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Summary  

The purpose of this project is to develop a portable energy harvesting device and analyse its potential 

from both a theoretical and a simulation standpoint, the latter involving modelling and designing. The 

project begins with a review of different energy-harvesting methods and several existing applications. 

Then, a chapter about the effects of piezoelectric materials and their properties is given. This chapter 

introduces theoretical terms describing piezoelectric materials, simulates several piezoelectric 

materials, compares substrate materials, and chooses the appropriate material for this study. After 

that, several prototypes are designed and simulated in computational fluid-dynamics software to 

evaluate the wind-flow performance and select the prototype that gives high output velocity of wind 

flow. This is followed by a description of the control unit and storage system used in this thesis and 

their advantages.  

Finally, the complete energy-harvesting device, including the piezoelectric cantilever beam, control 

unit, and storage system, are introduced. In conclusions are presented received research results. 
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Santrauka 

Šio magistro projekto tikslas yra sukurti nešiojamąjį energijos taupymo įrenginį ir išnagrinėti jo 

potencialą tiek teoriniu, tiek modeliavimo būdu, kuris ir įrenginio projektavimą. Pradžioje 

apžvelgiami skirtingi energijos kaupimo metodai ir jau esamus įrenginius. Sekančiame skyriuje 

pateikiama analizė apie pjezoelektrinių medžiagų pasirinkimą ir jų savybių poveikį. Taip pat šiame 

skyriuje pateikiami kelių pjezoelektrinių medžiagų tyrimas, palyginus juos ir pasirenkama 

tinkamiausia medžiaga šiam tyrimui. Toliau naudojant skaičiavimo skysčių-dinamikos programą, yra 

suprojektuojami ir tyrinėjami keli prototipai, kad įvertinti vėjo srauto našumą. Pasirenkamas 

prototipas, kuris užtikrina didžiausią vėjo srauto greitį. Valdymo dalyje pateikiamas šiame darbe 

naudojamas valdymo blokas bei energijos kaupimo sistema ir jų privalumai. 

Gale pristatomas energijos kaupimo įrenginio dizainas, kuriame yra pjezoelektrinė gembinė siją, 

valdymo blokas ir energijos kaupimo sistemą. Išvadose pateikiami gauti rezultatai. 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

Introduction 

Energy harvesting (EH) is the method of extracting energy from external sources and storing it. It 

makes it possible for sensors and small devices to be self-supplied instead of requiring battery 

changes. 

The demand for sensors is increasing rapidly. All these sensors require batteries for power supply, 

which entails battery replacement and more expenses. The alternative solution to this problem is EH, 

i.e. converting the surrounding energy to electrical power for sensors.  

The most popular energy harvesting methods are presented in this thesis. Additionally, power 

management and storage systems are explained. 

There are different methods for energy harvesting such as the use of piezoelectric materials, 

photovoltaic cells, thermoelectric generator, and electromagnetism. 

An EH system consists of ambient energy (energy source) such as vibration, thermal energy, or solar 

energy, a harvester like a piezoelectric material or solar cell, power management, and storage system. 

(Figure 1).  

 

Figure 1. EH system 

Aim  

The aim of this thesis is to design a portable energy harvesting device that can be used by walkers, 

which gives better electric output power through wind flow and human acceleration. 

Tasks  

1. Analyse different Energy harvesting methods and devices. 

2. Develop power management and control units. 
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3. Study and evaluate different piezoelectric materials and substrate materials to select the appropriate 

materials that can be used to develop a piezoelectric transducer. 

4. Propose several shapes by studying the performance of the wind flow through each one of them 

and choose the shape that gives the highest output velocity  
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1. Review of energy harvesting methods 

1.1. Photovoltaic (PV) cells energy harvesting 

A solar cell converts light energy into electricity. It produces higher electric power compared to other 

EH methods [1]. Figure 2 shows a example of the solar cell system.  

 

Figure 2. Solar cells (2) 

Electric energy produced by photovoltaic cells is clean because it depends on light. At the same time, 

solar cell is a variable energy source because of its dependence on light. 

1.2. Thermoelectric (TE) energy harvesting  

Thermoelectric energy harvesters directly convert heat into electricity. A thermoelectric harvester 

consists of two joined materials P-type and N-type semiconductors. Due to the temperature 

differences between the two materials, a direct electric current flows in the circuit [3]. 

The model construction of the TE generator is presented in Figure 3. 

 

Figure 3. Thermoelectric generator module construction [4] 

The output voltage is generally low compared to other EH methods. 

1.3. Piezoelectric energy harvesting  

Various structures and materials for bulk -type piezoelectric EH are investigated. Many enhancements 

are added to get the best and most efficient design for a lot of applications. The performance of the 

http://eu.mouser.com/search/refine.aspx?Ntk=P_MarCom&Ntt=168443496
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energy harvester is highly affected by acceleration, vibration, applied force, mass, and the 

surrounding environment. 

Piezoelectric effect 

The principle of the piezoelectric effect is based on converting mechanical strain into electric voltage. 

There are a lot of vibration sources such as human motion and wind flow [5]. 

The piezoelectric cantilever beam configuration is described in Figure 4.  

 

 

Figure 4. Configuration of piezoelectric energy harvester [6] 

Cantilever-type piezoelectric energy harvesting  

A cantilever electricity harvester is among the promising structures to get high output power from the 

electrical component. A general structure of the cantilever energy harvester is illustrated in Figure 5 

The harvester consists of the piezo-ceramic, elastic body, and proof mass. This straightforward 

structure produces deformation under vibration and effectively collects the voltage from the 

electricity ceramic. Every physical aspect of the devices (length, area, mass, thickness, position of 

the electricity ceramics and elastic body, etc.) determines the operational performance of the 

harvester. 

 

Figure 5. Schematic of cantilever-type piezoelectric energy harvester [7] 

Many researchers [7] have investigated the simple cantilever. Additionally, different piezoelectric 

materials have been used. The low- and high-resonant frequency of the beam determines the 

application field in the vibration conditions. The comparison of output performance of the bulk 

cantilever energy harvesters is shown in Table 1. 
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Table 1. Comparison of the output performance of the cantilever-type bulk piezoelectric harvester [7] 

Galloping piezoelectric energy harvester 

This device harvests energy from ambient structural vibrations using piezoelectric materials. It has 

been investigated by Sirohi et al. [8]. 

It is designed as the galloping of a bar with a triangular cross-section hooked up to a cantilever beam 

(Figure 6). The piezoelectric sheets mounted on the beam convert the mechanical stress into 

electricity. The device dimensions are 160 mm × 250 mm. The highest output power is 53 mW at a 

wind speed of 5.20 m/s. 

 

Figure 6. Galloping energy harvester with tip body having an equilateral-triangle cross-section [8] 

Structure 
Power Density 

(mW/cm3) 

Normalized power 

(mW/g2) 

Frequency (Hz) 

Cr- and Nb-doped PZT 

cantilever 
2.1 1.1 20 

PZNN cantilever 231 11.7 84 

<110> oriented single 

crystalline 

PMN-PT cantilever 

- 3.8 84 

<001> oriented single 

crystalline 

PMN-PT cantilever 

- 1.4 86 

PMN-PZT single 

crystalline cantilever 
- 0.2 819 

Meandering-structured 

cantilever 
0.2 2.9 50 

S-shaped bulk cantilever 8.5 - 40 

Wideband LTCC 

cantilever arrays 
- 0.03 1100-1165 
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Flexible piezoelectric sheet 

This harvester consists of piezoelectric and flexible materials and has been presented by Mutsuda et 

al. [9]. This device responds to low wind velocity. The structure has three layers; two layers are made 

of piezoelectric materials and the third one is a substrate (thin rubber, thin silicone, or fibre) located 

between the other two layers. This layer has to be light and thin to reduce the weight and increase the 

deformations. Figure 7 shows a piezoelectric sheet. The average electric power is 82 mW at 12 m/s. 

 

Figure 7. Flexible Piezoelectric Sheet [9] 

The piezoelectric material inside the Helmholtz resonator 

The main task of the resonator is to convert airflow energy to air oscillations. After that, the 

oscillations is converted into electrical power by the piezoelectric material.  

 

Figure 8. Helmholtz resonator with the piezoelectric material [10] 

The design (Figure 8) of this device depends on a piezoelectric cantilever beam packaged in vacuum 

between two glass covers. The piezoelectric cantilever beam is mounted at the top of the membrane 

to maximize the output. 

According to a study done by Matova et al. [10], the maximum electrical output is 42.2 𝜇W at 20 m/s.  

Flapping cantilevered piezoelectric beam 

The wind generator used in this study relies on the oscillation of the cantilever mounted in the 

direction of the airflow. According to Figure 9, an aerofoil is attached to the end of the free cantilever 

spring, while the other side is clamped. Air flow in the direction of the aerofoil goes up and down; 

this produces deflection in the piezoelectric material, the result of which is electrical power. 
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The power ranges from 0.1 to 0.86 μW at 1.5 m/s to 8 m/s. This device was designed by H Sun et al. 

[11]. 

 

Figure 9. The operation principle of the flapping generator [11] 

1.4. Electromagnetic energy harvesting  

The main idea behind electromagnetic induction is generating electricity from the relative motion 

between a conductor and a magnetic field [12].(Figure 10). 

 

Figure 10. Electromagnetic vibrations energy harvester [13] 

The high mass of this device and the low output voltage are the main drawbacks of using the 

electromagnetic induction method in an EH device. 

Electromagnetic energy harvesting device 

The basic principle of electromagnetic technology relies on Faraday’s law of magnetic force 

induction. It has been discovered that once the electrical conductor passes through a flux, a possible 

distinction is evoked between the ends of the conductor. 

The number of coil turns and resistance are important parameters for determining the voltage and 

power produced by a generator. 

Soon-Duck Kwon et al. [14] presented an electromagnetic generator with repulsively stacked magnets 

for harvesting energy from traffic-induced bridge vibrations. Figure 11(a) shows the configuration of 

a vibration-based energy harvester consisting of a permanent magnet and a solenoid coil. The 

structure of the multi-layered device is shown in Figure 11 (b).  The poles of the magnet units are 

organized to supply repulsive forces to one another. The poles increase the radial component of 

magnetic density, which induces a current in the coil; after this, power is generated. 
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The average power generated from the vibrations of a bridge is 0.98 mW.  

 

Figure 11. Magnet structures and radial magnetic flux density of electromagnetic energy harvester. (a) 

Conventional single magnet and coil. (b) Repulsively stacked multi-layered magnets and independent coils 

[14] 

Helmholtz resonator-based technique for energy harvesting 

This technique was introduced by Kim et al. [15]. The Hermann von Helmholtz resonator-based 

energy harvester is shown in Figure 12.  

The Hermann von Helmholtz resonator comprises a chamber full of gas (air), with an open neck near 

the middle. The air in the chamber shows spring behaviour and the air in the neck acts as a diaphragm 

(membrane). The wall of the resonator is connected with a magnet fixed to this diaphragm. When 

fluidic oscillation happens in the diaphragm owing to the mechanical energy of wind flow, the magnet 

connected to the diaphragm vibrates vertically within the coil.  

This device includes two components—a cylindrical chamber with 9mm diameter and 5mm height 

and a neck near the middle of the chamber with 3mm diameter and 5mm height. Peak-to-peak voltage 

output could be 4 mV at 5 m/s wind speed. However, the facility conversion potency of the proposed 

wind-energy harvester is quite low even at high wind speed. [15]. 

 

Figure 12. Schematic diagram of the Helmholtz resonator-based energy scavenger [15] 
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1.5. Advantages and disadvantages of different energy harvesting methods 

There are several methods to harvest energy. Table 2 compares the advantages and disadvantages of 

several EH methods. 

Table 2. The advantages and disadvantages of different EH methods 

Material Advantages Disadvantages 

Piezo materials 

High output voltage 

Can be manufactured in small scale 

Easy coupling 

High output impedance 

Fragile 

Electromagnetic 

Easy modelling 

Cheap material 

 

Not very scalable 

Low output voltage 

High mass 

Magnetostrictive 
Easy coupling 

High flexibility 

Hard to model 

Nonlinear behaviour 

Photovoltaic High output voltage Light dependency 

Finally, the selection of EH method for generating electric power depends on the application. 

Due to the specification of this research and energy sources, some of the EH methods are excluded. 

The EH method used in this research uses piezoelectric materials because the energy sources are wind 

flow and human acceleration. 

The advantages of using piezoelectric materials are the high electric output voltage and small-scale 

manufacturability to fit the dimensions of the EH device. 
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2. Selection of piezoelectric materials  

The different properties of piezoelectric materials that are considered for the proposed EH device in 

this section. Additionally, several piezoelectric materials are studied to construct the optimized 

piezoelectric cantilever beam. 

2.1. Piezoelectric material properties and types 

This type of material is considered as smart. When force is applied on the surface of a piezoelectric 

material, the material generates stress, which creates surface deformations. The result of deformations 

is an electrical voltage across the material. This is known as the piezoelectric effect. 

In contrast, the reverse effect is to apply an electric voltage to the piezoelectric material to produce 

mechanical deformations.  

For these reasons, piezo materials can be used for both sensing and actuating elements. 

Hooke’s law describes the mechanical behaviour of piezoelectric materials [16]: 

𝑆 = 𝑠𝑇        (1) 

Where S- strain; s-the inverse of the Young’s modulus; T- the external stress. 

The stress elongates the material. The elongation of the material is divided by the length to get the 

strain. The previous equation shows how the strain increases on increasing the external stress.  

The electrical behaviour is described by [16]: 

𝐷 = 𝜀𝑟𝜀0𝐸                 (2) 

Where D- the electric charge displacement; 𝜀𝑟- the relative permittivity; 𝜀0- the minimum value of 

permittivity 𝜀0 = 8.85 𝑥 10−12 𝐹

𝑀
; E-the electric field strength. 

The electric field strength E and the electric charge displacement are linearly related through the 

electric permittivity 𝜀.  

The ability of EH of different piezo materials depends on the piezoelectric coupling coefficient K. 

The coupling coefficient describes the coupling between two surfaces according to the following 

formula: 

𝐾𝑖𝑗 =
𝑑𝑝

√𝑠𝜀
        (3) 
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The piezoelectric coupling coefficient plays an important role in measuring the efficiency of 

piezoelectric materials in transferring energy from mechanical to electrical domains. 𝐾33𝑎𝑛𝑑 𝐾31 are 

out of plane and in plane respectively. Table 3 presents the coupling coefficients of several 

piezoelectric materials.  

Table 3. Coupling coefficients of several piezoelectric materials [17] 

Material 𝑲𝟑𝟑 𝑲𝟑𝟏 

PZT-4 0.35 0.22 

PZT-5A 0.53 0.40 

PZT-5H 0.70 0.41 

PZT-5J 0.85 0.47 

PZT-2 0.43 0.33 

PZT-4D 0.41 0.38 

PZT-7A 0.30 0.21 

PZT-8 0.33 0.23 

The coupling coefficients of different materials are studied to identify the appropriate piezo material 

that can be used to develop the piezoelectric cantilever beam of the EH device. 

PZT-5J has high coupling coefficient and can be considered as an appropriate material for this 

research. 

Although PZT is brittle, it is appropriate for EH application due to its high coupling coefficient. 

2.2. Configuration and poling direction of the piezo material  

PZT material has two different types of configuration. The first type is a single layer of piezoelectric 

material. The second type is bimorph; it consists of two layers of piezoelectric material [16]. 

Figure 13 shows a cantilever beam with the axis NA. In the normal state of the cantilever beam, the 

beam has zero stress and strain at the NA. If the beam bends upwards, it will be in compression above 

the NA and in tension below the NA. 

 

Figure 13. Cantilever beam with the axis [16] 
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If the piezoelectric material has the first configuration, i.e. single layer, the top of the beam will 

produce a voltage and the bottom will produce the same voltage but with the opposite sign. In this 

case, these two voltages will cancel each other out, making the net output voltage zero. 

If the piezoelectric material has the second configuration, i.e. two piezoelectric material layers, the 

layers would have the same dimension and geometry and the NA axis would be between them. If the 

beam bends upwards, the top layer would be in compression and the bottom layer would be in tension. 

This would result in two different voltages from two different voltage sources. 

The second configuration, i.e. bimorph, is the best for this research, since a single layer will give zero 

voltage.  

The bimorph beam acts as two separate voltage sources, as mentioned before. The sign of each source 

is regulated by the poling direction of the layers. 

A parallel connection of two layers are poled in the same direction. In Figure 14, the direction of the 

poling is indicated by an arrow. During vibration, one of these layers is in compression and the other 

is in tension. So, the output voltages from the two layers have different signs. 

 

Figure 14. Parallel connection of two PZT layers [16] 

Figure 15 shows the equivalent circuit of the parallel connection of two PZT layers. 

 

Figure 15. Equivalent circuit of the parallel connection of two PZT layers [16] 
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In contrast, when the two layers are poled in the opposite direction, as shown in Figure 16, one layer 

will be in compression and the other in tension. So, the produced voltages would have the same sign. 

The equivalent circuit of the two voltage sources is a series.  

 

Figure 16. Series connection of two PZT layers [16] 

The equivalent circuit is a series connection, as shown in Figure 17 

 

Figure 17. Equivalent circuit of the series connection of two PZT layers [16] 

The series configuration is much better than the parallel configuration because the resulting voltage 

from series is much higher than that from parallel. In EH applications, it is favourable to have a higher 

voltage to allow for some potential loss. Based on this, the piezoelectric transducer used in this 

research is designed to be in a series configuration. 

2.3. Mechanical modelling of piezo material energy harvesting  

The piezoelectric transducer model is explained here. The system consists of a vibrating piezoelectric 

structure and a PM system.  

The vibrating piezoelectric transducer has a mass, spring, and piezo structure, as shown in Figure 18. 

 

Figure 18. Mechanical model of piezoelectric generator [18] 
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The piezoelectric element is coupled to a mechanical structure, which is modelled as the second order 

mass M, a spring coefficient K, and damping coefficient 𝜇𝑚. 

The effective piezoelectric element 𝜃 and capacitance 𝐶𝑝 are the main two components of the piezo 

element. They are related to the geometry and material of piezoelectric material as well as the load 

direction. 

An excitation force is applied to the system. The displacement of the mass is described by u and the 

voltage in the piezoelectric element is Vp. The equations of a vibrating structure are divided into 

mechanical and piezoelectric elements, as described by [18]: 

𝑀�̈�(𝑡) + 𝜇𝑚�̇�(𝑡) + 𝑘𝑢(𝑡) + 𝜃𝑉𝑝(𝑡) = 𝐹(𝑡)   (4) 

−𝜃�̇�(𝑡) + 𝐶𝑝�̇�𝑝(𝑡) = −𝐼(𝑡)     (5) 

𝐹(𝑡)- Excitation function; U- displacement of the mass; 𝑉𝑝- voltage across the piezo element; 𝐼(𝑡)- 

current into the circuit  

The previous equations describe the mechanical and electrical modelling of the piezoelectric 

generator of the piezoelectric transducer of an EH device. 

2.4. Piezoelectric material of cantilever beam   

Different piezoelectric materials are studied to select the piezoelectric material with low 

eigenfrequency and better electric output. 

COMSOL Multiphysics is used for the finite element analysis of the cantilever beam. The study uses 

a convenient sample of eight piezoelectric materials, which are compared in terms of eigenfrequency 

and coupling coefficient. 

  

Figure 19. Beam layers 

Each of these eight piezoelectric materials is modelled as a cantilever beam to analyse the 

eigenfrequency. Then, the piezoelectric material with low eigenfrequency and better electric output 

is selected for developing the piezoelectric cantilever beam. The cantilever beam is fixed at one side 
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while the other side is free. It consists of three layers two piezoelectric material layers (40 mm × 20 

mm × 0.1 mm) and one substrate material between them (40 mm × 20 mm × 0.1 mm), as shown in 

Figure 19.  

The length and thickness of the cantilever beam are optimized to have eigenfrequency as low as 

possible to respond to the low wind speed and human motion and maximize the output electric power. 

Table 4 shows the design parameters of the cantilever beam, which are used in COMSOL 

Multiphysics to calculate the electric output power. 

Table 4. Design parameters of cantilever piezoelectric beam 

The cantilever piezoelectric beam with proof mass is constructed to be an optimized oscillator. The 

material of proof mass is tungsten, which is chosen because it is smaller in size and denser in weight. 

Different substrate materials both metal (structure steel) and non-metal (SI, PMMA) are investigated 

to develop a cantilever beam with low eigenfrequency and high output power. Table 5 provides the 

properties of different substrate materials.  

Table 5. Material properties of different substrate materials 

Material PMMA SI Structure steel 

Tensile strength 48–76 MPa 113 MPa 130 MPa 

Shear modulus 3–3.5 GPa 60 GPa 82 GPa 

Poisson’s ratio 0.35–0.4 0.28 0.30 

Density 1170 kg/m3 2328 kg/m3 7850 kg/m3 

The results, as shown in Figure 20, indicate that PZT-5J material has lower eigenfrequency compared 

to the other piezoelectric materials. Based on this, PZT-5J is an appropriate material for this research. 

Additionally, although the substrate material has an influence on the eigenfrequency of the cantilever 

beam, the selection of substrate material is based not only on the low eigenfrequency but also on the 

electric output power. 

Design parameters Description Values 

Beam geometry Structure steel [𝐿 × 𝑊 × H] 40 × 10 × 0.1mm3 

PZT layer geometry 2 × PZT 5-J [𝐿 × 𝑊 × H] 40 × 10 × 0.1mm3 

Mass geometry Material: Tungsten [𝐿 × 𝑊 × 𝐻] 10 × 10 × 3 mm3 

Proof mass The weight of proof tungsten mass 5.7 g 

R_load Load resistance 70 kohm 
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Figure 20. Eigenfrequency of several piezoelectric materials and substrate materials 

The results obtained from the eigenfrequency analysis of several piezoelectric and substrate materials 

are set out in Table 6.  

Table 6. Eigenfrequency of several piezoelectric materials and substrate materials 

Piezoelectric/ 

Substrate 

material 

PZT-2 PZT-4 PZT-4D PZT-5A PZT-5H PZT-5J PZT-7A PZT-8 

Structure steel 25.1 Hz 24.84 Hz 24.23 Hz 22.02 Hz 21.61 Hz 21.66 Hz 26.48 Hz 25.57 Hz 

PMMA 21.41 Hz 21.18 Hz 20.70 Hz 18.79 Hz 18.43 Hz 18.49 Hz 22.55 Hz 21.77 Hz 

SI 22.08 Hz 24.82 Hz 24.20 Hz 21.96 Hz 21.54 Hz 21.59 Hz 26.47 Hz 25.55 Hz 

Table 6 shows the eigenfrequency of several piezoelectric materials with different substrate materials, 

the best piezoelectric material is PZT-5j. The substrate material has been chosen according to the 

electric output.  

To compare the electric output voltage, a specific amount of force is applied on the PZT-5J cantilever 

beam with different substrate materials. As per the proposed boundary conditions, the applied force 

is 1 [N] and the load resistance is 70 [kΩ]. Results are shown in the following figure 21. 
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Figure 21. Electric output voltage from PZT-5J with different substrate materials 

As shown in Figure 21 the cantilever beam with structure steel substrate material generate the highest 

electric output compare with other substrate materials   

The performance of the piezoelectric cantilever beam (PZT-5J and structure steel) of the EH device 

and its eigenfrequency are shown in Figure 22. 

The Eigenfrequency of cantilever beam has been studied and analysed by COMSOL Multiphysics 

And it is 21.6 Hz.  

The cantilever beam of EH device has low eigenfrequency. Based on that, it can response to the low 

wind flow velocity and human motion acceleration.    

 

Figure 22. Eigenfrequency of cantilever piezoelectric beam 
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2.5. Possible vibration sources for EH device 

Mechanical energy can be harvested through vibration. The two main components of vibration are 

frequency and peak acceleration. Kin et al. [19] summarize the potential sources of vibration in Table 

7. 

Table 7. Vibration sources [19] 

Human Body Vehicles Structure Industrial Environment 

Walking, arm 

motion, finger 

motion, swimming, 

running, eating, 

talking 

Aircraft, unmanned 

air vehicle, 

helicopter, 

automobiles, trains 

Bridges, roads, 

tunnels, farmhouse 

structures 

Motors, compressors, 

chillers, pumps, fans 

Wind, solar, 

temperature 

gradient, daily 

temperature 

Breathing, blood 

pressure, exhalation, 

body heat 

Tiers, tracks, 

peddles, brakes, 

shock absorbers, 

turbines 

Control switch, 

heating, ventilation 

and air conditioning 

systems, ducts, 

cleaners 

Conveyors, cutting 

and dicing, vibrating 

machines 

Ocean currents, 

acoustic waves, 

electromagnetic 

waves, radio 

frequency signals 

The conversion of vibration to electrical power is not suitable for all environments. In order to 

maximize the potential suitability of the project, the vibration sources should be relatively low in 

frequency below 200 Hz [20]. S. J. Roundy lists vibration sources with low frequency, as given in in 

Table 8. 

Table 8. Vibration sources that have frequency less than 200 Hz [20] 

Vibration Source Peak Acc. (m/s2) Frequency of peak (Hz) 

Kitchen blender casing 6.4 121 

Clothes dryer 3.5 121 

Door frame just after door closes 3 125 

Small microwave oven 2.25 121 

HVAC vents in an office building 0.2–1.5 60 

Wooden deck with people walking 1.3 385 

Notebook computer while CD is being read 0.6 75 

Washing machine 0.5 109 

Bread-maker 1.03 121 

Human motion 1.3 - 

The cantilever beam structure is utilized in specific dimensions and with an appropriate piezoelectric 

material to construct the piezoelectric transducer with a low resonant frequency of 21.6 Hz to 

customize it to the low wind velocity flow and the vibration of human motion. The vibration sources 

in this research are wind flow (between 1 and 20 m/s) and human motion acceleration (1.3 m/s2) [21].  
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3. Evaluation of the prototype design  

Wind flow is caused by the difference in the pressure levels between two points; the flow takes place 

from an area of high pressure to an area of low pressure. [22] 

There are two types of flow laminar and turbulent. In laminar flow, the fluid flows through the pipe 

or tube smoothly or in a regular path. In turbulent flow, fluids have irregular paths and show irregular 

fluctuations. [22]  

Simulation of air flow can be done by ANSYS CFD to study the behaviour of the wind flow through 

a pipe or tube and to predict the patterns. 

The portable EH device can be used by runners and skiers to generate electric output power through 

their motions. The shape of this device plays an important role in gathering the wind at the inlet and 

increasing the velocity of the wind at the outlet. Also, the generated electric power depends on the 

acceleration of human motion.  

Several shapes are studied to develop a shape that gives the best results. The material of the shape 

has to be plastic. The advantages of using plastic are that it is lightweight and can be easily modelled 

and strengthened. [23]  

3.1. The first prototype design 

The first prototype is the tube (150 mm × 50 mm × 50 mm). At the outlet of this tube, there is a 

cantilever beam of piezoelectric material which is fixed at one side, as presented in Figure 23 

(Appendix 2). 

  

Figure 23. Design of tube prototype 
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The velocity streamline is presented in Figure 24. The velocity is high at the outlet because the offset 

at the frame changes the path of the air, which cannot go straight and must take a curved path to reach 

the outlet.  

 

Figure 24. Streamline of wind flow through the tube prototype 

When the wind is hit by a surface, the dynamic energy of the wind is transformed to pressure. This 

pressure, when acting on the surface, transforms into force.  

Table 9 shows the input velocity, output velocity, and force load result from wind flow. These results 

are calculated by ANSYS CFD. 

Table 9. Results of velocity, pressure, and force of tube prototype 

Input Velocity, m/s Output Velocity, m/s Pressure in Piezo, Pa Force, N 

1 4.26735 10.90 0.00437 

2 6.46544 25.10 0.0100 

3 8.67813 45.20 0.0181 

4 10.8918 71.20 0.0285 

5 13.1073 103.0 0.0412 

6 15.3254 141.0 0.0564 

7 17.5445 185.0 0.0739 

8 19.7639 234.0 0.0937 

9 21.9836 290.0 0.12 

10 24.2039 351.0 0.14 

11 26.4243 419.0 0.17 

12 28.6448 492.0 0.20 

13 30.8655 572.0 0.23 

14 33.0864 6570 0.26 

15 35.3071 748.0 0.30 

16 37.5280 845.0 0.34 

17 39.7491 948.0 0.38 

18 41.9702 1057 0.42 

19 44.1915 1172 0.47 

20 46.4128 1292 0.52 
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Figure 25 illustrates a plot of the output electric power over a range of frequencies between 17 and 

27 Hz. The maximum power (82.6 mW) occurs at the eigenfrequency of 22.8. The piezoelectric 

transducer generates high power when vibrating at its resonance frequency.  

 

Figure 25. Performance of electric output power as a function of the eigenfrequency of the tube prototype 

The electric output power increases when the external force related to the acceleration of wind flow 

and human motion is larger. Human acceleration is 1.3 m/s2 and the wind flow velocity range is 1–20 

m/s. Figure 26 shows the relation between the electric output power and the external force.  

 

Figure 26. Relation between electric power output and external force in the tube prototype 

The generated electric power is between 1 and 82.6 mW, as shown in Figure 26. 
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3.2. The second prototype design 

The second prototype design is the cylinder (150 mm × 51 mm) with a fixed piezoelectric beam at 

one side of the outlet.  

This design is supposed to give better output velocity because of its smooth walls. The design and the 

dimension are presented in Figure 27 (Appendix 3). 

 
Figure 27. Design of cylinder prototype 

The streamline given in Figure 28 shows the wind flow from the inlet to the outlet. The path of the 

wind flow changes direction because of the offset at the frame near the outlet. 

 
Figure 28. Streamline of air flow through the cylinder prototype 

The wind flow performance is simulated by ANSYS CFD. The outlet velocity is used to calculate the 

force load of wind flow. The results are presented in Table 10 
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Table 10. Results of velocity, pressure, and force of cylinder prototype 

Inlet Velocity, m/s Outlet Velocity, m/s Pressure in Piezo, Pa Force, N 

1 4.8735 11.50 0.005 

2 6.76544 25.90 0.012 

3 8.97813 46.20 0.021 

4 10.9918 72.20 0.032 

5 13.2073 104.0 0.042 

6 15.8254 143.0 0.061 

7 17.6445 187.0 0.082 

8 18.8772 237.0 0.112 

9 20.1112 293.0 0.153 

10 24.3458 356.0 0.181 

11 26.5812 424.0 0.212 

12 27.8171 498.0 0.251 

13 30.0535 579.0 0.303 

14 33.2903 665.0 0.351 

15 37.5276 757.0 0.373 

16 40.765 856.0 0.411 

17 43.0027 960.0 0.462 

18 46.2408 1071 0.491 

19 48.4791 1187 0.542 

20 50.7177 1310 0.581 

The results, as shown in Table 9, indicate that the second design of shape is better than the first design; 

the outlet velocity of the cylindrical shape is higher than that of the tube shape. This means that more 

force load is applied on the piezoelectric cantilever beam. 

The forces of wind flow resulted from ANSYS CFD and the acceleration of human motion  used in 

COMSOL Multiphysics to study the electric output in different cases  such as the relation between 

the eigenfrequency and electric output, and the relation between the relation between the external 

forces and electric output. 

The following figures described all the results of electric output. In this research, the same 

piezoelectric cantilever beam is used. Based on this, Figure 29 shows that the electric output power 

is the maximum of 84.1 mW at the eigenfrequency of the cantilever beam of 23.8 Hz. 
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Figure 29. Performance of electric output power as a function of eigenfrequency of the cylinder prototype 

Figure 30 shows the relation between the electric output power and the external force (wind flow 

and human motion). The electric output power increases when the external force is larger.  

 

Figure 30. The relation between electric power output and external force in the cylinder prototype 

The generated electric output power range is 1.5–84.1 mW in relation to the increase in external 

forces. The results show that the cylindrical design is better than the tube design. The outlet velocity 

of the cylindrical design is higher than that of the tube design. This means that the cylindrical design 

generates more electric output power. 
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3.3. The third prototype design  

The third design of prototype is the cylinder (150 mm × 51 mm) with a narrow midsection. There is 

a cantilever piezoelectric beam at the outlet.  

The cylinder with a narrow midsection is designed to increase the output velocity of wind flow, as 

shown in Figure 31 (Appendix 4). 

  
Figure 31. Design of cylinder with narrow midsection prototype 

The streamline in Figure 32 shows the flow of the air from the inlet to the outlet. The outlet velocity 

increases because of the offset at the middle and at the frame of the outlet.  

These two offsets change the pressure through the cylinder twice once in the middle and once at the 

outlet. According to the relation between the velocity and pressure, the outlet velocity increases.  

 

Figure 32. Streamline of air flow through the cylinder with narrow midsection prototype 
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The output velocity and pressure are measured by ANSYS CFD. After that, the force load of wind 

flow is calculated. Table 11 shows the results  

Table 11. Results of velocity, pressure, and force of cylinder with narrow midsection prototype 

Inlet Velocity, m/s Outlet Velocity, m/s Pressure in Piezo, Pa Force, N 

1 5.22531 16.4 0.00655 

2 7.94437 37.9 0.0151 

3 10.7309 69.1 0.0276 

4 13.2828 106 0.0434 

5 15.9773 153 0.0613 

6 19.1101 219 0.0876 

7 21.3839 274 0.11 

8 23.6733 336 0.13 

9 27.1721 443 0.18 

10 30.1879 547 0.22 

11 32.48 633 0.25 

12 34.9578 733 0.29 

13 38.5671 892 0.36 

14 41.0651 1012 0.4 

15 43.8613 1154 0.46 

16 45.001 1215 0.49 

17 48.5187 1412 0.56 

18 50.8653 1552 0.62 

19 52.8458 1676 0.67 

20 55.2725 1833 0.73 

Further analysis shows that the third shape design a cylinder with narrow midsection increases the 

outlet velocity more than other two shape designs  

The forces of wind flow resulted from ANSYS CFD and the acceleration of human motion  used in 

COMSOL Multiphysics to study the electric output in different cases  such as the relation between 

the eigenfrequency and electric output, and the relation between the relation between the external 

forces and electric output. 

The generated electric power is maximum at the eigenfrequency of the cantilever beam at 87.8 mW. 

This means that this design gives the best electric output at the same eigenfrequency as the other 

designs. 
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 Figure 33 presents the generated electric output as a function of the eigenfrequency. 

 

Figure 33. Performance of electric output power as a function of the eigenfrequency of the cylinder with 

narrow midsection prototype 

Figure 34 illustrates the relation between the generated electric power and the external forces. As 

mentioned before, the external forces are the wind flow of 1–20 m/s and human motion. 

 

Figure 34. The generated electric power as a function of the external force in the cylinder with narrow 

midsection prototype 

The results of the electric output power were between 2 and 87.8 mW 
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The harvester is excited at its eigenfrequency 22.8 Hz, under the external load of 20 m/s and human 

motion acceleration of 1.3.m/s2. The electric output power can be obtained as a function of the load 

resistance. Figure 35 shows the relation between the output power and load resistance. 

 

Figure 35. The generated electric power as a function of the load resistance 

It is clear that the generated electric power is highly dependent on the electric resistance. The 

generated power increases on increasing the load resistance until it reaches its peak. 

The wind flow and the acceleration of human motion are the external forces that excite the cantilever 

piezoelectric beam to generate electric power. The shape of harvester plays a vital role in increasing 

the output velocity.  

Three different designs are simulated and studied precisely to determine the best shape design to yield 

the highest output velocity. The best design is a cylinder with narrow midsection because its output 

velocity is higher than that of the other two designs. 

Figure 36 shows a comparison of the electric output power of the three prototype designs and the 

maximum generated power recorded in the cylinder with narrow midsection.  

The three prototypes have been compared according to their electric output, and it is done by 

COMSOL Multiphysics to study the behaviour of cantilever beam under the external forces.   
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Figure 36. Comparison of the electric output power of the three designs 

Through simulation study, the three prototype designs are compared for power generation under the 

same external force excitation. It is found that the prototype design of the cylinder with narrow 

midsection outperforms the other prototype designs. Based on this, the prototype with narrow 

midsection is the design used for the EH device. 
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4. The control unit of energy harvesting device  

The EH device usually has varied output voltages and polarities. Sometimes, the generated voltage is 

too low or too high for the application. The main task of power management (PM) is to rectify the 

output voltage and match the output voltage with the impedance of the device. 

Therefore, the PM circuit plays an important role in the system. Figure 37 illustrates the main 

components of the PM circuit. 

 
Figure 37. PM Circuit Components 

The components of PM circuit are an AC-DC converter, a voltage regulator, and an energy-storing 

device, which perform the following functions: 

o Converting the AC voltage output from the piezoelectric transducer to direct current (DC) 

o Regulating the DC power supplied to the external load or the storage device 

o Storage device: storing the harvested energy 

The voltage and the current generated from the piezoelectric material are changeable. The converter 

is the essential component to produce DC for power supply. Additionally, the regulator is important 

when the generated voltage has a large amplitude and frequency fluctuation. 

The control unit of energy harvesting device should design it accurately to keep the generated voltage 

high and reduce the losses between the components.   

4.1. AC-DC Rectifier 

Full-Wave Rectifying Circuit  

Full-wave rectifier is a circuit that makes use of both half-cycles of input AC and converts them to 

DC. 

The full-wave rectifier consists of four diodes (D1, D2, D3, D4) arranged together to form a bridge. 

The secondary transformer is connected to two opposite points of the bridge and the load resistance 

R is connected to the bridge. The AC supply is applied to the circuit through the transformer.  

The schematic of the circuit is presented in Figure 38 [24].  
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Figure 38. Full-Wave Rectifier  

In Figure 39, the waveform of a full-wave rectifier is shown. 

 

Figure 39. Waveforms [25] 

The first waveform (a) represents the input AC signal, the second (b) and the third (c) waveforms are 

the DC current generated from D1 and D2 respectively. The fourth waveform is the total output DC 

current. 

The output DC voltage is calculated at the load resistor R by [25]: 

𝑉𝐷𝐶 =
2𝑉𝑚𝑎𝑥

𝜋
                 (6) 

𝑉𝐷𝐶- the output DC voltage; 𝑉𝑚𝑎𝑥-maximum secondary.  

This AC/DC rectifier is a part of the control unit circuit of the EH device because of its advantage 

namely low power loss since both half-cycles are converted.  

4.2. DC regulator 

DC regulator is used if the generated voltage is less or higher than the required voltage and needs to 

be brought up or down to be appropriate and useful for the target application or storage system. The 

problem with EH is that the generated energy level is in the millivolt range. In light of that, the DC 

regulator should convert the voltage with small losses.  

Buck and boost converters 

Buck converters produce lower output voltage than input voltage. Such regulators fit high-voltage 

EH transducers [26]. 
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Boost converters produce higher output voltage than input voltage. Such regulators fit the low-voltage 

EH transducers. 

These two converters are created by the principle of charging and discharging an inductor through a 

transistor. 

The buck and boost converters have limitations; they cannot be used with different EH transducers 

because each works in one mode bucking or boosting the input voltage. Also, it is difficult to control 

them. 

Buck-Boost converter  

A buck-boost converter combines the principles of both a buck converter and a boost converter in 

one circuit [27]. 

This converter receives an input DC voltage and produces an output voltage at different levels, either 

lowering or boosting the voltage as required by the application. 

It is created by the same principle as the buck and boost converters an inductor being charged or 

discharged through a transistor to control the voltage.  

The advantage of a buck-boost converter is that it works in two modes bucking and boosting the 

output voltage because it combines two convertors buck and boost. 

IC Chip: Power Management Integrated Circuit (PMIC) 

The PMIC is commonly used in the EH system. It can convert the unstable input into regulated current 

to be used in different applications and storage systems.  

Moreover, one of the most important features of PMIC is the ability to protect the storage system by 

avoiding overcharging and being fully empty. 

The critical issues of the PMIC that should be considered during its selection are small chips, high 

efficiency, and low power consumption. 

The selected PIMC is BQ25570 by Texas Instrument (Appendix 5). This chip has lower power 

consumption compared to other products; it consumes 488 nA. BQ25570 is shown with pin names in 

Figure 40. 

The body size of BQ25570 is considered small (3.50 mm × 3.50 mm). based on that, BQ25570 is 

appropriate chip for portable device because of its size and properties.  



44 
 

 

Figure 40. BQ25570 chip with pin names [28] 

Additionally, the threshold level of charge and discharge can be determined; this feature can protect 

the storage system, as mentioned before.  

The external resistors 𝑅𝑜𝑘1, 𝑅𝑜𝑘2 determine the 𝑉𝐵𝐴𝑇_𝑜𝑉 threshold level according to the following 

equation: [28] 

𝑉𝐵𝐴𝑇_𝑜𝑉 =
3

2
𝑉𝐵𝐼𝐴𝑆 (1 +

𝑅𝑜𝑘2

𝑅𝑜𝑘1
)               (7) 

VBIAS is the internal reference for the programmable voltage thresholds. 

The external resistors  𝑅𝑜𝑢𝑡1 , 𝑅𝑜𝑢𝑡2  determine the 𝑉𝑜𝑢𝑡  output voltage according to the following 

equation: [28] 

𝑉𝑜𝑢𝑡 = 𝑉𝐵𝐼𝐴𝑆(
𝑅𝑜𝑢𝑡2+𝑅𝑜𝑢𝑡1

𝑅𝑜𝑢𝑡1
)               (8) 

The IC consists of a buck controller at the inlet and a boost controller at the outlet. The buck controller 

brings down the voltage for the piezoelectric cantilever beam if needed, while the boost controller 

brings up the voltage to a regulated voltage at the output. 

In general, therefore, it seems that the BQ25570 is the appropriate IC chip for this study because of 

its advantages of combining two DC convertors, protecting the storage system, and consuming less 

power. 

4.3. Storage system  

The output voltage EH device is low; thus, the output power cannot be used directly by an electronic 

device. 

The solution to this problem is to accumulate the output power in a storage system before it is used 

by the sensors. 

The storage systems for EH devices are capacitors or  rechargeable batteries. 
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4.3.1. Capacitors  

A capacitor has two conductive electrodes separated by a dielectric, which means that no current 

flows through the material during charging. The main task of the dielectric is to produce an electric 

field to allow the capacitor to store energy. 

Capacitors require rapid energy transfer; they are not considered as a suitable storage for applications 

that require stable and steady energy. 

Supercapacitors are of three different types electric double-layered capacitors, pseudo-capacitors, and 

hybrid capacitors. Electric double-layered capacitors, the most commonly used capacitors, are shown 

in Figure 41 [29]. 

 

Figure 41. Supercapacitor types [29] 

The advantage of using capacitors is that they do not require a minimum voltage to begin charging. 

Also, they can charge and discharge quickly and can provide accumulated power directly to the 

electronic device.  

On the downside, capacitors have lower power density compared to batteries. 

Double-layered capacitors  

This capacitor consists of two carbon electrodes. Figure 42 is a general schematic of the typical 

double-layered capacitor [30]. 

 

Figure 42. Double-layer capacitor [30] 
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When voltage is applied to the carbon electrodes, an electric field is created between the charged 

electrodes, making the charged ions in the electrolyte migrate towards the electrodes of opposite 

polarity.  

Pseudo-Capacitors 

This capacitor consists of two polymers or metal oxide electrodes, which are separated by an 

electrolyte [28] 

The advantages of using pseudo-capacitors are their high capacity and low price. 

On the downside, the lifetime of this capacitor is shortened if a mechanical stress is applied during 

charge and discharge. 

Hybrid capacitors  

Hybrid capacitor is the combination of a double-layered capacitor and a pseudo-capacitor. The 

hybridization helps to combine the advantages of the two types of capacitors and tries to extenuate 

the disadvantages [31]. 

The disadvantages of using a capacitor in an EH device is that the amount of energy stored is 

considerably lower than in case of a battery. 

4.3.2. Batteries  

A battery is an electrochemical cell with three main components a negative electrode (anode), a 

positive electrode (cathode), and a chemical material (electrolyte) between them. 

Batteries are divided into two categories batteries with an irreversible chemical process and those 

with a reversible chemical process. All these batteries are rechargeable [32]. 

The electrons in the anode result in the interaction between the ions and the atoms. In general, the 

anode is negative and the cathode is positive. The electrolyte acts as a barrier to prevent the electron 

from flowing from the anode to the cathode. 

The only way to let the electron flow from the anode to the cathode is to create a closed circuit. 

In general, the voltage generated from an electrochemical cell is determined by several criteria, such 

as the ability of the anode to send out electrons and the ability of the cathode to attract electrons. 

This ability is called standard electrode potential; its symbol is E0 Volt. 

E0
cell=E0

cathode – E0
anode     (9) 
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Table 12 presents the main standard electrodes used in manufacturing batteries. These reactions take 

place during the charging phase and are reversed during the discharge phase. 

Table 12. Standard battery electrode [33] 

Lithium batteries  

According to Table 1, lithium has the highest reduction potential, which is why lithium is one of the 

most favourable materials for producing rechargeable batteries. 

The working principle of lithium-ion batteries is based on the flow of positive lithium ions through 

an electrode while an external circuit is connected to the anode and cathode [34].  

During the charge phase, an external voltage is applied to the battery cell. Lithium ions start to flow 

from the positive electrode through the electrolyte and intercalate between the graphite sheets, thus 

increasing the potential energy of the lithium ions.  

During the discharge phase, electrons starts to flow in the external circuit from the negative electrode 

to the positive one due to the potential difference and electric field.  

One of the main limitations is the limited number of charge/discharge cycles. When the cell is charged 

for the first time, the electrolyte makes a film around the graphite, which functions as a layer that is 

permeable for lithium ions but non-permeable for electrons [34]. This layer is essential for the 

functioning of the cell, but it grows thicker over time and leads to increased internal resistance of the 

cell. The new technology of lithium battery increases the number of charge and discharge cycles to 

5,000 full cycles. It is produced by TLI lithium battery. This kind of battery is produced specially to 

fit EH applications [35]. 

The storage solution of this work is a lithium battery by TLI lithium battery. The charge voltage is 

4.1 V and the capacity is 140 mAh. Additionally, the advantages of this battery are the long operation 

life of around 5,000 full cycles and wide operating temperature range. The life cycle of storage unit 

is one of the most important criteria when choosing the storage system for energy harvesting device. 

Battery Reactions E0(V) 

H 2𝐻+ + 2𝑒− → 𝐻2 0 

Li 𝐿𝑖+ + 𝑒− → 𝐿𝑖(𝑠) −3.05 

Ni-Cd (cathode) 
2𝑁𝑖𝑂𝑂𝐻 + 2𝐻2𝑂 + 2𝑒− → 

2𝑁𝑖(𝑂𝐻)2 + 2𝑂𝐻− 
+0.48 

Lead-Acid (anode) 𝑃𝑏𝑆𝑂4 + 2𝑒− → 𝑃𝑏 +SO2-
4 −0.35 
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Summary of the control unit 

PM plays a vital role in enhancing the output of an EH device. As mentioned above, the first step of 

PM is AC/DC transformation—it is considered as an important step to convert the voltage from AC 

to DC. Then, DC/DC regulation is used to get an output with constant voltage. The aim of these steps 

is to get constant voltage, which should suit the storage system.  

The overall scheme of the electronic unit of the EH device is shown in Figure 43. 

 

Figure 43. Electric unit of EH device 

The algorithm flowchart of the EH device describes the step-by-step working principle, from the 

vibration of wind flow and human motion to the storage of the generated power in the lithium battery 

(Figure 44). Firstly, the vibration is initiated by the wind flow and the human motion. Likewise, the 

vibration is examined to check if it is enough to generate AC voltage.  

The AC voltage generated from piezoelectric material is converted to DC voltage by AC/DC 

convertor. 

After that, the DC voltage transferred to BQ25570 to regulate the DC voltage and charge the battery. 

In addition, by BQ25570 provide feedback to check the capacity of battery to protect it from over 

charging.  

In summary, it is electricity production process that starts from vibration of piezoelectric material to 

the end of power storage. 
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Figure 44. Algorithm flowchart of EH device operation   



50 
 

5. The design of the portable device  

The EH device could be used as a portable device by walkers. The small size allows the users to use 

the device in several forms, such as hand-held device, attached to a bag, or attached to the shoulder 

of walkers. 

The EH device consists of three main components a cylinder with narrow midsection which gives the 

direction of wind flow, a control unit to regulate the output voltage generated by the designed beam 

of piezoelectric material, and a lithium battery to store the electric output power. Figure 45 shows the 

parts of the EH device. 

 

Figure 45. The EH device 

 

Figure 46. EH helmet 
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The proposed portable energy harvesting device developed to be easily handled by walkers and it is 

a small form of a computing device that is designed to be held or attached with another device or the 

body of walkers to generate electricity during their motion.     

Another form of EH device can be attached to the helmet of special walkers. It doubles up as a 

protective device and an EH device. It is presented in Figure 46. 

Special walkers can use the helmet to generate electricity during their motion, this helmet is not only 

EH device it is also protective device.  

This helmet can be used in many applications that are exposed to outdoor activities. The power supply 

is a compact unit comprising the piezoelectric cantilever beam, control unit and lithium battery. 
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Conclusions and suggestions 

This MA project focuses on the development of a portable EH device that can be used as a handle 

device by walkers, allowing them to generate energy during motion. 

The energy harvesting device has been developed to generate electric power from wind flow with 

human motion and then regulate the output voltage to transfer the generated energy to the storage 

system. 

The energy harvesting device has been developed for use in several forms for example, as a hand-

held device or as a helmet for skiers.  

The main goals of this thesis are achieved, and the tasks are successfully completed:  

1. Different EH methods are studied and evaluated in order to choose the appropriate method for 

generating electric power from wind flow and human motion. The applicable method for this research 

involves the use of a piezoelectric material. 

2. Eight piezoelectric materials and different substrate materials are modelled and simulated to 

develop a piezoelectric cantilever beam consisting of two PZT-5J layers and a structural steel layer. 

The investigated piezoelectric cantilever beam has the lowest eigenfrequency 21.6 Hz and the best 

output power compared to the others.  

3. Three different shapes are simulated to select the prototype that can ensure the highest output 

velocity of the wind flow. It is achieved by a cylinder with a narrow midsection, the output velocity 

of wind flow 5.2 m/s to 55.2 m/s when the input velocity between 1 and 20 m/s.  

4. A power management and control unit are developed to decrease the electric loss and give stable 

electric output power. The control unit has been designed to be AC/DC converter and BQ25570 by 

Texas Instruments with lithium battery.  

Based on the results, the electric output power under the external forces of wind flow and human 

motion acceleration between 2 and 87.8 mW  

Further research could focus on finding a new source of energy and vibration or on discovering new 

methods of energy harvesting to make green energy available at any time and in any situation. 
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Appendix 1  

Properties of different PZT material  

  

PROPERTY 
         

   

PZT-

8 PZT-4 PZT-5H 

PZT-

5J 

PZT-

5A PZT-4D PZT-2 

Electromechanical coupling coefficient  
 

Kp 0.51 0.54 0.65 0.64 0.63 0.62 0.45 

  
Kt 0.4 0.43 0.37 0.45 0.42 0.71 X 

  
K31 0.3 0.32 0.38 0.36 0.35 0.33 X 

          

Frequency constant 
 

Np 2340 2290 1980 2030 2080 2010 X 

Hz ● m  Nt 2090 2080 1950 2050 2080 2180 X 

 
N31 1700 1690 1450 1460 1560 1560 X 

          

Piezoelectric constant ×10-

12m/v 

d33 320 250 600 500 450 360 X 

 
d31 -140 -100 -270 -210 -190 -145 X 

          
Density g/cm3 r 7.6 7.8 7.8 7.7 7.8 7.7 7.6 
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Appendix 4 
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Appendix 5 

Datasheet of Lithium battery TLI 
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Appendix 6 

Datasheet of BQ25570 by Texas Instrument 

 


