  (2) 
 
where D and C are the block matrices 
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N is nn×  zero martrix, q is 2n dimensional column vec-
tor. Obviously Eq. (2) can be replaced by two independent 
matrix equations 0=+ qCqD ss , s = 1, 2, if dynamics of 
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the plates in vacuo is under investigation. Entries jid ,  
of the matrices 

jic

sD ,  are proportional to mass and ri-
gidity of the plates. Dependence on cross-section, density, 
Young‘s modulus can be deduced as in [13]. If vibrations 
are harmonic and 

sC

i tq ge ω= , then Eq. (2) is reduced to 

( ) 0=− gCD λ , where  and 2−= ωλ g  does not depend on 
time. 

If fluid is ideal and incompressible velocity poten-
tial  satisfies the Laplace equation ( tyx ,,ϕ ) 0=ϕΔ  in the 
fluid domain and the boundary conditions: 
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By using the separation of variables method when 
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Equations (4), (5) are valid also when ns > , but 
, ,  have to be replaced by 1y 2y 1θ 3y , 4y , 22 lh=θ  

when  are determinated. jsa
Kinetic energy of the fluid in the reservoir 
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If Eqs. (5) or (4) are applied, expression of kinetic energy 
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ρ  is density of the fluid. 
When only the first plate is on the border 0=x  

and the second plate is on the opposite border Lx = , 
Eq. (5) is valid only when . When ns ≤ ns >  velocity 
potential 
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because xn −∂=∂ , dys −=∂  on the border .Lx =  The 
different expressions of  (Eqs. (5) and (8)) are now valid 
for 

sϕ
ns ≤  and ns >  correspondingly, so the sum 

has to be presented. Two different val-

ues have to be inserted into Eq. (9). After such regrouping 
Eq. (6) can be proved for this case also, but  from 
Eq. (7) remains valid only when  or 
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The factors  in Eq. (6) can be conceived as an 
interaction between the basic deflections  and . If 
both plates are in the same border  of the reservoir 
(as in Fig. 1 is shown), interaction of the two different ba-
sic deflections of the same plate and the two different 
plates are nearly the same: all factors  are presented by 
the Eq. (7). But when one plate is in the border 

srα

ssq σ rrq σ
0=x

srα
0=x and 

the other plate is in the border x = L, then interaction be-
tween the basic deflections of the same plate is described 
by Eq. (7), while interaction between the basic deflections 
of the different plates in opposite borders are described by 
Eq. (10). It is principle difference between Eq. (7) and 
Eq. (10): if ∞→L  then 1→Ltanh jχ , but 

∞→Lsinh jχ , therefore only the interaction between ba-
sic deflections of the plates in different borders disappears. 

If two plates are considered as a 2n dimensional 
mechanical system and influence of the fluid is defined by 
Eq. (6), then 2n Lagrange‘s equations, instead of Eq. (2), 
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are [13] ( ) 02 =++ qCqHdhD ρ , and therefore 

( )[ ] 022 =+− gHdhDC ρω  (11) 

where d is width of the plates, perpendicular to the axes 
x, y (it can be assumed  m, Fig. 1). The matrix 1=d

srH α= , , , can be presented as a block ma-
trix 

s≤1 nr 2≤

2221

1211

HH
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H =  (12) 

where  and  are  matrices and present inter-
action of the basic deflections of the same plate, number 1 
or number 2. Entries of these matrices can be calculated 
from Eq. (7). The matrix  presents the interaction of 
the two different plates and have to be solved from Eq. (7) 
if the plates are in the same reservoir border, and Eq. (10) 
if the plates are in opposite borders. In any case the matrix 
H is symmetric as , 

11H 22H nn×

12H

rssr αα = s≤1 , . nr 2≤
If the plates are in the opposite borders and 

 then all  in matrices  and  approach 
zero, therefore , , and the structure of 
the matrix H is the same as C, D in Eq. (3). Vibrations of 
every plate in this case is influenced by the fluid, but there 
is no interaction of both plates. Dynamics of every plate 
can be investigated by itself. If distance L between the 
plates is not large or both plates are in the same border 
(and any L in this case), the interaction matrix  is not a 
zero matrix, dynamics of the whole system has to be inves-
tigated integrally. 
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NH →12 NH →21
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3. Eigenmodes in fluid and forced vibrations 

The matrix , where 

dimensionless parameter 

2
1HD D dh H D m Hρ ε= + = +

1

2

m
dhρε = ,  is mass of the first 

(or it may be the second) plate. Forced vibrations are speci-
fied by 
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of the harmonic force: ( ) ( ) ( )0 0 1 ,T y f y yΦ σ= 0  

( ) ( )2 0 2 0,..., nyσ σ y . When the force acts on the first 

plate, then  and  if 201 yyy ≤≤ ( ) 00 =yrσ nr >  – this 
follows from Eq. (1). Amplitude of the forced vibrations 
can be solved : 
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if the matrix  is not singular. Solution can be 
conveniently expressed if the basic functions (1) are ap-
plied. 

( HDC 2
0ω− )

Behaviour of multiple eigenfrequencies of the 
plates in vacuo now will be investigated. If both plates are 
equal in their height 221 hll == , but , 01 =y

32 2 yhy == ,  then matrix (12) for n = 2  hy =4
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if hL =  and both plates are in the same border x = 0. If the 
second plate is in different border x = L = h, then , 

 are the same as in (14), but block matrix of the plates 
interaction 
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When hL 5=  and both plates are in the same 
border, all entries of the matrix H are only slightly less 
than in (14). When the plates are in the different borders 
and hL 2=  
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So, the submatrix  is approximately the same, 
while  diminishes significantly when the distance L 
between the plates increases. 
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The case, when two hinged plates are in unlimited 
half plane fluid domain without free surface [13], can be 
compared with the similar plates in fluid domain, shown in 
Fig. 1 of this paper. Although all entries of the matrix H in 
[14] are 2-3 times higher as the correspondent entries of 
the H in (14), the relative magnitudes of all these values 
are approximately the same in both cases. Nevertheless, 
the case of the plates in different borders has substantially 
different submatrix . It is quite possible that interac-
tion of the plates, when these plates are in different bor-
ders, has distintive properties. 

12H

When the plates are in different borders of the 
rectangular domain the height of every plate can be equal 
to the depth of the reservoir: , . The 
two main submatrices are equal: 
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One can notice more significant relative values of the ma-
trix . 12H

When the fluid density diminishes, then influence 
of the fluid decreases simultaneously with the ε : the ei-
genfrequencies of Eq. (11) are approaching the eigenfre-
quencies of the same structure in vacuo. Eigenmodes in 
fluid approache the eigenmodes in vacuo if eigenfrequen-
cies of the plates in vacuo do not coincide. Calculations 
where made for two different plates: , 

, Young‘s modulus , 

density of the plates , but thick-
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21 kN/cm1012 ×== .EE

3
21 kg/dm87.== ρρ



 30

nesses of the plates are asssumed , 
. Eigenfrequencies of the first plate in vacuo 

are , , , 
... , the second – , , 

, , ... 

mm221 .=δ
mm5502 .=δ

Hz8208211 .f = Hz2833112 .f = Hz3874513 .f =
Hz7052021 .f = Hz8208222 .f =

Hz3418623 .f = Hz2833124 .f =
Every eigenmode of the plates in fluid can be pre-

sented as a sum 
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The first sum determines deflections of the first 
plate, the second sum – deflections of the second sum. 
When 0→ε  and the frequency of the whole mechanical 
system (the two plates and the fluid) 

, all  except one: 
. A distinctly different limit eigen-

modes are for the two multiple eigenfrequencies of the 
whole system . When 

( ) ( ) Hz7052002121 .ff =→ε 0→rsg
( ) ( )yyg nn 1111 ++ →′′ σσ

( ) ( )0Hz820820 2211 f.f == 0→ε  
the matched eigenmodes of the eigenfrequencies 

 are not approaching the eigenmodes in 
vacuo ,  correspondingly. These eigen-
modes approach the limit eigenmodes of the whole me-
chanical system. If  these normed limit eigen-
modes are ,  

( ) ( )εε 2211 ff ≠
( )y1σ ( )yn 2+σ

h.L 50=

211 75906520 ++= n..u σσ 2 0 280nu . σ+ = − +1

20 960 n. σ ++ ; if L = h then , 
; if L = 2h then 

211 82605630 ++= n..u σσ

212 93903440 ++ +−= nn ..u σσ 1u =  

1 20 532 0 847 n. .σ σ += + , . All 
these values are valid if the plates are in the same border. 
When the plates are in the opposite borders, the limit ei-
genmoders are different and presented in Table 1. The or-
dinates of the plates are , 

212 92903700 ++ +−= nn ..u σσ

01 =y 32 2 yhy == , . hy =4

Table 1  
Limit eigenmodes when  221 /hll ==

 

L/h 1u  2+nu  
0.25 21 68707260 +− n.. σσ  21 97302300 ++ n.. σσ  
0.50 21 73406790 +− n.. σσ  21 96502610 ++ n.. σσ  
0.75 21 75106600 +− n.. σσ  21 96202740 ++ n.. σσ  
1.00 21 74206710 +− n.. σσ  21 96402660 ++ n.. σσ  
2.00 21 41609090 +− n.. σσ  21 99401140 ++ n.. σσ  
5.00 21 00400001 +− n.. σσ  21 00010010 ++ n.. σσ  

It follows from the Table 1 that when the distance 
L between the plates increases the limit eigenmodes ap-
proach the eigenmodes in vacuo. One can observe that the 
dependence of limit eigenmodes on L is quite different 
when both plates are in the same border of the reservoir. 
The signs at the and the  indicate a phase differ-
ence of the vibration. All matched limit eigenmodes are 
orthogonal if normed in 

1

Table 2  
Limit eigenmodes when  hll == 21

 

L/h 1u  2+nu  
0.25 21 86904950 ++ n.. σσ  21 91604010 ++− n.. σσ  
0.50 21 80205980 ++ n.. σσ  21 94803180 ++− n.. σσ  
0.75 21 70307110 ++ n.. σσ  21 97102400 ++− n.. σσ  
1.00 21 57808160 ++ n.. σσ  21 98501740 ++− n.. σσ  
2.00 21 15609880 ++ n.. σσ  21 99900390 ++− n.. σσ  
5.00 21 00100001 ++ n.. σσ  21 00010000 ++− n.. σσ  

If a base functions jσ , j = 1, 2, ..., are defined and 
dimension of the vector space 2n is fixed then any linearly 
independent manifold of these functions is equivalent [13]. 
If two base functions ,  are replaced by matched 
limit eigenmodes u , , presented in Tables 1, 2, theo-
retically no essential change is made. But as a practical 
matter this can be important: sometimes the process of 
calculations can be unstable and acceptable only for a low 
numbers n [15].  

1σ σ
u

2+n

1 2+n

Solution (13) of the forced vibrations can be ap-
proximated only by several terms, the number of which 

, if the frequency of harmonic force  is 
in close proximity to the matched eigenfrequences. The 
exact eingenmodes of the mechanical system (solution of 
Eq. (11)) can be used for the approximation, but these ei-
genmodes depend on the fluid density and other parame-
ters of the problem. As an intermediate case, between the 
complicated exact eigenmodes in fluid and eigenmodes of 
the plates in vacuo, the limit eigenmodes when 

nn 20 << 00 2πω=f

0→ε  can 
be suggested. If some eigenfrequencies of the plates in 
vacuo coinside, then limit eigenmodes in fluid form the 
base, different from eigenmodes in vacuo, but still conven-
ient for application. 

4. Conclusions 

1. Eigenmodes of a two different plates, in contact 
with singly connected rectangle fluid domain, are found as 
the eigenvectors of the complex mechanical system : two 
plates and the fluid as the coupling substance between the 
plates. 

2. If density of the fluid 0→ρ , all eigenfrequen-
cies of the plates in the fluid approach the eigenfrequencies 
of the plates in vacuo, but not all eigenmodes of the plates 
in the fluid approach the eigenmodes of the plates in 
vacuo. The eigenmodes of the multiple eigenfrequencies in 
vacuo approach the limit eigenmodes. 

3. Different base functions can be selected when 
approximation of the forced harmonic vibration is investi-
gated. The case of the limit eigenmodes as a base functions 
is discussed and benefits of this choice are pointed out. 

4. When some eigenfrequencies of two plates co-
incide exactly or approximately resonant behaviour of the 
whole mechanical system, including the fluid, can be ex-
pected. This can be a factor explaining significance of the 
low density fluid to the forced vibrations and peculiar „dis-
tribution of the added mass“ on the plates. Not the amount 
of the added mass should be emphasized, but the change in 
distribution of this influence. 

σ σ 2+n

( )
== ==

h,L 02 . In Table 2 are the 
matched limit eigenmodes for , , 
the plates are in the opposite borders. More intense interac-
tion of the plates than in Table 1 can be noted when 

031 yy hyy 42

hL ≤ . 
All these calculations are perfomed for n=5. 
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V. Kargaudas, M. Žmuida 

DVIEJŲ PLOKŠČIŲ PRIVERSTINIAI VIRPESIAI 
SKYSTYJE IR RIBINĖS SAVOSIOS FORMOS 

R e z i u m ė 

Tiriama dviejų tarpusavyje nesusijusių tamprių 
plokščių dinamika. Šios plokštės ribojasi su stačiakampe 
sritimi, pripildyta idealaus nespūdaus skysčio, todėl sąvei-
kauti gali tik per skystį. Tiriama plokščių virpesių formų 
sąveika ir tos sąveikos priklausomybė nuo plokščių tarpu-
savio padėties. Išskiriamas kartotinių savųjų dažnių vaku-
ume atvejis, analizuojamos ribinės savosios formos, kai 
skysčio tankis artėja prie nulio. Skaičiuojant mechaninės 
sistemos priverstinius virpesius, siūloma šias ribines savą-
sias formas laikyti bazinėmis funkcijomis, nurodomi tokio 
pasirinkimo pranašumai. 

V. Kargaudas, M. Žmuida 

FORCED VIBRATIONS OF TWO PLATES IN FLUID 
AND LIMIT EIGENMODES 

S u m m a r y 

Dynamics of two elastic plates, not connected to-
gether, is investigated. These plates are in contact with 
singly connected rectangular domain of ideal incompressi-
ble fluid, so coupling of the plates is possible only through 
the fluid. Interaction between plate modes vibrations and 
their dependence on the relative position of the plates is 
investigated. The case of multiple in vacuo eigenfrequen-
cies is examined and limit eigenmodes of the system , 
when density of the fluid vanishes, are presented. The limit 
eigenmodes as base functions for approximation of forced 
harmonic vibrations are suggested and benefits of this 
choice are pointed out. 

В. Каргаудас, М. Жмуйда 

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ ДВУХ ПЛАСТИН В 
ЖИДКОСТИ И ПРЕДЕЛЬНЫЕ СОБСТВЕННЫЕ 
ФОРМЫ 

Р е з ю м е 

Исследуется динамика двух пластин, несоеди-
ненных между собой непосредственно. Эти пластины 
граничат с идеальной несжимаемой жидкостью в пря-
моугольной области, поэтому взаимодействие между 
пластинами возможно только через жидкость. Иссле-
дуется взаимодействие между формами колебаний 
пластин и зависимость этого взаимодействия от взаим-
ного расположения пластин. Особо исследован случай 
кратных собственных частот пластин в вакууме, опи-
саны предельные собственные формы, когда плотность 
жидкости приближается к нулевому значению. Эти 
предельные собственные формы предлагаются в каче-
стве базисных функций при вычислении приближения 
вынужденных колебаний. Указаны преимущества та-
кого выбора. 
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