
Kaunas University of Technology

Department of Applied Mathematics

Customer review

classification in Lithuanian language

for e-commerce business

Master’s Final Degree Project

Kęstutis Daugėla
Project author

Assoc. prof. Vytautas Janilionis
Supervisor

Assoc. prof. Aušra Rūtelionė
Supervisor

Kaunas, 2018

Kaunas University of Technology

Department of Applied Mathematics

Customer review

classification in Lithuanian language

for e-commerce business

Master’s Final Degree Project

Business Big Data Analytics (621G12002)

Kęstutis Daugėla
Project author

Assoc. prof. Vytautas Janilionis
Supervisor

Assoc. prof. Aušra Rūtelionė
Supervisor

Assoc. prof. Evaldas Vaičiukynas
Reviewer
Assoc. prof. Egidijus Rybakovas
Reviewer

(signature)
(date)

Kaunas, 2018

Kaunas University of Technology

Department of Applied Mathematics

Kęstutis Daugėla

Customer review

classification in Lithuanian language

for e-commerce business

Declaration of Academic Integrity

I confirm that the final project of mine, Kęstutis Daugėla, on the topic “Customer review

classification in Lithuanian language for e-commerce business“ is written completely by myself; all

the provided data and research results are correct and have been obtained honestly. None of the

parts of this thesis have been plagiarised from any printed, Internet-based or otherwise recorded

sources. All direct and indirect quotations from external resources are indicated in the list of

references. No monetary funds (unless required by law) have been paid to anyone for any

contribution to this project.

I fully and completely understand that any discovery of any manifestations/case/facts of dishonesty

inevitably results in me incurring a penalty according to the procedure(s) effective at Kaunas

University of Technology.

(name and surname filled in by hand) (signature)

Table of contents

List of abbreviations...5

Introduction..10

1.Literature review...11

1.1.Linking Online service quality and customer satisfaction..11

1.2.Text analytics for customer review data...12

1.3.Software architecture..17

1.4.Choice of the programming language..18

1.5.Aim and objectives of the project...22

2.Methodology...23

2.1.High level design of the application...23

2.2.Data extraction, loading and transformation..24

2.3.Comparison of text classification algorithms...26

2.3.1.Classic approach..28

2.3.1.1.Decision Tree method...29

2.3.1.2.Random Forests method...29

2.3.1.3.Support Vector Machine method..30

2.3.2.Deep learning using TensorFlow framework..30

2.4.Application development patterns..34

3.Results...36

3.1.Data Preparation...36

3.2.Label assignment process...37

3.3.Exploratory Analysis..40

3.4.Results of implemented methodology..44

3.5.The final application...48

Conclusions...51

List of references...53

Appendices..56

4

List of abbreviations

API – Application Programming Interface

CPU – Central Processing Unit

DT – Decision Tree

GPPL – General Purpose Programming Language

GPU – Graphics Processing Unit

JSON – JavaScript Object Notation

KPI – Key Performance Indicator

NN – Neural Network

NLP – Natural Language Processing

REST – Representational State Transfer

RF – Random Forests

SVM – Support Vector Machine

TDM – Term Document Matrix

TPU – Tensor Processing Unit

VM – Virtual Machine

5

List of figures

 Figure 1: A Survey Of Customer Service From Mid-Size Companies. Dimensional Research, April

2013..12

 Figure 2: Text classification accuracy at the sentence level. Socher, 2013.......................................14

 Figure 3: Text classification results of YELP and IMDB datasets, Tang, Qin, & Liu, 2015.............14

 Figure 4: Monolithic vs microservice architecture overview..17

 Figure 5: R programming language index (“TIOBE Index for R”)...18

 Figure 6: Stack Overflow traffic depending on the programming language.....................................18

 Figure 7: CorwdFlower Survey regarding data scientists time allocation...19

 Figure 8: Deep learning framework search interest in Google..20

 Figure 9: R interface to Tensorflow estimators (RStudio)...21

 Figure 10: High level application design...24

 Figure 11: Relationship between Raw, Refined and Lab databases..25

 Figure 12: Three dimensional tensor example..31

 Figure 13: Relationships within Tensorflow framework, François Chollet 2018.............................32

 Figure 14: Implemented Deep learning models..34

 Figure 15: Input JSON File Structure..36

 Figure 16: Row count of combined review table..37

 Figure 17: Review count by month...40

 Figure 18: Review count per rating...41

 Figure 19: Review count per hour...41

 Figure 20: Wordcloud graph of all review texts..42

 Figure 21: Wordcloud graph of negative review texts...42

 Figure 22: Most popular words in review comments..43

 Figure 23: Learning curve of flat neural network with embedding layer (accuracy + loss metrics) 46

 Figure 24: TensorFlow model resource in Swagger..48

 Figure 25: Response example of the Analytical application (microservice).....................................49

 Figure 26: Structure of the Analytical application..49

6

List of tables

Table 1: Comparison of different models for text classification problems..16

Table 2: R performance comparison with C++, Java and Python..19

Table 3: An example of term document matrix..28

Table 4: Neural network with embedding and flatten layers..32

Table 5: Neural network with Long Short Term Memory layer...33

Table 6: Neural network with Bidirectional Long Short Term Memory and dropout layers.............33

Table 7: Manually assigned sentiment labels...38

Table 8: Label examples of customer reviews texts...38

Table 9: Top 3 companies by review count..40

Table 10: Statistics of term document matrices..43

Table 11: Results of DT, RF and SVM models..44

Table 12: Model ensemble performance based on consensus..45

Table 13: 5-Fold cross validations results of DT, RF and SVM models..45

Table 14: DT, RF and SVM training times...46

Table 15: Results of implemented deep learning models...47

Table 16: 5-Fold cross validations results of deep learning models...47

7

Kęstutis Daugėla. Customer review classification in Lithuanian language for e-commerce business

Study field and area (study field group): Applied Mathematics, Informatics, Economics

Keywords: text mining, sentiment analysis, customer review classification, microservices, machine

learning, deep learning

Kaunas, 2018.

Summary

The aim of the project is to create an application for customer review classification in Lithuanian

language in the specific E-commerce business domain. Various Natural Language Processing

techniques and machine learning algorithms were used for customer reviews evaluation and polarity

categorization. Analyzing customer reviews in Lithuanian language makes the task more

challenging due to the language specifics. Therefore, additional pre-processing steps were utilized

in this work. Integration with external and internal Representational State Transfer Application

Programming Interfaces were made in order to create upgradeable classification model and

application for data transformation, both integral into an ecosystem based on microservices within

any modern organization. From an analytical perspective, classic models such as Support Vector

Machine and Random Forests were built and tested with differently pre-processed datasets. In

addition to these methods, deep learning models were added for comparison. Best results were

achieved using Support Vector Machine algorithm and Deep Neural Network with embedding and

flatten layers. Using TensorFlow framework and additional R programming language libraries, the

best model was deployed as a microservice, which classifies customer reviews written in Lithuanian

in real-time. The final product could be integrated into other applications and services for a variety

of text classification use cases.

8

Kęstutis Daugėla. E. verslo paslaugų vartotojų lietuviškų atsiliepimų klasifikavimas

Studijų kryptis ir sritis (studijų krypčių grupė): Taikomoji matematika, Informatika, Ekonomika

Reikšminiai žodžiai: teksto tyryba, sentimentų analizė, klientų atsiliepimų klasifikavimas,

mikroservisai, mašininis mokymasis, gilus mokymasis

Kaunas, 2018.

Santrauka

Baigiamojo magistro projekto tikslas – sukurti mikroservisą klientų atsiliepimų apie lietuviškas

elektronines parduotuves klasifikavimui. Darbe panaudoti įvairūs natūralios kalbos apdorojimo ir

mašininio mokymosi metodai vartotojų atsiliepimų poliškumui nustatyti. Įvertinant lietuvių kalbos

kompleksiškumą, šis klasifikavimo uždavinys tampa kiek sudėtingesnis, lyginant su anglų kalba.

Dėl to tekstų apdorojimui buvo taikomos papildomos procedūros. Taip pat panaudoti išoriniai ir

vidiniai “REST” aplikacijų programavimo sąsajų resursai duomenų paruošimo ir klasifikavimo

uždavinių sprendimui bei sukurta analitinė aplikacija, skirta integracijai į mikroservisais paremtą

architektūrą bet kurioje modernioje organizacijoje. Duomenų klasifikavimui buvo parinkti įvairūs

metodai – pradedant klasikiniais (atraminių vektorių, atsitiktinių miškų metodai) ir baigiant gilaus

mašininio mokymosi metodais. Geriausi klasifikavimo rezultatai buvo pasiekti taikant atraminių

vektorių ir gilaus mašininio mokymosi metodus. Naudojant TensforFlow sistemą ir R

programavimo kalbą, sukurta saityno tarnyba, galinti klasifikuoti lietuviškus klientų atsiliepimus

realiuoju laiku. Galutinis produktas gali būti integruotas į kitas aplikacijas ar saityno tarnybas

sprendžiant įvairias klientų atsiliepimų klasifikavimo problemas.

9

Introduction

Service quality is crucial part not only in terms of business performance. Higher service quality can

help to decrease operational costs, boost customer satisfaction and loyalty. However, most of the

businesses are struggling with service quality issues. In e-commerce sector this matter is even more

critical, because it is harder to identify problematic products, service gaps or process issues in

comparison with ordinary businesses. Customer reviews can be extremely useful and one of the

cheapest resources in order to feel the pulse of the customer, analyze marketing decision or even get

positive publicity. Therefore, negative customer sentiment identification and rapid reaction would

present a competitive edge for every business, especially in e-commerce sector.

For that purpose, a microservice will be created. It will be able to cope with customer review

classification task for any type of source – from an internal customer relationship management

system to social media resources, such as Facebook or Twitter. Models for analytical application

will be chosen according to the recommendations obtained by literature research and trained on real

production data, which contains customer review texts. All the methodology which will be obtained

during the research will be documented and implemented in a reproducible way, in order to provide

universal text classification solution for e-commerce companies in Lithuania.

10

1. Literature review

1.1. Linking Online service quality and customer satisfaction

In currently changing business environment organizations face new challenges such as dealing with

an exponentially increasing amount of data and rapidly spreading information via a number of

various channels. Besides inventory management (Patil & Divekar, 2014), data and money transfer

security (Reddy & Divekar, 2014), customer satisfaction plays a significant role in the success of a

company. It is an almost intuitive thing that customer satisfaction has a huge impact on profits and

there is big amount of research done to substantiate it (Zeithaml, 2000). E-commerce sector is an

excellent example of a business field where customer satisfaction is crucial for maintaining

successful business relationships. Comparing with traditional businesses, e-commerce companies

face an additional problem when managing customer expectations, because usually customers can’t

try out the products before ordering them (Nisar & Prabhakar, 2017). It is also essential to know

the customer and be able to fulfill changing needs of a client, have flexible and efficient service

customization, introduce new products and make information easily accessible via Internet (Kumar,

2016).

In a survey where 194 senior marketing professionals where examined, 71 percent responded that

they place customer satisfaction measure amongst one of the most useful metrics. It also got the

third rank for businesses as a service (BAAS) and fourth rank for mixed type customers (both

businesses and consumers) (Farris, Bendle, Pfeifer, & Reibstein, 2010).

Customer reviews can benefit significantly from this type of analysis, because they contain valuable

insights for both positive and negative business activity and might bring additional metadata about

the customer on the table. According to the best practice, most commonly used key performance

indicator for measuring this type of activity are listed below:

 Response time on an issue;

 number of negative ratings received;

 percentage of resolved issues.

The survey made by Dimensional Research determined that customer service has a huge effect on

the customer behavior, especially when making a decision to buy (Dimensional Research, 2013).

11

Another survey done by Podium suggests that 3.3 stars out of 5 are the minimum threshold of rating

when a customer considers doing business with an approached company. 93% of the customers

responded that online reviews written by others impact they decision (Podium, 2017).

Figure 1: A Survey Of Customer Service From Mid-Size Companies. Dimensional

Research, April 2013

While some studies suggest that negative reviews have a higher impact on customer’s decision

(Lee, 2016), it is clearly beneficial to track both types of feedback in order to get the pulse of the

business.

The urgency is one of the key aspects for higher customer satisfaction, because these days there are

lots of information sources (especially on the social media) where customers can leave their

reviews. Therefore, a specific application which helps to deal with this kind of information could be

beneficial, especially taking into the consideration low cost of this customer feedback type. Having

such system implemented would help to take a proactive approach to whole customer relationship

and reputation management.

1.2. Text analytics for customer review data

Online customer reviews bring a lot of useful information on the table concerning customer

experience and online service quality in general. The drawback of analyzing such matter is that data

is unstructured and requires a lot of pre-processing work. A total amount of reviews might differ

depending on the size of business, but usually there are thousands of entries across not only on the

12

company’s website, but specialized review websites and social media as well. Moreover, the text is

usually written using informal manner and often contains some words from another language.

Words also tend to be misspelled and written without the usage of native Lithuanian characters.

Text analytics comes into play when dealing with this kind of unstructured review data. With

provided tools it is possible to do various kinds of analysis, such as clustering, classification and

sentiment analysis. However, it is vital to have domain specific knowledge in order to be able to

understand the clusters, categorize items or track trends. Sentiment analysis, on the other hand,

provides a universal approach for extracting the most valuable attribute in the customer reviews –

polarity level.

There are a variety of pre-built tools and libraries for sentiment analysis for English language or

other popular tongues as French, Spanish or German. However, in Lithuanian language the support

is almost nonexisting. This actually makes sense, taking into consideration complexity of

Lithuanian language. According to professor Olegas Poliakovas, the difficult nature of Lithuanian

language is mainly due to more advanced morphological structure comparing to other related

languages. (Poliakovas, 2015). Even such service provider as Google does not support NLP

applications for Lithuanian language (Google Cloud Natural Language API Documentation). Same

goes for Lithuanian text stemming – officially there is no open source production-ready stemming

library. On the other hand, there are several companies as Token Mill and other small Lithuanian

start-ups working with Lithuanian language processing, but their work is not accessible for general

public. However, there is NLP infrastructure yet created. “The first infrastructure that provides

online access to open-source tools for managing, processing, annotating, and analyzing Lithuanian

language texts“ says one research team on the (Vitkutė-Adžgauskienė, Utka, Amilevičius, &

Krilavičius, 2016). Performance of this framework is quite promising – precision for tasks as

language filtering, spelling checker, lexical processing and morphosyntactic processing is way over

0.9, but scalability is questionable, as authors conclude. Since the solution is publicly available and

working, it is a viable and robust alternative for processing Lithuanian words morphologically.

When it comes to modeling, deep learning frameworks are a clear winner in this area and became a

trending tool for semantic data classification lately. In one particular use case, sentiment analysis

was done in English language using the movies review data, which consisted of 11,855 single

sentences. Recursive Neural Tensor Network gave tremendous results with this publicly available

and labeled data (Socher et al., 2013).

13

Another research indicated, that despite a good performance of various neural network models,

Support Vector Machine classifier also performed remarkably strong (Tang, Qin, & Liu, 2015). On

the contrary, the similar study points out Random Forests model superiority against Naive Bayes

and SVM classifier (Fang & Zhan, 2015).

Despite that, there are not many pieces of research done for Lithuanian language. The accuracy of

the best model for comments classifications was reached with Naive Bayes classifier and was

around 0.68. SVM performed well as might be expected even without pre-processing phase and

using only unigrams (accuracy – 0.611) (Kapočiūtė-Dzikienė, Krupavičius, & Krilavičius, 2013).

SVM was also selected as a model of choice for legal text classification problem (Mickevičius,

Krilavičius, & Morkevičius, 2015). Some results from a different type of text classification have

provided below as an example.

14

Figure 3: Text classification results of YELP and IMDB datasets, Tang, Qin, & Liu, 2015

Figure 2: Text classification accuracy at the sentence level.

Socher, 2013

Another interesting finding regarding Lithuanian texts preprocessing is: “English barely benefits

from stemming and lemmatization, Lithuanian <...> benefit significantly from these pre-processing

steps“ (Kapočiūtė-Dzikienė, Vaassen, Daelemans, & Krupavičius, 2012). Translation, on the other

hand, does not provide cutting edge – research done by Vilnius University indicates that after

translation procedure only half of the original lexicon was left (Okockis, 2016).

To sum up, one thing is common from all of these researches – Lithuanian language requires

additional data wrangling steps, which are the cornerstone for successful sentiment analysis. Some

of these preparation steps will be included in this project in order to utilize and measure pure

machine learning based text classification approach using most popular techniques: SVM, Random

Forests and deep learning.

15

Table 1: Comparison of different models for text classification problems

Title Author,
year

Language Classes Best model
accuracy

Comments

Recursive Deep Models for
Semantic Compositionality
Over a Sentiment Treebank

(Socher et
al., 2013)

EN 5 RNTN,
0.807

Trained using
sentiment treebank

Document Modeling with
Gated Recurrent Neural
Network for Sentiment
Classification

(Tang et al.,
2015)

EN 5 LSTM-
GRNN,
0.676

Traditional RNN
performance was
weak

Sentiment analysis:
Measuring opinions

(Bhadane,
Dalal, &
Doshi,
2015)

EN 2 SVM,
0.78

Additional
preprocessing was
done

An Extensive study of
Sentiment Analysis tools
and Binary Classification
of tweets using Rapid
Miner

(Vyas &
Uma, 2018)

EN 2 SVM,
0.791

Rapid Miner software
was used

Text Classification
Improved by Integrating
Bidirectional LSTM with
Two-dimensional Max
Pooling

(Zhou et al.,
2016)

EN 2 BLSTM-
2DCNN,
0.895

Neutral reviews
removed

A Comparison of
Approaches for Sentiment
Classification on
Lithuanian Internet
Comments

(Kapočiūtė-
Dzikienė et
al., 2013)

LT 3 NB,
0.679

Unigrams and
bigrams were used
together

Opinion Mining in Latvian
Text Using Semantic
Polarity Analysis and
Machine Learning
Approach

(Špats &
Birzniece,
2016)

LV 3 NB,
0.62

Lexicon based
approach performed
better (accuracy -
0.73)

16

1.3. Software architecture

One of the biggest most prominent, distinguishing the applications into two categories, is whether

the application is build using monolithic or microservices architecture style. While applications

designed in a monolithic manner clearly have their place, they lack agility and reliability.

Implementation of change can consume a lot of time, because a different functionality of an

application is firmly coupled together. Once developed, those applications have a barrier to newer

technologies, since changing one thing will affect the whole application. When application adopts

many new functionalities, the whole structure tends to be difficult to understand and change.

Most of the organization moved from monolithic application architecture to microservices. “There

has been a gradual decrease in the size of monolithic applications by isolating these functional

components into different deployment machines and allowing them to communicate to the main

application and with each other using loose coupling interfaces“ according to (Katuwal, 2016) .

These applications communicate using Application Programming Interfaces (API) and it became

the standard approach for data integration and spreading functionality across the rich ecosystem of

enterprise applications (Sturm et al., 2017). Most important features of microservices are

independent deployment, scalability and fault isolation. In addition to that, one microservice is a

relatively small application, easily maintainable by autonomous teams (Richardson, 2018)

Since the solution of the above mentioned classification problem perfectly fits under microservice

definition and may require fast deployment, scalability and constant change, this data science

application will be crafted for integration into the microservices ecosystem.

17

Figure 4: Monolithic vs microservice architecture overview

1.4. Choice of the programming language

The choice of programming language is also significant for the success of the project. General

purpose programming languages dominate the market and are primary choices for ordinary

applications, while building data science model is quite different. Most popular languages in this

field are R and Python. The growth of popularity for both of these languages was remarkable during

the last several years, but the growth of R community is even more impressing, keeping in mind,

that the usage of Python is broader comparing to R. In TIOBE Programming Community index R

reached 8th position in January, 2018 and showed consistent growth during the years.

 Figure 5: R programming language index (“TIOBE Index for R”)

In addition to this, R community is growing exponentially and reached the level of C, in terms of

Stack Overflow website traffic. Python, Java, C# and PHP are the only languages, which has more

traffic at the moment.

18

Figure 6: Stack Overflow traffic depending on the

programming language

Another area, where R programming language can barely find an equal competition is convenient

data preparation and transformation even for nondevelopers. It is arguably the most crucial part in

any data related task. Various articles indicate that data preparation part consumes the most of any

data analysis task (Endel & Piringer, 2015; Pérez et al., 2015). It might take up to 80% of total time

spent on a current project, according to an even newer survey (CrowdFlower, 2016). Therefore,

running R code in production will have two major advantages:

• Shorter development cycle;

• reduces the time for ad-hoc data preparation.

Another step is model implementation in the production environment. It is a common view that

production applications should be written in general purpose programming languages (GPPL) such

as C, Java or Scala, supposing that modeling with R is just for prototyping. According to professor

Roger D. Peng, R programming language has some flaws in memory management, security and

web services development. This programming language is also lacking performance when dealing

with specific tasks. When doing the computation for economic related problem, R performance is

far behind C++ and Java, but surprisingly better than Python (Aruoba & Fernández-Villaverde,

2015; BoraGan Aruoba & Fernández-Villaverde, 2018).

19

Figure 7: CorwdFlower Survey regarding data scientists time allocation

Table 2: R performance comparison with C++, Java and Python

C++ Java Python R
Version/Compiler GCC-7.3.0 9.04 CPython 3.6.4 3.4.3
Time 1.60 3.20 145.27 57.06

Different performance test done by NASA scientists showed that R performance is the slowest

compared to Python, Scala and C. (Jules Kouatchou, 2016). However, this is hardly the case when

R is used just as an interface for accessing distributed frameworks (Uskenbаyevа et al., 2015).

On the other hand, imagine a completely different scenario of application development – let’s say,

that all models can be deployed to the production environment directly. This would dramatically

reduce implementation cost and speed. Since R is capable deploying predictive models as a web

service, gap between data analysis and deployment can be closed. This approach will eventually

enable data scientist for managing projects, do experiments more efficiently and save human

resources for application development. This innovative idea comes hand in hand with AGILE

methodology and reduces the cost of change, which grows exponentially for monolithic

applications, normally developed using waterfall method.

In combination with powerful machine learning algorithms, distributed frameworks (“SparkR (R on

Spark),” 2018) and libraries for WEB service development, R puts high pressure on conventional

approach of data science application deployment. Moreover, the most popular deep learning

framework called “TensorFlow” recently became compatible with R by accessing Python frond-

end API (Chollet & Allaire, 2018). The mentioned framework was created by “Google Brain” team

and released at the end of 2015. There is also a proven record of applying “TensorFlow” for text

classification, natural language processing, speech recognition and even Artificial Intelligence

applications.

20

Figure 8: Deep learning framework search interest in Google

There are several ways of accessing TensorFlow deep learning framework. With R it is possible to

use TensorFlow front-end directly or access Keras API, which is higher level implementation and

have most of the parameters pre-configured according to the best data science practices. It is also a

recommended way for Tensorflow usage in R environment.

To sum up, both R and Python are viable options for this project, especially for the modeling part.

Therefore, choice of a programming language comes to a personal preference. Due to the language

expressiveness and versatility, R is chosen as the main programming language for this project.

21

Figure 9: R interface to Tensorflow estimators (RStudio)

1.5. Aim and objectives of the project

The purpose of the thesis is to build a microservice for customer review classification. In addition to

this, implementation patterns will be created for successful integration into modern IT infrastructure

as well as scalability for Big Data use cases. In order to reach these goals, following objectives need

to be done:

1. Choose methods and programming implementation according to the provided literature

review in order to solve text classification problem in Lithuanian language

2. Create a methodology for sentiment analysis in Lithuanian language

3. Implement best suited machine learning approaches for text classification task

4. Label review texts manually for training and testing samples

5. Create microservices for data related tasks:

◦ Data flow process;

◦ customer review classification.

22

2. Methodology

This section of the project will cover:

• High level application design;

• data preparation task;

• classification models;

• model implementation guidelines.

From a business perspective, requirements for data transformation and storage will be created and

summarized for only one use case – customer reviews from one customer review website. However,

it can be adjusted to store instances from multiple resources, such as streaming data, customer

relationship management system, social networks and other, because input file format and patterns

will remain the same.

Computational tasks will be done on a machine with Intel i7 CPU, 16 GB of RAM and SSD hard

drive with Ubuntu 16.04 operating system running. The performance will be measured accordingly

for all machine learning task in order to find the most optimal model to meet presumable business

requirements in the production environment.

2.1. High level design of the application

The application will consist of two parts – data transformation application and analytical model

application. Proof of concept phase for data transformation will be done in R environment. For data

transformation application to be scalable, Spark framework can be used and accessed by using

SparkR or sparklyr API later on. However, the amount of data is tiny, therefore it is not that efficient

using distributed frameworks for processing only several megabytes of data.

Once data analysis is done, best classification model will be selected for the analytical model

application. Most important factors for selecting the model are classification performance,

scalability and maintenance related. “TensorFlow” comes together with serving functionality and

also could be deployed on such services as CloudML, RStudio Connect or TensorFlow Serving. On

the other hand, other classification models, such as Random Forests or Support Vector Machine also

could be deployed as a web service using “plumber” R library or other alternatives. The final results

23

will be selected depending on the performance of each model and long term application

maintenance factors.

High level application design is presented below. At this point, REST API resources will be created

for transformation processes only inside the local environment. Analytical model REST API will

also be created and reachable via HTTP protocol internally. For demonstration purposes, it will be

configured to process only one instance of text.

2.2. Data extraction, loading and transformation

There is a massive debate between conventional Extract-Transform-Load pipeline versus Extract-

Load-Transform, which is a modern alternative for Business Intelligence. The second approach is

more suitable for this project, since the data is stored in a complex structure. It also requires

additional transformations, which might not be so efficient since data is downloaded via HTTP

protocol outside the enterprise network. Moreover, this approach could prevent data transformation

mistakes later on, because data is stored in original format once retrieved from the server and could

be traced back to it’s original formation, in case some critical mistakes were made during the

transformation phase. Transparency and data lineage also come as an advantage using current

approach.

Raw zone. This is the area where data is stored in the original format. Data comes in JavaScript

Object Notation (JSON) file format and the structure of this particular JSON file retrieved from

customer review website might be quite complex – the depth is up to 8 levels in the current use

case. Each response from the website will be stored as a separate file thus making a Raw zone in

24

Figure 10: High level application design

Linux file system. In addition to this, when the data will grow bigger, there will be a viable option

to distribute it within Hadoop cluster and process with Spark leaving all the logic and code in place.

Data will be stored in RDS file format, which creates a serialized version of data, but do not change

original structure of data. This will save some storage space comparing with original JSON format

and will serve as a more efficient way of reading files in R. R packages “httr” and “jsonlite” comes

in handy for retrieving and reading the data via HTTP protocol from an external website and will be

used for this application.

Refined zone. During this phase, all the files retrieved from the website will be merged together

and stored as a table in SQL database. Unique id will be generated for each instance to serve as a

primary key in the relational database schema. The refined zone will serve as a staging zone

between Raw data and Lab databases. All attributes of the refined table are defined in the picture

below.

MySQL server will be selected as storage technology in order to create a relational database,

because the application is open source and provides good results regarding performance, scalability

and reliability.

Lab zone. Data preparation is one of the essential parts of any data science. In this case, research

object is Lithuanian texts, which makes text preparation even more complicated. As previous

research articles indicated, it is particularly important to do some specific preparation for data at the

beginning in order to get better results from classification algorithms. Therefore, the first step will

be getting rid of the items, which reviews texts may contain:

• Hypertext Markup Language notation (e.g. “<p>”, “</br>”);

• special symbols (e.g. “$”, “@”);

• numbers (e.g. “1”, “213”);

• stop words (e.g. “kur”, “į”).

25

Figure 11: Relationship between Raw, Refined and Lab databases

Unique id, generated in staging step, will be assigned for each instance of text in order to create

relationships between different tables. The second step includes preparation of table which

contains:

• Unique id (primary key);

• original texts in Latin alphabet;

• original texts in Latin alphabet without stop words;

• texts containing word stems;

• texts containing word lemmas.

Data transformations will be done in a reproducible approach, meaning that the process can be

initiated automatically for all upcoming datasets in the production environment.

The last step will be the preparation of data sample with correct labels assigned for analytical

models. In order to do that, we need to make sure that correct labels are assigned to each text in the

first place. The obvious way to identify the polarity of such texts is by setting custom rating

intervals for each sentiment label. While this approach might work well for determining two

classes, three or more classes requires additional effort. Moreover, people also tend to vote

subjectively, have different scales and the rating might not always correspond the real customer’s

opinion.

For example, if we determine, that the review with the score of 8 is positive, we can face a huge

problem in terms of data correctness, because there will definitely be some reviews which have

neutral or even negative sentiments. In order to feed correct data to the classification model, manual

reviews assessment will be made. Results will be stored in a separate table within the Lab area.

These results will be used as final labels in the classification process.

Once the desired number of labels will be reached, sample data set can be created. Training and

testing datasets will be the same for all classification algorithms. This will allow proper comparison

between classification models, which operates on different objects – term document matrix and

tensors, because the dictionary will be equal size.

2.3. Comparison of text classification algorithms

Once the data is prepared, two models from classic machine learning approach will be selected. In

general, they provided the best results for majority of the classification problems in both – English

26

and Lithuanian languages according to the literature review done in the previous part. These

algorithms are as following:

• Random Forests – ensemble based classification algorithm;

• Support Vector Machine – kernel based classification algorithm.

Decision tree model will be also added as a baseline model, since the model is faster concerning

training speed in comparison with the models above. Also, it will be interesting to compare RF and

DT models in terms of overfitting.

In order to utilize deep learning approach, TensorFlow framework will be used. Various techniques

for neural network generation will be explored for finding best classifier. It will include Long Short

Term Memory neural network layer, since the models which include this layer provided one of the

best results in text classification.

Data for training and validation sets will be retrieved from the Analytical (Lab) database. Below

mentioned datasets will be selected for training, testing and validation:

• Original texts in Latin alphabet

• original texts in Latin alphabet without Lithuanian stop words;

• texts containing word stems;

• texts containing word lemmas.

In order to have data equally distributed, it will be sampled from the whole database in nearly equal

proportion for negative/neutral/positive labels respectively. Neutral review dataset, in this case, is a

bit smaller, but it would not disturb the distribution in terms of polarity levels. The data will be split

into train and test samples using the ratio 7:3. Both training and test data will be stratified, which

keep the labels distributed proportionally amongst two datasets.

To test the model performance, various metrics will be used. In this particular use case, the most

critical objective is to identify negative review and prevent negative review identification as

positive or neutral. Therefore, the whole confusion matrix and most common metrics will be printed

and added in the appendix part. However, results and interpretation will mostly rely on following

metrics:

• Accuracy

• Recall

27

• Sensitivity for negative reviews

• Specificity for negative reviews

Considering the low amount of data (2800 items for training and 1200 for testing), 5-folds cross

validation technique will be used for model performance evaluation, relying mostly on accuracy

metric. It is proved technique for this type of situation and helps identify whether model

performance is the same when introduced with a new validation dataset.

2.3.1. Classic approach

To engineer features for machine learning algorithms, texts should be transformed in a format

which classification algorithms expect. The conventional approach to do feature engineering is by

creating a term document matrix, as a representation of words in the reviews. It describes the

frequency of terms used in the reviews – each row corresponds to the review text while column

corresponds to each unique word used. As an example, let’s take two sentences as an input:

1. This is the first example

2. The second example

Term document matrix, containing these words is listed below:

Table 3: An example of term document matrix

This Is The First Example Second

Text 1 1 1 1 1 1 0

Text 2 0 0 1 0 1 1

In order to assign word importance, term frequency-inverse document frequency approach will be

used. This would help identify not very common words and assign bigger weight to them.

Expression of term frequency–inverse document frequency calculation is following:

(1) tfidf (t ,d , D)=tf (t , d)⋅idf (t , D)

The output is a multiplication product of inverse document frequency and term frequency. Formulas

for these calculations are provided below:

(2) idf (t , D)=log (
N

|{d∈D : t∈d}|
)

28

(3) tf =f t , d /∑ (f t ' ,d)

Classification algorithms can deal with term document matrix since it is a representation of

multidimensional space as opposed to raw text. While it has some drawbacks (such as high sparsity

or not considering the primary order of words), it still remains one of the most popular approaches

for solving text classification problems.

Modeling will be done using “RtextTools” library, which works as a wrapper for the variety of

machine learning libraries, which are suited for text classification task. It allows to create joint

training container as an object and has other useful features as a model ensemble or calculation of

most common metrics. It is important to note, that this approach is suitable only for the prototyping

or proof of concept phase. To deploy model in production, more efficient model implementation

methods should be used for each algorithm.

2.3.1.1. Decision Tree method

In essence, tree model is based on a sequential division of classification problem into smaller

problems in a recursive manner. The final solution is corresponded as tree-like graph, which shows

all possible scenarios. The algorithm stops according to stopping conditions, e.g. when most of the

points are assigned to the same class depending on the threshold or there are no remaining attributes

left. Criteria for split evaluation is defined as an information gain, which is calculated the difference

of an entropy for the whole dataset and weighted entropy for a current decision in the formula

below.

(4) Gain(D ,DL , DR)=H (D)−D(DL , DR)

The algorithm, in a way, mimics human level thinking, therefore it is easy to understand solution for

most of the people, including business area specialists. Due to its performance and easy

interpretation, it makes decision tree a viable option for solving a variety of classification problems,

including text classification.

Decision tree algorithm will be implemented using “tree” R library using standard parameters. All

hyperparameters are set to default.

2.3.1.2. Random Forests method

Random Forests algorithm is a decision tree based classifier, which consists of multiple decision

trees. The key aspect of the algorithm is the randomness of the trees. Therefore it can cope with

29

overfitting issue more easily. The prediction of this algorithm is basically the average of individual

tree weight:

(5) ŷ=
1
m ∑

j=1

m

∑
i=1

n

W j(xi , x ') y i

Random forests have a proven record for text analytics cases. In most of the cases the algorithm is

more accurate than the decision tree, because it contains an ensemble of such trees. An ensemble of

128 trees was used during the training phase, since the usage of more trees does not always leads to

a higher accuracy of the model and uses more resources for computation (Oshiro, Perez, &

Baranauskas, 2012).

An algorithm will be implemented in R using “randomForest” library.

2.3.1.3. Support Vector Machine method

It is kernel based method, which classifies samples by separating them with an optimal hyperplane,

depending on the parameters. SVM remained one of most popular text classification algorithms due

to its ability to classify texts accurately and cope with overfitting issue.

Algorithm will be implemented using “e1071” R library. Linear kernel and cost of 200 were set for

the SVM model.

2.3.2. Deep learning using TensorFlow framework

Deep learning, as a subcategory of machine learning, is the trending area amongst all machine

learning related activities. TensorFlow in a leading framework for utilizing these type of networks.

One of the most beneficial features of TensforFlow is that training could be done on CPU, GPU or

TPU. However, CPU will be used for computations in this work, since high-end GPU is not present

on a current machine. Although, it is possible to use exactly the same for data processing on other

machine or cloud and significantly increase the processing speed.

Before we begin, it is important to point out some concepts regarding TensorFlow. First of all –

required input/output variables and data representation. Tensorflow operates on data objects which

are called tensors. Tensors are a generalization of vectors and can be expressed mathematically as

below. For instance, vector itself is a one dimensional tensor, matrix is a two dimensional tensor and

so on. All tensor operations are based on tensor algebra. A mathematical representation of two

dimensional tensor is provided below (7). In the current case, text sequences can be represented as

2D tensors, where one instance is the document id and other instance is word sequence.

30

(7) T∈(V⊗...⊗V)⊗(V '⊗...⊗V ')

1D, 2D and 3D tensors can also be easily represented graphically. A three dimensional tensor, in this

case, could be an output of embedding layer – this way 2D layer could be embedded into 3D space

using a selected number of dimensions.

Training is done in the following fashion: data is pre-formated to fit the requirements and converted

to tensors. For this type of use case, data preparation is quite trivial – each review text is converted

into a word vector. All the word vectors later are converted into tensors using one-hot-encoding.

Targets also need to be set according to the dimensions of input tensors and target variables. During

the training process, loss function defines learning feedback by comparing predictions with actual

data, while optimizer determines how successfully learning process goes. Optimizer, on the other

hand, updates neural network weights after every iteration. For multi-class classification problem,

softmax activation function should be used. For optimization, Adam (adaptive moment estimation)

optimization algorithm will be selected for all deep learning classification models in this project.

31

Figure 12: Three dimensional tensor example

Besides pre-defined structure (TensorFlow uses Static Computational Graph), “TensorFlow” model

is easy to customize – there are a number of different activation functions, loss functions and

optimizers. In this particular use case we will use two-dimentional tensor (text, labels). Model will

be created using R language. With the pipe functionality it is possible to define the model in an

intuitive way within R environment, although it is important to set input and output shapes in a right

way in order to get correct results or even compile the model. Three following models will be

implemented using TensorFlow with Keras API.

Neural network with embedding and flat layers. Embedding layer could be interpreted as a

dictionary lookup, which maps words to dense vectors. Word vectors are adjusted using back

propagation method. The second step flattens the output (3D tensor) to 2D tensors and feed the

output to dense layer at the bottom.

Table 4: Neural network with embedding and flatten layers

Layer type Output shape

Embedding 3D (None, max words, 128)

Flatten 2D (None, max words * 128)

Dense 2D (None, 3)

32

Figure 13: Relationships within Tensorflow framework, François Chollet 2018

Neural network with Long Short Term Memory layer. LSTM layer is a variation of Recurrent

Neural Network layer. As opposed to simple Recurrent Neural Network layer, LSTM is saving

information for the future and keeps older signals, which were received in this layer. Required input

for such layer is three dimensional tensor, therefore the first layer is embedded. In addition to this,

simple dense layer with 128 outputs was added right before the output layer.

Table 5: Neural network with Long Short Term Memory layer

Layer type Output shape

Embedding 3D (None, max words, 128)

LSTM 2D (None, 128)

Dense 2D (None, 128)

Dense 2D (None, 3)

Neural network with Bidirectional Long Short Term Memory and dropout layers. In this case,

LSTM layer is duplicated by adding a bidirectional layer in it. Both two layers (original and

duplicated) are getting input and reverse input sequence respectively. Dropout layer was added in

order to prevent overfitting.

Table 6: Neural network with Bidirectional Long Short Term Memory and dropout layers

Layer type Output shape

Embedding 3D (None, max words, 128)

Bidirectional LSTM 2D (None, 128)

Dropout 2D (None, 128)

Dense (None, 3)

In the picture below visual comparison between all three neural networks is added. Other

hyperparameters will be set as stated below:

• Number of training epochs – tuned depending on training/validation data;

• training optimizer – adaptive moment estimation;

• training loss function – categorical crossentropy;

• activation function – Softmax;

• batch size – 32.

33

2.4. Application development patterns

Before deploying application as a microservice, it is crucial to take into consideration following

matters:

• Independent deployment of a service;

• scalability of a service;

• service isolation.

It means that microservices should be loosely coupled with other applications in the enterprise

infrastructure. Therefore, they should have specific data storage for both structured and unstructured

data and be reachable via HTTP communication channel. The process for data transformation will

be written in R and deployed as microservice into the local (prototyping) environment. For

deployment into the production environment, two most common approaches can be used:

• Service instance per Virtual Machine – an isolated instance of a server where VM

determines resource allocation. It also encapsulates used technology, in this case – Web

services which were developed in R – and thus becomes an equivalent of a black-box.

34

 Figure 14: Implemented Deep learning models

• Service instance per containers – a lightweight alternative to VM deployment. In this case,

container image contains just a minimal amount of required technology – Linux kernel and

all dependencies for current web service. On the other hand, the infrastructure for this

technology is not that mature as in VM case.

Since all the work is done and tested in Linux operating system, there should not occur any issues in

terms of compatibility and versioning. Both approaches will work, depending on the organizational

structure of a company. A prototype application, however, will work on local Linux machine only –

deployment won’t be implemented, since requirements could not be defined without a concrete

business use case. However, these additional matters should be considered and prepared before

releasing application to any production environment:

• Logging – each application should log their action. R tends to optimize the logging

experience for the user, since the language is created as an interactive statistical environment

rather than GPPL. However, implementation of all the logging actions is relatively easy – it

requires juts some additional effort.

• Error handling – each application should have some in-build logic for handling errors, as

opposed to just plain scripts, which do only one purpose.

• Unit testing – helps to identify problems early in the development stage. In the beginning it

would be enough to write unit tests for all edge-cases, but it can evolve during the time.

There are several libraries in R built for that purpose, such as “Runit” or “testthat”.

• Code version control – integration with git or other similar tool is a must for every

development project.

Implementation of these matters is not in the scope of the project and these recommendations

should serve just as guidelines for a concrete use case in production environment. Despite this, the

prototypes will be created for data transformation process and analytical model implementation,

which will be exposed as web services.

35

3. Results

Review data was retrieved from the website named www.evertink.lt. It is a central repository for

most of the e-commerce shop reviews written in the Lithuanian language. Companies, which have

an agreement with this service, ask their customers to fill in the form on this website. If the

customer decides to leave a response for these e-commerce businesses, it’s most likely to appear on

this website first.

3.1. Data Preparation

For the initial phase, 700 instances of POST requests were sent to the resource. Each response

contained up to 30 reviews and stored as RDS file on disk. Received data object is more suitable for

passing the data from the back-end to the front-end application, in this case – web browser, rather

than suited for data analysis. Since the relevant part of this project is only the review part, it will be

stored on disk without any modifications. Structure of a file received from www.evertink.lt website

in original JSON format is provided below:

{ "jsonrpc": "2.0",
 "id": "",

 "result": {

 "reviews": [

 {

 "status": "",

 "modified_date": "",

 "main_style": "",

 "name": "",

 "has_comment": "",

 "facebook_uid": "",

 "review_comments": "",

 "reviews": [],

 "shop_id": [],

 "review_discussion": [],

 "created_date": "",

 "opinion": "",

 "avg": "",

 "id": "",

 "old_shop": "",

 "modified_data": ""

 }

],

 "RPP": "",

 "pager": { },

 "translations": []

 }

}

 Figure 15: Input JSON File Structure

36

http://www.evertink.lt/
http://www.evertink.lt/

During the second phase, all review instances were saved in MySQL database under “refined”

schema. After a union, over 16 thousand reviews were stored in the database.

Third phase transformation consisted of three parts:

1. Removing HTML code and other symbols

2. Getting stems and lemmas for each word

In this case, two minor issues were found regarding Semantika.lt REST API. The first one is

regarding lack of resource documentation. In this case, the resource “/chains/syntax” has a limited

number of request per time interval. Using trial and error method, it was determined that more than

20 requests per minute give an error. Another issue occurs if the amount of Lithuanian words is less

then 50% - the API responds with an error. The same result goes for Lithuanian text written in Latin

alphabet – the system does not identify these words as Lithuanian at all. Despite these issues, text

stemming and lemmatization went successfully – only 6% (233 reviews) failed. On the other hand,

not all words have been processed due to spelling mistakes, Latin alphabet or barbarisms even for

these successful entries.

3. Adding additional columns to the table for texts in Latin alphabet and texts without

Lithuanian stop words.

Results of these transformations were stored in the table “semantic_data” under Lab database and

prepared for manual label assignment process.

3.2. Label assignment process

During sentiment assignment process, three classes were chosen. The neutral class was the hardest

to distinguish between other two and might be the most subjective. However, in this particular use

case the main idea is to separate business critical reviews in order to react quickly to them rather

than identifying customer feelings.

37

Figure 16: Row count of combined review table

Table 7: Manually assigned sentiment labels

Sentiment Label Description

Negative -1 The customer is not satisfied (usually comes with low rating (e.g. < 6))

Neutral 0 Can include both positive and negative comments, but are not business
critical in terms of customer service

Positive 1 The customer is satisfied (usually comes with high rating (e.g. >9))

There are a couple of review examples provided below. As expected, labeling neutral reviews is

challenging and mostly depends on a person who takes a decision to assign the value.

Table 8: Label examples of customer reviews texts

Average

rating

Review text in Lithuanian Review text in English Label

assigned

8 Likau labai patenkinta. Nuostabus
aptarnavimas.

I was very pleased. Excellent service. 1

8 Esu labai patenkinta Jusu
paslaugomis. Aciu, kad esate

I am very happy with your services.
Thanks for being.

1

8 Per daznai siuntinejate
naujienlaiskius. Visa kita puiku.

Newsletters are sent too often.
Everything else is great.

0

8 Kilo problemų pristatant knygas
(jo metu knygos buvo pažeistos), į
nusiskundimą buvo greitai
sureaguota, o problema
operatyviai išspręsta. Dėkojame
už puikų darbą!

Books were damaged during delivery
phase. Reaction was great from your
side and you managed to solve the
problem quickly. Thank you for your
great service!

0

8 Pirkta prekė neatitiko aprašymo.
Esu labai nusivylusi.

Specifications were wrong for the item I
bought. I am very disappointed.

-1

While inspection was done to quite a significant portion of data, some of the most significant areas

of service quality issues were appointed as result of this analysis. Most of the negative reviews can

rely on one or more categories listed below:

• Bad quality goods;

• broken goods during transportation;

38

• delivery timing issues;

• impolite consultants;

• missing goods;

• specification of goods differs in the website.

However, categorizing the review texts into broader categories is not within the scope of the project,

but it might be useful to create a model for this type of categorization when implementing the

application into production environment. This would allow to get more useful statistics and track

key performance indicators for all these groups.

The initial aim of labeling was to mark at least one thousand reviews for each class. Since neutral

reviews are quite rare, it was labeled slightly over 1000 reviews as neural, and over 1500 reviews as

positive/negative respectively. To prevent selection of very short reviews, minimal amount of

symbols in each review were set to 40.

At the end, a total of 4000 reviews were sampled randomly (1500/1000/1500 for each class

respectively) and stored under “sample” data table in the Lab database.

39

3.3. Exploratory Analysis

Customers reviews for 41 E-commerce companies were retrieved from the website. Top three

companies have the lion’s share of reviews – it covers nearly 60% of total review count. On the

other hand, reviews for different companies bring in more variety in the dataset in terms of products

and customer opinions. Moreover, these reviews also bring more negative reviews on the table,

since the average review score for top three companies is really high, thus balancing the labels in

the sample a bit.

Table 9: Top 3 companies by review count

Shop name Number of reviews Review average score

Pigu.lt 6255 89

Knygos.lt 2041 92

Neriba.lt 2029 95

Review amount highly increases every December, since it is the most popular time to buy presents.

Sales activities associated with this period are also high in most sectors. Because of such sharp

peaks in terms of review count, the motivation for review classification software highly increases –

there might not be enough resources to handle these reviews manually, especially during the most

active periods.

40
Figure 17: Review count by month

The distribution of review rating is skewed to the right. However, the average word length is

biggest for negative reviews. It shows that people tend to express negative emotions in detail,

compared to reviews, which received the biggest score and are having positive or neutral sentiment.

Most of the reviews were written in the morning, between 9 and 10 AM. Interesting facts from this

type of analysis are following: longer reviews were written at midnight and shortest reviews were

written at 4:00 AM.

41

Figure 18: Review count per rating

Figure 19: Review count per hour

As it could been expected, positive words which defines gratitude (e.g. “ačiū” (en. “thanks”),

“greitai” (en. fast”) or patenkinta (en. “grateful”)) are more frequent amongst all review texts, since

the reviews distribution is highly unbalanced in terms of ratings.

Most popular words for negative expression are provided below. The sample is lower and due to

this reason it is more difficult to see patterns in words. However, it is easy to spot words, which

indicates negative sentiment, such as “there is no” (lt.“nėra”), “haven’t received” (lt. “negavau”), or

“wasn’t” (lt. “nebuvo”).

42

Figure 20: Wordcloud graph of all review texts

Figure 21: Wordcloud graph of negative review texts

Some reviews have comments, which are the replies written by customer service specialists.

Amount of such comments is insignificant and mostly concerns reviews having very low rating,

which is obvious. That is why detecting negative sentiment automatically and responding quickly to

a negative review with a higher rating would be more impressive from the customer perspective.

For testing purposes, most obvious lexicon based approach for text classification was introduced.

The following analysis method is based on using bag of words. One publicly available lexicon for

Lithuanian language contains 2190 words and was generated by a research group (Chen & Skiena,

2014). Unsurprisingly, results were not so good – when identifying only two classes (positive and

negative) the accuracy was 0.735. More than a half of negatives were identified as positives. For

three classes, accuracy went down to 0.53, leaving the same issue regarding false positives. For this

reason, pure machine learning approach will be used in the further state of a project. Firstly, features

were created using term document matrix. Below is provided statistics of four different matrices,

depending on the data sample.

Table 10: Statistics of term document matrices

Dataset (n = 4000) Terms Non-sparse entries Sparse entries

Latin encoding 15783 83922 63048078

Latin without stopwords 15607 70543 62357457

Only stems 10981 79324 43844676

Only lemmas 10684 80344 42655656

43

Figure 22: Most popular words in review comments

Another type of features called tensors were created using a similar approach for each dataset

individually. When creating word indexes, a sequence of words have been generated for each

review entry and then transformed to two dimensional tensors (matrices). In this project word

indexes will not be shortened, which on the other hand is a common practice when optimizing the

performance of deep learning networks. Because of a low amount of the data, those indexes were

left with the same length as word index in matrices for each data sample respectively.

3.4. Results of implemented methodology

As expected, SVM was a clear winner amongst standard algorithms. Text transformations, on the

other hand, didn’t add any performance edge for SVM method. However, decision tree performance

slightly increased due to these transformations – both accuracy and recall rose over 0.02 using word

lemmas instead of ordinary words.

Table 11: Results of DT, RF and SVM models

Dataset Models

Decision tree Random Forests SVM

Accuracy Recall Accuracy Recall Accuracy Recall

Latin 0.594 0.533 0.715 0.663 0.760 0.730

Latin w/o

stop-words

0.586 0.530 0.713 0.657 0.767 0.737

Stems 0.606 0.557 0.705 0.650 0.738 0.703

Lemmas 0.616 0.557 0.699 0.640 0.738 0.700

In terms of negative review classification, SVM managed to get highest specificity score for

negative review class – it varies from 0.82 to 0.84 for all four datasets and is far more superior

compared with other models. Sensitivity, however, is a bit lower and hardly reaches 0.89 even with

the best dataset variation. On the other hand, SVM model is more stable and does not identify false

negatives as much as other models. Another way to increase classification performance is by using

ensemble which includes all three models. While two models does not lead to significant gain in

performance, the combination of all three models increases recall up to 0.84 for 60% of text in Latin

alphabet. However, in terms of accuracy, emsemble of these three models classifies reviews slightly

worse than SVM by itself – it varies from 0.715 to 0.721 for all data samples listed below.

44

Table 12: Model ensemble performance based on consensus

Ensemble

size

Latin Latin w/o stop words Stems Lemmas

Coverage Recall Coverage Recall Coverage Recall Coverage Recall

1 1 0.72 1 0.72 1 0.72 1 0.72

2 0.96 0.74 0.96 0.73 0.96 0.73 0.96 0.73

3 0.60 0.84 0.61 0.83 0.62 0.82 0.62 0.83

The average accuracy for SVM model using 5-Folds cross validation method is slightly lower than

using the original train and test samples. It is a normal phenomenon, since hyperparameters are

tuned using the response from the feedback from original validation. On the other hand, there are

not much of difference and SVM still outperforms other models. The classification was the best

from non-transformed words using only the Latin alphabet. Stability is excellent for RF algorithm

as well. DT algorithm, on average, performed better than using pre-fixed training and validation

datasets. Also, model performance slightly increased using linguistically pre-processed data, but

still didn’t reach SVM or RF level.

Table 13: 5-Fold cross validations results of DT, RF and SVM models

Dataset 5-Folds cross validation average model accuracy

Decision tree Random Forests SVM

Latin 0.599 0.717 0.758

Latin without

stopwords

0.619 0.713 0.747

Stems 0.649 0.700 0.738

Lemmas 0.646 0.710 0.724

Regarding runtime, SVM performed the best here also. It ran even faster than DT algorithm for all

datasets. RF was the slowest in terms of training speed and thus not entirely suitable for the current

business case. On the other hand, in case the model would meet requirements for classification

performance, there will always be a possibility to parallelize the model between multiple threads.

45

Table 14: DT, RF and SVM training times

Dataset Decision tree Random Forests SVM

Latin 29.41 sec 1848.15 sec 10.29 sec

Latin without

stopwords

24.14 sec 2286.66 sec 14.437 sec

Stems 16.29 sec 1128.98 sec 12.26 sec

Lemmas 14.76 sec 804.97 sec 11.74 sec

For TensorFlow models, best results were provided by a flat neural network with embedding layer.

It is not that surprising – dataset volume is very low. Therefore, neural networks with more

advanced structure do not get an additional performance boost and in some cases does not even

reach significant higher than a naive score (0.375).

Of course, more advanced hyperparameters tunning needs to be done in order to increase the

performance, especially for neural networks which contain LSTM layer. However, flat neural

network easily reached the best performance level of SVM algorithm and thus became a model of

choice for this project.

46

Figure 23: Learning curve of flat neural network with embedding layer (accuracy + loss

metrics)

Table 15: Results of implemented deep learning models

Dataset Models

Embedded NN LSTM NN BLSTM NN

Accuracy Recall Accuracy Recall Accuracy Recall

Latin 0.766 0.729 0.685 0.626 0.739 0.716

Latin without

stop-words

0.751 0.715 0.678 0.656 0.755 0.735

Stems 0.760 0.727 0.376 0.333 0.737 0.716

Lemmas 0.756 0.721 0.687 0.624 0.735 0.710

When dealing with negative reviews, flat neural network with embedding layer performed slightly

worse than SVM – best reached 0.874 sensitivity and 0.836 specificity level in comparison with

0.887 and 0.840 for SVM sensitivity and specificity score respectively.

Neural network with embedding and flatten layer also proved to be resistant to different data and

training samples using cross validation method, while other models performed worse, comparing

with original validation set. There were situations where more advanced model scored even lower

than naive predictor (e.g. selecting only one sentiment for all inputs). This occurred due to lack of

model tuning and the modest amount of training/validation entries.

Table 16: 5-Fold cross validations results of deep learning models

Dataset 5-Folds cross validation average model accuracy

Embedded NN LSTM NN BLSTM NN

Latin 0.758 0.654 0.303

Latin without

stopwords

0.748 0.538 0.339

Stems 0.751 0.684 0.334

Lemmas 0.750 0.587 0.349

47

3.5. The final application

Application for ELT process is created and accessible via HTTP protocol Post functionality using

the same architecture as in the figure no. 10. Data transformations can be managed via Data Flow

managers such as Apache NIFI. Another way to manage ELT process is by scheduling in Apache

Airflow or Luigi application, depending on current organization application stack. The most

primitive way – schedule as in “cron” job, which is time-based job scheduler.

For the Analytical model application, neural network model with embedding and flatten layers was

selected. The model was deployed locally as a Web service using “tfdeploy” package. It can be

reached via the Swagger tool, because TensorFlow provides Swagger documentation by default.

Since the model requires tensors as an input, another Web service was created for that purpose. R

package “plumber” was used in order to perform that type of preparation. The main purpose of this

web service is to transform the input using the “TensorFlow” tokenizer in order to create word

vectors and tensors. Above mentioned microservice is exposed as a set of Get functions for

Analytical application version check and text classification task. For text classification task input

parameter is text, while the application returns additional metadata associated with the input, such

as:

• Word vector;

• the richness of the vocabulary for particular text input;

• probabilities for each class and final sentiment label assigned.

48

Figure 24: TensorFlow model resource in Swagger

An example of such response body is provided below.

Analytical application was deployed as a web service and it can be integrated in a variety of use

cases. For instance, it can classify streaming or batch data and be integrated into any front end or

even used in mobile application.

49

Figure 25: Response example of the Analytical application (microservice)

Figure 26: Structure of the Analytical application

Of course, the scalability question is still open, but it can be resolved by choosing a variety of

techniques, such as deploying on different containers or using more performance efficient

languages. The model of TensorFlow is separated by the design so it can be reused in other

environments also.

50

Conclusions

• According to the obtained literature, SVM and Deep neural networks are the leading

methods for customer review classification in the English language. For Lithuanian

language research is mostly limited to conventional machine learning algorithms such as

SVM, Naybe Bayes and Random Forests and includes complicated pre-processing

techniques to cope with the limitations of these models.

• Methodology for data ingestion, transformation, sampling and review classification was

created. It includes four different data samples and six different machine learning models.

Data stemming and lemmatization were introduced as a part of sample preparation.

• Data stemming and lemmatization did not provide a significant increase in performance,

primarily due to the limitations of semantika.lt Web service. Moreover, people tend to create

low linguistic quality Lithuanian texts by doing grammar mistakes, using jargon or typing in

Latin alphabet when writing reviews. As a result, above mentioned text pre-processing steps

work just for part of the data.

• SVM classification model performed as good as expected (accuracy = 0.767) and could

serve as a valid alternative in comparison with deep learning models developed in this

project.

• Best deep learning model was achieved using embedding and flatten layers (accuracy =

0.766). The rest of the models did not performed as good, mostly due to lack of training data

and hyperparameters tuning. Pre-trained word embedding layer could be another option for

getting the performance up. From a sustainability perspective, deep learning approach is

better when comparing to classical models in terms of application maintenance.

• Reproducible data transformations were implemented using only R language. Data

transformation application was deployed as a microservice, but further adjustments as error

handling or unit tests need to be added when building fully functional production

application, as suggested in the guidelines.

• Tensorflow model was successfully implemented as a microservice and classifies raw text

input into three categories – negative, neutral and positive. All tests in local Unix

51

environment were successful. It could be used in a variety of use cases for text classification

within any modern organization environment.

• The usage of R programming language for such use cases boosts the development process

significantly and allows Data Scientists to take full ownership of microservices they create.

With a few minor modifications, this application for sentiment analysis can be used in variety of

business sectors, such as banking, entertainment and customer service. It can also be adjusted

for such use cases, where implementation is not so trivial: evaluating customer experience when

chatting with a customer serving specialist or a bot. When done in automated fashion, it can

provide valuable metrics and insights about customer experience in the real time environment.

52

List of references

Aruoba, S. B., & Fernández-Villaverde, J. (2015). A comparison of programming languages in
macroeconomics. Journal of Economic Dynamics and Control, 58, 265–273.
https://doi.org/10.1016/J.JEDC.2015.05.009

Bhadane, C., Dalal, H., & Doshi, H. (2015). ScienceDirect Sentiment analysis: Measuring opinions.
Procedia - Procedia Computer Science, 45, 808–814.
https://doi.org/10.1016/j.procs.2015.03.159

BoraGan Aruoba, S., & Fernández-Villaverde, J. (2018). A Comparison of Programming Languages
in Economics: An Update. Retrieved from
https://www.sas.upenn.edu/~jesusfv/Update_March_23_2018.pdf

Chen, Y., & Skiena, S. (2014). Building Sentiment Lexicons for All Major Languages, 383–389.
Retrieved from https://aclanthology.info/pdf/P/P14/P14-2063.pdf

Chollet, F., & Allaire, J. J. (2018). Deep learning with R.

CrowdFlower. (2016). CrowdFlower Data Science Report, 8–9.

Dimensional Research. (2013). Customer Service and Business Results. Dimensional Research.
Retrieved from www.dimensionalresearch.com

Endel, F., & Piringer, H. (2015). Data Wrangling: Making data useful again. IFAC-PapersOnLine,
48(1), 111–112. https://doi.org/10.1016/j.ifacol.2015.05.197

Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data,
2(1), 5. https://doi.org/10.1186/s40537-015-0015-2

Farris, P., Bendle, N., Pfeifer, P., & Reibstein, D. (2010). MARKETING METRICS SECOND
EDITION. Retrieved from
http://ptgmedia.pearsoncmg.com/images/9780137058297/samplepages/9780137058297.pdf

Google Cloud Natural Language API Documentation | Google Cloud Natural Language API |
Google Cloud. (n.d.). Retrieved April 16, 2018, from https://cloud.google.com/natural-
language/docs/

Jules Kouatchou. (2016). Basic Comparison of Python, Julia, R, Matlab and IDL. Retrieved from
https://modelingguru.nasa.gov/docs/DOC-2625

Kapočiūtė-Dzikienė, J., Krupavičius, A., & Krilavičius, T. (2013). A Comparison of Approaches for
Sentiment Classification on Lithuanian Internet Comments, 2–11. Retrieved from
http://www.aclweb.org/anthology/W13-2402

Kapočiūtė-Dzikienė, J., Vaassen, F., Daelemans, W., & Krupavičius, A. (2012). Improving Topic
Classification for Highly Inflective Languages. Retrieved from
https://pdfs.semanticscholar.org/bddc/986580ac78be02a3b4be1928a13ff24133c6.pdf

53

Katuwal, K. (2016). Microservices : A Flexible Architecture for the Digital Age Version 1 . 1, 3(4),
23–28.

Kumar, G. (2016). Identify The Need for Developing a New Service Quality Model in Today’s
Scenario: A Review of Service Quality Models. Retrieved from
https://www.omicsonline.org/open-access/identify-the-need-for-developing-a-new-service-
quality-model-in-todaysscenario-a-review-of-service-quality-models-2223-5833-1000193.pdf

Lee, I. (2016). Encyclopedia of e-commerce development, implementation, and management.

Mickevičius, V., Krilavičius, T., & Morkevičius, V. (2015). Classification of Short Legal Lithuanian
Texts, 106–111. Retrieved from http://bpti.lt/wp-content/uploads/2016/02/bsnlp2015.pdf

Nisar, T. M., & Prabhakar, G. (2017). What factors determine e-satisfaction and consumer spending
in e-commerce retailing? Journal of Retailing and Consumer Services, 39, 135–144.
https://doi.org/10.1016/J.JRETCONSER.2017.07.010

Okockis, V. (2016). RESEARCH OF SENTIMENT ANALYSIS METHODS FOR DIGITAL
CONTENT. Retrieved from http://old.mii.lt/files/09p_okockis_ataskaita2016.pdf

Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How Many Trees in a Random Forest? (pp.
154–168). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_13

Patil, H., & Divekar, B. R. (2014). Inventory Management Challenges for B2C E-commerce
Retailers. Procedia Economics and Finance, 11, 561–571. https://doi.org/10.1016/S2212-
5671(14)00221-4

Pérez, J., Iturbide, E., Olivares, V., Hidalgo, M., Martínez, A., & Almanza, N. (2015). A Data
Preparation Methodology in Data Mining Applied to Mortality Population Databases. J Med
Syst, 39. https://doi.org/10.1007/s10916-015-0312-5

Podium. (2017). Online Review Stats. Retrieved from http://learn.podium.com/rs/841-BRM-
380/images/Podium-2017-State-of-Online-Reviews.pdf?
mkt_tok=eyJpIjoiTUdRM04ySTBOR1ZqTURNNSIsInQiOiJVTktEOXNtTXlpZGFhM29YQ
UFyNXJZWXpNRGhLTUpYVk5nSWdcL0RPMmcwcWdjaFRlazRiMlU5ZDlcL01DMVJBN
VdLVHNLYUs0eEM5Uko1dkRCdVZoRHFVbzNDM

Poliakovas, O. (2015). The marvel of Indo-European cultures and languages : the Lithuanian
bridge to Indo-European. Vilniaus Univ. Publ. House. Retrieved from
https://books.google.lt/books/about/The_Marvel_of_Indo_European_Cultures_and.html?
id=zlXWjgEACAAJ&redir_esc=y

Reddy, N. A., & Divekar, B. R. (2014). A Study of Challenges Faced By E-commerce Companies in
India and Methods Employed to Overcome Them. Procedia Economics and Finance, 11, 553–
560. https://doi.org/10.1016/S2212-5671(14)00220-2

Richardson, C. (2018). Microservice Patterns. Manning Pubns Co. Retrieved from
https://www.manning.com/books/microservices-patterns

54

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., & Potts, C. (2013).
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. Retrieved
from https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf

SparkR (R on Spark). (2018). Retrieved April 19, 2018, from
https://spark.apache.org/docs/latest/sparkr.html

Špats, G., & Birzniece, I. (2016). Opinion Mining in Latvian Text Using Semantic Polarity Analysis
and Machine Learning Approach. Complex Systems Informatics and Modeling Quarterly, 0(7),
51–59. https://doi.org/10.7250/csimq.2016-7.03

Sturm, R., Pollard, C., Craig, J., Sturm, R., Pollard, C., & Craig, J. (2017). Application
Programming Interfaces and Connected Systems. In Application Performance Management
(APM) in the Digital Enterprise (pp. 137–150). Elsevier. https://doi.org/10.1016/B978-0-12-
804018-8.00011-5

Tang, D., Qin, B., & Liu, T. (2015). Document Modeling with Gated Recurrent Neural Network for
Sentiment Classification, 1422–1432. Retrieved from
http://www.emnlp2015.org/proceedings/EMNLP/pdf/EMNLP167.pdf

Uskenbаyevа, R., Kuаndykov, А., Cho, Y. I., Temirbolаtovа, T., Аmаnzholovа, S., &
Kozhаmzhаrovа, D. (2015). ScienceDirect Integrаting of dаtа using the Hаdoop аnd R.
Procedia Computer Science, 56, 145–149. https://doi.org/10.1016/j.procs.2015.07.187

Vitkutė-Adžgauskienė, D., Utka, A., Amilevičius, D., & Krilavičius, T. (2016). NLP Infrastructure
for the Lithuanian Language. Retrieved from
https://eltalpykla.vdu.lt/bitstream/handle/1/33093/ISBN9782951740891.PG_2539-2542.pdf?
sequence=1&isAllowed=y

Vyas, V., & Uma, V. (2018). ScienceDirect An Extensive study of Sentiment Analysis tools and
Binary Classification of tweets using Rapid Miner. Procedia Computer Science, 125(00), 329–
335. https://doi.org/10.1016/j.procs.2017.12.044

Zeithaml, V. A. (2000). Service Quality, Profitability, and the Economic Worth of Customers: What
We Know and What We Need to Learn. Journal of the Academy of Marketing Science, 28(1),
67–85. https://doi.org/10.1177/0092070300281007

Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., & Xu, B. (2016). Text Classification Improved by

Integrating Bidirectional LSTM with Two-dimensional Max Pooling, 3485–3495. Retrieved from

http://www.aclweb.org/anthology/C16-1329

55

Appendices

Appendix 1

DT, RF, SVM and model ensemble results

<<DocumentTermMatrix (documents: 4000, terms: 15783)>>
Non-/sparse entries: 83922/63048078
Sparsity : 100%
Maximal term length: 24
Weighting : term frequency - inverse document frequency (normalized) (tf-idf)
Training models, phase textlatin: 2210.973 sec elapsed
 Reference
Prediction -1 0 1
 -1 426 227 174
 0 8 19 8
 1 17 54 268
Overall Statistics

 Accuracy : 0.5937
 95% CI : (0.5653, 0.6216)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.3534
 Mcnemar's Test P-Value : < 2.2e-16

Statistics by Class:
 Class: -1 Class: 0 Class: 1
Sensitivity 0.9446 0.06333 0.5956
Specificity 0.4653 0.98224 0.9055
Pos Pred Value 0.5151 0.54286 0.7906
Neg Pred Value 0.9332 0.75901 0.7889
Precision 0.5151 0.54286 0.7906
Recall 0.9446 0.06333 0.5956
F1 0.6667 0.11343 0.6793
Prevalence 0.3755 0.24979 0.3747
Detection Rate 0.3547 0.01582 0.2231
Detection Prevalence 0.6886 0.02914 0.2823
Balanced Accuracy 0.7050 0.52279 0.7505
 Reference
Prediction -1 0 1
 -1 390 98 27
 0 50 152 52
 1 11 50 371
Overall Statistics

 Accuracy : 0.7602
 95% CI : (0.735, 0.7841)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6319
 Mcnemar's Test P-Value : 5.533e-05
Statistics by Class:
 Class: -1 Class: 0 Class: 1
Sensitivity 0.8647 0.5067 0.8244
Specificity 0.8333 0.8868 0.9188
Pos Pred Value 0.7573 0.5984 0.8588
Neg Pred Value 0.9111 0.8437 0.8973
Precision 0.7573 0.5984 0.8588
Recall 0.8647 0.5067 0.8244
F1 0.8075 0.5487 0.8413
Prevalence 0.3755 0.2498 0.3747
Detection Rate 0.3247 0.1266 0.3089

56

Detection Prevalence 0.4288 0.2115 0.3597
Balanced Accuracy 0.8490 0.6967 0.8716
 Reference
Prediction -1 0 1
 -1 412 173 65
 0 12 75 13
 1 27 52 372
Overall Statistics

 Accuracy : 0.7152
 95% CI : (0.6888, 0.7406)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5517
 Mcnemar's Test P-Value : < 2.2e-16
Statistics by Class:
 Class: -1 Class: 0 Class: 1
Sensitivity 0.9135 0.25000 0.8267
Specificity 0.6827 0.97225 0.8948
Pos Pred Value 0.6338 0.75000 0.8248
Neg Pred Value 0.9292 0.79564 0.8960
Precision 0.6338 0.75000 0.8248
Recall 0.9135 0.25000 0.8267
F1 0.7484 0.37500 0.8257
Prevalence 0.3755 0.24979 0.3747
Detection Rate 0.3430 0.06245 0.3097
Detection Prevalence 0.5412 0.08326 0.3755
Balanced Accuracy 0.7981 0.61113 0.8607
ENSEMBLE SUMMARY

 n-ENSEMBLE COVERAGE n-ENSEMBLE RECALL
n >= 1 1.00 0.72
n >= 2 0.96 0.74
n >= 3 0.60 0.84

ALGORITHM PERFORMANCE
 SVM_PRECISION SVM_RECALL SVM_FSCORE FORESTS_PRECISION
 0.7400000 0.7300000 0.7333333 0.7333333
 FORESTS_RECALL FORESTS_FSCORE TREE_PRECISION TREE_RECALL
 0.6633333 0.6466667 0.6166667 0.5333333
 TREE_FSCORE
 0.4866667
<<DocumentTermMatrix (documents: 4000, terms: 15607)>>
Non-/sparse entries: 70543/62357457
Sparsity : 100%
Maximal term length: 24
Weighting : term frequency - inverse document frequency (normalized) (tf-idf)
Training models, phase textstop: 2386.74 sec elapsed
 Reference
Prediction -1 0 1
 -1 408 214 169
 0 11 28 13
 1 32 58 268
Overall Statistics

 Accuracy : 0.5862
 95% CI : (0.5577, 0.6142)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.3433
 Mcnemar's Test P-Value : < 2.2e-16
Statistics by Class:
 Class: -1 Class: 0 Class: 1
Sensitivity 0.9047 0.09333 0.5956
Specificity 0.4893 0.97336 0.8802
Pos Pred Value 0.5158 0.53846 0.7486

57

Neg Pred Value 0.8951 0.76327 0.7841
Precision 0.5158 0.53846 0.7486
Recall 0.9047 0.09333 0.5956
F1 0.6570 0.15909 0.6634
Prevalence 0.3755 0.24979 0.3747
Detection Rate 0.3397 0.02331 0.2231
Detection Prevalence 0.6586 0.04330 0.2981
Balanced Accuracy 0.6970 0.53335 0.7379
 Reference
Prediction -1 0 1
 -1 400 96 24
 0 42 146 51
 1 9 58 375

Overall Statistics

 Accuracy : 0.7669
 95% CI : (0.7419, 0.7905)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6412
 Mcnemar's Test P-Value : 2.996e-06
Statistics by Class:
 Class: -1 Class: 0 Class: 1
Sensitivity 0.8869 0.4867 0.8333
Specificity 0.8400 0.8968 0.9108
Pos Pred Value 0.7692 0.6109 0.8484
Neg Pred Value 0.9251 0.8399 0.9012
Precision 0.7692 0.6109 0.8484
Recall 0.8869 0.4867 0.8333
F1 0.8239 0.5417 0.8408
Prevalence 0.3755 0.2498 0.3747
Detection Rate 0.3331 0.1216 0.3122
Detection Prevalence 0.4330 0.1990 0.3680
Balanced Accuracy 0.8635 0.6917 0.8721

 Reference
Prediction -1 0 1
 -1 410 166 61
 0 9 66 9
 1 32 68 380
Overall Statistics

 Accuracy : 0.7127
 95% CI : (0.6862, 0.7382)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5466
 Mcnemar's Test P-Value : < 2.2e-16
Statistics by Class:
 Class: -1 Class: 0 Class: 1
Sensitivity 0.9091 0.22000 0.8444
Specificity 0.6973 0.98002 0.8668
Pos Pred Value 0.6436 0.78571 0.7917
Neg Pred Value 0.9273 0.79051 0.9029
Precision 0.6436 0.78571 0.7917
Recall 0.9091 0.22000 0.8444
F1 0.7537 0.34375 0.8172
Prevalence 0.3755 0.24979 0.3747
Detection Rate 0.3414 0.05495 0.3164
Detection Prevalence 0.5304 0.06994 0.3997
Balanced Accuracy 0.8032 0.60001 0.8556
ENSEMBLE SUMMARY

 n-ENSEMBLE COVERAGE n-ENSEMBLE RECALL
n >= 1 1.00 0.72
n >= 2 0.96 0.73

58

n >= 3 0.61 0.83

ALGORITHM PERFORMANCE

 SVM_PRECISION SVM_RECALL SVM_FSCORE FORESTS_PRECISION
 0.7433333 0.7366667 0.7366667 0.7400000
 FORESTS_RECALL FORESTS_FSCORE TREE_PRECISION TREE_RECALL
 0.6566667 0.6333333 0.6033333 0.5300000
 TREE_FSCORE
 0.4933333
<<DocumentTermMatrix (documents: 4000, terms: 10981)>>
Non-/sparse entries: 79324/43844676
Sparsity : 100%
Maximal term length: 20
Weighting : term frequency - inverse document frequency (normalized) (tf-idf)
Training models, phase stems: 1044.385 sec elapsed

 Reference
Prediction -1 0 1
 -1 421 207 133
 0 18 48 58
 1 12 45 259
Overall Statistics

 Accuracy : 0.6062
 95% CI : (0.5779, 0.6339)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.3824
 Mcnemar's Test P-Value : < 2.2e-16
Statistics by Class:
 Class: -1 Class: 0 Class: 1
Sensitivity 0.9335 0.16000 0.5756
Specificity 0.5467 0.91565 0.9241
Pos Pred Value 0.5532 0.38710 0.8196
Neg Pred Value 0.9318 0.76602 0.7842
Precision 0.5532 0.38710 0.8196
Recall 0.9335 0.16000 0.5756
F1 0.6947 0.22642 0.6762
Prevalence 0.3755 0.24979 0.3747
Detection Rate 0.3505 0.03997 0.2157
Detection Prevalence 0.6336 0.10325 0.2631
Balanced Accuracy 0.7401 0.53782 0.7498
 Reference
Prediction -1 0 1
 -1 391 108 26
 0 41 127 56
 1 19 65 368

Overall Statistics

 Accuracy : 0.7377
 95% CI : (0.7119, 0.7624)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5954
 Mcnemar's Test P-Value : 5.532e-07
Statistics by Class:
 Class: -1 Class: 0 Class: 1
Sensitivity 0.8670 0.4233 0.8178
Specificity 0.8213 0.8923 0.8881
Pos Pred Value 0.7448 0.5670 0.8142
Neg Pred Value 0.9112 0.8229 0.8905
Precision 0.7448 0.5670 0.8142
Recall 0.8670 0.4233 0.8178
F1 0.8012 0.4847 0.8160

59

Prevalence 0.3755 0.2498 0.3747
Detection Rate 0.3256 0.1057 0.3064
Detection Prevalence 0.4371 0.1865 0.3764
Balanced Accuracy 0.8441 0.6578 0.8530
 Reference
Prediction -1 0 1
 -1 411 169 63
 0 7 60 11
 1 33 71 376
Overall Statistics

 Accuracy : 0.7052
 95% CI : (0.6786, 0.7309)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5343
 Mcnemar's Test P-Value : < 2.2e-16

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.9113 0.20000 0.8356
Specificity 0.6907 0.98002 0.8615
Pos Pred Value 0.6392 0.76923 0.7833
Neg Pred Value 0.9283 0.78629 0.8974
Precision 0.6392 0.76923 0.7833
Recall 0.9113 0.20000 0.8356
F1 0.7514 0.31746 0.8086
Prevalence 0.3755 0.24979 0.3747
Detection Rate 0.3422 0.04996 0.3131
Detection Prevalence 0.5354 0.06495 0.3997
Balanced Accuracy 0.8010 0.59001 0.8485
ENSEMBLE SUMMARY

 n-ENSEMBLE COVERAGE n-ENSEMBLE RECALL
n >= 1 1.00 0.72
n >= 2 0.96 0.73
n >= 3 0.62 0.82

ALGORITHM PERFORMANCE
 SVM_PRECISION SVM_RECALL SVM_FSCORE FORESTS_PRECISION
 0.7066667 0.7033333 0.6966667 0.7300000
 FORESTS_RECALL FORESTS_FSCORE TREE_PRECISION TREE_RECALL
 0.6500000 0.6266667 0.5866667 0.5566667
 TREE_FSCORE
 0.5333333
<<DocumentTermMatrix (documents: 4000, terms: 10684)>>
Non-/sparse entries: 80344/42655656
Sparsity : 100%
Maximal term length: 24
Weighting : term frequency - inverse document frequency (normalized) (tf-idf)
Training models, phase lemmas: 788.05 sec elapsed
 Reference
Prediction -1 0 1
 -1 408 214 130
 0 16 33 21
 1 27 53 299
Overall Statistics

 Accuracy : 0.6162
 95% CI : (0.588, 0.6438)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.3927
 Mcnemar's Test P-Value : < 2.2e-16
Statistics by Class:
 Class: -1 Class: 0 Class: 1

60

Sensitivity 0.9047 0.11000 0.6644
Specificity 0.5413 0.95893 0.8935
Pos Pred Value 0.5426 0.47143 0.7889
Neg Pred Value 0.9042 0.76393 0.8163
Precision 0.5426 0.47143 0.7889
Recall 0.9047 0.11000 0.6644
F1 0.6783 0.17838 0.7214
Prevalence 0.3755 0.24979 0.3747
Detection Rate 0.3397 0.02748 0.2490
Detection Prevalence 0.6261 0.05828 0.3156
Balanced Accuracy 0.7230 0.53447 0.7790

 Reference
Prediction -1 0 1
 -1 392 105 25
 0 46 130 64
 1 13 65 361
Overall Statistics

 Accuracy : 0.7352
 95% CI : (0.7093, 0.76)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5926
 Mcnemar's Test P-Value : 6.329e-06

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.8692 0.4333 0.8022
Specificity 0.8267 0.8779 0.8961
Pos Pred Value 0.7510 0.5417 0.8223
Neg Pred Value 0.9131 0.8231 0.8832
Precision 0.7510 0.5417 0.8223
Recall 0.8692 0.4333 0.8022
F1 0.8058 0.4815 0.8121
Prevalence 0.3755 0.2498 0.3747
Detection Rate 0.3264 0.1082 0.3006
Detection Prevalence 0.4346 0.1998 0.3655
Balanced Accuracy 0.8479 0.6556 0.8492

 Reference
Prediction -1 0 1
 -1 403 163 54
 0 5 53 13
 1 43 84 383
Overall Statistics

 Accuracy : 0.6986
 95% CI : (0.6718, 0.7244)
 No Information Rate : 0.3755
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5233
 Mcnemar's Test P-Value : < 2.2e-16

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.8936 0.17667 0.8511
Specificity 0.7107 0.98002 0.8309
Pos Pred Value 0.6500 0.74648 0.7510
Neg Pred Value 0.9174 0.78142 0.9030
Precision 0.6500 0.74648 0.7510
Recall 0.8936 0.17667 0.8511

61

F1 0.7526 0.28571 0.7979
Prevalence 0.3755 0.24979 0.3747
Detection Rate 0.3356 0.04413 0.3189
Detection Prevalence 0.5162 0.05912 0.4246
Balanced Accuracy 0.8021 0.57834 0.8410
ENSEMBLE SUMMARY

 n-ENSEMBLE COVERAGE n-ENSEMBLE RECALL
n >= 1 1.00 0.72
n >= 2 0.96 0.73
n >= 3 0.62 0.83

ALGORITHM PERFORMANCE

 SVM_PRECISION SVM_RECALL SVM_FSCORE FORESTS_PRECISION
 0.7033333 0.7000000 0.7000000 0.7166667
 FORESTS_RECALL FORESTS_FSCORE TREE_PRECISION TREE_RECALL
 0.6400000 0.6133333 0.6000000 0.5566667
 TREE_FSCORE
 0.5266667

62

Appendix 2

Deep learning model summary (one data sample)

__

Layer (type) Output Shape Param #
==
embedding_8 (Embedding) (None, 344, 128) 2014336
__
flatten_4 (Flatten) (None, 44032) 0
__
dense_10 (Dense) (None, 3) 132099
==
Total params: 2,146,435
Trainable params: 2,146,435
Non-trainable params: 0
__
__
Layer (type) Output Shape Param #
==
embedding_9 (Embedding) (None, None, 128) 2014336
__
lstm_5 (LSTM) (None, 128) 131584
__
dense_11 (Dense) (None, 128) 16512
__
dense_12 (Dense) (None, 3) 387
==
Total params: 2,162,819
Trainable params: 2,162,819
Non-trainable params: 0
__
__
Layer (type) Output Shape Param #
==
embedding_10 (Embedding) (None, None, 128) 2014336
__
bidirectional_3 (Bidirecti (None, 128) 98816
__
dropout_3 (Dropout) (None, 128) 0
__
dense_13 (Dense) (None, 3) 387
==
Total params: 2,113,539
Trainable params: 2,113,539
Non-trainable params: 0

63

Appendix 3

Results of Deep learning models

1st model – Embedded NN

2nd model – LSTM NN

3rd model – BLSTM NN

[1] "Deep learning model: lemmas1"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 387 104 18
 0 42 134 46
 1 22 61 386

Overall Statistics

 Accuracy : 0.7558
 95% CI : (0.7305, 0.7799)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6232
 Mcnemar's Test P-Value : 2.43e-06

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.8581 0.4482 0.8578
Specificity 0.8371 0.9023 0.8893
Pos Pred Value 0.7603 0.6036 0.8230
Neg Pred Value 0.9074 0.8313 0.9124
Precision 0.7603 0.6036 0.8230
Recall 0.8581 0.4482 0.8578
F1 0.8062 0.5144 0.8400
Prevalence 0.3758 0.2492 0.3750
Detection Rate 0.3225 0.1117 0.3217
Detection Prevalence 0.4242 0.1850 0.3908
Balanced Accuracy 0.8476 0.6752 0.8736
[1] "Deep learning model: lemmas2"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 402 190 42
 0 14 37 23
 1 35 72 385

Overall Statistics

 Accuracy : 0.6867
 95% CI : (0.6596, 0.7128)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5045
 Mcnemar's Test P-Value : < 2.2e-16

Statistics by Class:

 Class: -1 Class: 0 Class: 1

64

Sensitivity 0.8914 0.12375 0.8556
Specificity 0.6903 0.95893 0.8573
Pos Pred Value 0.6341 0.50000 0.7825
Neg Pred Value 0.9134 0.76732 0.9082
Precision 0.6341 0.50000 0.7825
Recall 0.8914 0.12375 0.8556
F1 0.7410 0.19839 0.8174
Prevalence 0.3758 0.24917 0.3750
Detection Rate 0.3350 0.03083 0.3208
Detection Prevalence 0.5283 0.06167 0.4100
Balanced Accuracy 0.7908 0.54134 0.8564
[1] "Deep learning model: lemmas3"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 376 98 12
 0 63 154 86
 1 12 47 352

Overall Statistics

 Accuracy : 0.735
 95% CI : (0.7091, 0.7598)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5963
 Mcnemar's Test P-Value : 0.0002676

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.8337 0.5151 0.7822
Specificity 0.8531 0.8346 0.9213
Pos Pred Value 0.7737 0.5083 0.8564
Neg Pred Value 0.8950 0.8384 0.8758
Precision 0.7737 0.5083 0.8564
Recall 0.8337 0.5151 0.7822
F1 0.8026 0.5116 0.8177
Prevalence 0.3758 0.2492 0.3750
Detection Rate 0.3133 0.1283 0.2933
Detection Prevalence 0.4050 0.2525 0.3425
Balanced Accuracy 0.8434 0.6748 0.8518
[1] "Deep learning model: textlatin1"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 394 104 19
 0 31 131 37
 1 26 64 394

Overall Statistics

 Accuracy : 0.7658
 95% CI : (0.7408, 0.7895)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6372
 Mcnemar's Test P-Value : 2.371e-10

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.8736 0.4381 0.8756

65

Specificity 0.8358 0.9245 0.8800
Pos Pred Value 0.7621 0.6583 0.8140
Neg Pred Value 0.9165 0.8322 0.9218
Precision 0.7621 0.6583 0.8140
Recall 0.8736 0.4381 0.8756
F1 0.8140 0.5261 0.8437
Prevalence 0.3758 0.2492 0.3750
Detection Rate 0.3283 0.1092 0.3283
Detection Prevalence 0.4308 0.1658 0.4033
Balanced Accuracy 0.8547 0.6813 0.8778
[1] "Deep learning model: textlatin2"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 390 189 48
 0 31 47 17
 1 30 63 385

Overall Statistics

 Accuracy : 0.685
 95% CI : (0.6579, 0.7112)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.5036
 Mcnemar's Test P-Value : < 2.2e-16

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.8647 0.15719 0.8556
Specificity 0.6836 0.94673 0.8760
Pos Pred Value 0.6220 0.49474 0.8054
Neg Pred Value 0.8935 0.77195 0.9100
Precision 0.6220 0.49474 0.8054
Recall 0.8647 0.15719 0.8556
F1 0.7236 0.23858 0.8297
Prevalence 0.3758 0.24917 0.3750
Detection Rate 0.3250 0.03917 0.3208
Detection Prevalence 0.5225 0.07917 0.3983
Balanced Accuracy 0.7742 0.55196 0.8658
[1] "Deep learning model: textlatin3"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 376 96 19
 0 63 160 80
 1 12 43 351

Overall Statistics

 Accuracy : 0.7392
 95% CI : (0.7133, 0.7638)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6026
 Mcnemar's Test P-Value : 0.0002094

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.8337 0.5351 0.7800
Specificity 0.8465 0.8413 0.9267

66

Pos Pred Value 0.7658 0.5281 0.8645
Neg Pred Value 0.8942 0.8450 0.8753
Precision 0.7658 0.5281 0.8645
Recall 0.8337 0.5351 0.7800
F1 0.7983 0.5316 0.8201
Prevalence 0.3758 0.2492 0.3750
Detection Rate 0.3133 0.1333 0.2925
Detection Prevalence 0.4092 0.2525 0.3383
Balanced Accuracy 0.8401 0.6882 0.8533
[1] "Deep learning model: textstop1"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 387 103 18
 0 44 129 47
 1 20 67 385

Overall Statistics

 Accuracy : 0.7508
 95% CI : (0.7253, 0.7751)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6153
 Mcnemar's Test P-Value : 5.108e-06

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.8581 0.4314 0.8556
Specificity 0.8385 0.8990 0.8840
Pos Pred Value 0.7618 0.5864 0.8157
Neg Pred Value 0.9075 0.8265 0.9107
Precision 0.7618 0.5864 0.8157
Recall 0.8581 0.4314 0.8556
F1 0.8071 0.4971 0.8351
Prevalence 0.3758 0.2492 0.3750
Detection Rate 0.3225 0.1075 0.3208
Detection Prevalence 0.4233 0.1833 0.3933
Balanced Accuracy 0.8483 0.6652 0.8698
[1] "Deep learning model: textstop2"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 323 109 13
 0 113 144 91
 1 15 46 346

Overall Statistics

 Accuracy : 0.6775
 95% CI : (0.6502, 0.7039)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : < 2e-16

 Kappa : 0.5122
 Mcnemar's Test P-Value : 0.00182

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.7162 0.4816 0.7689
Specificity 0.8371 0.7736 0.9187
Pos Pred Value 0.7258 0.4138 0.8501

67

Neg Pred Value 0.8305 0.8181 0.8689
Precision 0.7258 0.4138 0.8501
Recall 0.7162 0.4816 0.7689
F1 0.7210 0.4451 0.8075
Prevalence 0.3758 0.2492 0.3750
Detection Rate 0.2692 0.1200 0.2883
Detection Prevalence 0.3708 0.2900 0.3392
Balanced Accuracy 0.7767 0.6276 0.8438
[1] "Deep learning model: textstop3"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 359 69 10
 0 79 173 66
 1 13 57 374

Overall Statistics

 Accuracy : 0.755
 95% CI : (0.7296, 0.7791)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : <2e-16

 Kappa : 0.6277
 Mcnemar's Test P-Value : 0.6313

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.7960 0.5786 0.8311
Specificity 0.8945 0.8391 0.9067
Pos Pred Value 0.8196 0.5440 0.8423
Neg Pred Value 0.8793 0.8571 0.8995
Precision 0.8196 0.5440 0.8423
Recall 0.7960 0.5786 0.8311
F1 0.8076 0.5608 0.8367
Prevalence 0.3758 0.2492 0.3750
Detection Rate 0.2992 0.1442 0.3117
Detection Prevalence 0.3650 0.2650 0.3700
Balanced Accuracy 0.8453 0.7088 0.8689
[1] "Deep learning model: stems1"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 388 97 23
 0 40 140 43
 1 23 62 384

Overall Statistics

 Accuracy : 0.76
 95% CI : (0.7348, 0.7839)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6296
 Mcnemar's Test P-Value : 5.467e-06

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.8603 0.4682 0.8533
Specificity 0.8398 0.9079 0.8867
Pos Pred Value 0.7638 0.6278 0.8188
Neg Pred Value 0.9090 0.8373 0.9097

68

Precision 0.7638 0.6278 0.8188
Recall 0.8603 0.4682 0.8533
F1 0.8092 0.5364 0.8357
Prevalence 0.3758 0.2492 0.3750
Detection Rate 0.3233 0.1167 0.3200
Detection Prevalence 0.4233 0.1858 0.3908
Balanced Accuracy 0.8500 0.6881 0.8700
[1] "Deep learning model: stems2"

 Reference
Prediction -1 0 1
 -1 451 299 450
 0 0 0 0
 1 0 0 0

Overall Statistics

 Accuracy : 0.3758
 95% CI : (0.3483, 0.4039)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : 0.5109

 Kappa : 0
 Mcnemar's Test P-Value : NA

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 1.0000 0.0000 0.000
Specificity 0.0000 1.0000 1.000
Pos Pred Value 0.3758 NaN NaN
Neg Pred Value NaN 0.7508 0.625
Precision 0.3758 NA NA
Recall 1.0000 0.0000 0.000
F1 0.5463 NA NA
Prevalence 0.3758 0.2492 0.375
Detection Rate 0.3758 0.0000 0.000
Detection Prevalence 1.0000 0.0000 0.000
Balanced Accuracy 0.5000 0.5000 0.500
[1] "Deep learning model: stems3"
Confusion Matrix and Statistics

 Reference
Prediction -1 0 1
 -1 364 90 15
 0 78 164 79
 1 9 45 356

Overall Statistics

 Accuracy : 0.7367
 95% CI : (0.7108, 0.7614)
 No Information Rate : 0.3758
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.6
 Mcnemar's Test P-Value : 0.008565

Statistics by Class:

 Class: -1 Class: 0 Class: 1
Sensitivity 0.8071 0.5485 0.7911
Specificity 0.8598 0.8257 0.9280
Pos Pred Value 0.7761 0.5109 0.8683
Neg Pred Value 0.8810 0.8464 0.8810
Precision 0.7761 0.5109 0.8683
Recall 0.8071 0.5485 0.7911

69

F1 0.7913 0.5290 0.8279
Prevalence 0.3758 0.2492 0.3750
Detection Rate 0.3033 0.1367 0.2967
Detection Prevalence 0.3908 0.2675 0.3417
Balanced Accuracy 0.8335 0.6871 0.8596

70

Appendix 4

Source code

BitBucket repository:

https://bitbucket.org/KestutisD/pr00m132_final_project/

Structure of the project directory:

├── PR00M132_Final_Project

│ ├── 1_Transform

│ │ ├── connection.R

│ │ ├── Data

│ │ ├── server.R

│ │ └── transform.R

│ ├── 2_TF_model

│ │ ├── final_model

│ │ │ ├── saved_model.pb

│ │ │ └── variables

│ │ │ ├── variables.data-00000-of-00001

│ │ │ └── variables.index

│ │ └── server.R

│ └── 3_Analytical_model

│ ├── AM.R

│ ├── server.R

│ └── tokenizer

├── Notebooks

│ ├── 1_Download_reviews_from_evertink_lt.Rmd

│ ├── 2_Store_reviews_in_sql_database.Rmd

│ ├── 3_Integration_with_semantika_lt_api.Rmd

│ ├── 4_Prepare_training_and_test_sets.Rmd

│ ├── 5_Tidy_text_notebook.Rmd

│ ├── 6_DT_RF_SVM_models.Rmd

│ └── 7_Deep_learning_models.Rmd

└── README.md

71

https://bitbucket.org/KestutisD/pr00m132_final_project/

	List of abbreviations
	Introduction
	1. Literature review
	1.1. Linking Online service quality and customer satisfaction
	1.2. Text analytics for customer review data
	1.3. Software architecture
	1.4. Choice of the programming language
	1.5. Aim and objectives of the project

	2. Methodology
	2.1. High level design of the application
	2.2. Data extraction, loading and transformation
	2.3. Comparison of text classification algorithms
	2.3.1. Classic approach
	2.3.1.1. Decision Tree method
	2.3.1.2. Random Forests method
	2.3.1.3. Support Vector Machine method
	2.3.2. Deep learning using TensorFlow framework
	2.4. Application development patterns

	3. Results
	3.1. Data Preparation
	3.2. Label assignment process
	3.3. Exploratory Analysis
	3.4. Results of implemented methodology
	3.5. The final application

	Conclusions
	List of references
	Appendices

