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Introduction

In this article we propose exact analysis of the data
packet transmission network with unreliable channels. Two
types of the system with losses and with queuing are
analyzed. Analytical analysis of the systems is based on
Markov birth and death processes. Markov modeling has
long been accepted as a fundamental and powerful
technique for the systems reliability analysis [1]. Designers
can use the Markov modeling technique to analyze safety,
reliability, maintainability in the full range of complex
telecommunications systems [2]. Our proposed analytical
models are used for analysis processes in network nodes
with one or two unreliable channels queuing system with
losses and Poisson arrival flows of data packets in the data
packet transmission networks. Many research efforts have
been and are still devoted to improve performance
measures of data packet transmission networks [3÷7].

At first we study network node with one and two
unreliable transmission channels servicing data flow with
losses.

We shall study an efficient way how to investigate such
loss systems by means of Markov chains [1]. In this article
also we propose the queuing systems of data network node
analysis by means of simulations.

While most research to date has focused on supporting
quality of service (QoS) within a single network node,
analysis of such data networks nodes is currently an active
area of research [5].

An accurate modeling of the offered data network
traffic load and it transmission via an unreliable system is
the first step in optimizing data network resources [6]. QoS
in our models are expressed in such parameters: data
packet losses, channels utilization parameters, probabilities
of channels and network node failures.

Peculiarities of data packet transmission over
unreliable channels

Any transmission of information between endpoints or
data terminal equipment (DTE) is made over a particular
transmission media (Fig. 1). Type of the media, its

information transmission characteristics, peculiarities and
availability are the key determinants that affect the QoS of
information transmission.

Data packet transmission routes in a network have
different transmission characteristics. Selections of a
particular route or rerouting are determined by the
implemented routing protocols, network node failures or
overflows. For example, it is shown in Fig. 1 that data
packets, transmitted from DTE on the left side, have two
possible route sections a and b. The section a is dominant
and the b is used when network node c is unavailable (is in
failure, overloaded or switched-off states).

Let’s analyze how data packet transmission
characteristics are determined by the mentioned factors
using one week round trip time (rtt) measurement statistics
(Fig. 2, a), which were made between VoIP endpoints in
one of VoIP service providers in Lithuania – JSC
“Eurofonas”. Small grey dots in the figure represents
collected rtt values and the packet losses (or packet receive
timeouts) are represented by “x” marks on the abscise line.

Fig. 1. Example of multi-route data transmission media between
data terminal equipment (DTE) devices
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Fig. 2. Graphs of: a) one week rtt measurements between VoIP endpoints; b) distribution density function (fv(th)) of VoIP calls during a

daytime; c) alternating
)(a

h and
)(u

h periods (when the characteristics meet and do not meet QoS requirements) found in (0,T]

duration of data packet transmission delay measurements

It is clear even from the visual analysis that the rtt
values are correlated to the voice call activity over daytime
(fv(th) – distribution density function of VoIP calls during a
daytime (calculated from 12 month call data records) in
Fig. 2, b). Also, it is possible to distinguish the effect of
data packet transmissions over internet network’s multi-
route environment (Fig. 1) by the distribution density
modes (a1, a2, a3, b1, b2, b3 in Fig. 2, a) of the rtt values.

Due to obvious stochastic nature of data packet
transmissions the statistical methods should be applied to
evaluate the transmission characteristics.

Therefore, in common case, if N is the number of
possible data packet transmission routes and i is the index
of a route (i[1,2,3 … N]), then p(i) is the probability that a
data packet will be transmitted over the i-th route (for
illustration look at Fig. 1) and
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Data packet transmission delay (τ(i)) values and loss
over the i-th route are random, therefore the transmission
can be described by data packet transmission delay value
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n(i) – number of collected τ(i) samples.
Then in long-term perspective, the common

)Pr( cr  is given by
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and the common packet loss probability –
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The probability of a data packet transmission
availability state, when data packet is not lost and its
transmission delay values τ ≤ τcr, is given by

)1()1(
crla PPP  . (6)

More precise analysis of data packet transmission
characteristic measurements allows to calculate time

periods: )(a
h – when the characteristics meet QoS

requirements (for example, τcr and tolerable packet loss

ratio), )(u
h – when the characteristics do not meet QoS

requirements. Here h – index of a time period (h[1,2,..m])

and m – number of alternating )(a
h and )(u

h periods



55

found in (0,T] duration of data packet transmission
characteristics measurements (Fig. 2, c).

Such short-term measurement analysis may reveal
correlations between adjacent measurement samples of
data packet transmission delay values, losses, route
changes and failures.

Analytical model for data network node performance
measures evaluation

We will investigate the telecommunication data
network node using one unreliable data transmission
channel. The data packets arrival processes are Poisson
with λ intensity (Fig. 3). Data packets transmission
duration over the channel is distributed exponentially with
intensity µ.
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Fig. 3. The architecture of data network loss system with one
unreliable data transmission channel

Reliability of the channel is its ability to perform
required data packets transmission functions under state
conditions for a specified period of time.

If to ensure the acceptable level of QoS data packet
transmission parameter values have to meet particular
requirements (for example, critical data packet
transmission delay or loss ratio), then each channel’s
reliability function is given by
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etR
 

 ; (7)

here γf – channel’s failure rate, γd – rate of disturbances,
which cause data packet transmission parameter values not
to meet their requirements. The rates are given by

ff  1 and dd  1 ; here f – the mean time

between failures, d – the mean time between the critical

disturbances to data packets transmission parameter values.
Time between channel’s failures (τf) is equivalent to the

expected number of channel’s operating hours and often is
distributed exponentially

.1)Pr()( ft

ff ettF


 


 (8)

Time to repair (τr) can be modeled as an exponentially

distributed variable also with the mean time to repair ( r )
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here rf – failure’s repair rate, which is given by rfr 1 .

r is the expected time to recover a channel from a

failure. This may include the time it takes to diagnose the
channel’s failure, the time it takes to get a repair technician
onsite, and the time it takes physically repair the channel.

In analogy to (6), th channel’s availability A,
considering QoS, is the degree to which a channel is
operational and meets data packet transmission
requirements. It is given by
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here n – the mean duration, when packet transmission

parameters do not meet their requirements between critical

disturbances. In our case, d , n are modeled in analogy

as f and r . Therefore, the common rate of channels

failure and transmission parameters nonconformity
(further, for simplicity, it will be mentioned as failure rate)

is given by df   . The common rate of repair and

conformity to transmission parameters (further, for
simplicity, it will be mentioned as repair rate) is given by

nf rrr  ; here nnr 1 .

It is possible to calculate the γ, r values from )(a
h and
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h mean values by
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Therefore, in our investigated systems, each
transmission channel is characterized by three parameters:
µ, γ and r.

Let us consider a system with one data transmission
channel, which is modeled using Markov chains (Fig. 4)
with one parameter state vector X, which represents a state
of channel’s occupation: X=0 – channel is free, X=1 –
channel transmits data packet, X=2 – channel is in failure
state.

1 0 2

γλ

rμ

γ

Fig. 4. Continuous time Markov chains for loss system with one
unreliable channel

Then using the global balance concept we can easily
write down the following equations for the evaluation of
system state probabilities PXY :
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By solving the underlying system (13) equations
system steady-state probabilities PX are obtained:

)()(

)(
0










r

r
P ; (14)



56

)()(
1










r

r
P ; (15)

r
P






2 . (16)

Now we proceed to find the investigated system
performance measures such as:

- data packet loss probability:

21 PPPl  ; (17)

- served traffic intensity:

)1( lPY   ; (18)

- data packet transmission channel faulty probability
Pfaulty = P2.

Now we examine two unreliable channels network
node with data packet losses (Fig. 5). Each channel is
referred by parameters µ1, µ2, γ1, γ2 and r1, r2. Let us
consider a system (Fig.5) state vector with four parameters
X,Y where: X=0 – first channel is free; X=1 – first channel
is transmitting data packet, X=2 – first channel is in failure
state, Y=0 – second channel is free; Y=1 – second channel
is transmitting data packet, Y=2 – second channel is in
failure state.
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Fig. 5. The architecture of data network loss system with two
unreliable data transmission channels

Let us consider that the first free channel is occupied
with probability p, and the second channel will be
occupied with probability 1-p. In such case our system can
be mapped onto continuous time and discrete state Markov
process chains as shown in Fig. 6.
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Fig. 6. Continuous time Markov chains for loss system with two
unreliable channels

Using the global balance concept, we can easily write
down the following equations:
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By solving equations (19) we obtain the system’s state
probabilities PXY. It can be used to find other system
performance measures such as:

- data packet loss probability

2211 PPPl  ; (20)

- first and second channels served traffic intensities

1211101 PPPY  ; (21)

2111012 PPPY  ; (22)

- probabilities of the first and second channels failure

2221201 PPPP fail  ; (23)

2212022 PPPP fail  ; (24)

- system faulty probability Pfaulty = P22.
Mainly the data packet transmission quality in such loss

system is characterized by: data packet loss probability,
channels served traffic intensity, and system or channel
probability of fails.

The simulation model of queuing systems with
unreliable channels

An exact analytical system model is useful and not
complicated for the system with losses. More general study
of queuing (K – queue length) systems shown in Fig. 7, 8
performance measures may be achieved by means of
simulation.
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Fig. 7. One unreliable channel queuing system structure
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Fig. 8. Two unreliable channels queuing system structure

(19)
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The simulation experiments were run on Pentium based
PC with program developed using object oriented library
for developing simulation models specified by aggregate
approach and C# programming language in the
Microsoft.Net environment. High accuracy and fast
simulation is obtained. Each system performance measure
is estimated by minimum, maximum, mean and standard
deviation values.

System performance measures simulation

Let’s use some real data as basis for performance
measures simulation of VoIP packets transmission over
data transmission network with unreliable channels.

Analysis of real rtt statistics, which was accumulated
over 12 months between VoIP endpoints, shows that the
smallest failure rate value was on 2007 February
(γ' = 0.00061 s-1, r' = 0.03949 s-1) and the biggest – on
April (γ'' = 0.00095 s-1, r'' = 0.00495 s-1).

If voice is encoded using G.729 codec with 60 ms
voice frame size, then during one call VoIP packets are
generated with intensity – λ1 = 16.66 pack/s. Therefore, if v
is the number of simultaneous calls, then the common
VoIP packet generation intensity is λ=v·λ1. Length of the
VoIP packet with Ethernet, IP, UDP and RTP headers is
equal to 118 bytes. Therefore, the intensity of VoIP packet
transmission over a 256 kbit/s channel – μ = 277.69 pack/s.

Using proposed analytical and simulation methods
some system’s evaluation results are given in Fig. 9, 10,
11, 12 (here simulation results are denoted by “*”).

It is shown in the Fig. 9, that difference between
analytical and simulation result values in average is
approximately equal to 2 %. It can be decreased by
increasing simulation time or by taking an average value
from simulation series.
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Fig. 9. Graphs of single channel system’s P1, P2, Pl dependences
on λ and γ, when K = 0, μ = 277.69 pack/s, γ' = 0.00061 s-1,
γ'' = 0.00095 s-1, r' = 0.03949 s-1, r'' = 0.00495 s-1

VoIP packet transmission delay is random, therefore to
remove the delay variation (or jitter) a de-jitter buffer is

used in the receiving VoIP endpoint. The length of the
buffer is very small in order to add as small additional
delay as possible. In Welltech’s 3804A VoIP gateway a
delay in the de-jitter buffer for the used codec can be set to
0, 60 and 120 ms. Because 60 ms voice frames are used,
then for simulation model we take queue lengths K' = 0,
K'' = 1 and K''' = 2 .

It is shown in Fig.10, Fig. 11 and Fig. 12 how queue
length affects system’s performance parameters (P1

*(λ, γ),
Pl

*(λ, γ) and Y1c
*(λ, K), Y2c

*(λ, K)) when λ is increased (here
λ(d) – data packet intensity with constant times between
VoIP packets).
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Fig. 10. Graphs of single channel system’s P1, Pl dependences on
λ and K, when μ = 277.69 pack/s, γ = 0.00061 s-1, r = 0.03949 s-1,
K' = 0, K'' = 1, K''' = 2
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Fig. 11. Graphs of single channel system’s Pl dependences on λ
and K, when μ=277.69 pack/s, γ = 0.00061 s-1, r = 0.03949 s-1,
K' = 0, K'' = 1, K''' = 2
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Fig. 12. Graphs of served traffic intensity (Y1c – for single channel
system, Y2c – for two channel system with identical channel
parameters) dependences on λ and K, when μ = 277.69 pack/s,
γ = 0.00061 s-1, r = 0.03949 s-1, K' = 0, K'' = 1, K''' = 2
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Conclusions

The system analytical models are accurate only in case
of Poisson traffic and exponential data packet transmission
time in channel. An exact analytical model becomes
complicated when the system has an unreliable
transmission channel and size of buffer is large. More
general study of system performance measures may be
achieved by means of simulation.

Simulation results show that data packet loss
probability (P2), which is caused by network node’s
failures, depends on selected γ an r values, but does not
essential depend on the data intensity λ.

Low rates of system channel failure γ and repair
intensity r has negligible impact on increasing data packet
losses and delay parameters.’

Data packet loss probability can be substantially
decreased by increasing system’s queue length, when the
losses happen due to queue’s overflow. It is possible to
calculate optimal queue length (K) for a given performance
values.

By increasing the number of independent working
channels for a network node it is possible to increase it
availability and traffic serving possibilities. For maximum
efficiency the optimal number of network channels should
be selected for required (demanded) system performance
values.

.
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Предложенная модель анализа исследования узла сети передачи данных, использующего один или два ненадёжные канала 
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конечной ёмкостью буфера обусловлены марковским процессом. На основе предложенной аналитической и имитационной
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Pateikiami analitiniai duomenų perdavimo tinklo mazgo, naudojančio vieną ar du nepatikimus duomenų perdavimo kanalus, veikimo
modeliai. Į nagrinėjamą ribotos buferio talpos eiliavimo sistemą su duomenų paketų nuostoliais patenka eksponentiniai paketų srautai,
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