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INTRODUCTION 

Research Relevance, Aim and objectives 

In recent decades’ smart gadgets, various micro electro-mechanic devices and 

other MEMs have become popular. In everyday human life, this can be considered 

because of increasing need to miniaturize previously bulky systems such as sensor 

nodes, structure health, body health monitoring, microcontrollers, etc. The main 

drawback and limitation of such devices are reliable power supply, since, as the 

purpose of wireless sensor node dictates, it is often not possible or too expensive to 

use batteries as the man power source and the external power supply is not 

implementable due to the location of the sensor node. This engineering challenge can 

be tackled utilizing renewable energy sources such as mechanical energy, thermal 

gradients, solar or wind energy, radiation, etc. It was recognized by [117] that the 

power consumption goal for devices of size <1 cm3 is 100 µW, MEMS, wireless 

sensor nodes, micro-RF receivers and other similar devices all use power ranging from 

10 nW to 1 mW, which is acknowledged as a realistic goal for modern energy 

harvesters. With advancing material science, we are now enabled to take advantage 

of energy conversion mechanisms that in the past was deemed as inefficient and not 

paying off, like photovoltaic, triboelectric, thermoelectric, piezoelectric etc. 

transducers. As some of these conversion mechanisms and devices using these 

mechanisms are efficient but need certain conditions like thermal gradients, direct 

sunlight or require substantial amount of volume like solar panels, water turbines, etc. 

Mechanical energy and vibrations are the most viable energy source for MEMS 

devices in terms of availability and ease of harvesting.   

To harness useful mechanical energy from ambient vibrations, various 

transduction mechanisms are used: electrostatic, electromagnetic and piezoelectric, 

but each of these has its pros and cons, such as the size, efficiency dependency on 

ambient vibration frequencies, sophisticated devices. From the latter, the piezoelectric 

transducer is recognized as the most promising due to its simplicity and efficiency, 

but it requires the transducer to be working on frequencies matching its natural 

frequency, thus significantly limiting its applications. Piezoelectric transducers are 

also difficult to use for low frequency vibration energy harvesting since the size of the 

device is increased significantly to lower its natural frequency. To counter these issues 

and to increase the efficiency of these harvesters, a number of strategies have been 

developed. 

In the literature review section of the thesis, the problematics and challenges of 

energy harvesting are analysed. Macro energy harvesting mechanisms such as solar 

or wind energy are only reviewed briefly to get a better overview of the situation in 

the market and to identify where the vibration energy harvesting stands. In the thesis, 

not only the possible applications, configurations and modelling were reviewed but 

also a great interest was shown for numerical investigation and experimental 

verification techniques of such devices. Different optimization techniques and 

possibilities of their use were also investigated. The main vibration energy to 

electricity conversion methods are covered shortly, summarizing their basic operation 

principles as well as advantages and disadvantages. Since piezoelectric energy 
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harvester relies solely on piezoelectric effect, this transduction mechanism was 

investigated in more detail as well as materials used and their characteristics. This 

work also involves frequency-up converting tandem where a low frequency resonator 

and a high frequency energy harvester are operating in tandem inducing high 

frequency vibrations in the energy harvester from the low frequency ambient vibration 

via impact coupling to produce high frequency power output at low frequency ambient 

vibrations. This work required substantial investigation of impact coupling modelling.  

In the first section the literature review, different types of transduction 

mechanisms for ambient energy, such as solar, wind, thermal and other types are 

presented focusing on mechanical energy harvesting and piezoelectric transducers. 

Novelty and fields of applications of such devices are reviewed. It is recognized that 

wireless sensor nodes (WSN) might be the best application for such energy harvesters 

due to their small scale and comparatively small power output.  

Aim of the work:  

The aim of this research is to analyse and develop different piezoelectric 

vibration energy harvester power output maximization techniques taking advantage 

of higher vibration modes and ensuring it’s operation at varying mechanical excitation 

conditions. 

To achieve the aim of the work, several objectives have been formulated.   

1. Develop a methodology for calculation of segmentation location of 

piezoelectric material layers to maximize the energy output from energy 

harvesters operating at higher transverse vibration modes and investigate 

distribution of energy in the active element.  

2. Develop mathematical and numerical models for nonlinear dynamic contact 

of vibration energy harvester’s piezoelectric elements and investigate the 

behaviour of developed models under vibro-impact conditions.  

3. Create a coupled piezoelectric-circuit finite element model (CPC-FEM) for 

piezoelectric energy harvester enabling prediction of its power output at 

different dynamic conditions while operating at harmonic excitation 

conditions at non-impacting and vibro-impacting modes.   

4. Determine mechanical and electrical parameters of the piezoelectric 

elements’ nonlinear dynamic contact interaction applying investigated 

methods and analyse their impact on effectiveness of the harvester.  

5. Develop mathematical and numerical models for optimization of the problem 

of piezoelectric vibration energy harvester maximizing harvested energy, 

perform the analysis of obtained results and experimentally verify results 

obtained from the created models. 

Object of investigation 

Nonlinear piezoelectric vibration energy harvester operating in dynamic/vibro-

impact contact conditions at higher vibration modes. The problem of increasing 

efficiency of such a harvester is addressed.  
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Investigation methods 

Investigation is preformed using advanced numerical and experimental methods 

and equipment which is also presented in the literature review. The models of 

piezoelectric vibration energy harvesters are created using FE method. The models 

were used for the development of methodology necessary for determining the best 

segmentation point of piezoelectric elements on piezoelectric vibration energy 

harvester operating in higher transverse vibration modes, investigation of nonlinear 

dynamic contact interaction of piezoelectric elements, and shape optimization of the 

piezoelectric energy harvester. In order to process the numerical and experimental 

results, the methods of numerical differentiation, integration and Discrete Fourier 

Analysis were used. The COMSOL Multiphysics software was used to perform the 

calculations of the FE models, and the MATLAB software was adopted for 

mathematical calculations.  

Several experiments were performed to verify the modelling results.  

• The results obtained from theoretical investigation and FE modelling of the 

methodology developed for determining the best segmentation point of 

piezoelectric elements on the piezoelectric vibration energy harvester 

operating in higher transverse vibration modes were performed. The results 

of modal analysis were verified using the PRISM holography system 

measuring the vibration amplitudes in y direction and verifying natural 

frequencies. Experiments were performed to verify the open-circuit voltage 

output of the active element of a constant cross-section and the optimally-

shaped active element obtained from FE model transient analysis. The 

experimental setup consists of a piezoelectric vibration energy harvester and 

two systems connected to it, the excitation system and the data acquisition 

system. The function generator AGILENT 33220A is used to control the 

harmonic excitation signal transmitted to the electromagnetic shaker. The 

single-axis miniature piezoelectric charge-mode accelerometer METRA KS-

93 was attached at the bottom of the electromagnetic shaker for acceleration 

measurements. The experiments were performed in the Institute of 

Mechatronics, KTU (Kaunas). The substrate layer was fabricated from 

structural steel by using water jet cutting. The piezoelectric material 

specimens were manufactured using a picosecond laser PL10100 (Ekspla). 

The laser plates were guided using galvanometric scanners (ScanLab). The 

piezoelectric material used was PVDF, namely DT1-028K by Measurement 

Specialties Inc., Hampton. The laser cutting experiments were done in the 

Centre of Physical Science and Technology (Vilnius).  

• The results obtained from model investigation of nonlinear dynamic contact 

of vibration energy harvester’s piezoelectric elements under vibro-impact 

conditions were verified experimentally in the Institute of Mechatronics, 

KTU (Kaunas). The first experiment was done wit hthe aim to compare the 

dynamic response of PVEH under contact excitation under open circuit 

conditions. Voltage-time dependence was obtained experimentally, and 

despite the transient process, its duration between impacts and overall 
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behaviour shows good agreement with the theoretical model. The second 

experiment was performed in order to compare modelling and 

experimentally obtained peaks of harvested power as a function of load 

resistance under highly nonlinear vibro-shock inputs to the transducer. The 

modelling results show good agreement with experimental the results. The 

displacements were measured using a Doppler Vibrometer (OFV-512 

differential laser interferometer, Polytec, Waldbronn, Germany) with a 

Polytec OFV-5000 controller (Polytec, Waldbronn, Germany) connected to 

it. The electromagnetic shaker signal was controlled by a 33220A function 

generator (Keysight, Santa Clara, USA), and the VPA2100MN voltage 

amplifier (HQ Power, Gavere, Belgium) was used to amplify the signal. A 

single axis accelerometer was attached to the acrylic glass support mounted 

on top of the shaker to measure the excitation amplitude (single axis 

accelerometer KS-93). The readings were taken by a 3425 USB oscilloscope.  

Defended statements 

The following scientific novelties are presented in the thesis: 

1. Developed and realized methodology to calculate the most effective 

segmentation line of piezoelectric material layers for piezoelectric vibration 

energy harvesters operating in higher transverse vibration modes. 

2. Developed mathematical and numerical model of vibration energy harvester 

element nonlinear vibro-impacting contact. Harvesters, consisting of Low 

Frequency Resonator (LFR) and Piezoelectric Vibration Energy Harvester 

(PVEH) tandem dynamic characteristics have been investigated.  

Statement of novelty 

1. A novel calculation methodology was proposed and implemented for the 

identification of optimal segmentation location (coincides with normal strain 

node) of piezoelectric elements for devices operating in the second or higher 

transverse vibration modes. Up to 7% increase in generated open circuit 

voltage was achieved. 

2. Optimal geometric and electrical parameters of frequency-up converting 

piezoelectric vibration energy harvester operating under highly nonlinear 

dynamic contact vibro-impact excitation were identified, increasing 

harvesters generated power output up to 150%. It was found that the highest 

power output is achieved if the dynamic contact location coincides with the 

transverse displacement nodal point of harvester operating in the second 

transverse vibration mode shape.  

3. Applying mathematical optimization method, the implemented methodology 

of piezoelectric vibration energy harvester geometrical shape optimization, 

which enabled an increase of its efficiency by 16%.  
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Practical use 

During the work, specific finite element models and calculation methodologies 

were created that can be used for very relevant and advanced investigation of vibro-

impact contact process dynamic in piezoelectric vibration energy harvesters and 

determining harvester’s optimal parameters, which enables cost reduction of 

experimental and theoretical investigations.  These models can also be applied for 

mechanical interaction synthesis of energy harvesters utilizing different transduction 

mechanisms.  

List of Publications 
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1. LITERATURE REVIEW. 

In the literature review section, the literature used for the thesis is reviewed 

starting from different sources of renewable energy and their applicability for MEMS 

devices. Mechanical and especially vibration energy was recognized as the most 

promising source for powering up such devices, thus in the next section different 

transduction mechanisms of vibration energy harvesting were investigated, including 

electromagnetic, electrostatic and piezoelectric ones. 

Among them, piezoelectric energy harvesting devices have received more 

attention due to their self-contained power without requiring external voltage source, 

highest energy density and good dynamic responses. The research also emphasized 

nonlinear energy harvesters and their figures of merit. Frequency up conversion and 

impact induced vibrations were of most interest since those were recognized as some 

of the most promising techniques to increase energy output for piezoelectric vibration 

energy harvesters. 

In general, the aim of this section is to briefly introduce the reader to the history 

of energy harvesting and present benefits and limitations of the piezoelectric 

transduction mechanism.  

1.1. Types of energy sources and their implementation for mechanical energy 

harvesting. 

In the past century, most of energy produced in the world was supplied by wood. 

Later, wood was replaced by coal, natural gas and petroleum. Now, the largest share 

of U.S. primary energy production is taken by petroleum which accounts for 36%, 

while renewable energy accounts only for 13% of total primary energy production [1]. 

Currently, the use of renewable energy both electricity generation and heat production 

have sky rocketed. In the EU, it is 16% with the goal for 2020 as high as 20% as 

identified by Zadeh (2011) [2]. If do not we consider the total energy generated but 

only electricity generated from renewable sources, the figures are different. In 2016 

in the EU, 28% of electricity was generated from renewable energy sources where in 

2004 this number was 14%, thus in just 10 years the renewable energy production has 

doubled. The growth achieved almost solely by the expanse of thee solar and wind 

energy sector.  

Solar power is probably the most abundant macro energy source. It is widely 

used for heating the water and houses and for the generation of electricity. Where the 

use of sun energy is limited or inaccessible (e.g., polar regions during winter seasons, 

cloudy days or nights, etc.), different energy sources are used geothermal energy being 

one of them. Iceland country report (2017) [3] states that Iceland will increase its 

electricity generation from geothermal energy by 12% from 2016 to 2020, and 

geothermal utilization is expected to rise by 70% from 2016 to 2050. Already in 2016, 

most of Iceland’s energy was carbon free and generated from local renewable energy 

sources. It needs to be emphasized that the renewable energy sources available for 

energy generation are usually very much dependent on geographical location, for 

example the energy of the ocean's tides is only feasible where the tides are strong and 

high, and the wind energy can only be used in locations with high average winds and 
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so on. These and many more limitations of renewable and green energy sources have 

been their biggest disadvantage for a long time. There is also a lack of technologies 

in order to store the energy generated by renewable energy sources while the fossil 

fuel can be easily transported and used where it is needed.  

The logic changes when downgrading from macro to micro energy sources to 

use with portable electronics or stationary micro devices like wireless sensor nodes. 

With consumer electronic devices like mobile phones getting ever hungrier for power 

the energy, certain saving techniques must be developed. It is stated by Donovan 

(2016) [4] that low power has been the most important electronic design criterion for 

at least the last twenty years, and thanks to Moore’s Law and a lot of smart engineers, 

semiconductor power levels have dropped dramatically, often consuming milliwatts 

in run mode and nanowatts in standby mode.  

As a result of dramatic decrease in consumption of power and development of 

ultra-low power devices like antennas, sensors and controllers, wireless sensor 

networks became feasible in reality with most of previous drawbacks eliminated. One 

of the most important drawbacks remaining is power supply. With decreased power 

consumption, the batteries now need replacements much more rarely, but they still do. 

This is undesired for devices which are used in difficult to access or inaccessible areas. 

As a remedy for this problem, a tandem of a battery and an energy harvester can be 

used significantly increasing the duration between battery replacements, or in the 

perfect case eliminating the need to replace the battery at all. The renewable energy 

sources to be used with such devices may be thermal energy, solar energy, radiation 

and mechanical energy. It is stated by Donovan (2016) [4] that there are several energy 

harvesting technologies in common use with some innovative techniques just over the 

horizon. The most common energy sources are light, heat, vibration and RF (see Table 

1.1 from [4]), but one or more of them may be more than adequate to power low-

power devices in an environment. 

Table 1.1 Power available from energy harvesting sources by Donovan (2016) [4] 

Source Source power Harvested power 

Light 

Indoor 0,1 mW/cm2 10 µW/cm2 

Outdoor 100 mW/cm2 10 mW/ cm2 

Vibration/motion 

Human 0,5m at 1 Hz  

 1 m/s2 at 50 Hz 4 µW/cm2 

Machine 1m at 5 Hz  

 10 m/s2 at 1 kHz 100 µW/cm2 

Thermal 

Human 20 mW/cm2 30 µW/cm2 

Machine 100 mW/cm2 1-10 mW/cm² 

RF 

GSM BSS 0.3 µW/cm² 0.1 µW/cm² 

Table 1.1 indicated that vibration and motion energy might not be the most 

promising energy source in terms of the amount of energy density, but it is the simplest 

to implement. Vibration energy harvesting can be implemented in different ways, but 
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overall, they are usually spring-mass systems exploiting resonance phenomena. The 

three main transduction mechanisms used for vibration energy harvesting are: 

• piezoelectric 

• electromagnetic  

• electrostatic 

All the devices presented in the literature review are summarized in tables 

classified by transduction type, and conclusions are drawn for suitability of the various 

techniques. Figure 1.1 by Beepy (2012) [5] illustrates the distribution of utilization of 

different vibration frequencies and accelerations by different kinds of vibrational 

energy harvesters. Ostasevicius (2017) [6] have outlined numerous applications for 

micro energy harvesters for vibration energy harvesting in biomechanical 

microsystems. Some form of transduction mechanism is obviously required to convert 

the kinetic energy into electrical energy. This mechanism has to be incorporated into 

the mechanical system that has been designed to maximize the energy coupled from 

the application environmental to the transducer. 

The transducer can generate electricity from the mechanical strain or the relative 

displacement present within the system, depending upon the type of the transducer. 

The use of active materials such as piezoelectrics is an obvious example that enables 

the strain to be directly converted into electrical energy. Electromagnetic and 

electrostatic transduction exploits the relative velocity or displacement that occurs 

within a generator. Each transduction mechanism has different characteristics such as 

damping effects, ease of use, scalability and effectiveness. 

 

Figure 1.1. Distribution of utilization of different vibration frequencies and 

accelerations by different kinds of vibrational energy harvesters [5]  

The suitability of each mechanism for any application depends largely on the 

practical constraints applied. Assuming no size constraints, electromagnetic 

harvesting will be most efficient because the coil can be large, with a high number of 
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turns and low coil resistance (larger diameter wire) providing very high potential 

coupling factors. The efficiency of piezoelectric generators is fundamentally limited 

by the piezoelectric properties of the material. The efficiency of electrostatic 

generators is reduced by technical challenges relating to charging the electrodes, the 

separation distances and the amplitudes of displacement as described by Beepy (2012)  

[5].  

1.2. Electrostatic transduction mechanism. 

Electrostatic generators consist of a variable capacitors whose two plates are 

electrically isolated from each other by air, vacuum or an insulator. In the simplest 

case, external mechanical vibrations cause the gap between the plates to vary, and 

hence the capacitance changes. To extract energy, the plates must be charged, and the 

mechanical vibrations work against the electrostatic forces present in the device as 

described by Beepy (2012) [5]. 

Electrostatic generators can be either voltage- or charge-constrained. Voltage 

constrained devices have a constant voltage applied to the plates; therefore, the charge 

stored on the plates varies with changing capacitance. This typically involves an 

operating cycle that starts with the capacitance being at a maximum value (i.e., the 

plates being at their closest). At this stage, the capacitor is charged up to a specified 

voltage from a reservoir while the capacitance remains constant as described by 

Knight (2008) [7]. The voltage is held constant while the plates move apart until the 

capacitance is minimized (𝐶𝑚𝑖𝑛). The excess charge flows back to the reservoir as the 

plates move apart and the net energy gained is given by and as described by Beepy 

(2012) [5]. 

Charge-constrained devices use a constant charge on the capacitive plates; 

therefore, the voltage will vary with changing capacitance. The plates are initially 

charged when the variable capacitance is at a maximum (plates closest together). As 

the capacitor plates separate, the capacitance decreases until 𝐶𝑚𝑖𝑛 is reached, and, 

since the amount of charge is fixed, the voltage across the plates increases. The initial 

charging can originate from a reservoir controlled by the system electronics and the 

initial charge is returned to the reservoir at the end of the cycle. Alternatively, a fixed 

charge can be obtained using electret materials, such as Teflon or Parylene. In either 

case, the mechanical work against the electrostatic forces is converted into electrical 

energy. In either case, 𝑉𝑚𝑎𝑥 must be carefully chosen to be compatible with the 

associated electronics and its associated fabrication technology. These two 

approaches have different strengths and weaknesses. The constant voltage approach 

produces greater energy levels but requires the electronics to provide a charging 

voltage of a different value to that used by the system electronics, which are powered 

from the reservoir. This requires a dual voltage system, but, since the precharging 

voltage level affects the damping in the generator, it is possible to use this approach 

to adjust its dynamics to suit different excitation characteristics. The charge 

constrained case produces less power but is simpler to precharge the plates to a voltage 

less than 𝑉𝑚𝑎𝑥.  

A third hybrid approach suggests to operate the generator in the charge-

constrained mode but place a fixed capacitance in parallel as stated by Knight (2008) 
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[7]. In this case, the energy from the charge-constrained system can approach that of 

the voltage constrained system because the parallel capacitance can be very large. The 

drawback of this approach is that more initial charge is required before the conversion 

process can begin; hence there are potentially more losses. Electrostatic generators 

can be broadly classified into three types shown in Figure 1.2: in-plane overlap 

varying, in-plane gap closing out-of-plane gap varying and voltage constrained as 

described by Zhu (2011) and Despesse (2005) [8, 9]. The relationship between the 

electrostatic force variation and the inertial mass displacement (𝑥) for the three 

configurations is shown in Table 1.2 [5].  

Table 1.2. Electrostatic force variation for the three configurations  

Structure Charge constrained Voltage constrained 

Out-of-plane gap varying Fe constant Fe~1/x 

In-plane overlap varying Fe~1/x2 Fe constant 

In-plane gap varying Fe~x Fe~1/x2 

 

Figure 1.2. Types of electrostatic generators. a) In plane, overlap varying, charge 

constrained, b) In plane, gap varying (plan view), c) Out of plane, gap varying, voltage 

constrained, [8] 

In the case of an electromagnetic generator, Beepy (2012) [5] stated that the 

damping coefficient arises from electromagnetic transduction. Some formulas are 

available for approximate evaluation of electromagnetic damping a more precise 

value for the electromagnetic damping can be determined by techniques such as finite 

element analysis (FEA). Electrostatic transduction is characterized by a constant force 

damping effect, denoted as coulomb damping, and a simple model is shown in Figure 

1.3. 

 

Figure 1.3. Model of an electrostatic resonant generator [5] 
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In [10] Wang et al. (2014) described an electrostatic energy harvester consisting 

of a four-wafers – glass base wafer, spacer, device wafer and top cap wafer. The 1 

cm3 volume device can operate in as low as 0.014 m/s-2 acceleration producing an 

output power of 1.2 µW. The second prototype was constructed taking advantage 

more advanced MEMS fabrication processes and described by Crovetto (2013) [11]. 

The experiments were done by exciting the device with vibrations from two 

perpendicular directions at harvester’s resonance frequency. The power of 32.5 nW 

was achieved with an external electrical load of 17 MΩ with acceleration amplitude 

of 0.3 m/s-2 at a frequency of 179.5 Hz.  

Zhang et al. (2016) [12] described an electrostatic energy harvester consisting 

of two cantilevers with their own proof masses suspended on top of each other. This 

results not in one, but in two resonant frequencies as the cantilevers where resonant 

frequencies of the cantilevers were 37 and 45 Hz. Moreover, the cantilevers were 

placed in respect to each other so that if one of the cantilevers is excited by its resonant 

frequency, it hits the other cantilever due to increased vibration amplitudes. Under 

vibration amplitude of 9.3 m/s-2 6.2-9.8 µW, the power output was achieved in the 

frequency range of 36.3-48.3 Hz.  

Suzuki et al. (2010) [13] have proposed an electrostatic vibration energy 

harvester with a passive, gap spacing, control method. The gap distance control in this 

case is used to avoid sticking the whole structure while in in-plane. Triboelectric 

properties of the material are used to create a repulsive electrostatic force between the 

different structures. In the generator application harvester with such structure 

separation demonstrated power output of 1 µW at acceleration of 2 g at 63 Hz 

excitation frequency. The drawback of such approach is the need to pre-charge the 

electrodes, which complicates the harvester design and requires an external power 

source.  

The two main types of electrostatic transducers were described in this section – 

constant voltage and constant charge electrostatic transducers. Both methods have 

their pros and cons as in both cases the work is done against the electrostatic forces 

and it is converted into electrical energy. Constant voltage devices generate larger 

power output, but it requires quite sophisticated electronics to charge the plates to the 

required voltage, and the voltage required rarely coincides with the power supply 

voltage used by the controller. Furthermore, while the plate charging voltage affects 

the damping of the transducer, it allows to effectively regulate the transducers 

dynamic properties so that it meets the parameters of mechanical excitation. Constant 

charge devices generate lower power output, but the plates are charged much more 

easily. There also exist a third type of electrostatic transducers as a hybrid between 

the two latter types described in [7-9], but this type is less popular due to quite high 

charge levels required for charging the plates, which as the result increases the 

electrical loses of such devices quite significantly.  

1.3. Electromagnetic transduction mechanism.  

To date, most types of rotating generators have been based upon electromagnetic 

transduction techniques and used in numerous applications from bicycle dynamos to 

large-scale power generation. Kinetic energy harvesting can exploit rotary generators, 
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such as those found in the Seiko kinetic watches [5] or linear transducers that are used 

to harvest power from vibrations. Well-designed generators, which are not 

constrained in size, can be extremely efficient at converting kinetic energy into 

electrical energy.  

Electromagnetic transduction mechanism produces comparatively high current 

but this is in trade off to voltage produced. Overall, this transduction mechanism has 

very few drawbacks as it does not require an external voltage source for electrodes 

and it does not have mechanical constraints. On the other hand, it scales-down poorly 

reducing its efficiency at micro-scale [8]. 

A comparison of different electromagnetic circuits and their relative merits were 

discussed by Suhaimi (2014) [14] and Warneke (2001) [15]. Yang et al. (2010) [16] 

have demonstrated an electromagnetic device consisting of a free-standing magnet 

that is suspended in a cavity formed from circuit board layers glued together and 

embedded with multi-layer copper coils. Two different designs were tested – without 

air holes and with air holes. Experimental results revealed that the device with no air 

holes produced lower voltage, but showed wider bandwidth and higher central 

frequency. This is explained by sever damping. The device with air holes 

demonstrated 9 mV voltage output and 40 Hz bandwidth (from 40 to 80 Hz) at 1,9 g 

acceleration, and the device produced 0.4 µW power output with an added 50 Ω 

electrical load. 

Sardini et al. (2011) [17] have proposed a novel electromagnetic transducer. 

This device is dedicated for energy harvesting from low frequency vibrations (below 

100 Hz). The problem of lowering the resonant frequency of the structure was tackled 

by using polymeric materials as resonators. The authors also offered a new magnet 

configuration that ensured an increase of spatial variation of magnetic flux. The device 

creates a relative movement between permanent magnets and planar inductors as 

described in [17]. Experimental investigation of linear device produced 290 µW at 

100 Hz frequency, which results in approximately 0.5% effectiveness. The device 

with polymeric resonators demonstrated 153 µW at 40 Hz resonant frequency, which 

results in 3.3% efficiency. Using polymeric resonators, the resonant frequency of the 

device was reduced from 100 to 40 Hz and the energy harvesting efficiency increased 

from 0.5% to 3.3%. Sardini et al. (2011) [17] note that the submitted values are peak 

values instead of RMS.  

Mahmoudi (2014) [18] presented a hybrid – a piezoelectric-electromagnetic 

energy harvester. The device consists of two PZT/Steel/PZT cantilevers joined in the 

middle by a permanent magnet, two coils are placed on top and on the bottom of the 

structure in parallel to magnet traveling path. In this case the cantilevers are used both 

for energy generation and guiding of the permanent magnet. As described by [18], 

“the principal benefits of this design are important reduction of the damping to 

enhance the harvested power and the exploitation of the active element nonlinear 

vibrations to significantly enlarge the harvester bandwidth”. The primary resonant 

frequency of the hybrid was found to be 93 Hz. It is also noted that the elastic part 

(PZT cantilevers) contribution is negligible inside its linear dynamic range, thus the 

device must operate at high displacement amplitudes (Duffing amplitude) to take 

advantage of PZT layers. Duffing amplitude is well described by Juliliard (2008) [19] 
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and Kacem (2010) [20]. It was found that at 93 Hz excitation frequency, the 

piezoelectric transducer contributed up to 61% of total power output of the device 

while electromagnetic transduction accounted for the remaining 39%. The 

electromagnetic transducer results were compared to electromagnetic transducers 

using pure levitation. It was shown that the approach by Mahmoudi (2014) [18] 

produced 60% higher power density (932 µW·cm−3·g−2) and 29% increase in 

frequency bandwidth (153–198 Hz). This approach is particularly interesting since 

using two transduction mechanisms enabled the authors to eliminate some of the 

electromagnetic transducer drawbacks if operated single-handedly such as levitating 

magnet friction to the walls of the tube. Abed et al. (2016) [21] adopted this traditional 

approach to purely electromagnetic transduction mechanism and implemented a 

device consisting of multiple magnets creating a multi-degree of freedom (MDOF) 

vibration energy harvester. Two different cases were investigated – a device with two 

and three moving magnets. In the case of two moving magnets, the device operated at 

5.1 Hz to 12 Hz bandwidth and normalized power of 10.4 mWcm-3g-2. The three-

magnet device demonstrated 4.6 Hz to 14.5 Hz bandwidth and power output of 20.2 

mWcm-3g-2.  

Another approach – using external magnets and applying an axial load to a 

cantilever generator – was reported by Zhu et al. (2008) [22]. The tuning configuration 

is shown in Figure 1.4.  

 

Figure 1.4. Schematic diagram of the tuning mechanism [22]  

The axial force is applied by two magnets, one located on the end of the 

cantilever and one aligned next to it. The tuning magnets can be arranged to provide 

either a compressive force (magnets repelling) or a tensile force (magnets attracting). 

The force is altered by varying the distance between the two tuning magnets using a 

linear actuator. The tuning range of the microgenerator was 67.6–98 Hz by changing 

the distance between two tuning magnets from 5 to 1.2 mm. More importantly, when 

used in the tensile mode, damping levels were unaffected. The University of 

Southampton has also developed electromagnetic generators based upon a cantilever 

spring arrangement. The earliest device comprised a pair of NdFeB magnets on a C-

shaped core at the free end of the cantilever beam located either side of a coil wound 

from enamelled copper wire as described by El-Hami (2001) [23]. This early device 

produced >1 mW from a volume of 240 mm3 at a vibration frequency of 320 Hz.  
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This generator was subsequently improved by adding a second pair of rare earth 

magnets forming the magnetic circuit by Glynne-Jones (2004) [25]. The improved 

flux linkage produced, for the same input vibration, more than twice the output 

voltage, and hence more than four times the instantaneous power. A smaller-scale 

version of this generator was developed during an EU-funded Framework 6 project 

VIBES by Beepy (2007) [24], and a cutaway of the optimized device is shown in 

Figure 1.5. 

 

Figure 1.5. Cutaway (two magnets and keeper removed) of the mini size generator 

design [24] 

This device is probably the smallest version of the device that can be practically 

assembled using conventional fabrication techniques (i.e., non-MEMS) and achieve a 

total packaged device volume of 850 mm3 as described by Beepy (2007) [24]. The 

final version of this device uses a 50 μm thick beryllium copper beam and a coil with 

2,800 turns wound from a 12 μm diameter wire with a coil resistance of 2,323Ω. The 

generator was designed to enable a manual frequency adjustment by altering the 

cantilever beam length. The power output into a 15-kΩresistive load was 50 μW at 

1.1 V from 0.6 m/s−2 vibrations at 50 Hz. This device was demonstrated powering an 

autonomous wireless condition monitoring sensor system (ACMS). The generator 

was coupled to a voltage step-up circuit, the output of which was used to charge a 

0.047 F capacitor. A low-power microcontroller was used to monitor the capacitor 

voltage and turn on the sensor system when sufficient energy has been stored. 

A low-frequency inertial linear electromagnetic generator designed for human 

motion has been described by von Buren et al. (2007) [26]. The design consists of a 

tubular translator which moves vertically within a series of stator coils. The translator 

is made up of a number of cylindrical magnets separated by spacers, the dimensions 

of which were optimized using finite element analysis. The optimum resonant 

frequency of the generator varies from 5 Hz to 10 Hz depending upon the location and 

the wearer. The prototype has a total device volume of 30.4 cm3 and produced an 

average power output of 35 μW when located just below a subject’s knee. The final 

type of the human-powered energy-harvesting approach covered here is the energy-

harvesting backpack. This approach exploits the relative motion and forces between 

the wearer and the backpack with the inertial mass being provided by whatever is 
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being carried. This is a logical opportunity for energy harvesting since the mass is 

already present, provided the energy can be extracted without significant extra effort 

from the wearer. Two versions have been realized. The first version, developed by 

Rome et al. (2005) [27], comprises a backpack with the load supported on a separate 

frame using a linear bearing and a set of springs. The load is free to move vertically 

relative to the frame, and a rotary electric generator with a rack and a pinion was used 

to generate electrical energy. This backpack generated a maximum power of 

approximately 7.37 W but at a cost of 19.1 W metabolic power, resulting in increased 

fatigue for the user. The second approach uses piezoelectric straps made from PDVF 

to extract the energy [28]. Simulations predicted that the straps could generate 45.6 

mW of power while carrying a 45 kg load at a walking speed of 2–3 mph. 

To conclude, the electromagnetic transducers demonstrate quite high levels of 

generated current, but in expense of generated voltage. Such a device does not require 

an external source of power to operate, but the amount of generated energy is directly 

proportional to the size of the transducer, mainly because a magnet is required. Zhu 

(2011) [8] have proved that the effectiveness of electromagnetic transducer decrease 

dramatically when going from macro to micro scale. Finally, due to the need of 

permanent magnets, electromagnetic transducers cannot be easily integrated into 

MEMS devices.  

1.4. Piezoelectric transduction mechanism. 

As described in [29], when a poled piezoelectric ceramic is mechanically 

strained, it becomes electrically polarized, producing an electric charge on the surface 

of the material. This is one of the two fundamental properties of piezoelectric material 

– the direct piezoelectric effect. The second one is referred to as the reverse 

piezoelectric effect and is exactly the opposite of the direct piezoelectric effect. As 

the piezoelectric material is deformed, charges are generated. These charges can be 

collected and transferred using electrodes attached on the surface of the piezoelectric 

material normal to deformation vector. As described in [29], the constitutive equations 

attributed to the piezoelectric property are based on the assumption that the total strain 

in the transducer is the sum of mechanical strain induced by the mechanical stress and 

the controllable actuation strain caused by the applied electric voltage. For reference, 

3 axis system is used for the piezoelectric materials. It is illustrated in Figure1.6.  

 

 Figure 1.6. Axis nomenclature [29]  
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Piezoelectric materials have been used for many years to convert mechanical 

energy into electrical energy. Piezoelectrics contain dipoles, which cause the material 

to become electrically polarized when subjected to mechanical force. The degree of 

polarization is proportional to the applied strain. Conversely, an applied electric field 

causes the dipoles to rotate, which results in the material deforming. The piezoelectric 

effect is found in single crystal materials (e.g., quartz), ceramics (known as 

piezoceramics) (e.g., lead zirconate titanate (PZT)), thin-film materials (e.g., sputtered 

zinc oxide), screen printable thick films based upon piezoceramic powders and 

polymer materials such as polyvinylidene fluoride (PVDF) as described by Beepy 

(2000) [30]. Such materials have anisotropic piezoelectric behaviour. This means that 

the properties of the material differ depending upon the direction of the strain and the 

orientation of the polarization (and therefore, the position of the electrodes). For 

example, the 3 directions refers to piezoelectric materials that have been polarized 

along their thickness (i.e., having electrodes on the top and bottom surfaces). If a 

mechanical strain is applied in the same direction, the constants are denoted with the 

subscript 33 (e.g., 𝑑33). If the strain is applied perpendicular to the direction of 

polarization (e.g., the 1 direction), the constants are denoted with the subscript 31 

(e.g., 𝑑31). These are illustrated in Figure 1.7 from [8], but for a more complete 

description, a reference is made to the IEEE standards (1987) [31].  

 

 

Figure 1.7. Two types of piezoelectric energy harvesters (a) 𝑑31 mode and (b) 𝑑33 

mode [8] 

Transducers utilizing the piezoelectric effect were extensively studied by 

different authors. Beepy (2006) [32] have presented an extensive comparative study 

of piezoelectric transducers with electromagnetic and electrostatic devices. Sirohi 

(2000) [33] has extensively studied the behaviour of piezoelectric elements in sensor 

modes. Sodano and Inman (2004) [34] have focused on developing a model to predict 

the amount of power capable of being generated through the vibration of a cantilever 

beam with attached piezoelectric elements. This work was one of the first attempts to 

create a reliable model to be applied with different boundary conditions and layouts 

of piezoelectric patches [34]. Electromechanical modelling of cantilevered energy 

harvesters is extensively studied by Erturk (2009) [35]. 

Mello (2014) [36] have focused on optimization techniques for piezoelectric 

transducers. Topology optimization method was adopted to maximize the harvesters 

output voltage with the requirement of quasi-static operation. Nakasone (2010) [37] 

have used the topology optimization method to maximize the electromechanical 
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coupling factor for the harvester operating at higher vibration modes. Optimal polling 

directions were found to avoid cancelation of charge to higher vibration mode shape 

but did not solve the problem of finding the normal strain nodal point to maximize the 

power output from harvesters operating in higher mode shapes. Ashraf (2013) [38] 

presented a bounded nonlinear vibration energy harvester fit to operate in a wide range 

of low frequency vibrations utilizing mechanical stoppers. The wideband range was 

achieved by the frequency-up conversion method as the harvester beam contacting the 

mechanical stopper seismic mass movement within the elastic limits of the spring was 

confined. Experimentally proven modelling results show that a device can efficiently 

operate in a range from 10 to 18 Hz with 65.74 µW cm3 power density at 10 Hz and 

341.68 µW cm3 at 18 Hz. The drawback of narrow bandwidth has also been addressed 

by Li (2010) [39] who have introduced an energy harvester with an L-shaped proof 

mass.  

The narrow bandwidth problem can be also tackled by developing multimodal 

devices which could resonate not at one but at multiple frequencies, thus increasing 

the operational frequency range of such a device. One example of such a device is a 

multi-modal energy harvester offered by El-Hebeary (2013) [40]. The device is a 

“delta” or “V” shaped plate with multiple magnets fixed to it. The device was shown 

to have three prevailing frequencies – 7.9, 12.3 and 18.7 Hz with peak power 

densities of 2 mW/cm3 at 7,9 Hz, 1,45 mW/cm3 at 12,3 Hz and 0,4 mW cm3 at 18,7 

Hz. For a V-shaped plate and two magnets, the prevailing frequencies were 8,1 Hz 

and 12,5 Hz with peak power densities of 2 mW/cm3 at low end of bandwidth and 1,4 

mW/cm3 at high end. Bai et al. (2014) [41] have developed a multi-modal energy 

harvester using a different approach, i.e., a spiral-shaped cantilever with tip mass in 

the form of magnets coupling with a magnetoelectric transducer. The achieved 

bandwidth was from 15 Hz to 70 Hz with 5 concentrated frequency peaks.  

Vibration energy harvesting can also be divided into three different fields:  

• Impact or shock energy harvesting when the energy is gathered from 

“pulses” of energy which are high in amplitude and acceleration. They last 

very shortly and are quite random in nature. Such impact energy can be 

harvested by resonant or non-resonant systems.  

• Harmonic vibrations. Such vibrations have a constant amplitude and 

frequency. Thus, devices with a very narrow band of resonant frequency 

may be used. Non-resonant devices are not efficient in such applications. 

Such vibrations are very rear in nature and can only be found in human 

made sources (motors, engines, mechanisms). 

• Random or ambient vibrations. This vibration source has very random 

amplitudes and frequencies. In such cases, devices with wide resonant 

frequency band or tunable devices may only be used.  

Electro-mechanical energy conversion mechanism is described by Erturk (2009) 

[42] and illustrated in Figure1.8. This conversion mechanism is controlled by 

constitutive laws described by Sirohi (2000) [33] and fundamental relations of 

mechanics of materials described by Rezaeisaray (2015) [43]. A charge is the integral 

of the normal component of electric displacement over the electrode area, and the 

electric displacement field generated in the piezoelectric layer during vibration is a 
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function of the strain distribution over transducer length as described by Bucciarelli 

(2009) [44]. A charge cancelation is possible if the piezoelectric material is bonded 

on a transducer surface that is undergoing deformations of higher vibration modes as 

discussed by Erturk (2008) [45]. In higher vibration modes, a certain strain node exists 

where the deformation field changes the sign. This strain node can be find from modal 

analysis of the cantilever. Erturk (2009) [42] have conducted a detailed research on 

how to avoid the problem of charge cancelation and find the strain nodes as well as 

segmentation techniques, but in this case modal analysis results were used for 

investigation of the mode shapes for displacement and normal strain. In addition to 

the conventional vibration energy harvesting from harmonic vibrations in resonant or 

off-resonant mode, there was a series of harvesters dedicated to impact energy 

harvesting as described by Kang (2008) and Cady (1946) [46, 47] which is a type of 

a non-linear generator. The aspects of modelling contact dynamics were thoroughly 

investigated by Djuguma (2009) [48].  

 

Figure 1.8. Schematic representation of electromechanical energy conversion in 

energy harvester [42] 

Figure 1.9 shows the concept of artificial hair cell proposed by Hana (2012) 

[49]. The hair structure is mounted on a flexible printed circuit board (FPCB).  The 

piezo resistive sensing element made of the CNT-PDMS composite is embedded in 

the bottom region of the hair structure because the maximum stress and, consequently, 

the maximum strain is applied on the region where the structure is bent by an external 

force. The horizontal and vertical cross sections of the sensing element are depicted 

in Figure 1.9(b) and 13(c), respectively. The sensing element is composed of three 

piezo resistive sensing resistors (R1, R2 and R3) and one common resistor (R0) as 

shown in the equivalent electrical mode in Figure 1.9(d).  

 

Figure 1.9. (a) Schematic view of proposed hair sensor device. (b) Horizontal and (c) 

vertical cross section of sensing element. (d) Equivalent electrical model of sensing element 

[49] 
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The common resistor is located at the bottom centre of the cylindrical hair 

surrounded by three sensing resistors as shown in cross sectional views. The bottom 

sides of the four resistors sitting on top of metal electrodes become measurement 

terminals that allow measurement of the resistance of individual sensing resistors. The 

other sides of the resistors are connected to each other at a single node inside of the 

hair structure. The three sensing resistors, R1, R2 and R3 have the same initial 

resistance. When a force is applied on the hair, the bending of the hair will deform the 

sensing resistors resulting in the strain-induced resistance changes. In contrast, the 

common resistor is located at the centre of circular hair structure. When the hair is 

forced to the right direction in Figure 1.9(c), the left part of the common resistor is in 

tension and the right part is in compression with the neutral surface of zero stress in 

the middle of cylindrical structure for homogeneous material.  

Zhu (2010) [50] developed a novel miniature wind generator for wireless 

sensing applications. The device consisted of a wing exposed in an airflow with a 

magnet attached on top of it and a bluff body. As the wing is exposed to the airflow, 

it bends backwards, and as the bending amplitude reaches the bluff body, the pressure 

created by the airflow is relieved and the wing bends backwards. As the frequency of 

this oscillation reaches the natural frequency of the structure, the device operates in a 

resonance mode. Although the dimensions of the device were of centimetre scale (120 

x 80 x 65mm), the produced power was just 470 µW at 2,5 ms-1 wind speeds, and with 

5 ms-1 wind speed, the power output achieved was 1.6 mW, which is more than enough 

for sensing application and wireless transmission of the recorded data. The device is 

shown in Figure 1.10. 

   
a)        b)         c)  

Figure 1.10. Principle of the energy harvester from [50] a) No airflow, initial bending 

due to gravity, b) Cantilever bent due to air flowing, c) Cantilever sprung back 

To conclude, the piezoelectric transduction mechanism is the most promising 

one due to its simplicity and quite high efficiency (5-20 %). Since the efficiency is 

highest when the transducer, i.e., the cantilever type piezoelectric energy harvester, 

operates in resonance mode, it is necessary that the fundamental frequency of the 

transducer would match the ambient frequency. This is one of the main drawbacks 
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that has to be overcome since the frequency of ambient vibrations is rarely stable. It 

is also quite difficult to decrease the fundamental frequency of the cantilevered energy 

harvester to the desired frequency, which also results in decreased efficiency. 

Different tuning and optimization techniques shall be reviewed to overcome these 

drawbacks.  

1.5. Mechanical Tuning. 

It is a common concept that micro-scale devices will harvest less energy than 

larger-scale systems. Furthermore, the efficiency of the transduction process is 

affected by issues with scaling. Finally, as generators are made smaller, the resonant 

frequency of the system tends to increase. It is, therefore, challenging to realize a 

MEMS generator, which is tuned for applications on machinery at around 100 Hz. 

Frequency tuning can be classified as either continuous or intermittent [5]. Continuous 

tuning includes any approach that is applied constantly to the generator. Intermittent 

tuning refers to the tuning methods that can be periodically activated to adjust the 

generator frequency and, when the desired value is reached, the tuning mechanism is 

turned off. Intermittent tuning consumes less energy than continuous tuning and is, 

therefore, the preferred option. Roundy (2002) [51] stated that it is impossible to gain 

a net increase in power generated using continuous frequency tuning mechanisms 

since the energy needed to run them will exceed an increase in power output generated 

by them. This, however, has been shown not to be the case by Zhu (2010) [52]. 

Therefore, both approaches are valid. The suitability of different tuning approaches 

depends upon the nature of the application. Different approaches can be analysed by 

considering: 

• The energy consumed by the tuning mechanism (should be minimized and 

must not exceed the energy produced by the generator); 

• The range of frequencies achieved; 

• The degree of frequency resolution; 

• Its effect on damping levels over the entire operational frequency range 

(ideally no effect). 

Tuning can be achieved by mechanical techniques, which change the 

mechanical properties of the structure in some manner, or by electrical tuning that 

exploits the influence of the electrical output load. Some mechanical approaches to 

frequency tuning will be considered next. 

Most vibration energy-harvesting devices are based on a cantilever spring 

structure, which can be used to highlight the possibilities for mechanical tuning. The 

principles described are generally applicable to all types of mechanical resonator 

structures. Mechanical tuning can be achieved by: 

• Altering the dimensions of the beam; 

• Moving the centre of gravity of the proof mass; 

• Varying the spring stiffness; 

• Straining the structure. 

The mechanical approach can include changing the dimensions of the system, 

moving the centre of gravity of the proof mass, varying the spring stiffness and 

straining the structure to impact its performance. The length of the cantilever can be 
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altered, for example, by altering the clamp position, and thus changing the distance 

from the fixed end l to the free end, as a result mass m is also changing and as well 

the resonant frequency 𝑓𝑟. In [52], it is shown how the ratio between the original length 

and the altered cantilever length impacts the resonant frequency. The length of the 

cantilever is directly responsible for the change in cantilevers resonant frequency, i.e., 

the shorter the cantilever, the higher the resonant frequency, and the longer the 

cantilever, the higher the resonant frequency as described by Zhu (2010) [52].   

Similarly, the centre of gravity of the added proof mass can be used for tuning 

the resonant frequency of the device. The detailed mathematical explanation of this 

method can be found in [53]. An example of such method could be Wu et al. (2008) 

[53] who have reported a piezoelectric energy harvester that consisted of a rectangular 

cantilever with a proof mass (10 x 12 x 38 mm) on the free end of the beam with a 

movable 30mm long M6 screw. The team could tune the resonant frequency of the 

device from 180 Hz to 130 Hz by moving the screw from one end to another as shown 

in Figure 1.11 As expected, the output voltage dropped when resonant frequency 

increased. This method is recognized for good tuning resolution but requires 

sophisticated mechanisms for real time tuning.  

 

Figure 1.11. Experimental result of frequency adjustment [53] 

Another approach is to vary the spring stiffness by placing an adjustable spring 

(𝑘𝑎) in parallel with the mechanical spring (𝑘𝑚). It can be outlined that this method 

always requires additional components other than cantilever and proof mass to 

operate, and they usually require quite high voltages to operate meaning the power 

output is reduced by power consumed for operation of the tuner.  

One of the best examples of increasing energy collection time by increasing the 

bandwidth of the harvester is the work of Bendame et al. (2015) [54] as shown in 

Figure 1.12. The authors have developed a device based on piecewise-linear 

oscillators. The device has a stopper to tune the stiffness ratio of the oscillator and the 

velocity of the moving object at the point of impact with the stopper. The authors tried 

to reach the best effective mass 𝑚 and stiffness 𝑘 ration as well as decrease the 

damping ratio. The authors developed a procedure to optimize the wideband MPG’s 

and found out that the optimization requires two additional steps to traditional 
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technique of minimizing mechanical energy losses through damping. Dominant 

factors determining the performance of MPG’s were stiffness ration ρ2 and the 

velocity of the structure at the point of impact. Both factors are controlled by changing 

the position of the stopper, the height or the distance from the fixing point of the 

cantilever. In conclusion, although the design of the wideband MPGs is more 

challenging than that of regular MPGs, they offer significant performance 

improvements justifying the added design costs. Specifically, wideband MPGs can be 

‘tailored’ to better fit the environmental vibrations, thereby maximizing the harvested 

energy.  

 

 

 

Figure 1.12. Schematic representation of wideband MPG by Bendame et al. (2015) 

[54] 

The other approach is by Khym et al. (2004) [55]. The authors presented impact-

based frequency up converted wide band piezoelectric harvester’s system at which 

two high frequency operating beams are struck at the same moment by a low 

frequency driving beam with a tip mass. In such a way, a big mass low frequency 

beam transfers its kinetic energy to high frequency low mass cantilevers exciting them 

in their resonant frequencies. The change of the driving beams’ stiffness during the 

contact allows the device to broaden its bandwidth by ~170% and additional gain of 

energy by 61 % in vicinity (from 7 to 10.5 Hz). The efficiency of power transfer is 

increased to approximately 85%. Each generator beam produces 377 µW peak power 

at 14.5 Hz under 0.6 g acceleration with the corresponding power density of 58.8 

µW/cm-3 as described by Khym et al. [55]. 

The other method for tuning the resonant frequency is variable spring stiffness. 

It is commonly used because it can be achieved through various methods: 

electrostatic, piezoelectric, magnetic or thermal mechanisms. Most of variable spring 

stiffness devices are continuously operated. Many examples of electrostatic tuning 

have been demonstrated in tunable micromechanical resonators and have not 

necessarily been applied to vibration energy generators as described by Adams 

(19995) and Charnegie (2007) [56, 57]. Electrostatic generators can be tuned by 

adjusting the voltage on the plates, as discussed earlier. The presence of the inertial 

mass in an energy harvester reduces the tuning effectiveness and increases the power 

required for tuning. Piezoelectric tuning has been demonstrated by using two 

piezoelectric elements on the energy harvester spring element. One of these elements 
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is used to harvest the energy, while, as described by Roundy (2004), the other element 

has a tuning bias applied to it. Thermal techniques utilise the variation in Young’s 

modulus of the spring material with the temperature or the thermal expansion of the 

material. This approach, however, requires relatively high powers and is thus avoided 

in practical energy harvesting applications. 

Magnetics have been used to alter the spring stiffness by applying external 

forces to the device. For example, the resonant frequency of a cantilever structure can 

be tuned by applying an axial load. The resonant frequency of a uniform cantilever 

with an associated buckling force, 𝐹𝑏, operating in the fundamental flexural mode 

with an axial load, 𝐹 (positive for a tensile load and negative in the compressive case), 

is given by Blevins (2001) [59]. 

From the last section, there are ways to increase the efficiency of piezoelectric 

transducers using the mechanical methods. These can be passive or active, but usually 

these include some drawbacks like the need for an external power supply and active 

control, increased device volume, etc. Nevertheless, in most cases the mechanical 

methods grant significant increase in generated energy.  

1.6. Electrical tuning. 

Electrical tuning is achieved by changing the value of electrical load and 

electrical damping that is directly related. It is difficult or impossible to achieve 

electrical tuning on electrostatic or electromagnetic transducers. Thus, only 

piezoelectric transducers are reported to be electrically tuned. The electrical tuning of 

piezoelectric transducer is achieved by changing the capacitance parameter. As 

reported by Beepy (2012) [5], basic bimorph piezoelectric cantilever generator can be 

represented with an equivalent circuit, as shown in Figure 1.13.  

 

Figure 1.13. Equivalent circuit of the piezoelectric generator with capacitive and 

resistive loads, where 𝐿𝑚, 𝑅𝑚, and 𝐶𝑚 represent the mass, damping, and spring in the 

mechanical part, respectively, and 𝐶𝑝 is the capacitance of the piezoelectric layer. 𝐶𝐿 and 𝑅𝐿 

are the capacitive and resistive load, respectively, and 𝑉 is the voltage across the resistive 

load [5] 

The transformer relates the mechanical domain to the electrical domain 

according to the model of the piezoelectric effect. For a piezoelectric bimorph, which 

operates in the 31 modes, ε is the dielectric constant of the piezoelectric material and 

𝐸 is the Young’s modulus of the piezoelectric material. Figure 1.14 compares the 

resonant frequencies and power output of electrically tunable piezoelectric generators 
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of different piezoelectric materials with varying load capacitances. Piezoelectric 

materials with a higher Young’s modulus, strain coefficient and lower permittivity 

provide a greater tuning range. Figure 1.14 shows that PZT-5A is the best of the four 

piezoelectric materials [52]. 

 

Figure 1.14. Change in the resonant frequency of a piezoelectric generator with 

different piezoelectric materials [52] 

Electrical tuning was demonstrated by Wu et al. (2006) [60] with a piezoelectric 

bimorph cantilever. One piezoelectric layer was used for frequency tuning, while the 

other layer was used for energy harvesting. Varying the load capacitance achieves a 

frequency variation of 3 Hz varying from 91.5 Hz to 94.5 Hz. A similar approach was 

demonstrated by Charnegie (2007) [57], and again one piezoelectric layer was used 

for energy harvesting, while the other is used for frequency tuning, as shown in Figure 

1.15.  

 

Figure 1.15. Piezoelectric bimorph used for electrical frequency tuning [60] 

Test results show that the resonant frequency can be tuned by 4 Hz with an 

untuned frequency of 350 Hz by adjusting the load capacitance from 0 to 10 mF if 

only one layer is used for frequency tuning. In this case, the output power remains 

constant, irrespective of the load conditions. If both layers are used for frequency 

tuning, then the same range of load capacitance was found to achieve a tuning range 

of 6.5 Hz. In this case, however, the output power decreased with increasing load 

capacitance. Electrostatic tuning has been demonstrated in a MEMS resonator by 
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Adams (1995) [56]. The resonator is not designed for energy harvesting but 

demonstrates the feasibility of electrostatic tuning with a resonant frequency of 25 

kHz and a tuning range from 7.7% to 146%. It uses the single comb structure shown 

in Figure 1.15 and a tuning voltage ranging from 0 V to 50 V. This is an example of 

continuous tuning and compatible with energy harvesters employing comb drive 

structures. It should be noted, however, that the greater the mass of the resonator as 

would typically be the case in an energy harvester, the less the frequency range can 

be adjusted. 

 

 

Figure 1.16. Schematic of the tunable piezoelectric generator [61] 

The use of external forces, applied by external magnets, was demonstrated by 

Challa (2008) [61] who reported an intermittently tuned piezoelectric microgenerator. 

The device has an untuned frequency of 26 Hz and a frequency range of 22–32 Hz. 

The tuning was realized by applying an attractive magnetic force perpendicular to the 

cantilever generator, as shown in Figure 1.16. The magnitude of the force can be 

altered by varying the distance between the two sets of tuning magnets, but it should 

be noted that the tuning mechanism had the unwanted side effect of also varying the 

parasitic damping over the frequency range. 

1.7. Strategies to broaden bandwidth. 

Traditional piezoelectric transducers employ the first mode shape for energy 

harvesting. The frequency of the first mode shape is the lowest, but the vibration 

amplitude is the highest and the frequency band comparatively narrow [8, 9]. High 

vibration amplitudes are a drawback due to increased loads on brittle piezoelectric 

ceramics and bigger volume of the device. Narrow bandwidth limits the possibilities 

of use for such device since the ambient vibrations have very wide and varying 

frequency spectra. Different techniques have been used by authors to widen the 

frequency band-width of the piezoelectric energy harvester, some of which are 

reviewed in the following chapter. A graphical summary of techniques for broadband 

increase are shown in Figure 1.17.  
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Figure 1.17. Overview on commonly used broadband techniques for vibration energy 

harvesting 

One of the methods for increasing the bandwidth is to use a mechanical stopper 

to limit the amplitude of the generator as described by Abed et al. (2016) [62]. The 

generator strikes the end stop, and this is found to increase the bandwidth of the device 

as the frequency slowly increases. It does not appear to work when the frequency is 

reduced.  

 

Figure 1.18. Hard and soft spring effects [5] 

Nonlinear generators utilise the spring stiffening or spring softening effect, 

whereby the resonant frequency varies as a function of amplitude (see Figure 1.18). 

The spring stiffening (or hard spring) effect means that the resonant frequency 

increases with amplitude. Such nonlinear devices have a larger bandwidth over which 

power can be harvested due to the shift in the resonance frequency. As with the 



34 

 

mechanical stopper approach, a generator demonstrating a hard spring nonlinearity 

will only increase its bandwidth as the frequency increases and will have no effect for 

decreasing frequencies (vice versa for the soft spring effect).  

Bistable structures (known as the snap-through mechanisms) can also be used 

for vibration energy-harvesting applications. Such structures effectively snap 

backwards and forwards between two stable positions at any frequency, provided that 

the acceleration stimulus is of a sufficient magnitude. The stored elastic energy has 

the effect of increasing the velocity of the structure for a given input excitation, and 

analysis reveals that the amount of power harvested by a nonlinear device is 4/π 

greater than that of the tuned linear device operated out of resonance. Bistable 

transducers have been investigated employing buckled spring-mass architecture to 

increase the bandwidth of the harvester as described by Bucciarelli (2009) [44]. 

Suhaimi (2014) [14] described a mechanism consisting of combined nonlinear 

hardening and softening mechanism which was aimed at widening the bandwidth as 

well as amplifying the low human motion frequency. This was achieved by adopting 

a translation to rotation motion converter. Nonlinearity was achieved by using 

mechanical and magnetic springs. Low frequency human motion was targeted in this 

research. Sardini (2011) [17] has described a method to increase the bandwidth of 

electromagnetic device by placing magnets on top of polymeric cantilever beam 

increasing the spatial variation of magnetic flux and changing the damping parameter. 

The harvester consisted of a conventional cantilever positioned on a flexible body 

beam. It was able to harvest energy from the first three vibration modes of the device 

with a large frequency spacing between the first mode (at 8.7 Hz) and the second mode 

(at 55.8 Hz). Mahmoudi (2014) [18] presented a hybrid piezoelectric/electromagnetic 

transducer bandwidth which was increased by exploiting nonlinear vibrations. The 

bandwidth of 153 Hz to 198 Hz was achieved. The L-shaped beam-mass structure 

investigated by Mahmoudi (2014) [18] could achieve harvesting energy from the first 

two vibration modes with ω2≈ 2ω1, while the third and the higher modes are far 

removed from the first two modes. Kacem (2010) [20] and Abed (2016) [21, 62] 

proposed multi DOF devices or investigated bistability or multistability [20] but 

designing a multi-degree of freedom vibrating structure in MEMS is more challenging 

due to the microfabrication limitations.  

Yang et al. (2015) [63] investigated an electromagnetic harvester based on a 

suspended beam with three permanent magnets (see Figure 1.26). The proposed 

design can harvest energy under three environment vibration frequencies of 369 Hz, 

938 Hz and 1184 Hz, respectively. Suzuki et al. (2010) [13] exploited an asymmetric 

gammadion spring as the vibration resonator to achieve multiple frequency energy 

harvesting corresponding to the resonant frequencies of 110 Hz, 165 Hz and 243 Hz, 

respectively. Since the frequencies of typical ambient vibrations are lower than 100 

Hz, it is more meaningful to achieve multiple modes in this low frequency region. A 

V-shaped energy harvester with multiple magnets was presented by El-Hebeary 

(2013) [40] who analysed the geometries of the V-shaped plate and the locations of 

the magnets in order to control the resonant frequencies and their spacing. This 

harvester can obtain three natural frequencies in the range from 8 Hz to 19 Hz but 

needs multiple energy conversion structures (multiple sets of magnets and coils).  
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A schematic diagram of the proposed multimodal vibration energy harvester by 

Bai (2014) [64] is shown in Figure 1.19. It consists of a spiral shaped cantilever beam, 

four permanent magnets, a ME transducer and a height adjustable holder. The spiral 

cantilever with the same width and thickness acts as the resonator of the harvester; 

and four permanent magnets are arranged and positioned at the innermost layer of the 

spiral beam acting as the proof mass. The ME transducer fixed on the holder is 

fabricated by one piezoelectric layer bonded between two magnetostrictive layers. 

Both the spiral beam and the holder are fixed on the housing of the harvester, and the 

energy conversion is achieved based on the relative movement of the magnets and the 

ME transducer. 

 

Figure 1.19. Schematic diagram of non-linear vibration energy harvester from [63] 

Impact induced vibrations are another method for bandwidth increasing. During 

an impact, not only the first natural vibration mode but also higher natural modes are 

excited. So after the impact, the cantilever shape may be represented as a 

superposition of the first and higher natural modes. The frequency of the body 

impacting to the actual harvester is only important for higher energy density, but the 

harvester will always vibrate in its natural frequency. This phenomenon enables 

frequency-up converting devices. High frequency harvesters can be used for energy 

harvesting from low frequency vibrations. Therefore, higher modes of the harvester 

can be excited due to random varying frequency or impulse-type excitations generated 

by ambient vibration sources. Dauksevicius (2013) [65] presented a frequency up 

converting harvester consisting of a high frequency energy harvester and a low 

frequency resonator. The low frequency resonator was vibrating under low frequency 

harmonic base excitation of 18.8 Hz and under the maximum vibration amplitude 

impacting a high frequency harvester forcing it into resonant vibrations of 374 Hz. 4 

Hz bandwidth of LFR was achieved at 0.5g acceleration. Frequency-up converting 

device capable of harvesting low frequency wide band vibrations and utilizing 

mechanical stops was developed by Ashraf (2013) [66]. The device was proven to 

operate in frequency band from 10 Hz to 18 Hz.  

Abed (2016) [62] has designed a system of magnetically coupled cantilevers. 

The device demonstrated a significant 130% increase in bandwidth. Frequency-up 

converters can be design with a magnetic or mechanical coupling. The most 

significant drawback is that the devices that are the ferromagnetic elements further 
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increase the volume of the device, thus decreasing the output energy density. Yang et 

al. (2011) [67] proposed a frequency-up converting harvester in which the frequency-

up conversion phenomenon is achieved by magnetic repulsion forces. As the main 

advantage of a magnetically coupled device is the non-contact coupling, this 

theoretically could prolong the lifetime of the device. One more example of a 

magnetically coupled device is provided by Najafi (2008) [68]. It is an 

electromagnetic energy harvester which consists of cantilevers with magnets and coils 

on top of the resonating cantilevers. The device was proven to generate up to 170 nW 

of power in ambient vibration range of 10 Hz to 100 Hz.         

The biggest drawback of low frequency harvesters is the vigorous vibration 

amplitude. This drawback was tackled by Li (2015) [69] who investigated the 

feasibility of using a rectangular piezoelectric bistable laminate vibrating in its second 

resonant mode. The second mode was chosen to avoid extremely large vibration 

amplitudes of a low frequency device. By adding a proof mass, the second natural 

frequency was lowered from 99 Hz to 65 Hz; and a bandwidth of 11 Hz was achieved. 

As described by Abed (2016) [62], the size of a low frequency harvester is the main 

reason behind low density of energy generated by it, since low resonant frequency is 

not achievable without relatively big proof mass added. Li (2016) [70] described a bi-

resonant structure consisting of two piezoelectric cantilever harvesters with natural 

frequencies of 15 Hz and 22 Hz. As one of the harvesters entered a resonance mode, 

a dynamic contact was achieved between the two harvesters further increasing the 

power output. Bandwidth of 14 Hz was achieved at 1g acceleration. Li (2016) [71] 

continued the research of bi-resonant devices and designed a harvester tandem. With 

the centre frequency of the device being at 20 Hz, the bandwidth of 25 Hz was 

achieved. The frequency bandwidth of 12 Hz was achieved (from 10 Hz to 22 Hz). 

Sharvari (2015) [63] have proposed a nonlinear PVEH using a compliant orthoplanar 

spring (COPS) as shown in Figure 1.20. With the addition of lightweight masses at 

different locations, closed multiple nonlinear hardening resonances are obtained 

during the forward as well as the reverse sweep further extending the nonlinear PVEH 

bandwidth. 

 

Figure 1.20. Schematic of the COPS-PVEH (all dimensions are in mm) [63] 

In Figure 1.20, the P1, P2 and P3 are the locations at which the piezoelectric 

material segments were attached to measure the voltage outputs, while M1-4 denotes 



37 

 

locations at which four different masses were attached. The author noted that by 

adding the masses M1-4 the different modes were brought closer together; and the 

open circuit voltage output from piezoelectric segments P1-3 was increased. But this 

was done with a trade-off of the mass and volume of the device.   

The Finite Element Modelling and structural optimization were developed in 

parallel with each other and are closely related. With recent breakthrough in FEM, 

structural optimization did not fall behind either. As described by Park (2007) [72], 

the linear static FEM problem is primarily solved in structural optimization; and 

structural optimization is classified according to the characteristics of the design 

variables and shown in 1.3 table. Due to complexity of the problems, the investigators 

are yet focusing on linear static problems. This leads to the need to reduce the 

complexity of the solved problems in case a dynamic problem is solved. This may 

sometimes lead to oversimplification of the problem, and thus to wrong results.  

Table 1.3. Classification of structural optimization [72] 

Structural optimization Design variable 

Size optimization Design variables are thickness or section properties. The domain 

for FEM is fixed during optimization. 

Shape optimization Design variables are the shapes of structures. The domain for FEM 

is changed during optimization. 

Configuration optimization The transformation matrices of FEM are functions of design 

variables. Sometimes it is considered as shape optimization 

Topology optimization Design variables are the elastic modulus of the elements for FEM. 

The problem can be viewed as a material distribution problem. 

In the investigation of the different strategies to broaden the bandwidth, a 

conclusion can be drawn that multi-DOF and frequency-up converting devices with 

impact coupling are among the most promising. The Frequency-up converting devices 

with magnetic coupling can be excluded to the sheer size of such devices, and the 

magnetic coupling is only achieved with magnets which increase the volume of the 

device significantly. Mathematical optimization is also among the most promising 

approaches.  

1.8. Numerical models and methods of their analysis. 

There are many different methods for analytical modelling of piezoelectric 

elements. In the next section, some models shall be reviewed briefly with their 

theoretical derivations and some examples from the literature reviewed.  

The simplest model of a piezoelectric transducer for the thickness mode 

vibration is described by Fujiwara (192) [74], and can be directly obtained from the 

description of phenomena observed by Erhart (2016) [75]. Both authors discovered 

the difference of potential is proportional to the strain of a piezoelectric crystal.  

The above-mentioned model requires the conversion of the mechanical part of 

the system into electric circuit using electro-mechanical analogies. It allows the whole 

electro-mechanical system to be analyzed using circuit theory-based methods.  
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Some of the simplest equivalent circuit models for a piezoelectrical harvester 

operating close to or at the resonant frequency is the model proposed by Van Dyke 

and described by Sherrit (1997) [76]. The simple Van Dyke model is frequently 

adopted for simulations of electromechanical resonance, for example, by Sedra (2003) 

[77]. The Van Dyke model is a capacitor connected in parallel to resistive, capacitive 

and damping elements, which in their turn, are connected in series. The components 

here represent the mass, mechanical damping and elastic compliance, in other words 

the electrical components mimic the most important mechanical properties. The 

capacitor represents here the electrostatic capacitance of two parallel plates of 

piezoceramics [78]. Even though the Van Dyke model is simple, it has its limitations, 

namely modelling materials with high losses as described by Sherrit (1997) [76] are 

highly inaccurate and unreliable. This drawback was tackled in a new model, the main 

difference between the previously described Van Dyke model and Sherrit model is 

that Sherrit (1997) [76] employs complex numbers instead of real numbers. This 

allows modelling of piezoelectrical materials with losses. Guan (2004) [79] noted that 

when a piezoelectric material is fixed on a mechanical structure (i.e., the cantilever), 

its boundary conditions are changed. As a result, the Van Dyke or Sherrit models are 

no longer accurate. Having this assumption in mind, Guan (2004) [79] developed a 

model for loaded piezoelectric ceramics with multiple resonant frequencies. An 

additional capacitor and a resistor branch are added if compared to the Van Dyke 

model. 

For the loaded piezoelectric ceramics conditions, the Van dyke model was 

extended as described by Kim (2008) [80]. Multiple branches of RLC components 

were added to include the mechanical resonance modes in the extended Van Dyke 

model. In the extended Guan (2004) [79] model, each series RLC branch stands for 

mechanical resonance mode. The drawback of the Guam model is that it is difficult to 

determine RLC components values for resonance frequencies that are close or 

overlapping with each other as described in [79]. Kim (2008) [80] proposed a 

systematic procedure to model a piezoelectric ceramic (Easy Model), equivalent 

circuit model that can represent the electrical behaviours of unloaded and loaded 

piezoelectric ceramics. The main advantage of modelling the piezoelectrical 

transducer as a purely mechanical system is that the model can be developed without 

knowing the exact parameters of the materials. Only the measured impedance of the 

piezoelectrical material is needed. The model is also highly accurate as up to 99% 

average accuracy is reported for piezoelectric materials that are not mounted on a 

structure. For mounted piezoelectrical materials, the accuracy drops to 93% but that 

is still an impressive result.   

The diagram of this model is shown in Figure 1.21 where 𝑥1 and 𝑥2 are the 

displacements of lumped masses 𝑚1 and 𝑚2, respectively 𝑘 is the spring, 𝐹 is the 

force exciting the mechanical part of the system, 𝑅 is resistance and 𝐿 is the induction 

of electrical circuit, and between mass 𝑚1 and 𝑚2 there is a piezoelectric transducer. 

The state space equations are useful for the simulations and development of control 

system. Erturk (2008) [81] have implemented single-degree-of-freedom modelling for 

of the harvester beam as it allows simple expressions for the electrical outputs. The 

well-known SDOF relation is employed for mathematical modelling. The authors 
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have shown a comparison between the Euler-Bernoulli and SDOF model predictions 

for harmonic excitation as well as corrections of the SDOF model for transverse 

vibrations. Proper corrections were also introduced for corrections factor in the 

electromechanically coupled SDOF equations.  

 

Figure 1.21. Two-degree of freedom mechanical system with piezoelectric element 

[5] 

Erturk (2009) [82] have investigated the cantilevered piezoelectric energy 

harvesters. The L-shaped beam-mass structure was developed as a new piezoelectric 

energy harvester configuration. A linear distributed parameter model for predicting 

the electromechanically coupled voltage response and displacement response of the 

harvester structure was developed and investigated. The computational scheme of the 

proposed harvester is shown in Figure 1.22 where the 𝑚1−3 represents the masses of 

different beam segments, while 𝐿1−3 stands for the lengths. 𝑌𝐼1−3 represents the 

Young’s modulus and the moment of inertia for each beam. W1−3 indicates the 

displacement variables of the system, and x1−3 is the reference frames. The 

electromechanically coupled modelling approach is based on the experimentally 

validated coupled distributed parameter model proposed by Erturk (2008) and (2009) 

[83], [84].  

 
a) b) 

Figure 1.22. (a) Schematic of the L-shaped piezoelectric energy harvester, (b) the 

reference frames and the displacement variables [82] 
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Erturk (2014) [85] presented analytical electroelastic modelling of piezoceramic 

patch-based energy harvesters structurally integrated on thin plates. Analytical, 

distributed parameters and electrostatic model based on Kirchhoff’s plate theory for 

energy harvesting from thin plates can be used for prediction of energy output of such 

device, predicting its dynamic parameters, etc. A similar electrostatic beam model was 

devised by Erturk and Inman (2009) [86]. Closed-form steady state solutions for 

electrical and structural responses were obtained for harmonic force excitation. Multi-

mode and single-mode analytical frequency response functions (FRFs) between 

voltage output-to-force input and displacement-to force input were derived and 

generalized for different boundary conditions of thin plates as described in [86].  

Closed-form steady-state solutions for the electrical output and structural 

response were derived for harmonic force inputs. There exists many different 

approaches for solving the numerical models but the favourite is the Finite Element 

Method (FEM). The description of the Finite Element matrix formulation can be 

found in [87]. Establishing nodal solution variables and element shape functions over 

an element domain, which approximate the solution, leads to finite element 

discretization. These models are usually implemented in commercially available 

software tools. Erturk (2009) [88] has developed a finite element model for 

piezoelectric energy harvester plates. An electromechanically coupled finite element 

(FE) plate model was presented for predicting the electrical power output of 

piezoelectric energy harvester plates. The presence of conductive electrodes were 

taken into account in the FE model. The derivation given in this paper was for both a 

unimorph and bimorph piezoelectric energy harvester configurations.  

A rectangular finite element with three mechanical degrees of freedom per node 

(namely, the displacements 𝑢, 𝑣 and 𝑤 in x, y and z directions; θ represents the 

electromechanical coupling for the given direction) shown in Figure 1.23 is used to 

model the substructure and the piezoceramic layers as described by Erturk (2009) 

[88]. If we assume that the surfaces normal to bending direction are ideally covered 

with a perfectly conductive electrode, we can conclude that 1 DOF (namely, the 

voltage across these electrodes) is more than enough for modelling the electrical 

response. The rectangular element shown in Figure 1.23 has a total of 13 DOF.  

 

Figure 1.23. Piezoelectric finite element with 12 mechanical degrees of freedom and 1 

electrical degree of freedom [88] 
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It was shown that the electromechanical FE model can successfully predict the 

analytical and the experimental results of the bimorph reported in the literature. Sheng 

(2013) [89] has modelled an impact driven piezoelectric energy harvester from human 

motion. The design of the harvester is a cantilevered beam sandwiched between two 

PZT – 5A layers with an attached proof mass at the free end. A schematic drawing of 

the proposed system is shown in Figure 1.24(a) and 1.24(b) where 𝑀 is the mass, 𝐶 is 

the damping coefficient, 𝐾 is the stiffness, 𝑖(𝑡) and 𝑣(𝑡) are the current and voltage 

outputs and 𝐹𝑃(𝑡) is the time varying force applied. Finite element modelling was 

used for simulating the optimal resistance. The coupled piezoelectric-circuit finite 

element method was performed using the software ANSYS.  

 
a) b) 

Figure 1.24. (a) A schematic diagram of piezoelectric bimorph. (b) General 

electromechanical model of piezoelectric vibration energy harvester. [89] 

Using the harmonic analysis, the current, voltage, dissipated power over the 

electrical load and mechanical characteristics were obtained. The meshed FEM model 

of the piezoelectric cantilever beam with the asymmetric tip is schematically shown 

in Figure 1.25. The open circuit resonant frequency of this model is about 260 Hz in 

modal simulation.  

 

Figure 1.25. Meshed finite element model of piezoelectric cantilever beam with 

connecting external load resistor [89] 

Harmonic analyses were performed with multiple external connecting 

resistances as well as the frequency response curves of output average voltage with 

various load resistors.  
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Two piezoelectric sheets are attached on the neutral plane to have opposite 

polarization directions in a serial connection while two sheets have the same 

polarization direction in a parallel connection. For the construction of the FE model, 

three different types of elements are used in ANSYS (see Figure 1.26). Figure 1.26 

shows an example of the FE modelling for a bimorph with a parallel connection. A 

resistor is connected between the top electrode and the piezo-substrate interface 

(electrically grounded); and the top and the bottom electrodes are additionally 

connected using a wire with a very small resistance value.  

 

Figure 1.26. FE modelling of piezoelectric bimorph using ANSYS. [90] 

Park (2012) [90] proposes a new design for a cantilever-type piezoelectric 

energy harvester in which a tip is excited by any rotary motion of mechanical devices. 

A coupled field finite element model for the harvester was constructed using ANSYS. 

A piezoelectric bimorph is a cantilever-type harvester composed of two piezoelectric 

layers. According to the polarization directions of the two piezoelectric sheets, the 

bimorph is categorized into serial connections and parallel connections.  

Sunithamani (2013) [91] has developed a FE model to investigate the effect of 

substrate thickness on performance of energy harvester through simulation. To 

evaluate the energy harvesting performance of four structures, electrical, frequency 

and mechanical analysis was carried out. In this study, the thickness of the substrate 
varied for different structures, namely structure 1, structure 2, structure 3 and structure 

4 to evaluate its performance using software COMSOL Multiphysics. Four different 

geometries are designed and modelled using the software COMSOL Multiphysics. In 

all structures, steel is used as a substrate; and single-crystal PMN is used as a 

piezoelectric material. Structure 1 has a rectangular shape cantilever with a 

rectangular cross section. Piezoelectric material is applied along the full length of the 

cantilever (RCRCpmnFL). Structure is a cantilever with rectangular shape and a 

trapezoidal cross section. Here, the piezoelectric material is applied along the full 

length of the cantilever (RCTRCpmnFL). A cantilever with an optimized piezoelectric 

layer length produces more output voltage [89]. Therefore, structure 3 and structure 4 

are designed as structure 1 and structure 2 but with a reduced piezoelectric layer 

length.  

Kumar (2014) [92] used the Finite Element Modelling to couple the mechanical 

and electrical domains in unimorph cantilever-type piezoelectric energy harvester. 

The linear piezoelectric theory and the first order shear deformation theory have been 

adopted. The model was coupled with a piezoelectric circuit consisting of a single 

electrical load for a better prediction of electrical damping and power output of the 

harvester. 24 mechanical and 1 electrical DOF were consider for each node, and 
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degenerated shell elements were used. Kumar (2014) [92] used the Genetic Algorithm 

(GA) to increase the energy density of PVEH with different piezoelectric materials. 

The aim function was to maximize the power density within the selected frequency 

range. The obtained cantilever shapes were then used in the developed numerical 

model. The structure under investigation was excited harmonically at low ambient 

vibration frequencies of 90-110 Hz. The developed model was used to investigate the 

performance of the PVEH with different piezoelectric materials attached. The results 

obtained from the finite element model show that the piezoelectric materials of KNN-

LS-CT (2 wt.%) yield 35% higher mean power density than PZT material.  
Rezaeealam (2011) [93] developed a numerical finite element model for the 

evaluation of performance of a unimorph vibration energy harvester based on 

magnetostrictive effect of the Galfenol rod. The Armstrong model is used in the 3-D 

FE model of the energy harvester. This approach is similar to piezoelectric transducers 

since it also utilises bending stresses. The COMSOL Multiphysics software was used 

to model static 3-D. The Armstrong model was chosen due to its ability to predict 

multiaxial magneto-elastic behaviour in magnetostrictive materials and because it is 

suitable to incorporate into FEM of the whole structure. The obtained numerical 

results were compared with the experimental results verifying the modelling results 

in a good agreement.   

The mathematical optimization methods have been developed to solve a variety 

of different optimization problem formulations. General engineering optimization 

imposes constraints such as various design specifications and environmental 

restrictions. Optimization problems with constraints are called constrained 

optimization. Various numerical methods have been developed to solve the 

mathematical problem. Some popular methods are introduced in Table 1.4.  

Table 1.4. Classification of numerical methods of constrained optimization [72] 

Classification Algorithm Remarks 

Direct 

method 

Primal method 

Sequential linear programming (SLP) A solution of an 

approximated subproblem is 

obtained and the optimum 

solution is found in an 

iterative process 

Gradient projection method (GRP) 

Feasible directions method (FDM) 

Sequential or recursive quadratic 

method (SQP or RQP) 

Transformation 

method 

Sequential unconstrained 

minimization 

technique (SUMT) 

A constrained problem is 

Transformed to an 

unconstrained 

problem and the solution is 

found in an iterative manner 

Penalty function method 

Barrier function method 

Augmented Lagrangian method 

Indirect 

method 
Hybrid method Optimality criteria method 

The KKT conditions of the 

formulated problem are used 

to drive an iterative solution 

strategy 
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The indirect method tries to solve the Karush–Kuhn–Tucker necessary 

conditions. It has been verified to be numerically inefficient. The method is rarely 

used except for topology optimization methods, which have an extremely large 

number of design variables. The primal method is generally used in engineering 

optimization; and this chapter explains the basis of the most primal methods. 

Optimization techniques have various adaptations, but the biggest interest is 

received where the trial-and-error method is too expensive or the calculations are too 

complicated to reach the desired results without mathematical optimization. One of 

such fields is the structural design. The geometrical or other parameters of the 

structure can be determined by evaluating the inputs (operating conditions), choosing 

the right input to output relation (parameterizing the structure), choosing the right state 

variables, selecting the right criterion function for evaluating performance of the 

structure during optimization and iterative modification of the system under research, 

all of the later described by Pister (1972) [73] in his extensive study.  

Migliniene (2017) [94] have utilised mathematical optimization techniques to 

enhance the efficiency of PVEH operating in a vibro-impacting mode. The aim of the 

optimization problem was to maximize the vibration amplitudes of the cantilever 

vibrating in higher mode shapes with constraints to modal characteristics, namely the 

second resonant frequency of the structure. The gradient projection method (GPM) 

was used. The authors demonstrated significantly improved energy conversion 

efficiency which was achieved by enhancing the higher-mode responses even at 

highly variable excitation frequencies and amplitudes.    

The same approach, namely vibro-impacting excitation was investigated by 

Ostasevicius (2015) [95]. In this case, the third vibration mode was used to extend the 

dynamic efficiency of the PVEH. The higher vibration modes in this case are pursued 

to increase the amount of deformations, and thus the amount of energy generated. The 

authors also demonstrated the time fold increase in generated open circuit voltage 

output when segmenting the piezoelectric material to avoid cancelation effects. The 

material was segmented at strain node points obtained from the modal analysis. The 

same as described by Migliniene (2017) [94] – the GPM method – mathematical 

optimization problem solving method was used to obtain the cantilevers of optimized 

shape. The aim function was to minimize the mass of the cantilever with restrictions 

for eigen frequencies, namely the third resonant frequency.  

Modelling of the piezoelectric or any other energy harvesting device that 

exploits electromechanical energy conversion and works in resonant mode can be 

modelled by using an equivalent circuit or a finite element modelling.  

1.9. Experimental verification techniques. 

After the mathematical and numerical models are developed and solved, they 

have to be verified experimentally, recreating the conditions described in the models 

as precisely as possible. In this section, a review of different techniques, methods and 

equipments used by different researchers shall be reviewed. The experimental 

equipment usually consists of the signal generating equipment to mimic the 

environmental excitation frequencies and other dynamic properties, and signal 

detection/recording equipment to record the devices electrical and/or dynamic 
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response to that excitation. The first example provided by Sheng (2013) [89] used real 

excitation (human body walking) instead of artificial excitation signal generator. 

Sheng (2013) [89] has modelled an impact driven piezoelectric energy harvester from 

human motion and the obtained results were tested experimentally. The key 

components of the impact vibration harvester prototype include PZT bimorph, the 

cylinder with four ridges and the tip and the shaft as shown in Figure 1.27(a).  

 

Figure 1.27. (a) Photograph of the actual prototype, showing the PZT bimorph, shaft, 

cylinder, cover and frame. (b) Assembled prototype  

Since the PZT material is fragile and brittle, the large displacements of 

conventional low-frequency harvesters have commonly been restricted by additional 

mechanical stops. The experimental arrangement used to test the impact-driven 

energy harvester is shown in Figure 1.27(c). The dimensions of the prototype device 

were 90 x 32 x 24mm. The device is made of a cylinder sliding inside a metal shaft, 

with PZT bimorph beams inside the shaft. The device is mounted on a vibrating 

structure which in this case is a human body walking on a treadmill. Thus, a low 

frequency vibration was induced on the bimorph as the metal cylinder moved through 

the cylinder and hit the PZT bimorphs. The walking speed of the human was 5 km/h. 

The vibrations induced were frequency up converted, since the low frequency 

movement of the human body induced high frequency vibrations of the PZT bimorphs 

via impact coupling. An oscilloscope was used to measure the output voltage with 

varying electrical load conditions. As described by Sheng (2013) [89], due to the 

resonant frequency of the PZT bimorph with the tip being 260 Hz, we set up the 

sample rate of the oscilloscope to 2,5 ks/s−1 (nearly ten times as much as the resonant 

frequency) and adopted high-resolution sampling for more accurate measurements. 

The RMS voltage was measured of a 40 s sample. The duration was displayed on the 

oscilloscope screen with high resolution; and the corresponding output power was 
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calculated by the equation 𝑃 = 𝑉2/𝑅. Open circuit voltage output and power outputs 

with different resistive loads were also measured. The peak of the measured power 

output was 51 µW. Multiple experiments were conducted. It was revealed that a stable 

power output and operation is also possible at higher walking speeds producing even 

higher power output, but an optimized electrical load is required for the maximization 

of power output. The theoretical results were confirmed.  

Erturk (2014) [85] conducted experiments to verify the analytical electroelastic 

modelling of piezoceramic patch-based energy harvesters structurally integrated on 

thin plates. The experimental setup used is presented in Figure 1.28. The materials of 

the host plate were aluminium. It was fixed on all sides firmly with additional 

aluminium clamping bars with two lines of screws ensuring perfect fully fixed 

boundary conditions. The screws were tightened with a torque wrench to establish 

zero deflection and zero slope symmetrically along all four edges of the host plate. 

The whole plate with its setup can be seen in Figure 1.28(a). An off-the-shelf 

piezoceramic patch (T105-A4E-602 from Piezo Systems, Inc.) is attached on the host 

plate. The host structure with the aluminium plate attached was excited with a sine-

sweep using an electromechanical shaker as shown in Figure 1.28. The surface 

transverse vibrations were recorded using a laser vibrometer Polytec PDV 100. 

Different scenarios were investigated, namely with open and short circuit electrical 

boundary conditions of the piezoelectric patch and some intermediate values of 

resistive load. The system response measured by force transducer was recorded using 

signal analyser shown in Figure 1.28. Moreover, the laser vibrometer and oscilloscope 

reading of voltage across resistive loads were recorded by the same signal analyser. 

By defining the force transducer’s output as the reference channel in the signal 

analyser, the experimental FRFs including the velocity response-to-force input and 

voltage output-to-force input were obtained. 

 

Figure 1.28. Erturk experimental setup. (a) aluminium plate clamping; (b) aluminium 

plate with piezoelectric material; (c) piezoelectric material; (d) laser vibrometer; (e) signal 

analyser; (f) electromechanical shaker; (g) amplifier; (h) signal generator; (i) aluminium 

plate without piezoceramic patch. Erturk (2014) [85] 
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The analytical FRFs are obtained between the displacement of the plate and the 

force input, whereas the velocity of the plate is measured using the laser vibrometer. 

In this work, the analytical velocity FRFs were obtained simply multiplying analytical 

displacement FRFs with 𝑗𝜔. The mechanical damping ratios used in the analytical 

model were extracted from the experimental voltage FRF by applying the half-power 

point method at the resonance frequencies. The gathered data such as peak electrical 

outputs (voltage, current and power) versus load resistance values were investigated 

and used with numerical methods and programming tools to create experimental 

voltage FRFs with different resistive loads as shown in Figure 1.29. Experiments 

verified the developed models with good agreement.  

 

 

Figure 1.29. Experimental voltage FRFs for a set of resistive loads [85] 

Another work was done by Sunithamani (2015) [96] who verified the derived 

FE model and mathematical optimization models experimentally. The piezoelectric 

energy harvester prototypes were fabricated. The dynamic waveform of the voltage 

from the harvester was analysed, and the performance was measured. The 

performance was compared among the four prototypes in terms of the design shape 

and the voltage waveform, and the charged voltages and powers. The charging 

performance was measured using a 10 μF capacitor, and the accumulated voltage was 

measured for one minute. We roll the mouse at a random velocity to excite each 

harvester, and the measurements were done 10 times for each harvester. Accumulated 

voltages and power outputs were measured and compared for different designs. 

As for the displacement measurement, the laser vibrometry is recognized as the 

most suitable method employed by numerous authors, including Rezaeealam (2011) 

[93] and Migliniene (2017) [94]. The later used the Polytec scanning laser Doppler 

vibrometer to measure the frequency response of the piezoelectric cantilevered energy 

harvester (5 x 0,5 x 0,05 mm).  Not only a single frequency measurement was taken 

but also random excitation frequency responses were measured. The harvester was 

mounted on electromagnetic shaker that in turn was connected to function waveform 

generator Agilent 33220A and amplified by the linear amplifier EPA-104 (Piezo 

Systems Inc., Woburn, MA, USA). The interference optical laser signal generated and 

registered by the Polytec OFV 512 fibre-optic interferometer was transformed into an 

electrical signal using a Polytec OFV 5000 vibrometer controller via an MSV-Z-40 
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Scanner controller and transmitted to a Polytec Vibroscan DAQ PC for the analysis 

as described by Miliniene (2017) [94]. The voltage output of piezoelectric segments 

was recorded by an oscilloscope PicoScope 3424 (PicoTechnology Ltd., St Neots, 

UK). The experimental setup can be seen in Figure 1.30. Multiple open circuit output 

voltage signals were recorded during the experiments since the harvesters under 

investigation had multiple piezoelectric segments attached.  

 

Figure 1.30. Experimental setup by [94]: 1 – laser positioning and scanning 

equipment, 2 – microscope, 3 – harvester, 4 – fibre-optic interferometer, 5 – scanner 

controller, 6 – oscilloscope, 7 – function waveform generator, 8 – amplifier, 9 – vibrometer 

controller, 10 – vibro-scanner 

Rezaeealam (2011) [93] used a more modest laser displacement measurement 

system as shown in Figure 1.31. Here, the harvester is mounted on top of 

electromagnetic shaker with an accelerometer attached to measure the amplitudes of 

excitation. To measure the vibration amplitude of the tip of the harvester, a laser 

sensor was employed. 

 
Figure 1.31. Experimental setup by [93] 

1.10. Section Conclusions.  

This section presented a review of recent publications as well as the main 

theoretical concepts and principles used in the field of energy harvesting. Firstly, 

different types of abundant energy that could be used for energy harvesting were 
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discussed as well as their applicability for MEMS systems. This was followed by a 

review of most common mechanical or more particularly vibration energy harvesting 

transduction mechanisms such as electromagnetic, electrostatic and piezoelectric. A 

focused analysis was done in different methods for increasing the bandwidth of 

piezoelectric and hybrid energy harvesters including mechanical and electrical 

resonant frequency tuning. It was decided that the highest potential is seen in the 

piezoelectric transduction mechanism that is operating in higher transverse vibration 

modes, since higher modes operate at higher frequencies, and thus carry more energy 

that can be harvested. The drawback of this is the fact that high operation frequencies 

are hard to find in an ambient environment. Thus, the decision was made to use the 

frequency up conversion principle to convert the low frequency vibrations of the 

ambient environment to high frequency vibrations in the piezoelectric energy 

harvester. Since higher vibration modes have multiple strain nodes which would 

normally cancel out the charge collected in a single electrode, an electrode 

segmentation technique has to be developed for optimal segmentation of such 

electrodes.  

The following conclusions were drawn from the completed analysis: 

1. It was decided to designate a piezoelectric vibration energy harvesting device 

for vibration energy harvesting from low frequency vibration energy sources, 

since low frequency vibration energy is abundant in industrious and everyday 

life applications. 

2. For electromechanical conversion, piezoelectric transduction mechanism was 

chosen due to its simplicity and good energy densities. Ease of manufacturing 

of such devices also plays an important role the selection.  

3. After the review of different resonant frequency tuning methods, it was 

decided to further investigate piezoelectric transducers operating at higher 

vibration modes and transducers utilizing frequency-up conversion for energy 

harvesting from low frequency energy sources.  

4. Coupled finite element models were developed for the vibration energy 

harvester operating at higher vibrations modes and a finite element model for 

vibration energy harvesting tandem consisting of a Low Frequency Resonator 

(LFR) and a Piezoelectric Vibration Energy Harvester (PVEH) and operating 

in vibro-impacting mode for a better understanding of the dynamics of such 

devices. The FE models were coupled with electrical circuit, which enabled 

the prediction of power output for such devices.  

5. FE model was chosen to be implemented in the COMSOL Multiphysics 

program with a coupled SPICE electrical circuit attached.  

6. It was decided to develop mathematical algorithms for solving geometry 

optimization problems for piezoelectric energy harvesting devices. 

7. Vibrometry and holographic measurement systems were chosen as the main 

stands to perform experimental studies and verify numerical simulation results. 
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2. MODELING OF AUTONOMOUS PIEZOELECTRIC ENERGY 

HARVESTING DEVICES. 

The chapter presents the mathematical models used for modelling the object 

under the investigation for this thesis – the piezoelectric vibration energy harvester 

operating in higher transverse vibrations mode and frequency-up converting mode. 

Since the aim of this thesis is to analyse and develop different piezoelectric vibration 

energy harvester power output maximization techniques, taking advantage of higher 

vibration modes and ensuring their operation at varying mechanical excitation 

conditions, the reader is first briefly introduced to electromechanical coupling 

modelling. The piezoelectric consecutive equations are also described and analysed 

in this section. The Bernoulli beam theory is introduced, since it is the theory behind 

the bent beam, which is the basis of piezoelectric cantilevered energy harvester 

operation principle. Modelling of the dynamics of the piezoelectric harvester, 

including cross-coupling between the elastic variables and the dielectric variables was 

done. To estimate the power output of a piezoelectric or any other energy harvester, 

it is necessary to account for the size of the electrical load used. For this purpose, the 

CPC-FEM model is described. Since one of the methods to maximize the power 

output of the piezoelectric vibration energy harvester operating at low frequencies is 

the frequency-up-conversion, and this can be achieved by impact coupling, the Hunt 

and Crossley nonlinear contact model was described and implemented for mechanical 

contact modelling. Another technique for harvester power output maximization is 

mathematical optimization. The shape of the harvester can be optimized to maximize 

the amount of the normal strain with constraints to the parameters, like the geometric 

shape or the eigen frequencies. The mathematical optimization problem was 

formulated for solving the dynamic problem using equivalent static load technique. 

For the numerical analysis of the obtained results certain numerical analysis methods 

are necessary. For this purpose, a Discrete Fourier Analysis was investigated deeper. 

Mathematically, the DFT or discrete Fourier transform is a method to convert a finite 

sequence of equally spaced samples. 

2.1. Electromechanical coupling.  

For linear piezoelectric material, the equations describing the electromechanical 

conversions can be written as shown in (2.1, 2.2) and described by Erturk (2009) [82]. 

The equations link electrical displacement with piezoelectric strain constant and 

permittivity or strain vector with compliance and vector of applied electrical field. 

The equation (2.1) and (2.2) refer to a situation where the piezoelectric element is 

used as an actuator rather than sensor/generator.  

εi = Sij
Eσj + dmiEm, (2.1.) 

Dm = dmiσi + ζik
σ Ek ; (2.2.) 

here, the indexes i, j =1, 2, …, 6 and 𝑚, 𝑘=1, 2, 3 refer to different directions within 

the material coordinate system. Since the object of this thesis is the vibration energy 
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harvester which operates in a generator mode equation, (2.1) and (2.2) are re-written 

as shown in equation (2.3) and (2.4).  

𝛆i = 𝐒ij
D𝛔j + 𝐠mi𝐃m, (2.3.) 

𝐄i = 𝐠mi𝛔i + βik
σ 𝐃k ; (2.4.) 

here, σ is a stress vector (N/m2), ε – a strain vector (m/m), E – a vector of applied 

electric field (V/m), ξ – permittivity (F/m), d – matrix of piezoelectric strain constants 

(m/V), S – matrix of compliance coefficients (m2/N), D – a vector of electric 

displacement (C/m2) and g – matrix of piezoelectric constants (m2/C), β – permittivity 

component (m/F). As described by Erturk (2009) [82], the superscripts D, E and σ 

represent the measurements taken at constant electric displacement, constant electric 

field and constant stress. In the matrix form, the equations (2.1-2.4) can be written as: 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝜀4

𝜀5

𝜀6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16

𝑆21 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26

𝑆31 𝑆32 𝑆33 𝑆34 𝑆35 𝑆36

𝑆41 𝑆42 𝑆43 𝑆44 𝑆45 𝑆46

𝑆51 𝑆52 𝑆53 𝑆54 𝑆55 𝑆56

𝑆61 𝑆62 𝑆63 𝑆64 𝑆65 𝑆66]
 
 
 
 
 

 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6]
 
 
 
 
 

+

[
 
 
 
 
 
𝑑11 𝑑21 𝑑31

𝑑12 𝑑22 𝑑32

𝑑13 𝑑23 𝑑33

𝑑14 𝑑24 𝑑34

𝑑15 𝑑25 𝑑35

𝑑16 𝑑26 d36]
 
 
 
 
 

[

𝐸1

𝐸2

𝐸3

], (2.5.) 

and 

[

𝐷1

𝐷2

𝐷3

] = [

𝑑11 𝑑12 𝑑13 𝑑14 𝑑15 𝑑16

𝑑21 𝑑22 𝑑23 𝑑24 𝑑25 𝑑26

𝑑31 𝑑32 𝑑33 𝑑34 𝑑35 𝑑36

]

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6]
 
 
 
 
 

+ [

𝑒11
𝜎 𝑒12

𝜎 𝑒13
𝜎

𝑒21
𝜎 𝑒22

𝜎 𝑒23
𝜎

𝑒31
𝜎 𝑒32

𝜎 𝑒33
𝜎

] [

𝐸1

𝐸2

𝐸3

] ;   (2.6) 

If the device is poled along the axis 3, and assuming the piezoelectric material 

used is a transversely isotropic material such as PZT or similar, many of the above 

parameters can be cancelled out or derived from other parameters. Non-zero 

compliance coefficients are found as shown in (2.7-2.11). 

𝑆11 = 𝑆22, (2.7.) 

𝑆13 = 𝑆31 = 𝑆23 = 𝑆32, (2.8.) 

𝑆12 = 𝑆21, (2.9.) 

𝑆44 = 𝑆55, (2.10) 

𝑆66 = 2(𝑆22 − 𝑆12); (2.11) 

As described in [29], the non-zero piezoelectric strain constants are d31 = d32 and 

d15 = d24. Finally, the non-zero dielectric coefficients are 𝑒11
𝜎 = 𝑒22

𝜎  and 𝑒33
𝜎 . 

Subsequently, the equations (2.5) and (2.6) are simplified to: 
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[
 
 
 
 
 
𝜀1

𝜀2

𝜀3

ε4

𝜀5

𝜀6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13 0 0 0
𝑆12 𝑆11 𝑆23 0 0 0
𝑆13 𝑆32 𝑆33 0 0 0
0 0 0 𝑆44 0 0
0 0 0 0 𝑆44 0
0 0 0 0 0 2(𝑆11 − 𝑆12)]

 
 
 
 
 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜏23

𝜏31

𝜏12]
 
 
 
 
 

+

[
 
 
 
 
 

0 0 𝑑31

0 0 𝑑32

0 0 𝑑33

0 𝑑15 0
𝑑15 0 0
0 0 0 ]

 
 
 
 
 

[

𝐸1

𝐸2

𝐸3

], (2.12) 

and 

[

𝐷1

𝐷2

𝐷3

] = [

0 0 0 0 𝑑15 0
0 0 0 𝑑15 0 0

𝑑31 𝑑31 𝑑33 0 0 0
]

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6]
 
 
 
 
 

+ [

𝑒11
𝜎 0 0

0 𝑒11
𝜎 0

0 0 𝑒33
𝜎

] [

𝐸1

𝐸2

𝐸3

] ;      (2.13)  

The piezoelectric strain constant d can be defined as the ratio of the developed 

free strain to the applied electric field. The subscript dij refers to the electric field; the 

first subscript denotes the direction of polarization created in the material as the 

electrical field E is zero or, alternatively, is the strength of the applied field. The 

second subscript j denotes the direction of the applied stress or strain. The actuation 

matrix differs for the brittle PZT ceramic (2.3) and flexible PVDF piezoelectric foil 

(2.14). This is mainly because PVDF foil is a non-isotropic material and the applied 

electrical field in the direction of polarization will result in very different strains in 1 

and 2 directions.   

[
 
 
 
 
 

0 0 𝑑31

0 0 𝑑32

0 0 𝑑33

0 𝑑25 0
𝑑15 0 0
0 0 0 ]

 
 
 
 
 

 ;    (2.14) 

When we speak of piezoelectric material, the problem of strain or stress applied 

involves not only the elastic movement of particles inside the material but also the 

created electric and magnetic fields. This requires using both elastic equations of 

motion and Maxwell’s partial differential equations to account for piezoelectric effect.  

 

Figure 2.1. A piezoelectric transducer arrangement in d31 mode for energy generation; 

In Figure 2.1, voltage V is applied to a piezoelectric transducer which is 

polarized in the direction 3. This voltage generates the electric field [29] 
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𝐸3 =
V

𝑡
, (2.15) 

which strains the transducer. In particular, 

𝜀1 =
Δ𝑙

𝑙
, (2.16) 

in which 

Δ𝑙 =
𝑑31𝑉𝑙

𝑡
, (2.17) 

 

Figure 2.2. Charge deposition on a piezoelectric transducer - An equal, but opposite 

force, F, is not shown 

Since positive electric field will usually generate positive strain in the direction 

3, the piezoelectric constant d31 is usually a negative number. dij is also referred to as 

the ratio between the short circuit charge per unit area floating between the two 

electrode layers. Figure 2.2 illustrates that a force F applied in the direction 3 generates 

stress that is transferred through the short circuit. If we assume that the stress is 

supplied equally to the directions 1-3 and the electrodes in the planes 1-2, the short 

circuit charge per unit area and divided by applied stress is denoted by dp. The charge 

in the direction 3 is found from (2.18) 

𝜎3 =
𝐹

𝑙𝑤
, (2.18) 

which results in the electric charge 

𝑞 = 𝑑33𝐹 , (2.19) 

The piezoelectric constant gij refers to the electric field along the i-axis if it is stressed 

along j-axis. Therefore, in Figure 2.3, the applied force F results in the voltage (2.20) 

𝑉 =
𝑔31𝐹

𝑤
, (2.20) 

Where dij is also referred to as the ratio between the short circuit charge per unit area 

floating between the two electrode layers. Figure 2.4 illustrates that the force F applied 

in the direction 3 generates the stress that is transferred through the short circuit.  If 

we assume the that the stress is supplied equally to the directions 1-3 and the 
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electrodes in the planes 1-2, the short circuit charge per unit area and divided by 

applied stress is denoted by dp. The charge in the direction 3 is found from (2.18). 

Coefficient gij is also referred to as the ratio between the strain developed along 

the j-axis to the charge per unit area induced on the electrodes parallel to the planes 

1-2. As shown in Figure 2.5, the electric charge Q induced to the electrodes the 

piezoelectric elements thickness will decrease by the amount calculable from (2.21). 

Δ𝑙 =
𝑔31𝑄

𝑤
, (2.21) 

 

Figure 2.4. An open-circuited piezoelectric transducer under a force in direction 1 - 

An equal, but opposite force, F is not shown 

 

Figure 2.5. A piezoelectric transducer subject to applied charge 

The elastic compliance constant Sij is the strain in the i direction to stress in j 

direction ratio. It represents the tolerance of the materials to elastic deformations. The 

higher the compliance constant, the easier to stress or strain the material. For shear 

forces, the subscripts are 4-6 and strains and stresses are denoted as 1-3. If the 

compliance constant is measured with short-circuit electrode conditions, a superscript 

“E” is used, and the superscript “D” – for open-circuit conditions. As described in 

[29], the dielectric coefficient eij is the charge per unit area in the i-axis due to an 

electric field applied in the j-axis. The superscript σ in e11
σ  refers to the permitivity for 

a field applied in the 1 direction when the material is not restrained. 

The piezoelectric coefficient kij is one of the most important coefficients, since 

it represents the ability of the piezoelectric material to transform the mechanical 

energy into electrical and vice versa. It basically represents the electromechanical 

conversion efficiency. The i index indicates if stress or strain is acting on the direction 

j and the electrode direction as well as power output is always perpendicular to the i-
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direction. Evaluating the kij coefficient in piezoelectric material can be done in several 

ways, for example, for the actuator, it can be done by leaving the electrodes open-

circuited and applying force onto the element. The element shall deflect, the 

magnitude of deflection ∆z can be measured directly, and using the formula (2.22), 

the mechanical work done can be calculated.  

𝑊𝑀 =
𝐹Δ𝑧

2
; (2.22) 

Subsequently, due to direct piezoelectric effect, the charges will be generated in the 

piezoelectric material. Thus, the amount of electrical energy can be calculated using 

formula (2.23)  

𝑊𝐸 =
𝑄2

2𝐶𝑝
; (2.23) 

which is stored in the piezoelectric capacitor.  

𝑘33 = √
𝑊𝐸

𝑊𝑀
=

𝑄

√𝐹Δ𝑧𝐶𝑝
; (2.24)  

The coupling coefficient can be written in terms of other piezoelectric constants. In 

particular, k2. 

𝑘𝑖𝑗
2 =

𝑑𝑖𝑗
2

𝑆𝑖𝑗
𝐸𝑒𝑖𝑗

𝜎 = 𝑔𝑖𝑗𝑑𝑖𝑗𝐸𝑝; (2.25) 

Here, Ep is the Young’s modulus of the piezoelectric material. The stiffness of the 

transducer varies depending on whether it is operated in short-circuit or open-circuit 

conditions, with the latter making the material less stiff. This is the result of the 

charges accumulated on electrodes not being collected, since during the oscillation, 

the positive and negative charges are accumulated on the surface, and thus cancelling 

each other out. Short and open circuit stiffness are denoted by coefficients Ksc and 

Koc respectively (2.26): 

Koc

Ksc
=

1

1−k2 ;                  (2.26) 

As shown in the constitutive (2.1), there are only three independent elements within 

the piezoelectric coupling tensor d. These are d33 and d31 and d15, since the latter is 

only related to shear stress, which is not usable in energy harvesting; and d33 is rarely 

used for energy harvesting from transverse direction vibration energy harvesting 

applications. Only d31 is considered and described here. Figure 2.6 shows the d31 

mode. The i in dij denotes the axis along which the voltage is generated, i.e., along 

the z-axis. The second dumber indicates the direction of stress application. In Figure 

2.6, the stress T is applied in the direction 1 as the structure to which the active element 

is attached vibrates in the vertical (3) direction.  
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Figure 2.6. Piezoelectric material operated in d31 mode 

For d31 modes, the constitutive (2.3) and (2.4) can be simplified to: 

{
𝑆1 = 𝑆11

𝐸 ∙ 𝜎1 + 𝑑31 ∙ 𝐸3

𝐷3 = 𝑑31 ∙ 𝜎1 + 𝜀33
𝑇 ∙ 𝐸3

;   (2.27) 

All the above-mentioned equations define the electromechanical conversion of the 

piezoelectric vibration energy harvester operating in d31 mode.  

2.2. Bernoulli beam theory. 

Since a simple cantilevered energy harvester is considered in this thesis, its 

deformations are best described by the Bernoulli beam theory. Consider dynamic 

equilibrium of a beam element of length dx as shown in Figure 2.7.  

 

Figure 2.7. Computational scheme of a simple active element 

By using Newton’s law, some additional assumptions concerning the 

acceleration of this typical beam element are made.  

• The motion is purely translational in the y-direction, 

• Beam elements remain rectangular during the motion. 

With these assumptions, setting the vertical forces of the element equal to mass 

times acceleration gives: 

∂V

∂x
= −w + ρA

∂2y

∂t2
; (2.28) 

while assuming moments produce: 

𝜕𝑀

𝜕𝑥
= 𝑉; (2.29) 
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where 𝜌 is the mass density of the material, A is the cross-section area and y = y(𝑥, 𝑡) 

is the transverse motion measure as shown in figure 2.7. Combining (2.28) and (2.29) 

yields: 

𝜕2𝑀

𝜕𝑥2
= −𝑤 + 𝜌A

𝜕2𝑦

𝜕𝑡2
; (2.30) 

From the geometry of the deformation and using Hook’s law 𝜎𝑥 = 𝐸𝜀𝑥, assumption 

e), one can show that: 

𝜕2𝑦

𝜕𝑥2 = −
𝑀

𝐸𝐼
 ; (2.31) 

where E is the modulus of elasticity and I is the area moments of inertia of the cross-

sectional about neutral axis-z. Finally, putting (2.30) and (2.31) together gives the 

desired result: 

𝐸𝐼
𝜕4𝑀

𝜕𝑥4
= 𝜌𝐴

𝜕2𝑦

𝜕𝑡2
; (2.32) 

which is the Euler Bernoulli beam theory equation. For the case of no external loading, 

𝑤 = 0, and so (2.32) it becomes: 

𝑏2
𝜕4𝑀

𝜕𝑥4
+

𝜕2𝑦

𝜕𝑡2
= 0; (2.33) 

where 𝑏2 = EI/𝜌A. To properly formulate a boundary value problem, we also need 

boundary conditions for this problem type. These conditions at the ends of the beam 

follow the undergraduate strength of materials, and a simply supported end, the 

deflection moment is zero; hence: 

𝑦 = 0, (2.34) 

𝜕2𝑦

𝜕𝑥2 = 0; (2.35) 

For a built in or a fixed end, the deflection and slope are zero. 

𝑦 = 0, (2.36) 

𝜕𝑦

𝜕𝑥
= 0; (2.37) 

The case of a free end dictates that the moment of shear force is zero: 

𝜕2𝑦

𝜕𝑥2 = 0, (2.38) 

𝜕3𝑦

𝜕𝑥3 = 0; (2.39) 

2.3. Piezoelectric harvester dynamics modelling and simulation.  

For energy harvesting, the piezoelectric element must operate in the generator 

mode, utilizing the direct piezoelectric effect. To achieve the polarization of the poled 

anisotropic material, a mechanical load must be applied. Subsequently, an electrical 
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charge is generated in the piezoelectric material. This charge can be collected via the 

electrodes covering the surface of the piezoelectric material as shown in Figure 2.6. 

The density of the induced charge is linearly proportional to the strain in the material, 

and thus proportional to the externally applied stress. This relationship can be 

described mathematically as follows: 

𝐏𝐩𝐞 = 𝑑 ×  𝑇;          (2.40) 

where 𝐏𝐩𝐞 is the piezoelectric polarization vector with a magnitude equal to the fixed 

charge density obtained due to the direct piezoelectric effect. Here, d is the 

piezoelectric strain, and the coefficient T is the stress affecting the piezoelectric 

material. In the equation (2.40), the subscript “pe” refers to value obtained directly 

from piezoelectric effect. Considering the elastic properties of the material, the 

equation (2.40) can be rewritten to (2.41).  

𝐏𝐩𝐞 = d ×  T = d ×  p ×  S = e ×  S; (2.41) 

where, p, e and S are the elastic constant, piezoelectric stress constant and mechanical 

strain. Elastic constant couples the generated stress and the applied strain. As the 

piezoelectric effect manifests, the stiffness of the material is always increased, which 

is related to the change in the dielectric constant. Piezoelectricity is the link that 

couples the elastic variables (stress T and strain S) with the dielectric variables (elastic 

charge density D and electric field E). The main consecutive equations for 

piezoelectric effect are written in the equations (2.42) and (2.43).  

𝑆𝑝 = 𝑠𝑝𝑞
𝐸 𝑇𝑞 + 𝑑𝑝𝑘𝐸𝑘,               (2.42) 

Di = diqTq + εik
T Ek;               (2.43) 

The 𝑠𝑝𝑞
𝐸  , here, is the tensor of elastic compliance at constant value of electrical field 

upon the piezoelectric material, 𝜀𝑖𝑘
𝑇  is the dielectric constant tensor under constant 

stress, 𝑑𝑝𝑘 is the piezoelectric constant tensor, 𝑆𝑝 is the mechanical strain in the p 

direction, 𝐷𝑖 is the electric displacement in the i direction, 𝑇𝑞 is the mechanical stress 

in the q direction, and 𝐸𝑘 is the electric field in the k direction. Differential equations 

(2.44) and (2.45) can be written to express piezoelectric equations for the finite 

element method.  

𝐌𝐳̈ + 𝐂𝐳𝐳𝐳̇ + 𝐊𝐳𝐳𝐳 + 𝐊𝐳𝚽𝚽 = 𝐅,                        (2.44) 

𝐊𝐳𝚽
𝐭 𝐳 + 𝐊𝚽𝚽𝚽 = 𝐐;                (2.45) 

Here, 𝐳̈ is a acceleration vector of nodal point, 𝐳̇ is a nodal point velocity, and 𝐳 is a 

nodal point displacement vectors respectively; Φ is the electrostatic potential and is a 

scalar, the subscript z refers to mechanical quantities, whereas the subscript Φ refers 

to electrical ones, and the combination of the two refers to electromechanical coupling 

matrices; M, C and K are global matrices and 𝐳, 𝐅, 𝚽 and Q denote vectors. Equations 

(2.44) and (2.45) could be expressed in the matrix form: 
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[
𝐌𝐳𝐳 0
0 0

] (
𝐳̈
𝚽̈

) + [
𝐂𝐳𝐳 𝐂𝐳𝚽

𝐭

𝐂𝐳𝚽 𝐂𝚽𝚽
] (

𝐳̈
𝚽̈

) + [
𝐊𝐳𝐳 𝐊𝐳𝚽

𝐭

𝐊𝐳𝚽 𝐊𝚽𝚽
] (

𝐳
𝚽

) = (
𝐅
𝐐

) ;  (2.46) 

The constitutive equation for the load bearing material of the energy harvester under 

linear elasticity assumption (as shown in Figure 2.6) is written in the equation (2.47):  

T = CHS;     (2.47) 

here, T is mechanical stress, CH is the elasticity matrix and superscript H represents 

the load bearing material. S is strain Boundary conditions for an active element with 

one fixed end are as follows: One end of the active element is fixed while the other 

one remains free. This is mathematically described in equations (2.48) and (2.49) for 

fixed and free ends of the active element, respectively. Here, Y(x) is displacement in 

the y direction at the distance x from the fixed end. 

x = 0,   Y(x) = 0,   
dY(x)

dx
= 0,           (2.48) 

x = L,   
d2Y(x)

dx2 = 0,   
d3Y(x)

dx3 = 0;             (2.49) 

The mechanical and electrical domains in piezoelectric material are coupled 

using the equations (2.50-2.51) 

𝑇 = 𝐂𝐏S − 𝐞𝐄 S,        (2.50) 

𝐷 = 𝐞𝐓S + 𝛆𝐒𝐄 S;         (2.51) 

where 𝐂𝐏 is the elasticity matrix and the superscript P represents the piezoelectric 

material, D denotes the electric displacement, e and E are the piezoelectricity matrix 

and the applied electric field, respectively, and 𝛆𝐒 is the permittivity matrix. The 

electrical potential decreases linearly through the thickness of the piezoelectric 

material layer if the material is deformed by applying axial stress T1. As the result, 

charge is accumulated at the electrodes. Under open circuit boundary conditions (D = 

0), the voltage across the piezoelectric material can be calculated as shown in equation 

(2.52) 

V = g31hT1;        (2.52) 

For modal analysis of the active element that is considered undamped and undergoing 

free vibrations, the governing equation is following.  

𝐌𝐮̈ + 𝐊𝐮 = 0;   (2.53) 

Internal elastic forces 𝐊𝐮 are equal in size and opposite to internal forces 𝐌𝐮̈, where 

𝐊 and M are stiffness and mass matrixes, respectively. Eigen frequencies are obtained 

from the classical equation (2.54).  

K𝑣 = ω𝑖
2M𝑣;  (2.54) 

The transient analysis of the active element can be conducted to verify the position of 

the strain node in the active element during its base excitation with time varying force 

f(t) acting on it. The equation of motion is then written as shown in (2.55).  
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𝐌𝐮̈(𝑡) + 𝐂𝐮̇(𝑡) + 𝐊𝐮(𝑡) = f(𝑡);                   (2.55) 

here, C is the damping matrix. The time-dependent force f(t) is described as an active 

element body load in the vertical direction and is defined as the force/volume using 

the thickness: 

f(𝑡) = 𝑎𝑚 sinω𝑛𝑡 ;              (2.56) 

here, 𝑎 is acceleration, m is the mass of the system and ωn is the ambient excitation 

frequency. 

2.4. Coupled piezoelectric-circuit model and transfer function. 

CPC-FEM (coupled piezoelectric circuit FEM) is a model at which the 

piezoelectric transducer is directly coupled with the external circuit for electrical 

parameters evaluation, such as generated power, voltage, current, etc. allowing to 

estimate the size of optimal resistive loads and optimal dynamic parameters. Inertia 

based mechanical/vibration and, namely, the kinetic energy harvester can all be 

modelled as second-order spring mass damper systems. Some of the first attempts to 

model such a system was made by William and Yates (1996) [99]. The main parts of 

the resonator are represented by simple spring-mass system elements such as mass m 

suspended on a spring with the stiffness 𝑘𝑆, generating a resonant spring-mass system. 

Ambient excitation, in the perfect case sinusoidal, is represented by sinusoidal 

excitation that forces the mass to move harmonically as shown in (2.57) 

y(𝑡) = ŷ sin(ω𝑡);            (2.57) 

where ŷ is the amplitude of the movement of the structure to which the harvester is 

mounted, and ω denotes the angular vibration frequency. The relative movement 

between the host structure and the harvester is calculated from (2.58). 

z(𝑡) = ẑ sin(ω𝑡 + φ);             (2.58) 

The mass vibration amplitude is denoted by ẑ, and since there is a phase-difference 

between y(𝑡) and 𝑧(𝑡), it is denoted by φ. Mechanical damping is represented by d. 

For the electromechanical conversion of the kinetic energy, numerous energy 

conversion mechanisms exist: capacitive, inductive and piezoelectric, which are 

employed by electrostatic, electromagnetic and piezoelectric transducers, 

respectively. The electricity generated by these transduction mechanism is, simply 

put, the work which is done by the mass of the harvester against the spring element – 

restoring force Fe. This restoring force and electrical damping de is created by 

coupling between the mechanical and electrical domains of the material if the material 

is connected into the circuit as described by Hehn (2014) [98]. 

Since the harvester is never a stand-alone device and is usually used to power 

up a battery or an energy consuming device directly, it is essential to precisely 

estimate the power output, vibration amplitude and other dynamic parameters of the 

harvester for the given dynamic conditions. The key to this is the availability of a 

proper model that can be used to calculate the power output for designs. Governing 

equations for a piezoelectric vibration energy harvester can be written as shown in 

(2.59).  
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𝑀𝑧̈(𝑡) + 𝐶𝑧̇(𝑡) + 𝐾𝑧(𝑡) = 𝑀𝑦̈(𝑡) − 𝛩𝑉𝑝,                 (2.59) 

𝛩𝑧(𝑡) − 𝐶𝑝𝑉𝑝(t) = 𝑄𝑝(𝑡);    (2.60) 

where M is the mass, C is mechanical damping and K is mechanical stiffness. The 

electromechanical coupling coefficient of the piezoelectric material or, simply put, the 

efficiency at which the mechanical work is converted into electricity is denoted by Θ, 

and the electric capacitance of the piezoelectric material is denoted by 𝐶𝑝. The voltage 

generated across the electrodes is represented by 𝑉𝑝 and 𝑄𝑝. It represents the electrical 

charge accumulated on the electrodes. The relative movement between the host 

structure and the tip of active element is denoted by z(t). The acceleration applied by 

the host structure to the tip of the active element is represented by ÿ(t).  

Electrical circuits can be attached to PVEH model for a more realistic estimation 

of the performance of a device under different dynamic conditions. However, it was 

proven that the electrical circuit attached has a significant impact on the vibration 

response of the harvester, which is directly related to the harvested power. Equations 

(2.61) and (2.62) allow to estimate the electrical outputs of the harvester with a 

resistive load attached: 

𝑉𝑅(𝑡) = 𝐼𝑅(𝑡)𝑅,                     (2.61) 

𝑃𝑅 = 𝑉𝑅𝐼𝑅;              (2.62) 

here, the subscript R represents the resistive load. Thus, the voltage, the current and 

the power across the resistive load are denoted by 𝑉𝑅, 𝐼𝑅 and 𝑃𝑅. In cases when the 

resistive load is directly connected to the piezoelectric material, the relation between 

the electrical output of the piezoelectric material and input to resistive load can be 

written as shown in equations (2.63) and (2.64).  

𝑉𝑃(𝑡) = 𝑉𝑅(𝑡),                (2.63) 

𝐼𝑅(𝑡) = 𝜔𝑄𝑃(𝑡);             (2.64) 

A simple electrical circuit can be a useful tool for predicting the electrical 

outputs of the energy harvester and estimating the circuits impact on vibration 

response. For this purpose, a piezoelectric-circuit finite element model (CPC-FEM) is 

the simplest solution.  

2.5. Dynamic contact modelling. 

For a frequency-up converter with a mechanical coupling, it is essential to select 

a reliable contact model. The nonlinear viscoelastic contact model presented by Hunt 

and Crossley for direct, frictionless contact of low surface area is used for the dynamic 

contact modelling as shown in Figure 2.8 where i is the ith contact point of PVEH, and 

j is jth contact point of LFR. The general case of the model is described by Machado 

(2012) [100] Since the object of investigation is the frequency-up converter, the 

contact is between a low frequency resonator (LFR) and a high frequency 

piezoelectric energy harvester (PVEH) as shown in Figure 2.8(a).  
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(a) 

  
(b) (c) 

Figure 2.8. LRF and PVEH contact model (a) computational scheme; Nonlinear 

elastic dynamic Hunt – Crossley contact model: (b) initial position, (c) final position; 

The dynamic contact between LFR and PVEH is expressed by the spring 

constant 𝑘𝑐 and damping factor 𝑐𝑐. The gap between two bodies is given by zgap, while 

the gap (zgap > 0) spring and damping constants of the contact have no effect, as shown 

in Figure 2.8(b). The external mechanical excitation on the bodies is described by the 

external mechanical load vector F and can be expressed as (2.65).  

(𝐅) = {
(𝐅𝐤), 𝑝𝑙𝑠(𝑧̇𝑙𝑠, 𝑧𝑙𝑠, 𝑡) ≥ 0,

(𝐅𝐤) + (𝐏𝑐(𝑧̇, 𝑧, 𝑡)), 𝑝𝑙𝑠(𝑧̇𝑙𝑠, 𝑧𝑙𝑠, 𝑡) < 0;
                (2.65) 

Here, (Fk) is the kinematic excitation force, (𝐏𝐜(𝑧̇, 𝑧, 𝑡)) is a nonlinear 

interaction vector in the contact pair, and 𝑝𝑙𝑠 is the contact pair nonlinear interaction 

force at the contact point of the PVEH. During the contact, LRF and PVEH systems 

function in parallel to each, and the contact force is expressed as shown in Figure 

2.8(c) and as described by equation (2.66): 

𝐏𝐂 = 𝑘𝑐𝑧
𝛼 + 𝑐𝑐𝑧

𝛼𝑧̇, 𝑓𝑜𝑟 𝑧 < 0   and    𝑧̇ < 0;        (2.66) 
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where 𝑘𝑐 is a contact stiffness coefficient, 𝑐𝑐 is a contact damping coefficient, 

and α is a force exponent depending on contact surface geometry (α = 2 is assumed). 

This system of equations could be solved by direct numerical integration methods. 

2.6. Shape optimization of the active element of power harvester. 

As stated by Park (2007) [72], in optimization, optimum values of the variables 

are found to minimize or maximize the function that is expressed by the variables. 

Optimization is a field of study focusing on numerical solution of a mathematical 

design problem formulated as follows: 

Find 

  𝑏 𝜖 𝑅𝑛,              (2.67) 

to optimize   

𝑓(𝑏),              (2.68) 

subject to  

   ℎ𝑖(𝑏) = 0, 𝑖 = 1,… , 𝑙,     (2.69) 

𝑔𝑗(𝑏) ≤ 0, 𝑗 = 1,… ,𝑚,     (2.70) 

 𝑏𝐿 ≤ 𝑏 ≤ 𝑏𝑈;                    (2.71) 

here, as described by Park (2007) [72], b is the design variable vector with n elements, 

𝑓 is the objective function, ℎ𝑖 is the ith equality constraint, 𝑔𝑗 is the jth inequality 

constraint, 𝒃𝑳 and 𝒃𝑼 limit conditions for b, respectively, l is the number of equality 

constraints and n is the number of inequality constraints. The main goal of 

optimization procedure is to find an optimum value, i.e., to maximize or to minimize 

a specific design parameter, depending on the problem. The parameter targeted for 

improvement is called the objective function and is written as shown in (2.68), with 

limit conditions as written in (2.63-2.71). 

Design optimization is generally used in detailed design, since it determines the 

detailed values of the design variables. The process of the conceptual design is not 

usually expressed in (2.67-2.71), since the engineering design of the structure is 

finished. Thus, the optimization of the structure is always done after the engineering 

design is conclude. Specific programming tools such as MATLAB are used further to 

employ an algorithm to solve the equations (2.67) to (2.71). Optimization is only 

applicable when a design problem can be mathematically formulated as in (2.67) to 

(2.71). It is especially useful in the detailed design.  

Structural optimization 

As described by Park (2007) [72], in structural optimization, the governing 

equation is computationally solved, and the solution is used for the evaluation of the 

objective function and constraints. The governing equation is considered as the 

equality constraints in (2.69). Structural optimization is formulated as follows: 

Find 
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𝐛 𝜖 𝐑𝐧, (2.72) 

to optimize 

𝐟(𝐛, 𝐳), (2.73) 

subject to 

𝐊(𝐛)𝐳 = 𝐟, (2.74) 

𝐠𝐣(𝐛, 𝐳) ≤ 0, 𝑗 = 1,… ,𝑚, (2.75) 

𝐛𝐋 ≤ 𝐛 ≤ 𝐛𝐔; (2.76) 

The objective function in (2.71) can be the weight of the structure or a specific 

response. The inequality constraints in (2.73) are generally defined by limit values on 

displacements, stresses, natural frequencies, etc. In the optimization process, we need 

sensitivity information for the function in (2.72-2.76) with respect to design variables. 

It is known that the sensitivity evaluation is quite expensive. Therefore, an efficient 

calculation of sensitivity information is significant.  

Structural optimization under dynamic loads 

In the case of the linear static problem, the governing equation for FEM can be 

formulated as written in (2.77).  

𝐊(𝑏)𝐳 = 𝐟, (2.77) 

here, K is the stiffness matrix, z is the nodal displacement vector, b is the design 

variable vector for sizes and shapes, and f is the external load vector as described by 

Park (2007) [72]. As the name implies, dynamic loads imply a time varying force to 

the structure resulting in a time varying response. As a result, a time varying response 

should be integrated into the equations of optimization to account for the dynamics. 

In the “real world”, all the loads are dynamic but most of them can be reduced to 

problems with static loads. The problems that cannot be reduced to static problems 

are solved using dynamic response optimization. However, static loads are generally 

preferred because dynamic response optimization is time and calculation consuming. 

Park (2007) [72] described the dynamic response optimization extensively. If 𝐟(𝑡) is 

an external load vector and t is time, the governing equation in the FEM formulation 

is as written in (2.78).  

𝐌(𝐛)𝐳̈ + 𝐊(𝐛)𝐳 = 𝐟(𝑡);                             (2.78) 

Here, M is the mass matrix and 𝐳̈ is the acceleration vector. (2.79) to (2.83) are 

the general formulations for dynamic response optimization. 

Find 

𝐛 𝜖 𝐑𝐧, (2.79) 

to optimize 
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𝐟(𝐛, 𝐳, 𝐭), (2.80) 

subject to 

𝐌(𝐛)𝐳̈ + 𝐊(𝐛)𝐳 = 𝐟(𝑡), (2.81) 

𝐠𝐣(𝐛, 𝐳, 𝐭) ≤ 0, 𝑗 = 1,… ,𝑚, (2.82) 

𝐛𝐋 ≤ 𝐛 ≤ 𝐛𝐔; (2.83) 

 (2.79) is imposed as equality constraints as shown in (2.83). Dynamic response 

optimization is the process of obtaining the design solution of (2.79) to (2.83). It is 

different from the static response optimization in (2.62) to (2.71) because the time 

variable is included in the functions. Usually, numerical methods are utilised to solve 

the problem in (2.79) to (2.83). In a numerical method, the time should be discretized 

and the constraints in (2.81) and (2.83) are generated for each of the discretized time 

steps. As a result, the previously mentioned disadvantage manifests, and a large 

number of time dependent constraints need to be handled. This issue can be tackled 

in different methods, such as integration in time domain or estimation only of peak 

values, but as described by Park (2007) [72], these methods do not reduce the level of 

complexity significantly. Therefore, the dynamic response optimization is not 

compatible with large scale optimization problems. As a conclusion, it can be outlined 

that it is more convenient to convert the dynamic equation to a static equation and run 

the optimization as a static load problem in an iterative manner.  

For an optimization problem with the aim to maximize the elastic deformations 

in one of the layers of the active element with a constrain on the geometric shape, the 

mathematical problem solution can be expressed as shown in the computational 

scheme (Figure 2.9) and formulated as described by the equations (2.84 – 2.87).  

 

Figure 2.9. Computational scheme of the shape optimization problem of the active 

element of the energy harvester: initial shape, boundary condition, distributed spatial load;   

For the dynamic problem, which is the transient vibration of a cantilevered 

harvester, to be solved in statics, the aim function can be written as (2.84). 

max𝑍 =  ∫ |
𝑑𝑢

𝑑𝑥
| 𝑑𝑥;

𝐿

0
               (2.84) 

Together with the system of limiting equations, the equation of state (2.85) and 

limitation of the thickness of the active element are expressed as (2.86).  

[𝐊]{𝐔} = {𝐅};                                                 (2.85) 

Limitation to the thickness of the active element (2.86) and the project variables 

are as written in (2.87): 

𝐻𝑚𝑖𝑛  ≤  𝑞0 + 𝑞1𝑥
1 + 𝑞2𝑥

2 + 𝑞3𝑥
3  ≤  𝐻𝑚𝑎𝑥,         (2.86) 
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[𝐐] = (q0, q1, q2, q3);                                   (2.87) 

where Z represents elastic deformations along the edge of the active element, H 

– thickness of the active element, project parameter, K – Stiffness matrix and (2.82) 

equation of state, U – displacement vector, F – force factor of external effect, L – 

length of the active element, and Q – Vector of project variables (2.85). 

2.7. Discrete Furrier Transform analysis. 

This chapter introduces the Discrete Fourier Transform (DFT) and points out 

the mathematical elements that will be explicated in this thesis. For a better 

understanding of DFT, first of all, FT has to be investigated. The Fourier transform of 

a continuous-time signal  𝑥(𝑡) may be defined as.  

𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡∞

−∞
𝑑(𝑡),       𝜔 𝜖 (−∞,∞);          (2.88) 

The DFT, on the other hand, replaces the infinite integral with a finite sum: 

𝑋(𝜔𝑘) ≜ ∑ 𝑥(𝑡𝑛)𝑛−1
𝑛=0 𝑒−𝑗𝜔𝑘𝑡𝑛 ,       𝑘 = 0,1,2,… ,𝑁 − 1;         (2.89) 

Smith (2007) [101] noted that calculus is not needed to define the DFT (or its inverse). 

Thus, if finite summation limits are used, the infinities should cause no difficulties 

either. DFT is simpler mathematically than but as practical as Fourier transform.  

Therefore, it is more convenient to use. The Discrete Fourier Transform (DFT) of a 

signal 𝑥 may be defined by as shown in (2.89) where ≜ means ‘is defined as’ or 

‘equals by definition’: 

∑ 𝑓(𝑛)𝑛−1
𝑛=0 ≜ 𝑓(0) + 𝑓(1) + ⋯+ 𝑓(𝑁 − 1);         (2.90) 

here, x(tn) is the input signal amplitude of any form at time tn in seconds, and tnor nT 

is the nth sampling instant in seconds of the sampling interval T, where n is an integer 

that is bigger than zero. X(ωk) is spectrum of x (complex valued), at frequency ωk. 

Ω or 
2π

NT
 is the radian-frequency sample (radians per second) and fsor 

1

T
 is the 

sampling rate (samples/sec, or Hertz (Hz)). N is the number of time samples.  

In common literature concerning the DFT, it is more common to use the set 

sampling interval T = 1.     

𝑋(𝑘) ≜ ∑ 𝑥(𝑛)𝑛−1
𝑛=0 𝑒−𝑗2𝜋𝑛𝑘/𝑁,       𝑘 = 0,1,2,… ,𝑁 − 1,        (2.91) 

𝑥(𝑛) =
1

𝑁 ∑ 𝑋(𝑘)𝑛−1
𝑛=0 𝑒

−
𝑗2𝜋𝑛𝑘

𝑁

,      𝑛 = 0,1,2, … ,𝑁 − 1;       (2.92) 

here, x(𝑛) denotes the input signal at time sample 𝑛, and X(𝑘) denotes the 𝑘th spectral 

sample. This form is simplest mathematically, while the previous form is easier to 

interpret physically. To conclude, the DFT is a tool to investigate a time-based pattern 

if it is a frequency distribution within harmonics or spectral analysis of the light beam 

going through an atmosphere of unknown gases.  

 

 

https://ccrma.stanford.edu/~jos/mdft/Fourier_Transform_FT_Inverse.html
https://ccrma.stanford.edu/~jos/mdft/
http://ccrma.stanford.edu/~jos/filters/Definition_Signal.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Transform_FT_Inverse.html
http://ccrma.stanford.edu/~jos/filters/Definition_Signal.html
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2.8. Section Conclusions.  

In this section, different aspects related to the modelling of a piezoelectric 

vibration energy harvester were analysed. This included mathematical and numerical 

modelling and model optimization problem solving techniques. The equations 

describing the electromechanical coupling were given and explained along with 

equations for load bearing material and their differential forms for the Finite Element 

model solution. Since the most common type of piezoelectric energy harvester is a 

cantilevered type, the Bernoulli beam theory was introduced to get a better 

understanding of mechanical aspects of the vibration energy harvester as a deformed 

body. For the solution of differential governing equations, the FE method was 

investigated and explained as it offers a relative simplicity and reliability of the 

calculations. The theory and steps of the FE method were investigated and explained 

in this section.   

Since vibrations energy harvesters cannot be easily or cheaply built without 

prior modelling of their mechanical and electrical aspects, the next section 

investigated aspects of the coupled piezoelectric circuit model. The modelling of a 

coupled piezoelectric circuit (CPC-FEM) is explained in one of the chapters.  

The dynamic contact modelling using the nonlinear viscoelastic contact model 

by Hunt and Crossley was investigated because it is particularly important for 

frequency-up converting devices utilizing impact coupling. Direct contact of solid 

bodies produces great nonlinearities which cannot be studied properly without a 

precise and reliable contact model.   
And finally, some numerical methods (mathematical optimization, discrete 

Fourier transform (DFT)) were analysed for solving optimization problems for energy 

output maximization from piezoelectric vibration energy harvesters with constrains 

for geometrical parameters of eigen values.  

In general, this section presented the mathematical and numerical models used 

for numerical analysis in further chapters of this thesis.  

• The mathematical model was created for the piezoelectric vibration energy 

harvester operating in higher transverse vibrations modes using equations to 

describe electromechanical coupling, dynamic processes taking place in the 

load bearing material and coupling the model with electrical circuit to predict 

the electrical parameters of the harvester.  

• The dynamic contact model was created and used in the mathematical model 

for energy harvester operating in vibro-impacting mode.  

• The mathematical models were created for solving the mathematical 

optimization problems, total normal strain output maximization with 

constrains to geometrical shape and harvester volume minimization with 

constrains to the eigen frequencies, namely the second resonant frequency.    
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3. SIMULATION OF AUTONOMOUS PIEZOELECTRIC ENERGY 

HARVESTERS. 

The following section describes the elaboration of PEH prototypes. The aim of 

this section is to present the developed finite element models and their simulation 

results as well as their numerical analysis.  

During the early stages of the device design, it is very convenient to use FE 

modelling for accurate prediction of how the device will perform with different design 

parameters. This feature is as much time saving as money saving. As a result, one of 

the objectives of this research was to develop a general and universal coupled finite 

element (FE) model of a piezoelectric vibration energy harvester, parameters of which 

could be easily changed. An electrical circuit was attached to the model to allow a 

more accurate prediction of the power output levels of the device as well as the impact 

of electrical loads on the dynamic parameters of the harvester.  

The ultimate purpose of FE analysis is to mathematically recreate the behaviour 

of an actual engineering system. In other words, we have to obtain an accurate 

mathematical model of a physical prototype. Thus, FE model usually contains nodes, 

elements, material properties, real constants, boundary conditions and other features 

that are used to represent a physical system.  

Further sections shall provide detailed descriptions of the developed FE models, 

their geometry parameters, material properties and definitions, mesh parameters, 

loads, constraints and limits, simulation results and their numerical analysis.  

3.1. Investigation of optimal segmentation of PVEH at higher vibration modes. 

Two objects, energy harvesting active elements, were investigated. The first one 

is a common, constant cross section area active element, and the second one is an 

active element of an optimized shape. The optimization was done using mathematical 

optimization techniques where the aim function was to minimize the mass of the 

active element with restrictions to geometrical shape and eigen frequencies. The 

second eigen frequency ω2 had to remain unchanged and equal to the corresponding 

frequency of the constant cross-section active element. The normalized shape of the 

optimized shape active element can be seen in Figure 3.1. PVDF or polyvinylidene 

fluoride was used as the piezoelectric material. PVDF was cut into two elements that 

were attached to the top surface of the active element with directions of polarization 

opposite to each other. Active elements were modelled as uniform composite beams 

for linearly elastic deformations and geometrically small oscillations based on the 

Euler–Bernoulli beam assumption. 

As described by Erturk (2015) [102], and as the theory of thin beams dictate, 

shear deformations and rotary inertia can be neglected as the design of the presented 

harvesters do not violate the conditions for the thin beam. The principal diagram of 

an energy harvester of a constant cross-section area is shown in Figure 3.2. The 

piezoelectric elements are segmented in strain node points; thus, the first piezoelectric 

element covers the surface of the active element from the fixed end to the strain node, 

and the second is attached from the strain node to the free end of the active element. 

Mechanical and geometrical properties of both constant cross-section area and 

https://en.wikipedia.org/wiki/Polyvinylidene_fluoride
https://en.wikipedia.org/wiki/Polyvinylidene_fluoride
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optimized shape energy harvesters are given in table 3.1. Table 3.2 provides the 

piezoelectric properties for the PVDF. The eigen frequencies given in table 3.1 were 

obtained from modal analysis which is described further in this section.    

 

Figure 3.1. Normalized shape of the optimally-shaped active element 

 

Figure 3.2. Unimorph Piezoelectric active element ever under base motions with a 

pair of PVDF elements attached  

Table 3.1. Mechanical and geometrical properties of the considered active element 

setups 

Parameter 
Constant Cross-Section Area 

Active element 
Optimal Shape 

𝜔1, Hz 86 66 

𝜔2, Hz 541 534 

Density, kg/m3 7850 

Elastic modulus, N/m2 2 × 1010 

Poisson’s ratio 0.33 

Length, m 0.1 

Width a, m 0.01 

Thickness b, m 1 × 10−3 
Varying from 4 × 10−4   

to 1 × 10−3   

The constitutive equation for the load bearing material of the energy harvester 

under linear elasticity assumption is described in section 2 of this thesis by equation 

(2.47). The coupling of the electrical and mechanical domains is best described by 

equations (2.50) and (2.51) which describe the electromechanical conversion 

phenomena. The electrical potential decreases linearly through the thickness of the 

piezoelectric material layer if the material is deformed by applying axial stress T1. As 
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a result, charge is accumulated at the electrodes. Under open circuit boundary 

conditions (D = 0), the voltage across the piezoelectric material can be calculated as 

described in equation (2.53). 

Table 3.2. Piezoelectric properties of PVDF 

Parameter Name PVDF Units 

d31 Piezoelectric strain constant 23 (pC/N) 

g31 Piezoelectric stress constant 216 (10−3 Vm/N) 

kt Electromechanical coupling factor 12%  

C Capacitance 1.4–2.8 nF 

Y Young’s modulus 4 109 N/m2 

ε Permittivity 110 10−12 F/m 

ρ Mass Density 1780 kg/m3 

t Thickness 64 µm 

While the load bearing material is vibrating in its second resonant frequency, 

the piezoelectric material layers that are attached to the substrate are also deformed. 

As a result, a voltage potential is generated across the piezoelectric material. Both 

positive (stretching) and negative (compression) strains can be detected in two 

different points of the same surface of the active element at any given time instant. A 

point where the positive and the negative strains meet is called a strain node. This 

strain node can be detected from the modal analysis or found from the dynamic 

analysis using numerical methods. Figure 3.3(a) illustrates the second transverse 

mode shapes obtained from the modal analysis of both types of energy harvesters, i.e., 

the constant cross-section area and the optimized shape. In Figure 3.3(b), the normal 

strain distribution of the second transverse vibration modes is presented. The strain 

node of both active element types is presented in Figure 3.3(b) where the strain mode 

shape crosses the 0 axis of the normal strain.  

 

Figure 3.3. Second transverse vibration mode of an active element: (a) displacement; 

(b) normal strain; along the upper edge of active element 
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The strain node for the constant cross-section active element is at 0.0216L and 

for the optimized shape active element at 0.0238L, where L is the length of the active 

element. It can also be seen that the slope of the normal strain distribution curve in 

close proximity to strain node has a high gradient, meaning that the area on the surface 

of the active element where the strain sign is alternating is narrower. This can lead to 

lower charge cancelation on the electrodes if the electrodes were retracted from the 

mentioned area.  

In Figure 3.4, the second mode shapes of both types of the active element are 

presented with normal strain fields of their cross-sections. It can be observed that the 

upper and lower faces of the active element are subjected to the strains of different 

signs; while the upper face is negatively strained (compressed) at x/L = 0, the lower 

face is under tension. 

 

Figure 3.4. The second transverse vibration mode of the active element and the field 

of normal strain distribution: (a) active element of a constant cross-section; (b) optimally-

shaped active element 

The transient analysis of the active element was conducted to verify the position 

of the strain node in the active element during its base excitation with time varying 

force f(t) acting on it. An equation of motion (2.55) was used as described in section 

2 of this thesis. The time-dependent force f(t) is described as active element body load 

in the vertical direction and is defined as the force/volume using the thickness as 

described in equation (2.56).  

The dynamic response of the active element to the ambient vibrations can be 

found solving the equation of motion since it controls the linear dynamic behaviour 

of the body under time varying force.  The transverse displacement of the tip of the 

active element obtained from transient analysis is presented in Figure 3.5(a). The 

vibration starts from the resting point and runs up from that point until gradually 

decreasing to the point where the steady state vibrations begin. In Figure 3.5(b), a 

range of steady state vibrations is shown with points t1 and t3 marking the half-period 

of tip vibrations selected for further investigation, t2 is the middle-point of that half-

period. A magnified view of t1-t3 interval is shown in Figure 3.5(c). The first quarter 

of ½ T period is marked in blue and the second one in red.  
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Figure 3.5. Transverse displacement of the active elements tip: (a) dynamic process; 

(b) region of steady-state vibrations; (c) ½ T period of vibration for further analysis 

For the sake of simplicity, the same colouring scheme is used in Figure 3.6 

where the normal strain distribution along the upper edge of the active elements are 

presented. The number of curves in Figure 3.6 represents the number of samples Δ𝑡𝑖 
between t1 and t3, depicting intermediate normal strain curves.  

 

Figure 3.6. Normal strain distribution curves along the active element’s length per ½ 

T obtained from transient analysis: (a) active element of a constant cross-section; (b) 

optimally-shaped active element 

Figure 3.7 illustrates the mode shapes of the constant cross section area active 

element ever and the optimized shape active element with normal strain distribution 

fields at t1, t2 and t3. Figures 3.5 and Figure 3.6 clearly reveal that, normal strain 
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output amplitudes are overall higher in the case of the active element of a constant 

cross-section.  

 

Figure 3.7. Mode shape and normal strain distribution field at t1, t2 and t3 of (a) the 

constant cross-section area active element (b) optimally-shaped active element 

The normal strain field along the upper edge of the active element versus time 

is presented in Figures 3.8(a) and (b). For constant cross-section area and for the 

optimized shape active element, the time interval depicted is from t1 to t3, 

respectively, which is the same as shown in Figures 3.6 and 3.7. The horizontal axis 

of Figure 8 represents a normal strain distribution along the upper face of the active 

element of a constant cross-section at time instant 𝑡𝑖, while the vertical axis represents 

a strain change at any given point per time interval [t1, t3]. It can be directly seen from 

Figure 3.8(a) that the constant cross-section area active element produces higher 

amplitudes of strain, especially at the negative side of the spectra, while the optimized 

shape active element (Figure 3.8(b)) demonstrates higher gradients of the normal 

strain change.  

 

Figure 3.8. Normal strain distribution on the upper face of the active element per time 

interval t1 to t3: (a) active element of a constant cross-section; (b) optimally-shaped active 

element 
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The simulation results obtained from the modelling environment COMSOL 

were gathered and processed using numerical methods. For this purpose, MATLAB 

numerical computing environment was used. Figure 3.8(a) and (b) shows that the 

region where the normal strain is close to 0 (depicted in green) is significantly wider 

with respect to the length of the active element for the constant cross-section area 

active element than for the optimized shape active element from t1 to t2. This zone 

drifts slightly from 0.1L to approximately 0.2L, and from t2 to t3 spreads from 0.1L 

to the free tip of the active element. The behaviour of the optimized shape active 

element is depicted in Figure 3.8(b). The normal strain field is much more expressed 

and the region where the normal strain is close to 0 is much narrower here.  

The mathematical methodology has been developed to accurately calculate the 

location of the strain node along the edge of the active element using the data from 

the transient analysis data, where the average value of strain per ½ T is 0. A further 

goal is to compare the normal strain output on both sides of the strain node calculated 

from the modal analysis and the transient analysis to prove that the transient analysis 

provides a more accurate location of such a point leading to an increased efficiency 

of the energy harvester. 

The time interval between t1 and t3 was divided into interpolated time steps Δ𝑡𝑖. 
The time increment Δ𝑡 between the time steps Δ𝑡𝑖 was calculated as shown in equation 

(3.1).  

Δ𝑡 =
𝑡3−𝑡1

𝑁
;            (3.1) 

The aim of this problem is to determine the point along the edge of the active 

element where the average strain per time interval from t1 to t3 is equal to 0, in other 

words - to determine the strain node. This is achieved by integrating the area bounded 

by each interpolated normal strain distribution curve at time steps from Δ𝑡1 to Δ𝑡𝑁 

over an increment of the length of the active element. Simpson’s method is used for 

integration and the approximation is shown in (3.2): 

∫
𝑑𝑢

𝑑𝑥
𝑑𝑥 ≈

ℎ

3
[
𝑑(𝑢0)

𝑑𝑥
+ 2∑

𝑑(𝑢2𝑗)

𝑑𝑥
+ 4∑

𝑑(𝑢2𝑗−1)

𝑑𝑥
+

𝑑(𝑢𝑁)

𝑑𝑥

𝑁/2
𝑗=1

𝑁

2
−1

𝑗=1
]

𝐿

0
;  (3.2) 

Here, u is the displacement in the axial direction along the length of the active 

element. The calculation was done in MATLAB. To verify the calculations, the 

integration was performed from the fixed and to the free end of the active element, 

and from the free end to the fixed end of the active element. Integration results are 

plotted in Figure 3.9(a) and (b), constant cross-section area and optimized shape active 

elements, respectively. The curves represent the accumulation of the strain over an 

increment of the length of the active elements. It can be seen that following the red 

curve from the left to right, which represents the integration from the fixed end to the 

tip of the active element, the curve gradually goes up while the strain is accumulated, 

and as the curve reaches its peak, the strain node is reached. The added negative strain 

decreases the total amount of the accumulated strain, hence the curves start declining. 

If the strain was replaced by charge, it would illustrate the charge cancelation effect. 

The strain node location (square marker) for integration from left to right and vice 
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versa coincide and is approximately at 0.238L for the constant cross-section area 

active element and at 0.259L for the optimized shape active element. From Figure 

3.9(a) and (b), it can also be seen that these points do not coincide with the strain node 

location acquired from the modal analysis (circular marker).  

 

Figure 3.9. Accumulation of normal strain over length x/L per ½ T: (a) active element 

of a constant cross-section; (b) optimally-shaped active element 

The strain node locations are given in table 3.3 along with the integration results 

for both types of active elements at each side of the strain node, (these represents the 

charge accumulated and left and right piezoelectric material element) both acquired 

from the modal and transient analyses. The segment to the left from the strain node 

produced positive strain output, while the segment to the right produced negative. The 

total strain sum of the active element is the sum of the strain output of both segments 

in absolute values. Table 3 indicates that the total strain gain for the constant cross-

section area active element segmented in the strain node obtained from transient 

analysis was 5.5% and for the optimally shaped active element – 5.2%.  

Table 3.3. Comparison of normal strain amount 

 
Strain 

Node 

Amount of Normal Strain-

Left (Dimensionless) 

Amount of Normal 

Strain-Right 

(Dimensionless) 

Gain, % 

Active el. of a constant cross-section  

Modal 

solution 
0.216 6.53 × 10−10 −9.7 × 10−10  

Transient 

solution 
0.238 6.73 × 10−10 −9.9 × 10−10 +5.5% 

Optimally-shaped active el.  

Modal 

solution 
0.239 6.3 × 10−10 −9.6 × 10−10  

Transient 

solution 
0.259 6.5 × 10−10 −9.85 × 10−10 +5.2% 

The numerical calculation results clearly reveal the superiority of the strain node 

calculation using the developed calculation methodology. The results were calculated 

for the unimorph configuration of the harvester, and the actual gain would double for 

bimorph configuration.   
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3.2. Electric Power Output Maximization by Optimizing Resistive Load. 

AC power output of a PVEH operating in the second resonant mode and the 

effect of varying resistive load on power output of PVEH is investigated. AC power 

output characteristics of layers connected in parallel, as shown in Fig. 3.10(a) or series 

Fig. 3.10(b) was investigated. The load bearing layer is made of aluminium and PVDF 

is chosen as a piezoelectric material due to its flexibility and lightness. Heavier and 

harder piezo-ceramics were not chosen because of their significant contribution to the 

overall dynamics of the PVEH, while the effect of PVDF can be neglected. 

Consecutive equations of the load bearing and piezoelectric materials are more fully 

explained by Erturk (2009) [103]. The first PVDF layer is mounted from the fixed end 

of the active element to the strain node, and the second one is fixed from the strain 

node up to the active element end on the opposite face of the active element. The 

PVDF layers attached are of same polarization; therefore, the charge produced is of 

same sign and can be harvested with a relatively simple circuit. The displacement of 

active elements in the y direction in the second natural mode of PVEH and electric 

potentials of PVDF layers are shown in Fig. 3.10. 

 

Figure 3.10. Second natural mode of PVEH and electric potentials of piezoelectric 

layers 

The load resistance 𝑅𝑙 is connected in series with the piezoelectric elements in 

the first case and in parallel in the second case producing AC current. The geometric 

parameters as well as other mechanical characteristics of PVEH can be found in Table 

3.4. The modal analysis of the system was done with the aim to obtain the resonant 

frequency. The harmonic analysis was performed in order to obtain the electric power 

output of PVEH versus load 𝑅𝑙 . FE mesh with 700 elements per length of the active 

element was implemented. A coupled piezoelectric-circuit finite element model 

(CPC-FEM) was used for solving this problem. The system was modelled using 

COMSOL multi-physics with SPICE piezoelectric circuit attached. Harmonic base 

excitation of the frequency matching the second resonant frequency of the transducers 

was used with an acceleration of 1.3g. The parameters of the excitation are varied by 

the frequency ωn of the time-dependent force f(t). A quadratic Lagrange element type 

with the second-order polynomial approximation was used. The piezoelectric element 
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can be modelled as an equivalent circuit of the current source 𝐼𝑝𝑖𝑒𝑧𝑜 in parallel with a 

capacitor 𝐶𝑖 as shown in Fig. 3.11(c) and Fig. 3.11(d). The piezoelectric PVEH has 

high impedance in order of MΩ; thus, it may be considered as purely capacitive 

element with capacitance of pF order. The capacitance of the piezoelectric element 

𝐶𝑝 can be found from Equation (3.3), and the impedance of piezoelectric element 𝑍𝑝 

can be found as shown in Equation (3.4). 

Table 3.4. Mech. and geometrical properties of substrate layer and PVDF properties 

Parameter Substrate 

layer 

Parameter PVDF 

Density, kg/m3 2700 Piezoel. strain constant, d31, (pC/N) 23 

Elastic modulus, N/m2 0,69 × 1011 Piezoel. stress constant, d31, (Vm/N) 216× 10−3 

Poisson’s ratio 0,33 Electromechanical coupling factor, kt, 12% 

Length, L, m 0,1 Capacitance, C, nF 1,4-2,8 

Width a, m 0,01 Young’s modulus, Y, N/m2 4× 109 

Thickness b, m 0,001 Permittivity, ε, F/m 110× 10−12 

PVDF Segm. line, m 0,0238 Mass Density, ρ, kg/m3 1780 

  Thickness, t, µm 45 

 

Figure 3.11. Piezoelectric active element under translational base excitation with 

PVDF segments connected a) in parallel, b) in series. Electrical circuit of PVEH with 

piezoelectric outputs connected in c) parallel and d) series connection 

𝐶𝑝 =
𝐾𝜀0𝐴

𝑡
,                     (3.3) 

𝑍𝑝 =
1

2𝜋𝑓𝐶𝑝
;               (3.4) 

Here, A is the surface area of the piezoelectric layer, and t represents the 

thickness. K is the dielectric constant, which is the ratio between the permittivity of 

the piezoelectric material ε and the permittivity of the free space 𝜀0. In Equation (3.4), 

f is the excitation frequency. For the maximization of the power transfer, the load 

resistance has to be matched with the internal impedance of the piezoelectric elements 

of the transducer which will be different for series and parallel connections of 
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piezoelectric elements. The optimal load resistance is equal to the equivalent 

impedance of combined internal impedances of PVDF layers. The calculated 

combined impedance of both PVDF layers for series connection is 𝑍𝑝𝑆 = 127168 Ω 

and the parallel connection is 𝑍𝑝𝑃 = 29355 Ω. For the series connection, the 

combined impedance is simply the sum of impedances of both piezoelectric layers 

𝑍𝑝𝑆 = 𝑍𝑝1 + 𝑍𝑝2  and 
1

𝑍𝑝𝑃
=

1

𝑍𝑝1
+

1

𝑍𝑝2
  for the parallel connection. 

The second resonant frequency found from the modal analysis was 644 Hz. The 

frequency-amplitude response obtained from the harmonic analysis is shown in Figure 

3.12, and it confirms the modal analysis results. The obtained eigen-frequency was 

then inserted into the harmonic analysis models to obtain the voltage and current 

outputs with varying load resistances for series and parallel connections. The obtained 

characteristics, such as the voltage output, the current output and the PVEH electric 

power output are shown in Fig. 3.13 – 3.15, respectively.  

 
 

Figure 3.12. Amplitude-Frequency 

response characteristics of the tip of the 

active element 

Figure 3.13. Voltage output of 

parallel and series connection 

  

Figure 3.14. Current output of parallel 

and series connection 

Figure 3.15. Power output of 

parallel and series connection 
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As shown in Figure 3.13, the voltage output of series connection is nearly double 

of that obtained from parallel connection. A drop in the output current can be observed 

as the voltage output increases with the increasing load resistance (see Figure 3.14). 

Figure 3.15 shows that a similar power output (8% difference) is obtained from both 

series and parallel connections. Peak power output values are reached at optimal 

resistances. It can be observed that the optimal resistances for both setups are 

different. Optimal resistance for the parallel connection is found to be at 127 kΩ, and 

for the series connection at 29 kΩ. The results comply well with calculated values of 

the impedance of the piezoelectric elements 𝑍𝑝𝑃 and 𝑍𝑝𝑆 . The simulation results 

comply well with the theoretical calculations of the optimal resistive load. It is obvious 

that the resistive load varies significantly for parallel (127 kΩ) and series (29 kΩ) 

connected piezoelectric material layers. An appropriate connection can be chosen if 

larger output voltage or current is desired. The difference between the output power 

of PVEH connected in series (17.5 µW) and in parallel (19.2 µW) connections is small 

(8%) but the outputs were expected to be equal with same initial conditions. For this, 

the impact of varying resistive load on dynamics of PVEH is suspected. Significantly 

larger power outputs are expected from PVEH using piezo-ceramics instead of PVDF 

due to a larger piezoelectric constant but the effect on dynamics of the active element 

has still to be investigated. 

3.3. Investigation of dynamics and transient process of Multibeam PVEH with 

frequency-up conversion. 

A frequency up-converting tandem is investigated. The tandem consists of a low 

frequency resonator (LFR) and a high frequency piezoelectric vibration energy 

harvester (PVEH). A schematic representation of the energy harvesting “tandem” can 

be seen in Figure 3.16.  

 

Figure 3.16. Schematic representation of the device – LFR and PVEH suspended on 

the same substructure  

The LFR consists of a steel active element and a proof mass attached to its tip. 

Different transverse vibration eigen frequency ratios were achieved by varying the 
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geometry and the proof-mass of LFR while the geometry of PVEH was kept constant 

for the entire analysis. The piezoelectric active element was modelled as a uniform 

composite beam subjected to linearly elastic deformations and geometrically small 

oscillations with the reference to the Euler–Bernoulli beam assumption. Table 3.5 

presents the mechanical and geometrical of properties of the PVEH. A thin layer of 

PZT-5H piezoelectric material was attached on the upper surface of the high 

frequency piezoelectric energy harvester; upper and lower surfaces of the 

piezoelectric material were modelled as ideally conductive electrodes of negligible 

thickness. The dimensions of PVEH were 10 x 0.3 x 0.001 mm (i.e., the length, width 

and thickness, correspondingly).  

Different configurations of the energy harvesting tandem were investigated. The 

piezoelectric vibration energy harvester (PVEH) design and the geometrical 

properties were kept constant, while the first natural frequency of the low frequency 

resonator (LFR) was altered. In total, five configurations of LFR were investigated 

with natural frequencies 𝜔𝑖
𝐿𝐹𝑅= (311, 207, 155, 103, 77) Hz, where i = 1, 5 and 

represented the configuration number.  

Table 3.5. Mechanical and geometrical properties of the proposed Piezoelectric 

Vibration Energy Harvester (PVEH) load bearing material (PET) 

Parameter Value 

𝜔1
𝑃𝑉𝐸𝐻 , Hz 622 

Density ρ, kg/m3 1430 

Young’s modulus, Pa 4.6 × 109 

Poisson’s ratio 0.33 

Length l, m 0.01 

Width a, m 0.003 

Thickness b, m 0.0001 

The geometric and piezoelectric properties of the piezoelectric material (PZT-

5H) layer are listed in Table 3.6. 

Table 3.6. PZT-5H properties 

Parameter Value 

Piezoelectric strain constant d31, (pC/N) -320 

Piezoelectric stress constant g31, (10−3 Vm/N) 550 

Electromechanical coupling factor kt 41% 

Young’s modulus Y, 109 N/m2 6,3 

Permittivity ε, 10−12 F/m 3130 

Mass Density ρ, kg/m3 7800 

Thickness t, m 0.00008 

The five-different configurations of the energy harvesting tandem were also 

excited by different harmonic ambient vibration frequencies 𝜑𝑖, which was always 

equal to corresponding 𝜔𝑖
𝐿𝐹𝑅. The distance between the LFR and PVEH at rest is 

denoted by 𝑧𝑔𝑎𝑝. For different configurations of the LFR and PVEH tandem, different 

gap distances 𝑧𝑔𝑎𝑝 were used. As each configuration of the tandem was different with 

respect to LFR excitation and natural frequency, their amplitude of vibrations was 

also different, i.e., the lower the frequency, the higher vibration amplitude. Thus, 𝑧𝑔𝑎𝑝 
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was chosen so that the indentation of LFR at its peak transverse vibrations was equal 

to the thickness of the PVEH. As a result, at its peak, the vibration LFR would hit the 

PVEH creating a dynamic contact point and forcing the PVEH to operate in a vibro-

impact mode.  

In addition to the five configurations of LFR, different dynamic contact 

locations between PVEH and LFR were investigated. The dynamic contact point is 

denoted by 𝐿𝐼
𝑛 (where n = 0 = 0𝐿 and n = 7 =  0,6L). The contact point was shifted 

from the tip of PVEH (0L) towards the fixed end by increments of 0.1L up to 0.6L. A 

coupled 2D CPC-FEM circuit consisting of a simple resistive electrical load 𝑅𝑙 was 

attached to the piezoelectric element of the energy harvester. The purpose of the 

electrical load is to mimic an impact of the real electrical load, since from the literature 

review it is known that an electrical circuit attached significantly influences the 

vibration response of the energy harvester. An electrical load also enables to predict 

the generated power output. Obviously, the resistive load alone is a simplified version 

of a real-life circuit and it cannot account for all possible influences. However, this 

was not the scope of this thesis.  

The circuit was created using SPICE, general-purpose circuit simulator, which 

attached to a COMSOL created LFR-PVEH model. PVEH and LFR were modelled 

using the Lagrange-quadratic FE for plane-strain approximation. The LFR and PVEH 

tandem was excited cinematically by the harmonic law in the transversal direction; a 

kinematic effect in the model is described as a body load with magnitude controlled 

by imposed acceleration (a = 0.85 g) and excitation frequency 𝜑i (where 𝜑𝑖=𝜔1i
𝐿𝐹𝑅). 

The transverse vibration eigenfrequency ratios investigated were 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅= (2; 3; 

4; 6; 8), where 𝜔1
𝑃𝑉𝐸𝐻 and 𝜔1

𝐿𝐹𝑅 are the first transverse vibration eigenfrequencies of 

the high frequency PVEH and LFR, respectively. 

 

(a) (b) 

Figure 3.17. Dynamic process of the PVEH from the instant of impact to fully 

decayed vibration (LFR—103 Hz, contact point position at 0.6 L) (a) transverse 

displacement and (b) normal strain distribution through the length of the PVEH 
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The PVEH is driven by the energy from the dynamic impact occurring between 

the LFR and PVEH during base excitation of the harvesting tandem. The nonlinear 

dynamic behaviour is controlled by the equation of motion, which is solved to find 

the dynamic response. The dynamic analysis of different LFR geometries was 

performed to model the PVEH dynamics process. Then the LFR was kinematically 

actuated by its first transverse vibration mode eigen frequency. A transient analysis 

was conducted to obtain the dynamic response of the LFR-PVEH tandem under 

harmonic base excitation and dynamic contact between the two active elements under 

open circuit conditions (RL →  ∞), as shown in Figure 3.17. From Figure 3.17(a, b), 

the amount of normal strain is highest at the fixed end of the active element (Figure 

3.17(b)) when the displacement is at its maximum as seen in Figure 3.17(a). As the 

vibration decays, the normal strain in the length of PVEH also decays. From Figure 

3.17(b), it can also be seen that the amount of the positive normal strain is higher than 

that of the negative one, which can be related to the impact coupling. Figure 3.18 

denotes the vibration response of PVEH and LFR for different tandem configurations: 

(LFR 𝜔i
𝐿𝐹𝑅 = (311, 207, 155, 103, 77 Hz) resulting in 𝜔1

𝑃𝑉𝐸𝐻/𝜔𝑖
𝐿𝐹𝑅  = (2, 3, 4, 6, 8), 

respectively). The dynamic contact location for the denoted figures is at 𝐿𝐼
6 = 0.5L. 

 
(a) 

 
(b) 
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Figure 3.18. Cont. 

 
(c) 

 
(d) 

 
(e) 

Figure 3.18. Transverse vibrations of LFR (blue) and high frequency PVEH (red) tip 

point. Contact position 𝐿𝐼
𝑛 = 0.5 L of PVEH and natural frequency ratio 𝜔1

𝑃𝑉𝐸𝐻/𝜔1
𝐿𝐹𝑅 = (a) 

8; (b) 6; (c) 4; (d) 3; (e) 2 
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Figures 3.8(a-e) depict the vibration of both PVEH and LFR displacement 

peaks. This can be related to the kinetic energy exchange between the active elements 

and overlapping of the frequencies, i.e., the higher the frequency ratio, the longer the 

duration between the pulsation peaks. It is predicted that for higher 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅, one 

could also predict repetitive contacts between the PVEH and the LFR after the impact 

due to large differences in the natural frequencies. This can be observed very well in 

Figure 3.18(a) where in the transverse response of the PVEH, after the impact of LFR, 

the peak of the amplitude is split into two, i.e., a clear result of another impact right 

after the first one. This bouncing of the PVEH could also lead to an increased energy 

output, since PVEH would encounter a short burst of impact and relaxation events 

before being released to fully unbend.  

For a better understanding of the processes taking place in PVEH during this 

type of harmonic and impact induced vibrations, the Discrete Fourier Transform of 

PVEH tip vibration response signal was performed. The data was processed using 

MATLAB software.  

   
(a) (b) 

  
(c) (d) 
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Figure 3.19. Cont. 

 
(e) 

Figure 3.19. DFT of LFR-PVEH tandem at different dynamic contact points and 

natural frequency ratio 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 = (a) 8; (b) 6; (c) 4; (d) 3; (e) 2 

The frequency spectral density obtained from DFT can be seen in Figures 

3.19(a-e). The figures were constructed by assembling separately obtained DFT 

frequency spectra of PVEH tip vibration response data set at different dynamic contact 

point locations, namely from 0L to 0,6L. Five figures were constructed, each for a 

different 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 frequency ratio. Each curve has multiple frequency peaks 

which are equally spaced. This can be explained by the “bounce-off” of PVEH 

immediately after the initial contact with LFR, and the peaks represent the frequencies 

of these events. Figure 3.19 shows that fewer frequency peaks are seen in tandem 

configurations with lower 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 ratio. This confirms the idea that more 

repetitive contacts observed for tandem configurations with lower 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 ratio 

will encounter more of these events. From Figure 3.19(a), it can be seen that the 

frequency spectra peaks are most expressed at low frequency range, roughly where 

the LFR excitation frequency 𝜑i is, when the contact location is at the tip of the active 

element and decreases with contact location shifting towards the fixed end. This can 

be the result of the distracted LFR. As the PVEH is hit by LFR, the tip of PVEH can 

vibrate freely without being repeatedly hit by LFR. Hence, the frequency spectra are 

located around two main peaks, namely the LFR excitation frequency 𝜑i and PVEH 

natural frequency 𝜔1
𝑃𝑉𝐸𝐻 – 622 Hz. With decreasing 𝜔1

𝑃𝑉𝐸𝐻/𝜔1
𝐿𝐹𝑅  ratio, fewer and 

fewer peaks can be observed, and the frequency gets more and more expressed around 

the PVEH natural frequency 𝜔1
𝑃𝑉𝐸𝐻. In Figure 3.19(e), the peak at 622 Hz dominates 

the spectra at all dynamic impact locations. This is mainly due to the fact that after the 

initial contact PVEH fewer events of repetitive strikes occur.  

Electrical properties of PVEH were investigated using the Root-Mean-Square 

(RMS) values instead of peak values due to the fact that the vibration energy harvester 

produces alternating power outputs, and it is difficult to estimate the absolute 

quantities of energy generated as the signal is non-linear. The formula used for this 

purpose is shown in Equation (3.5): 



86 

 

𝑅𝑀𝑆 = √
∑ 𝑎𝑖

2𝑛
𝑖=0

𝑛
;     (3.5) 

where a is an array of elements or points in the obtained electrical response 

curves and n is the number of these elements. PVEH power output curves with 

different resistive loads 𝑅𝐿 connected for each LFR-PVEH tandem configuration and 

impact point were obtained. The optimal resistive load for all setups was obtained 

from the steady state analysis and it was found to vary between 28 kΩ and 31 kΩ. The 

results were obtained by a trial and error method, i.e., by investigating the dynamic 

responses of the LFR-PVEH tandem with different loads 𝑅𝐿 connected. The figures 

illustrating the RMS power output at different contact point positions and varying 

resistive load RL can be seen in Figure 3.20(a–e). The results clearly depict that one 

can get maximum power output if the contact is located at 0.2 L to 0.3 L from the tip 

of PVEH. The size of optimal resistance varies with varying contact point position, 

i.e., a larger resistive load is necessary if the contact point is located closer to the free 

end of the active element. 

 

(a) 

 

(b) 
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Figure 3.20. Cont 

 

(c) 

 

(d) 

 

(e) 

Figure 3.20. RMS Power output of PVEH with different resistive loads and dynamic 

contact point position. Isometric and top view with natural frequency ratio 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 = 

(a) 8; (b) 6; (c) 4; (d) 3; (e) 2 
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The values of resistive loads at which maximum RMS power output was 

achieved are listed in Table 3.7, and the actual maximum RMS power output values 

for each configuration are given in Table 3.8. The trend is clear, showing that higher 

resistive load 𝑅𝐿 is needed closer to the free end. From Table 3.7 and Figure 3.20(a–

e), it can be seen that the optimal resistive load 𝑅𝐿  has highest values when the contact 

point is at the free end of PVEH (0 L). As the contact point shifts by 0.6 L towards 

the fixed end, the size of optimal resistive load gradually decreases by ~7%. This is 

true for all investigated natural frequency ratios. Since for each investigated tandem 

configuration with the same 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 ratio values such as 𝑧𝑔𝑎𝑝, excitation 

frequency and acceleration of LFR were kept constant, a single variable is left to 

account for change of the size of optimal resistive load size and maximal RMS power 

output - varying dynamic contact point location. 

Table 3.7. Optimal resistive [kΩ] loads for different LRF/PVEH tandem 

configuration 

 
𝜔1

𝑃𝑉𝐸𝐻

𝜔1
𝐿𝐹𝑅  

Dynamic Contact Point Position from the Tip of the PVEH active element 

0 L 0.1 L 0.2 L 0.3 L 0.4 L 0.5 L 0.6 L 

Optimal 

resistive 

load RL, 

[kΩ] 

8 31  30.5  29.5  29.5 29 29 29 

6 31  30.5  29.5 29 29 29 28.5 

4 31  30  30  29.5 29 29 28.5 

3 31  30.5  30  30 29 29 28.5 

2 30.5  30 29.5 29.5 29 29 28.5 

The difference of the resistive load size for different configurations is 

comparatively small. It does not exceed 1.5% for the corresponding dynamic impact 

point of different 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 ratios and 6.5% for different dynamic contact points 

of the same 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 ratio. The tendency is clear: higher resistive loads are 

required for tandem configurations with dynamic impact location at the tip of active 

element. This can be related to increased electrical stiffening of the active element.  

PVEH RMS power outputs at different dynamic impact locations and 

𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 with optimally sized resistive loads from table 3.7 are presented in table 

3.8.  

Table 3.8. RMS power output [W] of different tandem configurations at optimal 

resistive loads 

 
𝜔1

𝑃𝑉𝐸𝐻

𝜔1
𝐿𝐹𝑅  

Dynamic Contact Point Distance from the Tip of the active element 

0 L 0.1 L 0.2 L 0.3 L 0.4 L 0.5 L 0.6 L 

PVEH 

RMS 

Power 

output, 

(W) 

8 4.8 x 10-5 5.1 x 10-5 9.2 x 10-5 1.12 x 10-4 8.1 x 10-5 7.1 x 10-5 6.2 x 10-5 

6 1.2 x 10-5 1.3 x 10-5 2.3 x 10-5 2.73 x 10-5 2.2 x 10-5 1.7 x 10-5 1.5 x 10-5 

4 2.2 x 10-6 3.5 x 10-6 4.2 x 10-6 4.51 x 10-6 3.2 x 10-6 2.8 x 10-6 2.7 x 10-6 

3 4.3 x 10-7 5.5 x 10-7 7.9 x 10-7 8.71 x 10-7 4.9 x 10-7 3.6 x 10-7 3.7 x 10-7 

2 7.1 x 10-8 1.1 x 10-7 1.5 x 10-7 1.35 x 10-7 9.3 x 10-8 7.4 x 10-8 4.8 x 10-8 

The data shows that the maximum RMS power output is achieved if the contact 

point is in the interval from 0.2 L to 0.3 L from the tip of PVEH. The data also shows 
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that the power output is higher for lower LFR 𝜔1
𝐿𝐹𝑅 frequencies than for the 

corresponding impact point locations at higher 𝜔1
𝐿𝐹𝑅 frequencies. From Table 3.8, it 

was calculated that for two-fold natural frequency ratio decrease, the power output 

increases four to seven times. 

From Table 3.8, it can be seen that the contact point at which the maximum 

RMS power output is obtained is slightly shifting towards the free end of PVEH. For 

natural frequency ratio 
𝜔1

𝑃𝑉𝐸𝐻

𝜔1
𝐿𝐹𝑅 = 2, maximum power output is obtained at 0.2 L, while 

for higher natural frequency ratios 
𝜔1

𝑃𝑉𝐸𝐻

𝜔1
𝐿𝐹𝑅 , maximal power output was obtained at 0.3 

L. Thus, a conclusion can be drawn that for lower natural frequency ratios, the contact 

point shall also be located closer to the free end of PVEH. Figure 3.21 illustrates the 

data given in Table 3.8. 

 

Figure 3.21. RMS power output of different tandem configurations and contact points 

with optimal resistive load 𝑅𝐿 

To compare power outputs obtained at different base excitation frequencies of 

LFR, an efficiency criterion was invented: 

𝑃𝑒𝑓𝑓 = 𝜔1
𝑖 × 𝑃𝑛

𝑖           (3.6) 

where 𝑃𝑛
𝑖 is RMS power output at the ith ratio of frequencies and the nth position 

of the impact point at PVEH. The obtained Peff values are given in Table 3.9. A higher 

power output is obtained from the tandem configuration with a higher 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 

ratio even after adapting the efficiency criterion. The difference in frequency only 

partially accounts for the significant difference between the maximal RMS power 

output of harvester tandems with different normal frequency ratios 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅. 

After the normalization, the difference between maximal RMS power outputs of 

tandem configurations with frequency output ratios 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 = 8 and 6 at 0.3 L 

is 306% (the difference of 410% before normalization), while for 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 = 6 

and 4 at 0.3 L the difference is 402% (605% before normalization). This is true for all 

investigated natural frequency ratios. 
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Table 3.9. Frequency normalized RMS power output [W] for different tandem 

configurations at optimal resistive loads 

 
𝝎𝟏

𝑷𝑽𝑬𝑯

𝝎𝟏
𝑳𝑭𝑹  

Dynamic Contact Point Distance from the Tip of the active element 

0 L 0.1 L 0.2 L 0.3 L 0.4 L 0.5 L 0.6 L 

Normaliz

ed PVEH 

RMS 

Power 

output  

8 3.7x10-3 3.9x10-3 7.1x10-3 8.6x10-3 6.2x10-3 5.5x10-3 4.8x10-3 

6 1.2x10-3 1.3x10-3 2.4x10-3 2.8x10-3 2.2x10-3 1.7x10-3 1.6x10-3 

4 3.5x10-4 5.4x10-4 6.5x10-4 6.9x10-4 4.9x10-4 4.3x10-4 4.2x10-4 

3 8.9x10-5 1.2x10-4 1.6x10-4 1.8x10-4 1.2x10-4 7.5x10-5 7.7x10-5 

2 2.2x10-5 3.5x10-5 4.7x10-5 4.2x10-5 2.9x10-5 2.2x10-5 1.5x10-5 

To compare the effect of the shifting a dynamic contact point along the length 

of the active element, a comparison of RMS power output at different positions of 

dynamic contact points to RMS power output at 0 L position was performed. The 

results are presented in Table 3.10 and Figure 3.21, with values expressed as 

percentage difference of RMS power output at a certain contact point in comparison 

to power output at 0 L point.  

Table 3.10. Comparison between tandem power output at different positions of 

contact point and a contact position at the tip 

 
𝝎𝟏

𝑷𝑽𝑬𝑯

𝝎𝟏
𝑳𝑭𝑹  

Dynamic Contact Point Distance from the Tip of the active element 

0 L 0.1 L 0.2 L 0.3 L 0.4 L 0.5 L 0.6 L 

RMS 

Power 

output, 

(%)  

8 0 6.2% 91.3% 132.8% 68.6% 47.4% 29.9% 

6 0 7.3% 90.2% 123.8% 79.5% 40.2% 25.4% 

4 0 56% 87.1% 100.4% 41.8% 24.9% 21.3% 

3 0 28.2% 84.7% 102.1% 14.4% −15.3% −13% 

2 0 58.3% 146.1% 90.8% 31.4% −0.6% −32.5% 

The results are also presented graphically in Figure 3.22. The results dictate that 

for a lower natural frequency ratio (or higher base excitation and LFR natural 

frequency), the point of maximum power output drifts slightly towards the free end of 

the active element (0 L). 

 

Figure 3.22. Comparison of RMS power output at different contact points with respect 

to PVEH power output when dynamic contact point is at 0 L 
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It can also be observed that for natural frequency ratio 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 6 and 4, 

higher power outputs are obtained when the contact point is located from 0.2 L and 

towards the fixed end of PVEH if compared to the power output when the contact 

point is located at the tip of PVEH. In fact, for the mentioned tandem configurations, 

the power output from impact at 0 L is the lowest (the power output obtained from 

impacting at 0.6 L still produces from 20 to 30% higher power output if compared to 

0 L). For the frequency ratio 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 3 and 2, the power output closer to the 

fixed end (0.5 L and 0.6 L) already produces lower power output if compared to power 

output at 0 L. This tendency can be related to the amount of kinetic energy supplied 

by the LFR necessary to deflect the PVEH. 

The tendency is clear here, and it suggests that the optimal contact point for 

different natural frequency ratios is always around 0.2 L to 0.3 L, and the increase in 

power output achieved there is significant. This can be related to the second transverse 

vibration mode shape which can be induced if the impact is located at 0.216 L from 

the tip because at this position the nodal point of the second transversal vibration mode 

form exists. 

3.4. Optimal harvester shape active element analysis. 

The goal of the piezoelectric energy harvester active element shape optimization 

was to maximize the amount of elastic deformation on the upper surface of active 

element when the active element is subjected to a linear spatial load and with 

limitations to geometric parameters of the active element (in this case, the thickness 

of the active element). Maximization of elastic deformations in the upper layer of the 

active element shall result in increase of voltage, and thus power output as the 

piezoelectric material layer is attached to that surface. The constraints were introduced 

on the geometric parameters in order to avoid excessive thinning or thickening of the 

active element during the optimization procedure.  The dynamic equation is converted 

to a static equation, and optimization is carried out with the static equation in an 

iterative manner. The method exploits the well-developed static response 

optimization. A dynamic load is discretized and transformed to multiple static loads 

and a structure is optimized with multiple loading conditions. 

The mathematical formulation of the problem is described in chapter 2.7 of this 

thesis as shown in equation (2.90 - 2.93). The initial shape of active element is shown 

in Figure 2.9. The mathematical model was realized in FEM analysis system 

COMSOL. In the solution, modules of the deformed shape and optimization analysis, 

were used. A mesh of rectangular elements was used.  

An optimal geometry of the active element maximizing elastic deformations in 

the upper surface while under distributed spatial load is shown in Figure 3.24. The 

initial boundaries of the active element are shown as a black contour in the Figure 

3.24. The optimization procedure finished after 14 iterations.  

The developed numerical models were investigated using the modal analysis as 

described in chapter 2.4 of this thesis. Equation (2.53) describes the equation of the 

motion, while the eigen frequencies were calculated from equation (2.54). The 

boundary conditions of an active element fixed in one end are described by equations 

(2.48) and (2.49).  
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Figure 3.24. Initial and optimal shape of the active element. Normal strain field 

The first transient vibration mode shape of the optimized active element is 

shown in Figure 3.25. The first natural frequency obtained from the modal analysis 

for the optimally shaped active element was found to be 𝜔1= 50Hz, while the first 

natural frequency of the primary constant cross-section active element was 𝜔1= 66Hz. 

 

Figure 3.25. First mode shape of optimally shaped active element at 𝜔1= 50Hz. 

Normal strain field 

The second transient vibration mode shape of the optimized active element is 

shown in Figure 3.26. The second natural frequency obtained from the modal analysis 

for the optimally shaped active element was found to be 𝜔2= 369Hz, while the second 

natural frequency of the primary constant cross-section active element was 𝜔2= 

389Hz. 

 

Figure 3.26. Second mode shape of optimally shaped active element at 𝜔2= 369 Hz. 

Normal strain field 

The transient analysis of the active element was conducted after obtaining the 

natural frequencies of the investigated active element, with a time varying force f(t) 

acting on it. The time-dependent force f(t) is described as active element body load in 

the vertical direction and is defined as the force/volume using the thickness as 

described in equation (2.56), while the equation of motion is given in equation (2.55) 

from chapter 2.4.  The equation of motion controls the linear dynamic behaviour, and 

the dynamic response can be found by solving this equation of motion.   

The integrated amount of normal strain in the upper surface of the constant 

cross-section (or sub-optimal) active element for a given interval of time can be seen 

in Figure 3.27. The integrated amount of normal strain in the upper surface of the 

optimally shaped active element for a given interval of time can be seen in Figure 

3.28.  
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Figure 3.27. Amount of normal strain in the upper surface of the active element versus 

time. Constant cross-section active element 

 

Figure 3.28. Amount of normal strain in the upper surface of the active element versus 

time. Optimal shape active element. 

From Figure 3.27 and Figure 3.28, the peak amount of the normal strain 

generated by an optimally shaped active element is significantly higher (3.15 x 10-4 m 

in the optimal shape active element versus 2.11 x 10-4 m in the constant cross section 

active element). Each active element was excited by vibrations of frequency matching 

their first natural frequency and the same acceleration and its parameters. The criteria 
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of effectiveness (3.7) are derived to properly compare the results obtained at different 

frequencies. 

𝐸𝑒𝑓𝑓 = 𝜔1 ∗ Max
𝑑𝑢

𝑑𝑥
;           (3.7) 

The constant cross-section active element resulted in 𝐸𝑒𝑓𝑓
𝑐𝑜𝑛𝑠𝑡 = 135,3 x 10−4 𝑚/

𝑠, the optimal shape active element resulted in 𝐸𝑒𝑓𝑓
𝑜𝑝𝑡

= 157,5 x 10−4 𝑚/𝑠, and the 

relative effectiveness calculated using both values is  
𝐸𝑒𝑓𝑓

𝑜𝑝𝑡

𝐸𝑒𝑓𝑓
𝑜𝑝𝑡 = 1,16. 

3.5. Section Conclusions.  

Modelling can be considered as one of most important if not most important part 

of the design of new devices, especially of such a complicated device as an energy 

harvester. This preliminary design stage gives one the advantages for predicting how 

elaborated configuration of PEH will perform.  

The following FE models have been realized in this section using COMSOL 

Multiphysics software: i) PVEH dynamic and electric (open circuit) response 

operating in higher transverse vibration modes (constant cross section active element 

and optimal shape); ii) PVEH dynamic and electric response operating in higher 

transverse vibration modes with electrical circuit attached and power output 

dependency on piezoelectric material layer connection (series or parallel); iii) Low 

Frequency Resonator (LFR) and PVEH tandem operating in the frequency-up 

converting mode with dynamic contact, dynamic and electrical response and its 

dependency on the geometry of LFR, its excitation frequency and electric load size of 

PVEH; iv) harvester shape optimization.  

The numerical simulations and analyses performed throughout the research may 

be grouped into a few case studies: i) evaluation of PVEH response to the harmonic 

excitation of the frequency matching its second resonant frequency; ii) evaluation of 

PEH electrode segmentation on its electric outputs; iii) evaluation of the effects of the 

electric load connection type (series, parallel) to PVEH generated open circuit 

voltage; iv) evaluation of the effects of different LFR configurations on PVEH power 

output when operating in the frequency up converting mode under dynamic impact 

conditions; vi) evaluation of effect of varying resistive load on PVEH power output 

when operating in frequency up converting mode under dynamic impact conditions; 

vii) evaluation the effects of geometric parameters of active elements to the amount 

of the normal strain produced by it. 

The numerical simulation results obtained were further processed using 

MATLAB software. The main conclusions drawn from numerical simulation results 

are the following: 

• The optimal segmentation point which coincides directly with the normal 

strain node obtained from the transient analysis was determined for active 

elements vibrating in their second transverse vibration mode. The two setups 

of a harvester were investigated: constant cross-section area and optimal shape 

active elements. 7.2% increase in the generated normal strain was achieved for 
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optimal shape active element and 6% for constant cross-section area active 

element.  

• The coupled piezoelectric-circuit finite element model (CPC-FEM) with an 

attached electrical load was used to verify the theoretical calculations of the 

optimal resistive load, and it is obvious that the resistive load varies 

significantly for parallel (127 kΩ) and series (29 kΩ) connected piezoelectric 

material layers. The size of theoretically calculated optimal resistive load 

found from FEM simulation complies well with numerical simulation results.  

• The CPC-FEM and mathematical models were created of a non-linear, 

frequency-up converting, piezoelectric energy harvesting tandem that consists 

of a low frequency resonator (LFR) and a high frequency piezoelectric energy 

harvester (PVEH). The CPC-FEM model was realized using COMSOL 

software. Different configurations with varying 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 ratio of the 

tandem and different dynamic impact points that were moved from the free end 

of PVEH towards the fixed end by 0.6L. It was determined that the maximal 

power output is obtained when the 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 ratio is 8 and the dynamic 

impact point is roughly at 0.2L distance from the tip of PVEH. This 

configuration produces up to 146% higher power output than the configuration 

with impact point location at the tip of PVEH (0L).  

• The shape of a simple active element energy harvester was optimized with the 

goal to maximize the amount of elastic deformation on the upper surface of the 

active element when the active element is subjected to a spatial load and with 

limitations to the geometric parameters of the active element (in this case, the 

thickness of the active element). The transient analysis of the obtained optimal 

shape active element and the sub-optimal shape active element revealed that, 

after the optimization, the peak output of the normal strain was increased by 

49% and, after adopting the criterion of effectiveness, the increase of the 

normal output was 16%. 
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4. EXPERIMENTAL VERIFICATION. 

The following section describes the steps of PVEH prototype development, 

manufacturing and testing as well as the customized equipment and stands used for 

the experimental measurements and the experimental studies with different 

configuration PVEH prototypes performed throughout the research period. The aim 

of the experimental studies was to evaluate the dynamic and electric characteristics of 

the harvester prototypes and verify the adequacy of the developed FE model.  

The PVDF specimens were created using laser cutting technology and were 

manufactured in the Centre for Physical Sciences and Technology (Vilnius). The 

specimens were then used for manufacturing of PVEH operating at higher transverse 

vibration modes, and two geometries of active elements were tested. Optimally shaped 

(shape obtained from solving volume minimization problem with constrains for eigen 

frequencies) and rectangular (water jet cutting was used for manufacturing the active 

elements) cantilevers were used for the experiment. The aim of the experiment was to 

test the newly developed numerical methodology to calculate the accurate strain node 

location for such devices, and thus optimal segmentation points for the piezoelectric 

material. The holography technique was used to test the mode shapes and eigen 

frequencies of the active elements obtained from modal analysis.  

The second experiment was conducted in order to test the developed model of 

the LFR and PVEH energy harvesting tandem utilizing frequency up conversion and 

the developed dynamic contact model. The specimens of the active elements used for 

this experiment were manufactured using water jet cutting technique. PZT was used 

as a piezoelectric material. A simple electrical circuit consisting of a resistive load 

was attached to the PVEH in order to obtain the power output of the developed 

harvester.  

4.1. Piezoelectric material cutting for segmentation: methodology, parameters 

and characteristics of used equipment and materials.  

This section briefly describes the manufacturing process of the PVDF 

specimens used for the first experiment. A picosecond laser PL10100 (Ekspla) was 

used for the manufacturing (laser cutting) of the piezoelectric material specimens 

(fundamental and second harmonics). The laser plates were guided using 

galvanometric scanners (ScanLab). The parameters of the laser system are given in 

Table 4.1.   

Table 4.1 Parameters of the laser system 

Laser PL10100, Ekspla 

Wave length 1064 nm 532 nm 

Duration of impulse 10 ps 

Repeating frequency 50 - 100 kHz 

Maximum power 5,2 W @ 100 kHz 2,1 W @ 50 kHz 

Galvanometric scanner SCANgine 14 HurrySCAN 14 

F-theta lens focus distance 80 mm 80 mm 

Telescope 4x - 

Laser beam width before the scanner (1/e2 level) 6,38 mm 2,16 mm 

Width of the focused laser beam (2w0) 20,7 µm 20,6 µm 
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Figure 4.1. PVDF specimen used for laser cutting   

PVDF was used for manufacturing of the experimental specimens, namely DT1-

028K by the Measurement Specialties Inc., Hampton. Rectangular, piezo film, silver 

electrode covered elements were used. The lead attachment was accomplished by 

using a riveted lug going to 12” (300 mm) of 28 AWG wire, as shown in Figure 4.1.  

The PVDF was cut by scanning the lines and changing the laser power output, 

the impulse energy, the scanning speed and the number of scans. After each cut, the 

resistance between the positive and negative electrodes of the PVDF specimen was 

measured using a multimeter (Mastech MS8268). In this way, it was measured if a 

short circuit between the electrodes was created during the cutting procedure. The 

PVDF was cut from in the direction shown in Figure 4.2 since the laminate was thinner 

on that side as shown in Figure 4.3. 

  

Figure 4.2. 532 nm, “1” cut of the 

PVDF specimen 

Figure 4.3. 532 nm, “N” cut of the 

PVDF specimen 

When cut with the 1064 nm wavelength beam, the PVDF was positioned on a 

glass surface. After the cut, the ends of the PVDF specimens were separated 

mechanically if the number of scans was insufficient. When cut with the 532 nm 

wavelength beam, the PVDF specimen was positioned in the air in every case and no 

mechanical separation was necessary.  
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4.2. Segmentation investigation: preparation of harvester model, scheme, 

stands, parameters of used equipment and materials. 

Open circuit voltage output experiment 

The aim of the first experiment was to verify the FEM model of the piezoelectric 

vibration energy harvester operating in higher transverse vibration modes with two 

PVDF segments attached. Four different setups of active elements were investigated, 

i.e., two optimal shape active elements, one of which was segmented at the 

segmentation line obtained from modal analysis (0,239L) and one segmented at the 

segmentation line obtained from transient analysis (0,259L) and two constant 

resection active elements, one of which was segmented at the segmentation line 

obtained from modal analysis (0,216L) and one segmented at the segmentation line 

obtained from transient analysis (0,238L).  

 

Figure 4.4. Experimental setup of the tested piezoelectric vibration energy harvester 

The objectives set to reach this aim were as follows: to manufacture active 

elements that would be the same as modelled in the FEM model, to produce a 

reasonable test stand and to test their response to the harmonic excitation of the same 

frequency that is used in the FEM model. The obtained open circuit voltage output 

results then had to be compared to the ones obtained theoretically.    

To verify the modelling results, the open-circuit voltage output from constant 

cross-section area and optimal shape active elements were compared with 

experimental results obtained from an experiment conducted using experimental stand 

shown in Figure 4.4. The scheme of the experiment is depicted in Figure 4.5.  
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Figure 4.5. Scheme of the experimental setup 

This experimental setup is composed of two main systems. The first one is the 

data acquisition system with the purpose to record the vibration response of the active 

element and record the open-circuit voltage outputs of both piezoelectric segments. 

The second system is an excitation system that consists of a signal generation system 

and an electromechanical shaker witch directly excites the energy harvester in a 

desired frequency since the harvester clamp is directly mounted on the top of the 

shaker. The substrate layer of the PVEH (with final harvester dimensions of 100 × 10 

× 1 mm) is made of water-jet cut structural steel; and two PVDF layers (transducers 

DT1-028K by Measurement Specialties Inc., Hampton, VA, United States) are 

mounted on top. The function generator AGILENT 33220A is used to control the 

harmonic excitation signal transmitted to the electromagnetic shaker. The single-axis 

miniature piezoelectric charge-mode accelerometer METRA KS-93 (with a 

sensitivity of k = 5 mV/(m/s2)) is attached at the bottom of the electromagnetic shaker 

for acceleration measurements. A constant 1.3 g acceleration was maintained.  

The experimental results for the constant cross-section area active element are 

given in Figure 4.6. Open circuit voltage outputs for both left (Channel 1 from Figure 

4.5) and right (Channel 2 from Figure 4.5) elements are shown in Figures 4.6(a) and 

4.6(b), respectively. The blue line represents the “optimal” configuration which 

corresponds to the segmentation results corresponding to the segmentation in the 

segmentation line (strain node) obtained from transient analysis as described in 

chapter 3.1 of this thesis. The red line indicates the “sub-optimal” segmentation results 

corresponding to the segmentation in the segmentation line (strain node) obtained 

from modal analysis. The excitation frequency for the constant cross-section area 

active element was 551 Hz.   

Open circuit voltage output peak at Channel 1 is 0.287 V for optimal 

segmentation and 0.264 V for the suboptimal segmentation (8.7% difference). 

Channel 2 produced 0.389 V for the optimal segmentation and 0.351 V for the 

suboptimal segmentation (10.2% difference). 
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Figure 4.6. Open circuit voltage output for the active element of a constant cross-

section (𝜔2 = 551 Hz): (a) first segment; (b) second segment 

Figure 4.7 provides the corresponding results for the optimally-shaped active 

element excited at its second natural frequency of 545 Hz. Open circuit voltage output 

peak at Channel 1 is 0.275 V for the optimal segmentation and 0.261 V for the 

suboptimal segmentation (5.1% difference). Open circuit voltage output peak Channel 

2 was 0.369 V for the optimal segmentation and 0.353 V for the suboptimal 

segmentation (4.6% difference). 

 

Figure 4.7. Open-circuit voltage output of the optimally-shaped active element at 𝜔2 = 

545 Hz:  

(a) first segment; (b) second segment 

The results dictate that the peak open circuit voltage output for the optimally 

shaped active element were approximately 3.5% lower if compared to the constant-

cross section area active element open circuit voltage output amplitude. These results 

comply well with the results shown in table 3.3.  

In Figure 4.8, the comparison of open circuit voltage outputs obtained 

experimentally and retrieved from simulations is presented. The dotted lines here 

represent the theoretical results while the continuous ones represent the experimental 

results. The results dictate that in every case, the theoretical predictions for the voltage 

output have a good agreement with the experimentally-obtained voltage values. 

http://www.mdpi.com/1424-8220/16/1/11/htm#fig_body_display_sensors-16-00011-f014
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Figure 4.8. Experimental and theoretical outputs of total open-circuit voltage (first 

segment + second segment): (a) active element of a constant cross-section; (b) optimally-

shaped active element 

The results show that the largest voltage amplitude was generated by the optimal 

constant cross-section area active element (segmentation line at 0.0238 m): 0.676 V, 

while the sub-optimal counterpart (segmentation line at 0.022 m) generated 0.615 V, 

which is 9.9% less. The optimally-shaped active element with optimal segmentation 

(segmentation line at 0.026 m) generated 0.536 V, while sub-optimal counterpart 

(segmentation line at 0.024 m) generated 0.511 V, which is 4.8% less. The theoretical 

and modelling results show a good agreement, and the error does not exceed 5% for 

all investigated cases.  

PRISM Holography experiment 

The aim of this experiment was to verify the FEM model of the active element 

vibrating in higher transverse modes. To achieve this aim, several objectives had to 

be fulfilled: the transient vibrations eigen frequencies obtained from the modal 

analysis had to be confirmed experimentally, and higher transverse vibration mode 

shapes obtained from modelling had to be verified experimentally. To achieve this 

aim and objectives, the holographic interferometry was chosen.  

To verify the developed model, experiments were conducted. The model was 

verified by experimentally measuring the vibration amplitudes in the y-direction of 

the rectangular and optimal shape active element when excited by their first and 

second natural frequencies of transverse vibrations. The active elements used were 

described in the previous section. The technique of holography was used for this 

purpose. The experimental setup can be seen in Figure 4.9(a).  

 

Figure 4.9. a) The PRISM holography system: 1 – control block; 2 – object beam 

source; 3 – camera; b) The rectangular active element specimen c) Interferometric view of 

vibrating active element 
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The displacement in the y-direction between each pair of adjacent parallel dark 

lines can be found from the Bessel function. Holography is lensless photography in 

which an image is captured as an interference pattern as shown in Figure 4.9(c). The 

active element specimen can be seen in Figure 4.9(b).  

 

Figure 4.10. Holographic image of active element’s face vibration amplitudes and 

first/second mode shapes from modal analysis of Rectangular active element 

 

Figure 4.11. Holographic image of active element’s face vibration amplitudes and 

first/second mode shapes from modal analysis of optimal shape active element 
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The vibration amplitudes obtained from the holographic images are compared 

with those obtained from COMSOL multiphysics as shown in Figure 4.10 for 

rectangular active element and Figure 4.11 for optimal shape active element. The 

bright white lines in the holographic images of active elements excited in their second 

resonant frequencies represent the amplitude minimum or nodal points where the 

vibration amplitude is 0 m, while the dark region represents the maximums of 

amplitude. These nodal points coincide with vibration minimums of the mode shapes 

obtained from the numerical modal analysis. Resonant frequencies of rectangular and 

optimal shape active elements obtained experimentally and from modal analysis are 

compared. The results indicate that the deviation is very small and within the tolerance 

of 3%.  

4.3. Vibro-shock system. Equipment, scheme, methodology and results.  

For experimental verification of the derived FEM model of the frequency-up 

converting tandem, a prototype system was fabricated. Its schematic representation 

can be seen in Figure 4.12. 

 

Figure 4.12. Schematic representation of experimental setup 

LFR was manufactured from a structural steel. An additional weight, that is 

proof mass, was added to the tip of the active element. PVEH was manufactured from 

a stainless steel with a bulk PZT-5H layer attached on the top by using dry adhesives. 

LFR was suspended below the PVEH so that the mechanical contact occurred only 

between the LFR proof mass and PVEH load bearing structure. PVEH tip 

displacement was measured with a Doppler Vibrometer (OFV-512 differential laser 

interferometer, Polytec, Waldbronn, Germany) with a Polytec OFV-5000 controller 

(Polytec, Waldbronn, Germany) connected to it. An acrylic glass support and clamp 

structure with both active elements (LFR and PVEH) fixed was mounted on to an 

electromagnetic shaker, which was controlled by a 33220A function generator 

(Keysight, Santa Clara, USA), and the VPA2100MN voltage amplifier (HQ Power, 

Gavere, Belgium) was used to amplify the signal. LFR position on the stand was fixed, 
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while the PVEH was mounted onto a movable clamp structure, which allowed to 

adjust the gap distance and the dynamic contact point location. Excitation amplitudes 

were measured using a single axis accelerometer (KS-93, sensitivity 0.35 mV(m/s2)). 

Readings from both accelerometer and resistive load attached were recorded using 

3425 USB oscilloscope. The experimental setup can be seen in Figure 4.13.  

 

Figure 4.13. Experimental setup 

During the first experiment, PVEH dynamic response under open circuit 

conditions (RL = 10 MΩ was measured under 77 Hz base excitation frequency and 

𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅  = 8 tandem configurations inducing 622 Hz PVEH resonant 

vibrations). As explained in section 3.3, this is the manifestation of frequency-up 

conversion phenomena. An experimental voltage-time dependence was obtained 

(depicted in Figure 4.14).  

 

Figure 4.14. Experimental vs. modelling obtained open circuit voltage output of 

PVEH under dynamic excitation by 77 Hz LFR at 0.2 L dynamic impact contact point 
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The time interval of 0.025 seconds is shown in Figure 4.14. It depicts two full 

periods of LFR, which results in two mechanical impact coupling events of PVEH. 

The transient process shown was “cut” from a steady state vibration region. Between 

the impacts, a decaying PVEH signal can be observed with multiple signal “ripples” 

during the contact. This can be explained by the repetitive bouncing of PVEH. The 

experimental and modelling results comply well with the modelling results, and the 

difference of both signals does not exceed 8%. From the experimental curve, it can 

also be seen that higher transverse vibration modes are induced in PVEH during the 

impact. The duration of the impact was a little longer in the experimental mode, which 

is due to a possible difference of LFR excitation frequency and/or the damping 

parameters. Overall, the model shows a good agreement with the experimental data.  

Figure 4.15(a) presents a comparison of modelling and experimentally obtained 

peak of the harvested power as a function of load resistance under highly nonlinear 

vibro-shock inputs to the transducer. The experiment was done using these parameter 

values: contact position—0.2 L, natural frequency ratio ω1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 = 8.  

 
 

(a) (b) 

Figure 4.15. Experimental and modeling maximum of harvested power output as a 

function of: (a) load resistance under sinusoidal and impact excitation, contact position—0.2 

L, natural frequency ratio 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 = 8; (b) contact position at natural frequency ratio 

𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 = 8, resistive load attached RL = 29.5 kΩ 

The resistive load values in Figure 4.15(a) are presented in a logarithmic scale, 

two peaks represents optimal resistive load values - ~6.5 kΩ and ~31 kΩ which is due 

to electrical resonance and anti-resonance effect as expected for piezoelectric material 

with high electromechanical coupling coefficient. The modelling results show a good 

agreement with the experimental results. This clear gap in peak power output as a 

function of resistive load could be explained by sinusoidal and impact driven 

vibrations. The results show that experimentally obtained values were approximately 

5% higher than the results obtained from modelling. 
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Figure 4.15(b) depicts the relationship between the experimental and modelled 

power output as a function of dynamic contact location along the length of PVEH with 

a resistive load RL = 29.5 kΩ. The experimental and modelling results show a good 

agreement, and the error does not exceed 6%. In both cases, the peak power output is 

generated when the dynamic contact location is at 0.2L. The experiment was done 

using these parameter values: natural frequency ratio 𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹R = 8, resistive load 

attached RL = 29.5 kΩ. 

Peak power outputs with an optimal resistive load attached are in a good 

agreement with the RMS power outputs presented in Table 3.9 and Figure 3.21, 

matching both the dynamic contact point location at which the highest power and the 

highest amount of power output were generated (0.2-0.3L).  

4.4. Section conclusions.  

Theoretically obtained results can only be deemed correct if verified 

experimentally. This was done by conducting several experiments for verification of 

previously developed mathematical and FE models and numerical simulations done 

in accordance to them. The main conclusions drawn from the experiment with a PVEH 

operating at higher vibration modes are following: 

• The coupled model of PVEH operating at higher transverse vibration modes 

with two segments of piezoelectric material attached was experimentally 

verified with a quite good agreement of 7%. The open circuit voltage obtained 

theoretically from the model was compared to the experimentally obtained 

values from the experiment with a vibro stand. The theoretically obtained eigen 

frequencies and mode shapes were compared to the results obtained from the 

experiment using the holography technique, and the error does not exceed 3%. 

• The methodology developed to calculate the exact location of the strain node 

using transient analysis and its superiority over the strain node obtained from 

modal analysis to be used as a segmentation point of piezoelectric elements for 

PVEH operating in the second transverse vibration mode was confirmed 

experimentally. PVEH segmented in the strain node obtained from transient 

analysis generated 7.2% higher open circuit voltage output for the constant-

cross section area active element and 6% for the optimally shaped active 

element. The error between the modelling and experimental results does not 

exceed 5% in any investigated case.   

• The model shows a good agreement with the experimental results and, 

therefore, is deemed valid.  

The main conclusions drawn from the experiment with an energy harvesting 

tandem consisting of PVEH and LFR are following: 

• The experimental investigation of PVEH dynamic response under open circuit 

conditions (RL = 10 MΩ) at 77 Hz base excitation frequency and 

𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅  = 8 tandem configurations were conducted. The experimental 

and modelling results comply well with the numerical modelling results, and 

the difference of both signals does not exceed 8%.   
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• A comparison of modelling and experimentally obtained peak of the harvested 

power as a function of load resistance under highly nonlinear vibro-shock 

inputs to the transducer with tandem configuration of contact position 0.2 L, 

natural frequency ratio ω1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹𝑅 = 8 was conducted. The obtained optimal 

resistive values were ~6.5 kΩ and ~31 kΩ, which is due to electrical resonance 

and anti-resonance which manifests in materials with a high electromechanical 

coupling coefficient. The results show that the experimentally obtained values 

were approximately 5% higher than the results obtained from modelling. 

• The relationship between the experimental and modelled power output as a 

function of dynamic contact location along the length of PVEH with a resistive 

load RL = 29.5 kΩ was determined. The experimental and modelling results 

show a good agreement, and the error does not exceed 6%. In both cases, the 

peak power output is generated when the dynamic contact location is at 0.2L. 

The experiment was done using these parameter values: natural frequency ratio 

𝜔1
𝑃𝑉𝐸𝐻/𝜔1

𝐿𝐹R = 8, resistive load attached RL = 29.5 kΩ. 

• The model shows a good agreement with the experimental results and, 

therefore, is deemed valid.  
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5. GENEREAL CONCLUSIONS. 

1. A novel methodology was developed for optimal harvesting of the energy 

generated from a piezoelectric material operating at higher vibration modes. 

The distribution of the normal strain in the piezoelectric material layer was 

investigated using transient analysis. Using the developed methodology and 

numerical results of the normal strain distribution, the normal strain nodal 

point was calculated for the harvester operating at the second transverse 

vibration mode, ensuring a 5.2% and 5.5% increase in the harvested energy for 

constant cross-section and optimal shape active elements, respectively, if 

compared to the results obtained when segmenting the active element at the 

normal strain nodal point obtained from modal results.  

2. The mathematical and numerical models of nonlinear dynamic contact of 

piezoelectric vibration energy harvester elements were created. The developed 

models were used for the investigation of harvester’s physical behaviour under 

kinematic and vibro-impact excitation. 

3. The coupled model of the piezoelectric device with an electrical load attached 

was developed. The eligibility of the models for practical calculations of the 

dynamical and electrical properties of the piezoelectric elements connected in 

parallel and series was checked, and the modelling results were investigated 

by using the numerical methods. The size of the optimal resistive load needed 

for the series connection is 77% lower than those needed for the parallel 

connection, even though the power output is similar.  

4. The mechanical and electrical parameters of the nonlinear dynamic contact 

between different piezoelectric elements maximizing the energy output of such 

devices were determined. Using the developed FE model of the low frequency 

resonator (LFR) and piezoelectric vibration energy harvester (PVEH), it was 

found that the transducer is the most efficient when the location of the dynamic 

impact point is at 0,2 −  0,3 L distance from the tip of the active element. This 

allows up to 150% greater RMS power output if compared to LFR impacting 

to the tip of PVEH (0L). This might be explained by stating that the location 

of the dynamic contact roughly coincides with the location of the displacement 

node point for the second mode shape of the active element generating higher 

mode shapes which generate significantly higher amount of strain, and thus 

more energy.   

5. The mathematical and numerical models of the shape optimization problem, 

maximizing the amount of the generated normal strain, were developed.  By 

solving the shape optimization, the peak output of the normal strain was 

increased by 49% of the active harvester’s element and after adopting the 

criterion of effectiveness normalizing the amount of the normal strain with 

respect to excitation frequency, the increase of normal output was 16% if 

compared to the energy output from a constant cross-section active element. 

6. The methodologies and experimental stands were developed for the 

experimental verification of the described mathematical and numerical 
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models. After conducting the experiments, the following conclusions can be 

drawn: 

i. The methodology for calculation of the normal strain nodal point was checked 

experimentally. It was experimentally determined that a harvester segmented 

at the strain nodal point obtained from the transient analysis generated 5.5% 

higher voltage output in comparison to the voltage output obtained from the 

harvester segmented at the nodal point obtained from the modal analysis.   

ii. The effect of the size and location of the electrical load of the dynamic contact 

on the amount of power generated by the tandem was experimentally 

investigated and proven to be in a good agreement with the modelling results 

as the error does not exceed 8%. The best results were obtained when the 

location of the dynamic contact coincided with the displacement nodal point 

of the second transverse vibration mode. 

iii. The relation between the frequency ratio of LFR and PVEH natural frequency 

𝜔1
𝑃/𝜔1

𝐿𝐹 and the power generated by the tandem was experimentally 

determined. The best results were obtained when the frequency ratio 𝜔1
𝑃/𝜔1

𝐿𝐹𝑅 

was equal to 8. It can be explained by the fact that the higher the amount of 

energy the LFR is carrying, the more of that energy can be usefully transferred 

into the piezoelectric generator.  
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