

KAUNAS UNIVERSITY OF TECHNOLOGY

FACULTY OF INFORMATICS

Ąžuolas Krušna

MUSIC GENERATION USING MACHINE LEARNING

Master’s Degree Final Project

Supervisor

dr. Mantas Lukoševičius

KAUNAS, 2018

KAUNAS UNIVERSITY OF TECHNOLOGY

FACULTY OF INFORMATICS

MUSIC GENERATION USING MACHINE LEARNING

Master’s Degree Final Project

Informatics (code 6211BX007)

 Supervisor

(signature) dr. Mantas Lukoševičius

(date)

Reviewer

(signature) assoc. prof. dr. Tomas Blažauskas

(date)

Project made by

(signature) Ąžuolas Krušna

(date)

KAUNAS, 2018

KAUNAS UNIVERSITY OF TECHNOLOGY

Faculty of Informatics

(Faculty)

Ąžuolas Krušna

(Student's name, surname)

Informatics, 6211BX007

(Title and code of study programme)

“Music generation using Machine Learning”

DECLARATION OF ACADEMIC INTEGRITY

20

 Kaunas

I confirm that the final project of mine, Ąžuolas Krušna, on the subject “Music generation using

Machine Learning” is written completely by myself; all the provided data and research results are

correct and have been obtained honestly. None of the parts of this thesis have been plagiarized from

any printed, Internet-based or otherwise recorded sources. All direct and indirect quotations from

external resources are indicated in the list of references. No monetary funds (unless required by law)

have been paid to anyone for any contribution to this thesis.

I fully and completely understand that any discovery of any manifestations/case/facts of

dishonesty inevitably results in me incurring a penalty according to the procedure(s) effective at

Kaunas University of Technology.

(name and surname filled in by hand) (signature)

TABLE OF CONTENTS

1. INTRODUCTION .. 10

1.1. Aim of the research .. 13

1.2. Objectives .. 13

1.3. Novelty of research in science ... 13

1.4. Structure of the document ... 13

2. LITERATURE OVERVIEW.. 14

2.1. Pitch ... 14

2.2. Electronic music ... 16

2.3. MIDI protocol ... 16

2.4. Algorithmic music .. 18

2.4.1. The process of algorithmic composition... 18

2.4.2. Mathematical models ... 20

2.4.3. Knowledge based systems .. 21

2.4.4. Grammars ... 21

2.4.5. Evolutionary methods .. 22

2.4.6. Systems that learn .. 22

2.4.7. Evaluation of the systems .. 23

2.4.8. Knowledge representation ... 23

2.4.9. Computational creativity ... 23

2.5. Machine learning.. 24

2.5.1. Neural networks ... 26

2.5.2. Recurrent neural networks ... 27

2.6. Overview of the advancements in music generation ... 29

2.6.1. Overview of advancements in music generation using RNN 30

2.6.2. Echo state networks usage for music composition .. 32

2.6.3. Choice of the network .. 32

3. EXPERIMENT... 33

3.1. Choice of music... 33

3.2. Echo state network ... 33

3.2.1. Systems equations .. 33

3.2.2. Ridge Regression .. 34

3.2.3. Evaluation of the model ... 35

3.2.4. Echo state network tuning ... 35

3.3. Data and tools ... 36

3.4. Initial data analysis .. 38

3.5. Experimental setup .. 39

3.5.1. Predicting music ... 39

3.5.2. Predicting music including the hand information .. 42

3.5.3. Generating music ... 42

4. RESULTS ... 44

4.1. Prediction of music... 44

4.2. Prediction of music including the hand information .. 52

4.3. Generation of music ... 53

5. CONCLUSIONS .. 55

6. REFERENCES ... 57

TABLE OF FIGURES

Fig. 1. 12 notes mapping to numbers [21] ... 18

Fig. 2. 12-sided die mapping of numbers to pitches [21] .. 19

Fig. 3. Single neural network node (perceptron) on the left and a layer of 4 nodes on the right [60] . 26

Fig. 4. Neural network and its visual simplification on the right [52] ... 27

Fig. 5. Recurrent neural network [52] .. 27

Fig. 6. Recurrent neural network unwrapped along the time axis [52] .. 28

Fig. 7. LSTM unwrapped along the time axis [52] .. 29

Fig. 8. Recurrent and LSTM neural networks [53] .. 29

Fig. 9. Logistic sigmoid function ... 34

Fig. 10. Hyperbolic tangent function ... 34

Fig. 11. Design of an echo state network [65] ... 36

Fig. 12. Algorithm of raw MIDI file treatment into a CSV file ... 37

Fig. 13. Growth of major programming languages in high-income countries [69] 38

Fig. 14. Distribution of Mozart notes ... 38

Fig. 15. Distribution of Mozart note lengths .. 39

Fig. 16. Lengths of quantized notes whereas the quantization is 60 ticks ... 40

Fig. 17. Scheme of research ... 41

Fig. 18. Generating music from user’s/programmer’s point of view... 42

Fig. 19. Minimum RMSE dependency on leaking rate.. 46

Fig. 20. Zoomed minimum RMSE dependency on leaking rate .. 46

Fig. 21. Minimum RMSE dependency on input scaling .. 47

Fig. 22. Zoomed minimum RMSE dependency on input scaling .. 47

Fig. 23. Minimum RMSE dependency on spectral radius ... 48

Fig. 24. Zoomed minimum RMSE dependency on spectral radius ... 48

Fig. 25. Zoomed minimum RMSE dependency on spectral radius to the most promising region 48

Fig. 26. Minimum RMSE dependency on regularization .. 49

Fig. 27. Zoomed minimum RMSE dependency on regularization .. 49

Fig. 28. Grid search minimum error (RMSE) grouped by input scaling and spectral radius 50

Fig. 29. Grid search minimum error (RMSE) grouped by input scaling and spectral radius while leaking

rate equals 0.025. ... 50

Fig. 30. Lengths of notes after change of quantization .. 52

Fig. 31. Music generation results ... 54

TABLE OF TABLES

Table 1. Frequencies of notes .. 15

Table 2. MIDI standard .. 17

Table 3. Information inside a message... 37

Table 4. Sorted error data (top 10) ... 44

Table 5. Sorted error data (worst 10) ... 45

Table 6. Sorted error data (worst 10) while regularization is smaller or equal to 10 45

Table 7. Sorted error data (top 10) using a logistic sigmoid activation function 51

Table 8. Sorted error data (top 5) using a logistic sigmoid and new quantization............................... 52

Table 9. Sorted error data (top 5) while 10 % of the reservoir weights were reduced to 0 52

Table 10. Sorted error data (top 8) including hand information .. 53

Table 11. Sampling results ... 53

Krušna, Ąžuolas. Muzikos generavimas panaudojant mašininį mokymąsi. Magistro baigiamasis

projektas / vadovas dr. Mantas Lukoševičius; Kauno technologijos universitetas, Informatikos

fakultetas.

Mokslo kryptis ir sritis: fiziniai mokslai, informatika

Reikšminiai žodžiai: algoritminė kompozicija, aido būsenų tinklas (ESN), MIDI, rekurentinis

neuroninis tinklas, ilgos trumpalaikės atminties tinklas (LSTM)

Kaunas, 2018. 61 p.

SUMMARY

Muzika visuomet buvo labai svarbi mūsų gyvenimuose. Iš tiesų, tai ne tik mūsų. Keletas iš geriau

žinomų banginių yra pastebėti dainuojant taip pat. Muzika visąlaik mus lydėjo mūsų karuose,

džiaugsmuose ir varguose. Šis straipsnis apžvelgia žmonių bandymus kurti muzikos kompoziciją

pasitelkiant skaičiavimus. Nors ir algoritmiškai kuriama muzika egzistuoja nuo senų dienų, ji niekada

nebuvo pritraukus tiek daug tyrėjų kaip pastaraisiais metais. Mūsų žiniomis tai buvo daroma

viduramžiais Irane bei per Švietimo amžių Europoje. Nors ir algoritminės muzikos kompocijos forma

pasikeitė užsiaugino sudėtingus sluoksnius, patys fundamentai, kurie generuoja muziką nepasikeitė, t.

y. dauguma jų yra paremti tikimybinėmis sistemomis. Atsiradus šalia modeliams, kurie sugeba

mokintis, mum tai suteikė galimybę imituoti visų nepaprastų muzikantų muziką per istoriją. Pati ši

mintis atrodo neįtikėtina bei iš mokslinės fantastikos. Šis raštas atlieka išsamią technologijų,

naudojamų muzikos generavimui, analizę. Toliau yra atliekamas tyrimas, bandantis rasti patį geriausią

aido būsenos tinklo modelį, kuris panašiausiai nuspėtų legendinio Volfgango Amadėjaus Mocarto

muziką. Iš tyrimo išplaukia, kad geriausi modeliai tie, kurie turi ilgalaikę atmintį. Pabaigoje yra

pasiūlomos įžvalgos generuojant muziką su aidų būsenos tinklu.

Krušna, Ąžuolas. Music Generation Using Machine Learning: Master‘s thesis in Informatics /

supervisor dr. Mantas Lukoševičius. The Faculty of Informatics, Kaunas University of Technology.

Research area and field: Physical Sciences, Informatics

Key words: algorithmic composition, echo state network, MIDI, recurrent neural network, long

short-term memory (LSTM) network

Kaunas, 2018. 61 p.

SUMMARY

Music has always had a special role among humans. In fact, not only humans. Several of the

popular baleen whale species have been observed to be singing. Music has been a great companion to

our wars, joys and troubles. An overview on the attempts to compose music with computations is given

in this article. Even though algorithmic music has been around the world since the old days, it has

never attracted as many researchers as in the recent years. To our knowledge it existed in Iran back in

the Middle Ages and in Europe during the Age of Enlightenment. Though the form has changed and

it has grown layers of complexity, the very foundations of the algorithm that generates musical

compositions have not changed, i.e. most of them are based on structures of fortuity. Additionally,

models that are able to learn have been discovered allowing us to imitate the music of the incredible

artists throughout history. The thought alone is crazy to think of and seems to be from the sci-fi. In this

paper a thorough analysis of the technologies for music generation is carried out. Moreover, a research

trying to find the best model of an echo state network in order to mimic the music of the legendary

Wolfgang Amadeus Mozart has been realized. As it turns out, the best models are the ones that rely

on long-term dependencies. In the end, insights of using an echo state network for music generation

are given.

 10

1. INTRODUCTION

Music has always had a special role among humans. In fact, not only humans. Several of the

popular baleen whale species such as the humpback whale and the blue whale have been observed to

be singing. These marine mammals are able to produce loud melodic notes and sounds that mimic the

sounds created by humans. They are commonly refered as whale songs. Unfortunately, researchers do

not have a clear understanding of what these sounds mean and why they are sung. We are not able to

interpret what exactly is being communicated between the male and the female whales but the fact that

these songs are often heard during mating season [1] suggests us that singing has probably played a

vital role for these fascinating mammals.

Music has always been a major attraction for the kings and royalties throughout centuries. At

some points in history it has even been an indisputable activity for the aristocracy here in Europe, in

Lithuania, all the way to Hawaii, through New Zealand to Iceland. It has not only been for aristocracy.

Music has been used in wars to boost the morale of soldiers and to scare the enemies away. Vikings

are known for their war chants, Maoris are known for their war cry haka, Winged Hussars are known

to scare the enemy with the terrible sound produced by the feathers on their wings when they charge.

Some armies even replaced some of the soldiers in the battlefield to drummers or bagpipers. Taking a

look back to music as an entertainment and an uplifting activity for the crowds, we see that some of

the classical musicians left a footprint so deep, that people create movies and go crazy about them to

this day.

Singing brought us Odyssey and Iliad. Singing has led us through work and trouble. People sang

during the Soviet deportations to Siberia. The partisans sang and had created a lot of songs during the

resistance years. Singing has accompanied not only Lithuania, but other Baltic States to the

independence as well [2].

Music has sparkled peaceful revolutions and movements around the world. Early in 1964 to

demonstrate the power of music to people, Life magazine put a quote like this: “In [1776] England lost

her American colonies. Last week the Beatles took them back.” [3]

We believe that music is very important to us as humans. It is a lot of fun as well. These are the

reasons we chose music as our field of study. Getting to know that we might be able to create new

music by mimicking the great musicians of the past, made us very curious and interested in this topic.

Algorithmic music is by no means a new trend in our techy world. Even Pythagoras believed that

music and mathematics were meant to be studied together [3]. In fact, three Iranian brothers

collectively known as Banu Musa were successfully devising automatic and even programmable

musical instruments back in 850 AD [5]. They were most likely invited to the best parties in the city

back then. Moreover, an algorithmic music game circulated around Europe since the Enlightenment

 11

Age, i.e. the 18th century in a form of Musikalishes Würfelspiel. It has been attributed to Mozart in a

form of myth, yet never proven to be true. This game took small fragments of music and combined

them in a random order by chance, often tossing a dice. Since then, the scope of the algorithmic music

has augmented layers of complexity, but the underlying foundations have not changed. The main

difference is that now we do not toss a dice, but rather run a random number generation function in

our favourite programming language.

The very first uses of computers to compose music dates back to the mid 1950s. It is roughly at

the same time as the concept of Artificial Intelligence (AI) was coined at the Darmouth Conference

although the two fields did not converge until sometime later. Computers were slow and expensive.

They were also difficult to use as they operated in batch mode [6].

One of the most commonly cited examples is the Illiac Suite by Hiller and Issacson [7]. A

composition that was generated using random number generators, rule systems and Markov chains in

late 1956 [3, 6]. It was designed as a series of experiments on composition of formal music. During

the following decade, Hiller’s work inspired colleagues within the same university to further

experiment with algorithmic composition. They were also using a library MUSICOMP for algorithmic

composition written by Baker, also a collaborator of Hiller [8]. This library provided researchers a

standard implementation of the various methods used by Hiller and others [6].

A renowned avant-garde composer, Iannis Xenakis, profusely used stochastic algorithms to

generate raw material for his compositions using machines since the early 1960s to automate these

methods [8]. While Keonig was not as a well-known composer as Xenakis was, he implemented and

algorithm PROJECT1 using serial composition (a musical theory) and other techniques as Markov

chains to automate the generation of music in 1964 [8]. And there were many others burning with the

passion to teach machines compose music in the early days of computational algorithmic music

generation [8].

Musical composition has been one of the long term goals of artificial intelligence [9]. It brings

together machine learning researchers that aim to capture the complex structure of music as well as

music professionals and enthusiasts that wish to see how far a computer got to be a real composer [10].

Artificially generated music is being experimented in healthcare as a pain and stress remedy. Real

time music generation is also explored for gaming environments [11].

Broadly speaking, music generation by AI is based on the principle that musical styles are in

effect complex systems of probabilistic relationships, as defined by the musicologist Leonard B.

Meyer.

Recently, AI music composition has gotten quite some fame as the composer’s Iamus 4 works

have been performed by the London Symphony Orchestra. Actually, Iamus is a computer. No wonder

its first music is called Hello, world! Indeed, the performance of Iamus 4 works by the London

 12

Symphony Orchestra created the album Iamus. No previous attempts to make music by computer

dating back to the early days of computation have been afforded such severe attention [12]. “New

Scientist” reported it as the first complete album to be composed by a computer and recorded by

humans.

Artificially composing and generating music has attracted even such big industry players as

Google and Sony. Google Brain team has launched their project Google Magenta with Douglas Eck

in the lead to answer the question of whether we can use machine learning to create compelling art and

music [13]. Sony has dedicated this task to its Computer Science Laboratory (CSL). Their team has

developed an artificial intelligence to create the first ever full pop song composed by AI [14]. However,

it must be noticed that the French composer Benoit Carre arranged the song and wrote the lyrics.

Recently, Sony has also developed a model that creates chorales in the style of J. S. Bach [15]. Around

50 percent of the listeners believed it was authentic Bach music.

Having said that, music composition is not a trivial task and researchers find it intimidating. Even

such big companies as Google and Sony face a bunch of obstacles and struggle to create an algorithm

that produces great music.

We may also see that AI music composition is on the rise and is quite a hot topic. Maybe even at

the breakpoint of innovation. It has never attracted as many scientists as in the recent years.

As the models that are able to learn the patterns of the music have been discovered, the thought

that we might be able to imitate the music of the incredible artists throughout history has driven us

crazy. It even seems to be from the sci-fi.

In this paper we are trying to train a system to generate classical piano music. For a quantitative

rather than qualitative analysis only one composer was chosen. Mozart has been opted for his

indisputable genius and some haphazardness.

Rather than working with sound signals, we chose to work with notes for several reasons. Firstly,

it is a lot less complex. Therefore, it is a lot easier for us to understand and analyse it as well as it is

for the algorithm in the means of computational resources and dependency on previous notes. In the

note level we are also able to compare it with the musical theory. And it helps us stay in the realm of

classical music as well.

Furthermore, we are lucky enough to have the MIDI (musical instrument digital interface)

protocol for a .mid is a musical file format that captures the notes, the times piano keys were pressed

and released, how strong they were pressed etc. MIDI supports 128 notes whereas general pianos

usually provide 88 keys.

 13

1.1. Aim of the research

The main aim of the research is a development of an algorithm that predicts classical music by

using machine learning which could be later used for music generation.

1.2. Objectives

1. Choice of music

2. Selection of tools

3. Research of existing algorithms used for music composition

4. Choice of an algorithm for music composition

5. Choice of evaluation of the algorithm

6. Research on the algorithm

7. Development of the algorithm

8. Insights for music generation

1.3. Novelty of research in science

Echo state networks have almost not been observed to be used for algorithmic music composition.

1.4. Structure of the document

Chapter 2 overviews pitches, the rise of electronic music generation and the emergence of the

MIDI music protocol. It also provides an analysis of the overall advancements and cutting edge

approaches to music generation by artificial intelligence. Chapter 3 provides reasoning for my choice

of music, data, tools, machine learning algorithms and the general approach to data preparation,

analysis, evaluation and the overall scheme of the experiment. Chapter 4 gives away results of the

research and their analysis. It provides insights based on the results as well. Chapter 5 summarizes all

this data. Chapter 6 presents all of the references used to write this thesis.

 14

2. LITERATURE OVERVIEW

2.1. Pitch

Let us first define what a pitch is since we are dealing with music. What makes the notes

different? Is it just the notation or is there something else? Yes, there is something very unique about

every note – their pitch. Pitch is the common quality of sound that makes it possible to judge the sounds

in a sense as being “higher” or “lower”. It is a perceptual property of sound such that allows their

ordering on a frequency related scale. Pitches can only be determined in sounds that have a frequency

that is clear and stable enough to distinguish from noise. Pitch is one of the major auditory attributes

of musical tones. One may say that pitch could be quantified as a frequency yet pitch is not a purely

objective physical property. It is more of a psychoacoustical attribute of sound. Frequency is an

objective, scientific attribute that can be measured whereas pitch is a personal subjective perception of

a sound wave and it cannot be measured directly. Anyhow, this does not necessarily conclude that

most people will not agree on the highness or lowness of a particular note.

Historically, the studies of pitch and pitch perception have been a central problem in

psychoacoustics. It has been extremely handy in forming and testing various theories of sounds

representation and processing as well as perception in the auditory systems.

There is another definition of pitch by the American National Standards dispenses with the

musical reference: “Pitch [is] that attribute of auditory sensation in terms of which sounds may be

ordered on a scale extending from low to high. Pitch depends primarily on the frequency content of

the sound stimulus, but it also depends on the sound pressure and the waveform of the stimulus” (ANSI

1994). It appears to be a quite fairly broad definition, requiring the words “low” and “high” to be

associated with pitch or frequency, rather than with volume of the sounds, for example. Also, this

definition seems to include what some would regard as timbral effects, such as the increase in the

“brightness” of a sound as the level of its high-frequency aspects increase [63].

A pitch standard is the conventional pitch reference group of different musical instruments that

are tuned for a performance. Concert pitches may vary from an ensemble to another ensemble. Over

the period of history, the standard pitches have widely varied.

Standard pitch is the more commonly accepted convention than concert pitch. The A above

middle C is usually set to 440 Hz although other frequencies such as 442 Hz are also often and possible

variations. It may be written as “A = 440 Hz” or sometimes as “A440”. Another standard pitch has

been set in the 20th century as “A = 415 Hz” – approximately an equal-tempered semitone lower than

A440 to facilitate transposition.

Transposing instruments have their origin in the variety of pitch standards. In modern times they

conventionally have their parts transposed into different keys from voices and other instruments or

 15

even from each other. Consequently, musicians need a path to refer to a particular pitch in an

unambiguous manner when communicating with one another.

As a great example, let us take the most common type of trumpet or clarinet. While playing a

note written in their part as C, it sounds as that pitch is Bb on a non-transposing instrument like a

violin. This means that at one of these wind based instruments the pitch is a tone lower than the violin

pitch. In order to refer to that pitch unambiguously a musician calls that pitch a “concert” Bb. To no

surprise the human perception of musical intervals is not linear. It is approximately logarithmic with

respect to fundamental frequency. Humans perceive the difference of the pitches “A220” and “A440”

in the same way they perceive an interval between the pitches of “A440” and “A880”. Encouraged by

such a logarithmic perception, music theorists sometimes represent pitches using a numerical scale

based on the logarithm of the fundamental frequency, for instance, one may adopt the widely used

MIDI standard to map fundamental frequencies f to real numbers p as follows:

 𝑝 = 69 × log2
𝑓

440𝐻𝑧
 (1)

It creates a linear space of pitches in which the size of octaves is 12 semitones. Semitone has a

size of 1. “A440” is assigned as the number 69. Distance in this space corresponds to all the musical

intervals as understood by artists and composers. An equally tempered semitone can be subdivided

into 100 cents. Such a system is flexible enough to even include microtones not found on standard

piano keyboards. Thus, the pitch halfway between C (60) and C-sharp (61) can be labelled 60.5.

Below is the Table 1 giving the frequencies in Hertz of musical pitches, covering the full range

of most musical instruments. It uses an even tempered scale with A equal to 440 Hz. Semitone has a

frequency ratio of a twelfth root of 2 which is approximately equal to 1.059.

Table 1. Frequencies of notes

 C C# D Eb E F F# G G# A Bb B

0 16.35 17.32 18.35 19.45 20.6 21.83 23.12 24.5 25.96 27.5 29.14 30.87

1 32.7 34.65 36.71 38.89 41.2 43.65 46.25 49 51.91 55 58.27 61.74

2 65.41 69.3 73.42 77.78 82.41 87.31 92.5 98 103.8 110 116.5 123.5

3 130.8 138.6 146.8 155.6 164.8 174.6 185 196 207.7 220 233.1 246.9

4 261.6 277.2 293.7 311.1 329.6 349.2 370 392 415.3 440 466.2 493.9

5 523.3 554.4 587.3 622.3 659.3 698.5 740 784 830.6 880 932.3 987.8

6 1047 1109 1175 1245 1319 1397 1480 1568 1661 1760 1865 1976

7 2093 2217 2349 2489 2637 2794 2960 3136 3322 3520 3729 3951

8 4186 4435 4699 4978 5274 5588 5920 6272 6645 7040 7569 7902

In order to properly address this table, the octave number is in the left column. Thus, to find the

frequency of middle C which is C4, look down the “C” column till you get to the 4th row. That is that

 16

the middle C is 261.6 Hz. This table provides frequencies in relation to the even tempered scale – an

octave is a frequency change between notes of exactly two times. Piano range usually goes from A0

to C8, i.e. from 27.5 to 4186 Hz.

2.2. Electronic music

Reaching back to grab the grooves of 1970s, electronica became a whole new entity in and of

itself, spinning new sounds and subgenres without an end in sight of two decades down the spike.

Grooves began with the disco and funk music and all the gadgets for electronic composition.

Its development came in the post-disco environment of Chicago and New York that spawned

house music during the 1980s. Detroit, of course, too. It was the motherland for techno music.

Electronic music became more dominant in pop music in the 1980s with the greater reliance on

synthesizers. Since the emergence of digital technologies and digital synthesizers, a group of musicians

and music merchants developed digital interface for music. This allowed electronic artists to

communicate easily.

Later that decade, clubbers in Great Britain latched onto the fusion of sensual and mechanical

sounds and returned the favour to hungry Americans with brand new styles like jungle, drum’n’bass

and trip-hop. Although most of all early electronica was danceable, by the beginning of the 1990s,

producers were also making music for the headphones and chill areas as well. This resulted in dozens

of stylistic fusions like ambient-house, experimental techno, tech-house, electro-house, etc. It was

typical for all of the styles gathered under the umbrella to bear a focus on danceable grooves, highly

loose structure if any at all and for some a relentless desire to find new sounds no matter how tepid the

result [16].

2.3. MIDI protocol

And it is due to these music artists and enthusiasts that we have the MIDI (Musical Instrument

Digital Interface) protocol. MIDI is an industry standard music technology protocol. Though it was

developed in the 1980s, it still on today connects products from many different companies including

digital musical instruments, computers, tablets and smartphones. MIDI allows electronic instruments

and other digital musical tools to communicate with each other. MIDI is used around the world every

day by musicians, DJs, producers, artists, educators and hobbyists to create, perform, teach, learn and

share their talent [17, 18].

MIDI itself does not produce sound. It is a series of messages as “note on”, “note off”,

“pitch/note”, “pitch bend”, etc. It is these messages that are interpreted by a MIDI instrument to

generate sound. A MIDI instrument could either be a piece of hardware such as electronic keyboard

 17

or a synthesizer or a part of a software environment such as “Ableton”, “GarageBand”, “FL Studio”,

“Digital Performer”, etc. [17].

One of the reasons for the popularity of MIDI files is that it does not to capture and store actual

sound unlike audio files (.mp3, .wav, .aiff, etc.) or even compact discs or cassettes. Instead, the MIDI

file can be just a list of events that describe particular steps for either the soundcard or other playback

device to generate certain sounds. Thus, MIDI files are very much smaller than digital audio files. In

addition, those events are also adjustable allowing the music to be rearranged, edited or even composed

interactively. [17] Moreover, the same melody of a MIDI file can be played by various instruments

since it only describes which notes to play. This changes the overall sound of the composition.

To sum up, advantages of a MIDI file are the following:

1. It is extremely compact. An entire song could be stored within a few hundred MIDI messages.

In comparison, usual audio data is sampled thousands of times per second.

2. Easily adjustable notes. One is able to change either the pitch or the duration of the note

without having to rerecord them once again.

3. Interchangeable instruments. The very same melody can be played by a different instrument

giving it a completely different timbre [17].

Furthermore, the messages of the MIDI files carry important information. A “note on” message

consists of two pieces of information [17]:

1. Note/pitch – which note is to be played

2. Velocity – how fast it should be pressed

Note in the message describes the pitch as a value between 0 and 127. It lists all the MIDI notes

and their standard musical notation equivalents. For instance, MIDI note 60 is the middle C (C4),

whereas middle A (A4) is represented as a number 69. Just as introduced before by the MIDI standard

and shown in the Table 2.

Table 2. MIDI standard

Note … C4 C4# D Eb E F F# G G# A Bb B …

… 60 61 62 63 64 65 66 67 68 69 70 71 …

Likewise, velocity is also a number between the values 0 and 127. These values basically describe

the volume of a MIDI note. Higher velocity means that the note is played louder. Occasionally,

different timbres create different sounds in an instrument. For instance, a MIDI flute might sound more

frictional at a higher velocity as if one was blowing into it heavily. At lower velocities it sounds more

sinusoidal and cleaner [17].

 18

“Note on” message represents the start of the note. A “note off” message is sent when the note is

supposed to end.

In the end, MIDI carries event messages that specify notation, pitch and velocity, control signals

for parameters such as volume, vibrato, audio panning, cues, and clock signals that set and synchronize

tempo between multiple devices. These messages are sent via a MIDI cable to other devices, where

they control sound generation and other features, or a digital cable to a digital synthesizer.

Standard MIDI file (SMF) format is different from native MIDI protocol for the events are time

stamped for playback in the proper sequence. Standard MIDI files come basically in two varieties. A

Type 1 and a Type 0. There is also a Type 2 but is not so common. In a Type 1 file individual parts are

saved on different tracks within the sequence, whereas in a Type 0 file everything is merged onto a

single track [19].

MIDI music files are also libraries of musical pieces because they contain the sequences of notes

of the pieces and even some additional information.

2.4. Algorithmic music

2.4.1. The process of algorithmic composition

Algorithmic music composition is basically music composition based on a set of certain

algorithms. Algorithms themselves, or at least some formal set of rules, have been used for the purpose

of music composition for centuries. A very simple example of using a procedure to generate a piece

of music is to use a 12-sided die (numbered from 1 to 12) to determine the order of pitches in the

composition. An association, or mapping is made to correlate each pitch in a twelve-tone equal

tempered scale with each number of the rolling die [21]. Such mapping of pitches to numbers is

demonstrated in Fig. 1.

Fig. 1. 12 notes mapping to numbers [21]

Let's say that we decide to roll the die six times. Our six tosses return the numbers 2, 5, 3, 9, 3,

and 12. The music that results from our roll of the die is found in Fig. 2.

 19

Fig. 2. 12-sided die mapping of numbers to pitches [21]

Then this simple algorithm confronts us with the question if it can produce interesting music.

How do we determine the other aspects of the composition as rhythm, timbre, loudness, register, etc.?

These questions have been explored by various composers throughout history [21].

The Greek philosopher, mathematician and music theorist Pythagoras documented the

relationships between music and mathematics around 500 BC. These relationships laid foundations for

our modern study of music theory and acoustics. The Greeks believed that the understanding of

numbers was key to understanding the whole universe. The quadrivium, their educational system, was

based on the study of music, arithmetic, geometry, and astronomy. Although we have numerous

treatises on music theory dating from Greek antiquity, the Greeks left no clues if mathematical

procedures were applied to the composition of music [21].

Over a thousand years later, the hard work of music theorists such as Guido d’Arezzo established

the framework for our conventional system of music notation. His system employed a staff

accompanied by a clef making it possible for a composer to notate a score so that it could be performed

by someone other than the composer himself. Prior to the development of the score, music was learned

by rote and generally improvised and embellished by the performing artist. By the thirteenth century,

formalized music composition began to replace improvisation and the role of composer and performer

became increasingly distinct because it has not been as distinct before [21].

The music theorist Franco of Cologne established rules for the time values of single notes,

ligatures, and rests in his treatise Arts canus mensurabilis around 1250. By the early fourteenth century,

composers began to treat rhythm independently of pitch and text [21].

Algorithmic composition used to plot voice leading in Western counter points, for instance, could

be simply reduced to algorithmic determinacy sometimes.

Some of the algorithms or the arrangements that have no immediate musical relevance might be

used by the composers as a creative inspiration for their own music. Such is the outsider music.

Outsider music is not by any means part of the commercial music industry and is written in a way that

ignores standard musical or lyrical conventions. This is due to the fact that either they have no formal

training at all or just simply because they disobey with the conventional rules. It lacks typical structure

and may even incorporate bizarre lyrics and melodies. This type of music has a few outlets. Recordings

or performers are usually heard through various fan chat sites or just by the name of theirs among

 20

music experts such as music collectors and connoisseurs. Outsider musicians have much more control

over the final product either because of their inability or objection to cooperate with producers. Only

very few of the outsiders attain any of the mainstream popularity. There is, however, a niche market

for outsider music [20].

There is a variety of algorithms that have been used as source materials – fractals, statistical

models, L-systems and even arbitrary data, e.g. census figures, GIS coordinates, magnetic field

measurements.

Music is considered as composed by computers if the algorithm is able to make choices of its

own during the process of creation. Even though there is no universal method to list and sort various

compositional algorithms into categories, one may look at the way the algorithm takes part in the

process of composition. Differentiating upon this, we can see that it can be divided into:

1. Music composed by the computer

2. Music composed with the aid of the computer

Another way to divide the compositional algorithms is to examine the results of such

compositional actions. Algorithms can do the following:

1. Provide notations for other instruments as notes or MIDI

2. Provide an independent sounds synthesis

3. Do both of the above

One may as well categorize compositional algorithms by their structure and the way they are

processing the data. Thus, one shall be able to distinguish these partly overlapping types:

1. Mathematical models

2. Knowledge-based systems

3. Grammars

4. Evolutionary methods

5. Systems that learn

6. Hybrid systems

This type of division in to categories is not straightforward since many of the AI methods can be

considered as equivalent. For instance, Markov chains are similar to the type-3 grammars.

Furthermore, some of the systems have more than one prominent feature. In such cases, the method

that is more responsible for the generation of musical output is chosen. Most of the research has been

done in evolutionary methods and in systems that learn [4].

2.4.2. Mathematical models

Mathematical models are based on mathematical equations and random events. The most

common way to create compositions through mathematics is by using stochastic processes. In

 21

stochastic models a piece of music is composed as a result of non-deterministic methods. The

compositional process is only partially controlled by the composer by weighting the possibilities of

random events. Prominent examples of stochastic algorithms are Markov chains and various uses of

Gaussian distributions. Stochastic algorithms are often used together with other algorithms in various

decision-making processes [4].

Music may be composed from the inspiration of natural phenomena as well. Such chaotic models

create compositions from the harmonic and inharmonic phenomena of nature. For example, since the

1970s fractals have been studied as models for algorithmic composition as well.

2.4.3. Knowledge based systems

In some sense, most of AI systems are knowledge based systems (KBS). Here, we mean systems

which are symbolic and use a set of rules or constraints. The use of KBS in music seems to be a natural

choice especially when we try to model well defined domains or we want to introduce explicit

structures and rules. Their main advantage is that they have explicit reasoning. Their choice of actions

can be explained [4]. One way to create compositions is to isolate the aesthetic code of a certain

musical genre and use this code to create new similar compositions. Knowledge based systems are

based on a pre-made set of arguments that can be used to compose new works of the same style or

genre.

For example, Ebcioglu [25] implemented his own Backtracking Specification Language (BSL)

and used this to implement CHORAL. CHORAL is a rule-based expert system for the harmonization

of chorales in the style of J. S. Bach.

Even though KBS seem to be the most appropriate choice for algorithmic composition as a stand-

alone method, they still exhibit some key problems:

1. Knowledge elicitation is difficult and time consuming, particularly in such subjective

domains as music

2. Since they do what we program them to do, they depend on the ability of the expert. The

expert in many cases is not the same as the programmer to clarify the concepts and find a

flexible representation.

3. These systems become too complicated if we add all of the exceptions to the rule and their

preconditions, something that is necessary in this domain

2.4.4. Grammars

Music can also be examined as a language with a distinctive grammar set. Compositions are

created by first constructing a musical grammar, which is then used to create comprehensible musical

 22

pieces. Grammars often include rules for macro-level composing, for instance, harmonies and rhythm

rather than single notes.

2.4.5. Evolutionary methods

Evolutionary methods of composing music are based on genetic algorithms. The composition is

being built by the means of evolutionary process. Through mutation and natural selection, different

solutions evolve towards a suitable musical piece. Iterative action of the algorithm cuts out bad

solutions and creates new ones from those surviving the process [22]. Genetic algorithms (GAs) have

proven to be very efficient search methods, particularly when dealing with problems with very large

search spaces. Coupling this with their ability to provide multiple solutions, which is what is often

needed in creative domains, makes them good candidate for a search engine in a musical application.

Based on the implementation of the fitness function, we shall divide the algorithms into two categories

[4].

1. Use an objective fitness function

In this case the chromosomes are evaluated based on the formally stated and computable

functions [4].

2. Use of a human as a fitness function

Usually we refer to this type of GA as an interactive-GA (IGA). In this case a human replaces

the fitness function in order to judge and evaluate the chromosomes. IGA suffer from subjectivity and

efficiency. The bottleneck is that the user has to hear all of the potential solutions to evaluate a

population. In the end, this approach tells us little about the mental processes involved during music

composition since all the reasoning is encoded inaccessibly in the mind of the user [4].

2.4.6. Systems that learn

In the category of learning systems are systems which, in general, do not have a priori knowledge

(e.g. production rules, constraints) of the domain. Instead, they learn its features from the examples

supplied by the user or programmer. These systems can be further classified, based on the way they

store information. Either to subsymbolic/distributive systems or symbolic systems [4]. This method of

algorithmic composition is strongly linked to algorithmic modelling of style, machine improvisation,

and such studies as cognitive science and the study of neural networks. In other words, it is called

machine learning.

 23

2.4.7. Evaluation of the systems

We cannot help to notice a two-fold lack of experimental methodology in many research reports

in this area. Firstly, there is usually no evaluation of the output by real experts, e.g. professional

musicians in most of the systems. Secondly, the evaluation of the system is not given enough attention

and work in consideration with respect to the length of the reports [4].

Then there are unanswered musical questions for systems which only generate melodies. Most

melodies will sound acceptable in a given context. How can we expect to evaluate the generated music

if we do not have a defined harmonic context for it [4]?

2.4.8. Knowledge representation

The two almost ubiquitous issues in AI are the representation of knowledge and the search

method. Our categorisation above mostly reflects the search method. This, however, constrains the

possible representations of knowledge [4].

In many AI systems, particularly symbolic systems, the choice of knowledge representation is an

important factor in reducing the search space. In the articles [23, 24] researchers used a more abstract

representation, representing the degrees of the scale rather than the absolute pitches. By doing this, the

search space was immensely reduced since the representation did not allow generation of non-scale

notes that are considered dissonant as well as inter-key equivalence was abstracted out [4].

Most of these reviewed systems exhibit a single and fixed representation of the musical structures.

On the other hand, some systems viewpoints as described in [4, 25, 26] and the authors believe that it

simulates human musical thinking more closely.

2.4.9. Computational creativity

Most probably the most difficult task is to integrate the concept of creativity into such systems.

This is challenging since we do not have a clear idea of what creativity is [27].

Luckily, Rowe and Partridge [28] proposed some characteristics of computational creativity.

1. Knowledge representation is organised in such a way that it maximises the number of possible

associations. In other words, a flexible knowledge representation scheme. Similarly, Boden

[27] claims that representation ought to allow to explore and transform the conceptual space.

2. Tolerates ambiguity in representations

3. The usefulness of new musical combinations should be assessable

4. Allows multiple representations in order to avoid the problem of functional fixity.

5. New combinations need to be elaboratable so that their consequences could be found out

Papadopoulos and Wiggins [4] propose one question that AI researchers should aim to answer:

 24

Do we want to simulate human creativity itself or the results of it? (Is DEEP BLUE creative, even

if it does not simulate the human mind?) This is more or less similar to the, subtle in many cases,

distinction between cognitive modelling and knowledge engineering.

As for a more recent example, we could ask the same question about AlphaGo instead of DEEP

BLUE. Which had beaten the world champions in Go game more recently.

Papadopoulos and Wiggins [4] then ask: “Even after all these, will computers be able to emulate

our musical thinking?”

In [29] Kugel expands on what Myhill [30] seems to have first proposed that in musical thinking

there is more than computing. He then proposes that we should in addition implement incomputable

processes to our conceptual palette. These have also been called limiting-computable processes by

Gold [31] and trial-and-error processes by Putnam [32].

2.5. Machine learning

Machine learning is a type of artificial intelligence (AI) that provides computers with the ability

to learn without being explicitly programmed. Machine learning focuses on the development of

computer programs that can teach themselves to grow and change when exposed to new data. [40] It

evolved from the studies of recognition of various patterns as well as computational learning theory in

artificial intelligence. [41] Machine learning explores the study and construction of algorithms that can

learn from and provide predictions on data – such algorithms overcome following strictly static

program instructions by making data driven predictions or decisions through fitting a model from

sample inputs. Machine learning is employed in a range of computing tasks where designing and

programming explicit algorithms is unfeasible. Such applications include spam filtering, detection of

network intruders or malicious insiders working towards a data breach [42], optical character

recognition, search engines, computer vision and, of course, art and music generation.

The process of machine learning is similar to that of data mining. Both systems search through

data to look for patterns. However, instead of extracting data for human comprehension, machine

learning uses that data to detect patterns in data and adjust program actions accordingly. Machine

learning algorithms are often categorized as being supervised or unsupervised. Supervised algorithms

can apply what has been learned in the past to new data. Unsupervised algorithms can draw inferences

from datasets.

Facebook's News Feed uses machine learning to personalize each member’s feed. If a member

frequently stops scrolling in order to read or “like” a particular friend’s post, the News Feed will start

to show more of that friend's activity earlier in the feed. Behind the scenes, the software is simply

using statistical analysis and predictive analytics to identify patterns in the user’s data and use patterns

 25

to populate the News Feed. Should the member no longer stop to read, like or comment on the friend’s

posts, that new data will be included in the data set and the News Feed will adjust accordingly.

Resurging interest in machine learning is due to the same factors that have made data mining and

Bayesian analysis more popular than ever. These things are like growing volumes and varieties of

available data, computational processing that is cheaper and more powerful, affordable data storages.

All of them combined means that it is possible to quickly and automatically produce models that

can analyse bigger and more complex data, deliver faster and more accurate results – even on a very

large scale. Also, by building precise models, an organization has a better chance of identifying

profitable opportunities – or avoiding unknown risks.

Let us elaborate on how is machine learning different from statistical models. The main difference

with machine learning is that just like statistical models, the goal is to understand the structure of the

data. That is to fit theoretical distributions to the data that are well understood. Firstly, with statistical

models there is a theory behind the model that is mathematically proven, but this requires that data

meets certain strong assumptions too. Machine learning has developed based on the ability to use

computers to probe the data for the structure, even if we do not have a theory behind of what that

structure looks like. The test for a machine learning model is a validation error on new data, not a

theoretical test that proves a null hypothesis. In the end, since machine learning often uses an iterative

approach to learn from input data, the learning can be easily automated. Passes are run through the

data until a robust pattern is found [42].

Moreover, a type of machine learning with many hidden layers of algorithmic computations make

it Deep Learning. This refers neural networks. By having multiple layers, neural networks are able to

learn more complex prediction functions but this hides away the thinking of the network even more.

Makes it even harder for us to reason about its reasoning. Deep learning combines advances in

computing power and special types of neural networks to learn complex patterns in huge amounts of

data. Deep learning techniques are currently state of the art for identifying objects in images and words

in sounds. Researchers are now looking to apply these successes in pattern recognition to more

complex tasks such as automatic language translation, medical diagnoses and numerous other

important social, business problems and art.

Finally, machine learning tasks are typically classified in three main broad categories depending

on the nature of the learning system:

1. Supervised learning

In this case the computer is presented with example inputs and their outputs. The goal of this

system if to learn a general rule that maps inputs to outputs as closely as possible without wasting too

many computational resources.

2. Unsupervised learning

 26

Here the algorithm does not receive any labels. It has to find patterns of data for the given data.

Unsupervised learning can be a goal in itself discovering hidden patterns among data, e.g. grouping

news in a news website or grouping customers of a retailer.

3. Reinforcement learning

This algorithm is used to interact with dynamic environment in which it has to perform a certain

goal. Goals could be like driving a vehicle or flying a drone without telling it explicitly whether it has

come close to its goal.

And, of course, there can be various combinations of these three types of machine learning

systems.

Some great recent examples of reinforcement learning are learning to play game against an

opponent just as DEEPBLUE played and won chess against then world chess champion Gary Kasparov

and when AlphaGo beat the world Go champion Lee Sedol.

2.5.1. Neural networks

Artificial neural networks are computing systems inspired by biological neural networks that

constitute animal brains. A single node in a simple neural network takes some number of inputs and

performs a weighted sum of these inputs by multiplying each of them by some weight before adding

them all together. In addition, there is a constant added that the sum that is called bias. The overall sum

is then squashed into a small range using a nonlinear activation function such as a sigmoid function.

This range usually geos from -1 to 1 or from 0 to 1. We can visualize this node by drawing its inputs

and outputs as arrows denoting the weighted sum and activation by a circle. Then we can take multiple

nodes and feed them all the same inputs, yet allow them to have different weights and biases. This is

known as a layer (Fig. 3).

Fig. 3. Single neural network node (perceptron) on the left and a layer of 4 nodes on the right [60]

 27

Note that because each node in the layer performs a weighted sum, yet they all share the same

inputs, we shall calculate the outputs using a matrix multiplication followed by elementwise activation.

This is one of the reasons why neural networks can be trained so effectively [51]. Multiple layers can

be connected together as in Fig. 4.

Fig. 4. Neural network and its visual simplification on the right [52]

This gives us a neural network. Only to be on the same page, the set of inputs is called the input

layer whereas the last layer in called the output layer. All the other layers in between are called hidden

layers. Each arrow carries the same value since each node has a single output value. For simplicity,

layers can be visualised as single objects Fig. 4. This is how they are implemented most of the time.

2.5.2. Recurrent neural networks

Notice that in the basic feedforward network there is a single direction in which the information

flows: from input to output. In a recurrent neural network, this direction constraint is absent. There are

a lot of possible networks that can be classified as recurrent, but we will focus on one of the simplest

and most practical. Basically, what we can do is take the output of each hidden layer, and feed it back

to itself as an additional input. Each node of the hidden layer receives both the list of inputs from the

previous layer and the list of outputs of the current layer in the last time step. (So if the input layer has

6 values, and the hidden layer has 3 nodes, each hidden node receives as input a total of 6+3=9 values.)

[52] This is visualised in Fig. 5.

Fig. 5. Recurrent neural network [52]

This can be shown more clearly by unwrapping the recurrent network along the time axis (Fig.

6).

 28

Fig. 6. Recurrent neural network unwrapped along the time axis [52]

In this representation, each horizontal line of layers is the network running at a single time step.

Each hidden layer receives both input from the previous layer and input from itself one time-step in

the past. The power of this is that it enables the network to have a simple version of memory, with

very minimal overhead. This opens up the possibility of variable-length input and output: we can feed

in inputs one-at-a-time, and let the network combine them using the state passed from each time step

[60].

In general, Adrej Karpathy, now director of AI at Tesla, then a PhD student at Stanford, in his

blog post [58] puts that there is something magical about recurrent neural networks.

The major problem with traditional recurrent neural networks is that their inner memory is very

short-term. Any value that is output in one time-step becomes input in the next, but unless that same

value is output again, it is lost at the next tick. As put in the paper [54] by Hochreiter and Schmidhuber,

RNNs have been notoriously hard to train because of vanishing gradients. It is a problem commonly

seen in RNNs when training with gradient based methods. Gradient methods such as back-propagation

through time (BPTT) [55] and real-time recurrent learning (RTRL) [56], as well as their combinations,

update the neural network by flowing the errors back in time. Whilst the error propagates from layer

to layer, it has a tendency to either explode or shrink exponentially depending on the magnitude of the

weights. Therefore, the network fails to learn long-term dependency between inputs and outputs [57].

Tasks with time lags that are greater than 5-10 are already difficult to learn [54], not having to mention

that dependency of music usually spans across from tens to hundreds of notes in time, which

contributes to the unique phrase structures of music.

Long short term memory (LSTM) [54] algorithm was designed to tackle the error-flow problem

by enforcing constant error flow through the constant error carousels in its internal states [57]. LSTM

learns quickly and efficiently. It also proved to be effective in multiple recognition tasks.

 29

Using LSTMs introduces a memory cell value that is passed down for multiple time steps (Fig.

7), and which can be added to or subtracted from at each tick [52].

Fig. 7. LSTM unwrapped along the time axis [52]

For comparison, traditional recurrent and LSTM neural networks are pictured in Fig. 8.

Fig. 8. Recurrent and LSTM neural networks [53]

In the figure yellow (left) circle is an input cell. Blue (middle) circle is a memory cell. Cell with

a black circle inside is a memory cell. Orange (right) is an output cell.

2.6. Overview of the advancements in music generation

In the early days, symbolic AI methods and specific grammars describing a set of rules had driven

the composition [33, 34]. Then these methods were significantly improved by evolutionary algorithms

in a variety of ways [35] as represented by the famous EMI project [36]. More recently, statistics in

the form of Markov chains and hidden Markov models (HMM) played a major part in algorithmic

composition [37]. Next to this development was the rapid rise of neural networks (NN) due to the

growing capacity of computational powers. It has made a remarkable process not only in the AI world

but also in music composition [38].

 30

As music is a sequence of notes, a sequential model was chosen to train on Mozart’s music.

Markov models are not very suitable for this task due to their monophony (although it is possible to

design a system for polyphonic music as well). Currently, the cutting-edge approach to generative

music modelling is based on recurrent networks [9, 10, 39, 15, 61, 57] like the long short-term memory

(LSTM) network.

2.6.1. Overview of advancements in music generation using RNN

One of the earliest papers that used a RNN music generation was by Todd [43]. It generated a

note-by-note music with Jordan recurrent neural network. Jordan recurrent network is a simple RNN

that has a recurrent connection from the output layer to the input layer and a recurrent link at the input

link. The network is trained with back-propagation through time. Recurrence is managed by teacher-

forcing. In the training phase, Todd had trained monophonic melodies with this network. The trained

network could then be used to generate music. This could be achieved by either mixing and varying

the original training data, or by introducing new seed melody as the input. The rest of the network

output are recorded as the generated music.

In 1994 Mozer’s [44] fully connected RNN was trained by minimizing the log-likelihood of the

L2 norm of the predicted and actual output using BPTT. The outputs of the final layer are considered

as a probability of whether the note should be on or off. In addition, to enhance model harmonic

relationship of musical notes, Mozer proposed a grey-code like representation that encodes notes based

on their location on chromatic circle, circle of fifths and pitch height, a psychologically based

representation derived from Shepard [45]. To compensate via backpropagation through time trained

RNN’s inefficacy of learning long-term dependencies, a similar encoding scheme is used to represent

durations based on three fraction scales.

Todd’s network was adopted by Franklin [46]. Additionally, he then added a second training

phase whereas the network was further trained via reinforcement training. In the reinforcement

learning phase a scalar value was calculated by a set of music rules to determine the quality of the

output. This scalar value was then used to replace the explicit information of error.

To deal properly with the vanishing gradient problem, Eck and Schmidhuber [47] used two long

short-term memory networks. One for learning memory and the other for learning chords. The output

of the chord network system was connected to the input of the melody network. This kind of system

was able to learn the standard 12-bar blues chord sequences and it was able to generate music notes

that follow the chords. LSTM networks were used by Franklin to learn Jazz music [48]. These networks

developed a representation scheme of pitch based on major and minor thirds. Also, circles-of-thirds

representation and inspired by Mozer [44], circle-of-fifths pitch representation. In the research,

 31

duration representation was expanded by dividing note durations into 96 subdivisions each

representing a tick in the MIDI protocol.

In order to describe correlated musical pattern among multiple notes, Boulanger-Lewandowski

et al. [50] developed and RNN based model by using restricted Boltzmann machine (RBM) [59] and

a recurrent temporal RBM (RTRBM) [60]. System of type RNN-RBM allows freedom in describing

the temporal dependencies of notes. It is also believed to be able to model unconstrained polyphonic

music in a piano-roll representation without any reduction of dimension.

More recently, Huang and Wu proposed a 2-layer LSTM that like Boulanger-Lewandowski et.

al. produces music that is more complex than a single note sequence. It is able to produce chords as

well [39]. The novelty of the work by Huang and Wu was that they integrated knowledge from music

theory to build neural architecture and produced multi-track pop music – melody, chords and drums.

Furthermore, researchers feel that more work could be done in the development of a better evaluation

metric for the quality of a piece. They believe that only then we will able to train models able to

compose truly original music.

Zhen Sun et al. as well used LSTM models to compose music [9]. In order to produce more music

according to music theory they augmented the dataset by adding the generated music by their LSTM

model. Johnson [60] used a biaxial RNN one axis for time and the other for notes drawing inspiration

from the RNN-RBM model.

There is also a BachBot [61]. It is a LSTM based approach specially designed to deal with the

chorales by Bach. This kind of approach relies on little musical knowledge – all of chorales are

transposed in a common key. It is able to produce quite high quality harmonizations.

The most recent LSTM approach that produced remarkable results is that of Sony CSL. They

tried to create an artificial Bach that created new Bach chorales. The difficulty of this task from a

compositional point of view comes from the intricate interplay between harmony and voice

movements. Moreover, each voice has its own style and its own coherence. Finding a chorale-like

reharmonization which combines Back-like harmonic progressions with musically interesting melodic

movements is a problem which usually takes years of practice for musicians. In the paper [15] they

introduce DeepBach as an LSTM based model capable of reproducing musically-appealing four-part

chorales in the style of Bach. Contrary to other models based on RNNs, they did not sample from left

to right and modelled each voice separately. This allowed them to enforce user-defined constraints

such as rhythm, notes, parts, chords and cadences. DeepBach is able to produce coherent musical

phrases and provides, for instance, varied reharmonizations of the melodies without plagiarism. Its

core features are its reliance upon no knowledge, its speed, the possible interaction with users and the

richness of harmonic ideas that it proposes.

 32

Google Magenta uses a number of machine learning algorithms for the creation of artificial

music. Next to LSTMs, computer vison and others are used, yet the LSTM approach seems to be a

leading technology at the moment.

2.6.2. Echo state networks usage for music composition

Echo state networks (ESN) seem promising since they can have quite a lot of memory and a lot

of neurons since it is computationally cheap to train them. It has almost never been used for music

composition. There is only one article found [64]. In the article ESN is used as a rhythm generator and

the authors conclude that ESN is a good choice to learn rhythm patterns.

2.6.3. Choice of the network

Summarizing, long-term dependency in the neural networks is needed to generate quality music.

Otherwise, neural networks are able to generate melody yet no harmony, i.e. the music gets stuck at

some point or turns out to be repetitive. LSTMs are better than traditional RNNS in this case since

they have a stronger long-term dependency. Though fine-tuned LSTM algorithms are able to overcome

the obstacles that traditional RNN algorithms confront, they still face the same problems in a way that

the music lacks the theme, i.e. the big picture. Long short-term memory algorithms have been

extensively studied in the recent years. Besides, LSTM algorithms are also heavy and require a lot of

resources. To add an advantage for ESNs, they can have a huge reservoir of nodes. Having a bigger

reservoir provides them more memory since the reservoir nodes are interconnected. ESNs also have a

leaking rate parameter which regulates the update speed of the state [65]. We have also been looking

for a light-weight solution.

For these reasons, we chose to work with a type of recurrent neural networks – echo state network

(ESN) – that have barely been researched for musical composition.

 33

3. EXPERIMENT

3.1. Choice of music

As it was mentioned in the introduction, we chose to work with notes for it is a lot less complex.

It is a lot easier for us to understand and analyse it as well as it is for the algorithm in the means of

computational resources and dependency on previous notes. We are also able to compare it with the

musical theory and it helps us stay in the realm of classical music as well. It was also relatively easy

to find on the internet, especially piano, while other types of music were not easy to find.

3.2. Echo state network

Echo state networks supply an architecture and principles of supervised learning for recurrent

neural networks. The idea behind an ESN is to drive a large, random and fixed reservoir of neurons

with the input signal (Fig. 11). Thence, inducing each neuron within it with a nonlinear response signal.

After, combine the desirable output data by a trainable linear combination of all of these response

signals [66]. In practice, it is important to keep in mind that the reservoir acts not only as a nonlinear

expansion, but also as a memory input at the same time [65].

Echo state networks use a clever trick to make it much easier to learn a recurrent neural network.

They initialise connections in the network in such a way that it has a huge reservoir of coupled

oscillators. Thus, it converts input into the states of the oscillators. Then you can predict the outcome

you want from the sense of these oscillators. The only thing it has to learn is how to couple the output

to the oscillators – learn the Wout. This entirely gets rid of the issue of learning hidden to hidden

connections or even input to hidden connections. However, to get these networks to be good at tasks,

one needs a very big hidden state [68].

The main advantage of an ESN computationally is that only the last layer has to be learned which

is a linear model that uses the transformed inputs to predict the outputs. It is much faster to learn a

linear model. Therefore, we can afford an ESN with a lot of nodes.

3.2.1. Systems equations

Systems equations for the echo state network are described as following. Here the basic discrete-

time sigmoid-unit echo state network with N reservoir units, K inputs L outputs is governed by state

update equations of this kind (2):

 𝒙(𝑛 + 1) = 𝑓(𝑾𝒙(𝑛) + 𝑾𝑖𝑛𝒖(𝑛 + 1) + 𝑾𝑓𝑏𝒚(𝑛)) (2)

Here x(n) is the N-dimensional reservoir state, f is a sigmoid function – usually the logistic

sigmoid or the hyperbolic tangent function (Fig. 9, Fig. 10). W is the N×N reservoir weight matrix,

 34

u(n) is the K dimensional input signal, Wfb is the N×L output feedback matrix and y(n) is the L-

dimensional output signal. In tasks where no output feedback is required, Wfb is nulled. The output is

obtained from the extended system state the equation (3):

 𝒚(𝑛) = 𝑔(𝑾𝑜𝑢𝑡𝒛(𝑛)) (3)

where g is an output activation function and Wout is a L×(K+N)-dimensional matrix of output weights.

Extended system state z(n)=[x(n); u(n)] at time n is the concatenation of the reservoir and input states.

[66].

Fig. 9. Logistic sigmoid function

Fig. 10. Hyperbolic tangent function

3.2.2. Ridge Regression

Since readouts from an ESN are typically linear and feed-forward the equation for mapping input

to outputs can be written as (4):

 35

 𝒀 = 𝑾𝑜𝑢𝑡𝑿 (4)

where Y are all the y(n) and X are all [1; u(n); x(n)]. Here we use a single X instead of [1; U, X] for

notation brevity [65].

Probably the most universal and stable solution to (4) in this context is ridge regression. It is also

known as regression with Tikhonov regularization [65] (5):

 𝑾𝑜𝑢𝑡 = 𝒀𝑡𝑎𝑟𝑔𝑒𝑡𝑿𝑇(𝑿𝑿𝑻 + 𝛽𝑰)−1 (5)

where 𝛽 is the regularization coefficient and I is the identity matrix.

3.2.3. Evaluation of the model

An echo state network may be evaluated by comparing the output signals to the actual and

printing out the root mean squared error (RMSE) of this difference. It can be described with the formula

(6).

 𝐸(𝒚, 𝒚𝑡𝑎𝑟𝑔𝑒𝑡) =
1

𝑁𝑦
∑ √

1

𝑇
∑ (𝑦𝑖(𝑛) − 𝑦𝑖

𝑡𝑎𝑟𝑔𝑒𝑡(𝑛))2𝑇
𝑛=1

𝑁𝑦

𝑖=1 (6)

Here y is the output of the model and ytarget is the actual output signal. Then n=1, …, T is the

discrete time discrete time and T is the number of data points in the training dataset.

3.2.4. Echo state network tuning

Echo state network can be tuned by altering the following parameters:

1. leaking rate

2. input scaling

3. spectral radius

4. regularization

Leaking rate of the network can be regarded as the speed of the reservoir update dynamics in

discrete time.

The update equations of a leaky-integrated ESN look like this (7, 8) [65]:

 𝒙 = 𝑓(𝑾𝑖𝑛[1; 𝒖(𝑛)] + 𝑾𝒙(𝑛 − 1)) (7)

 𝒙 = (1 − 𝛼)𝒙(𝑛 − 1) + 𝛼𝒙(𝑛) (8)

where 𝛼 is the leaking rate and f is the activation function element-wise.

Another key parameter to optimize an ESN is the input scaling. It multiplies the input weight

matrix Win by its value either strengthening the input weights or diminishing them.

Spectral radius is one of the most global parameters of an ESN, i.e. the maximum absolute

eigenvalue of the reservoir weights matrix W. It scales the matrix W, or in alternate words, scales the

width of the distribution of its nonzero elements [65].

 36

Regularization is not really a parameter that tunes the echo state network model but it is used in

order to avoid overfitting of the model.

It has been noticed that having some of the reservoir weights matrix elements equal to zero, shall

provide coupled states with some inner knowledge. This can lead to a better prediction model [68].

Fig. 11. Design of an echo state network [65]

In Fig. 11 u is the input data, Win is the input weights matrix, x is the reservoir nodes and their

outputs, W is the weight matrix of the network cluster, Wout is the output weights and y is the output

data.

The number of neurons inside the reservoir has been opted to be equal 1000.

Programming code for ESN has been adapted from [67] and expanded for multidimensional input

data and output as well as other implementations.

3.3. Data and tools

Musical data were downloaded in the format of .mid from the website http://www.piano-midi.de.

From now on MIDI and .mid will be used interchangeably meaning the same, i.e. the file format unless

stated otherwise, e.g. MIDI protocol. In total, 21 pieces by Mozart were gathered (all that are found

on the website).

MIDI format is a sequence of notes (and commands such as tempo change and sound

perturbations) whereas the time difference is represented in ticks. A quarter note is usually 480 or 960

ticks but that also depends on the resolution of the file. Thus, a full note or, in other words, a tact is

1920 or 3840 ticks respectively.

Later on, the data had to be transformed in a format that is easier to read, maintain and process.

Hence, it was read and transformed into notes as messages into a .csv (comma separated values) format.

Every message consists of information of this type:

1. note

http://www.piano-midi.de/

 37

2. pitch

3. on tick

4. off tick

5. length

The length parameter is not in the MIDI file and had been artificially generated for the purpose

of data analysis. Table 3 shows the types of information as well as their ranges in a message. Note

pitch ranges from 0 to 127, thus a byte is more than enough to store it. The beginning and the end of a

note tick is undetermined and can grow to infinity when the data grows. Length parameter is purely

the difference between on and off ticks. It may grow to a large number due to software bugs or a

divergence of the algorithm, but usually it shall stay in the realm of classical music and get a value up

to a full note. We have noticed that our MIDI files have the information of hand included in the

messages. 1 stands for the right hand and 0 stands for the left hand. We have later extended our research

according to this new finding. It was not noticed before.

Table 3. Information inside a message

Info Note pitch On tick Off tick Length Hand

Type byte long long integer bit

Range 0-127 0-infinity 1-infinity 1-full note 0-1

A message in MIDI that signifies the event of pressing a note is the note_on message. It represents

an event when a note is released as well, only the velocity then is equal to zero. The algorithm that was

applied for treatment of raw MIDI files looks as following (Fig. 12).

Fig. 12. Algorithm of raw MIDI file treatment into a CSV file

The programming language of choice was Python due to its recognition in data science and

machine learning among scientists and developers [69]. Python’s incredible growth can be seen in Fig.

13. Also, due to the many data processing as well as machine learning libraries although none of the

machine learning libraries were used for this work. For the purpose of .mid processing, Mido library

was chosen [64].

 38

Fig. 13. Growth of major programming languages in high-income countries [69]

Machine learning algorithms perform better under more data. We could have just taken in all of

the composers from the website full of classical MIDI files, but we chose only one for the purpose of

thorough analysis. Despite the fact that our choice was only Mozart’s music and that had given us only

21 pieces of scores, this resulted in around 68 thousand notes.

3.4. Initial data analysis

Prior to the research, an analysis of the data was performed based on the distribution of note

pitches as well as their lengths. As we can clearly see in Fig. 14, there are 2 maximums. One is of a

higher pitch while the other is of a quite lower pitch. This is most probably due to the fact that piano

is played by 2 hands and that the left hand usually wanders in the region of lower pitch notes whilst

the right hand sits in the region of higher pitch notes.

Fig. 14. Distribution of Mozart notes

 39

These data are not so much relevant for our research, but provide us with insights such as it would

make perfect sense to study the hands in more detail. We ought to bolster our research either by adding

an additional dimension of the hand or by having 2 different outputs for each hand by the network.

This analysis is also useful for future comparison and judgment of generated music.

Analysis of lengths (Fig. 15) provide us only one maximum, meaning both hands share the same

maximum or that the note lengths of one hand are very dispersed.

Fig. 15. Distribution of Mozart note lengths

3.5. Experimental setup

3.5.1. Predicting music

Research has been accomplished in a manner that can be seen in Fig. 17. First of all, music was

accumulated in .mid format (hex code). As stated before, it was processed by Mido library and stored

in a .csv format in a form of messages that carry the information of notes as the pitch number, on and

off ticks and length.

Then the messages were read from the .csv file and quantized. Quantization was performed for

the beginning and the end of the notes in the following way. A quantization unit of 60 ticks (represents

a 32nd of a note) was chosen. Next, if the residual value of the tick was less than half the quantization

unit, it was reduced by the residual. If the residual value was equal or higher than half of the

quantization unit, i.e. 30 ticks, it was increased by the difference between the quantization unit and the

residual. The lengths of notes were recalculated afterwards.

In Fig. 16 we can see the distribution of the notes after quantization. Hereby, the number of notes

of the length of the quant (60 ticks) has increased. The most frequent note stayed the same (120 ticks).

Also, a tiny part of the very shortest notes was quantized to zero length, thus, eliminated.

 40

Fig. 16. Lengths of quantized notes whereas the quantization is 60 ticks

As a further step, these quantized music messages were turned into a state matrix of length that

is equal to the division of the total length of the pieces by the quantization unit rounded to integer.

Another dimension of the state matrix were the note pitches, that is 128 values in total. Then the value

at each time step at a certain note represents its state (1 for pressed and 0 for not pressed). 80% of the

data were sent to the echo state network whilst 20% were used for validation of the model, thus finding

out the error. Error was calculated in the shape of root mean squared error (RMSE).

An ESN was generated according to given parameters. This ESN was then trained on input and

predicted music based on its learned weights as a one time-step prediction. The training process was

initialized by 300 time steps, that is by 300 quants (60 ticks).

To find out the best parameters for our echo state network, we would repeat the procedure of

generating the network according to different parameters and training the new network model on the

very same data. Then we predicted next notes based on the newly gained weights and found out the

error by comparing with the original Mozart data. Prediction of notes was a sequel of the training

process. To be more precise, the model predicted notes as a one time-step prediction. Summarizing, a

grid search analysis of 4 parameters of the echo state network has been performed.

Parameters that have been investigated for tuning our network are the following. Leaking rate,

input scaling, spectral radius and regularization which are the most important ESN parameters

explained in Chapter 3.2. Since their ranges usually go from 0 to 1, 0 to 2, 0 to 2 and almost anything

respectively, they have been tested for values in these ranges. An exhaustive grid search analysis had

been performed looking for the best parameters. In addition to RMSE, mean and standard deviation

were calculated. Original Mozart music had the mean of 0.04238 and standard deviation of 0.0779.

Mean represents the probability of a note to played at each time step in the note spectrum. In Mozart’s

 41

case note spectrum is from the 29th to the 91st note. Standard deviation represents the mean of standard

deviations of the notes in the note spectrum.

Fig. 17. Scheme of research

Leaking rate has been tested from 0.0025 to 1, spectral radius varied from 0.0015 to 2 in this test,

input scaling from 2*10-6 to 2 and regularization from 10-6 to 105.

Firstly, the activation functions for the echo state network used were hyperbolic tangent (tanh)

and the range of the input weights matrix Win was from -0.5 to 0.5 times the input scaling and the of

the reservoir nodes matrix W was from -0.5 to 0.5. Later, we came to the idea that since out output is

0 to 1, it may be better to change the activation function into logistic sigmoid and shift the weights up

 42

to 0 to 1 times the input scaling for the Win matrix and 0 to 1 for the W matrix. This observation, as it

turns out, actually gives away a little bit better results.

3.5.2. Predicting music including the hand information

We mentioned earlier that after a while we found out about hand information inside the MIDIs,

i.e. with which hand was the note played. Usually, the left hand sits in the lower region of pitches

compared to the right hand. To add this in our model, we have mapped notes played with right hand

as in a state 1 in the state matrix and notes played with left hand as -1. This should give a hint about

which hand pressed the key to the network. Surprisingly, this produced us even better results. These

were the statistics by using this kind of state matrix. 0.00020608 and 0.07018343 for mean and

standard deviation respectively.

3.5.3. Generating music

Generating music using our algorithm from a user’s/programmer’s point of view would look like

in Fig. 18. At the moment the model doesn’t not save weights nor get the saved weights since there

was no need for this as we were looking for the best parameters of the model. Yet if this algorithm was

used and reused, saving of the weights ought to be implemented not to redo all of the computations.

For now, it always trains the model from scratch. User only has to choose music and run a command.

As an output, he gets a MIDI file generated according to the type of chosen music.

Fig. 18. Generating music from user’s/programmer’s point of view

 43

No class diagram is given since the code was written using function only. The code is open source

and can be found on https://github.com/AzisK/Experiments-in-Music-Creation.

To generate music, we used the very same network except that now we quantized the notes. We

transformed the signals into a note or a pause according to rules that we thought could help predict

classical music. We added a random sampling and looked for the best results.

To implicitly give the network some kind information about the chords. Only the notes that are

away by 3 or 4 half tones away from the strongest and then from the others added are played, since

most of the chords have a distance of 3 to 4 half tones from the notes. Although there are some chords

that have 2 half tones distance, we did not include this but it could happen even from this rule.

We have also added the maximum number of notes played at the same time by one hand up to 6

since this is the highest number that classical music pieces usually have.

We also increased the probability of the note being pressed at a certain time step if it was pressed

before. This was done by trial and error.

https://github.com/AzisK/Experiments-in-Music-Creation

 44

4. RESULTS

4.1. Prediction of music

As we can see from the sorted by error (top 10) Table 4, the lowest value of error (RMSE) is a

tiny bit above 0.0307. It is clear that the best leaking rate for our model is about 0.025 while the

combination of input scaling and spectral radius vary a little bit. Input scaling goes from 0.002 to

0.0002 and spectral radius from 0.01 to 0.1. We can notice that while RMSE is the lowest, the mean

of the notes is about the same of the quantized original Mozart music data mean but standard deviation

is quite different.

Table 4. Sorted error data (top 10)

leaking

rate

input

scaling

spectral

radius

reg mean rmse std

0.025 0.0002 0.1 0.0001 0.0410 0.030769 0.05696

0.025 0.0005 0.01 0.001 0.0411 0.030771 0.05699

0.025 0.0005 0.01 0.001 0.0411 0.030771 0.05698

0.025 0.0002 0.02 0.0001 0.041 0.030772 0.05697

0.03 0.0005 0.1 0.001 0.0411 0.030772 0.05699

0.025 0.0005 0.05 0.001 0.0411 0.030773 0.05699

0.03 0.0005 0.06 0.001 0.0411 0.030774 0.05699

0.02 0.0006 0.02 0.001 0.0411 0.030775 0.05697

0.015 0.0006 0.02 0.001 0.0411 0.030776 0.05697

0.02125 0.002 0.1 0.01 0.0410 0.030776 0.05697

reg stand for regularization, rmse stands for RMSE and std stands for standard deviation in the

tables of error (Table 4, Table 5, Table 6).

Having low leaking rate suggests us that the state has a lot of inertia and the change of the state

is slow. Input scaling scales the Win matrix, thus, the input weights are very low and the model depends

on its input just a tiny bit. Since it is lower than the spectral radius, it has a lot of memory, i.e. follows

a long-term dependency. Having low spectral radius as well tells us that the models are almost linear.

To summarize, the prediction function is not very complex and the model has a lot of memory.

From Table 5 we see that a high regularization value gives us huge errors. It has to be noted that

for this particular grid search step, the maximum value of input scaling and spectral radius was 0.2.

Thus, we can also deduce that high input scaling values lead to higher error. Though leaking rate is

not as important, we can still see that some of its higher values lead to higher errors.

High regularization significantly reduces the mean value and standard deviation of the notes.

 45

Table 5. Sorted error data (worst 10)

leaking

rate

input

scaling

spectral

radius

reg mean rmse std

0.175 0.2 0.2 100000 0.0345 0.064397 0.00959

0.175 0.2 0.14 100000 0.0357 0.064656 0.00952

0.1 0.2 0.02 100000 0.035 0.064968 0.00801

0.1 0.2 0.2 100000 0.0352 0.065097 0.00817

0.1 0.2 0.14 100000 0.0353 0.065158 0.00806

0.1 0.2 0.08 100000 0.0354 0.065258 0.00808

0.025 0.2 0.02 100000 0.035 0.066049 0.00572

0.025 0.2 0.14 100000 0.0352 0.0662 0.00584

0.025 0.2 0.08 100000 0.0353 0.066243 0.00585

0.025 0.2 0.2 100000 0.0354 0.066295 0.00582

In order for us to see tendencies beyond regularization, we filtered the data for regularization

below or equals 10. This brought us back to the maximum values of input scaling, spectral radius and

leaking rate.

In Table IV we see that high input scaling produces high error once again. Interestingly, leaking

rate stays at 0.25 for the highest error. Although spectral radius stays quite high, it is not of the highest

value for the highest error. Mean is almost as with the best results. Standard deviation is higher in this

case than with the best results. It is even closer to quantized Mozart’s music standard deviation than

the one provided with the best results.

Table 6. Sorted error data (worst 10) while regularization is smaller or equal to 10

leaking

rate

input

scaling

spectral

radius

reg mean rmse std

0.25 2 0.8 1 0.0405 0.043065 0.06195

0.25 2 0.8 0.1 0.0405 0.043094 0.06198

0.25 2 1.4 0.01 0.0405 0.043098 0.06199

0.25 2 1.4 1 0.0406 0.043128 0.06173

0.25 2 1.4 0.1 0.0406 0.043139 0.06175

0.25 2 1.4 0.01 0.0406 0.043142 0.06175

0.25 2 1.4 10 0.0406 0.043169 0.06171

0.25 0.8 1.4 1 0.0413 0.043178 0.06141

0.25 0.8 1.4 0.1 0.0413 0.043234 0.06145

0.25 0.8 1.4 0.01 0.0413 0.04324 0.0615

 46

Fig. 19 shows us the minimum error dependency on leaking rate. It is worth to note that although

leaking rate 0.25 yields worst results when regularization is not high, it may also yield very good

results with other values of ESN parameters as can be seen in Fig. 19.

Fig. 19. Minimum RMSE dependency on leaking rate

The errors were grouped by leaking rate and the minimum value of the error was taken to plot

the dependency graph. In Fig. 20 we can see the most promising region of leaking rate for our echo

state network.

Fig. 20. Zoomed minimum RMSE dependency on leaking rate

Fig. 21shows us the minimum error dependency on input scaling whereas Fig. 22 zooms us to

the most promising region of input scaling. The best values of input scaling are 0.0002 and 0.0005.

Going even lower, the values increase dramatically.

 47

Fig. 21. Minimum RMSE dependency on input scaling

Fig. 22. Zoomed minimum RMSE dependency on input scaling

Fig. 23 shows us the minimum error dependency on spectral radius. From Fig. 24 and Fig. 25 we

can see that the minimum RMSE stabilizes and reaches the minimum on spectral radius below 0.1.

Then starts growing again above 0.01.

 48

Fig. 23. Minimum RMSE dependency on spectral radius

Fig. 24. Zoomed minimum RMSE dependency on spectral radius

Fig. 25. Zoomed minimum RMSE dependency on spectral radius to the most promising region

 49

Fig. 26 and Fig. 27 implies us that the best regularization values are of the power 10-4 to 10-2.

Fig. 26. Minimum RMSE dependency on regularization

Fig. 27. Zoomed minimum RMSE dependency on regularization

Since it was a lot easier to find the optimal leaking rate than input scaling and spectral radius, we

grouped the errors by input scaling and spectral radius taking the minimum RMSE value in Fig. 28.

Regularization is an additional parameter that prevents overfitting and we have not grouped by it. It

was quite easy to find as well.

 50

Fig. 28. Grid search minimum error (RMSE) grouped by input scaling and spectral radius

As it was found out that the most optimal leaking rate is 0.025, the errors were grouped by input

scaling and spectral radius once again by a set leaking rate. Now they we grouped having leaking rate

set to 0.025. In Fig. 29 we can see pointy triangles in the lower region where the errors are the lowest.

Fig. 29. Grid search minimum error (RMSE) grouped by input scaling and spectral radius while leaking

rate equals 0.025.

It has to be taken into account that producing an even finer grid might give us even better results

but this takes time. Also, it seems from all this analysed data that the reduction in error would be quite

low.

 51

As mentioned in the end of Chapter 3, an observation has been made that since the outputs space

is from 0 to 1, it would make sense to use the logistic sigmoid instead of the hyperbolic tangent for the

activation function. As it turns out, this works out quite well since the lowest RMSE drops quite a bit

(Table 7). A grid search of about the same values has been carried out.

Table 7. Sorted error data (top 10) using a logistic sigmoid activation function

leaking

rate

input

scaling

spectral

radius

reg mean rmse std

0.03 0.000225 0.01 0.001 0.040972 0.030719 0.056976

0.03 0.000225 0.01 0.001 0.040997 0.030733 0.056982

0.05 0.000225 0.01 0.001 0.040960 0.030735 0.056984

0.04 0.000225 0.01 0.001 0.040982 0.030740 0.056976

0.04 0.000200 0.02 0.001 0.041040 0.030741 0.056986

0.04 0.000200 0.08 0.001 0.041039 0.030742 0.056985

0.05 0.000200 0.02 0.001 0.041033 0.030743 0.056991

0.03 0.000300 0.14 0.001 0.040847 0.030744 0.056962

0.04 0.000200 0.08 0.001 0.041034 0.030745 0.056991

0.025 0.000200 0.2 0.001 0.041052 0.030745 0.056983

Here the lowest error (RMSE) value is smaller by 0.00005. This time leaking rate is about the

same but a tiny bit higher. Best results are with leaking rate 0.03. Other values stay about the same as

well. This difference is very low but is quite significant in this context since we were nowhere near

this using the hyperbolic tangent and different ranges of weights for the input weights matrix as well

as reservoir weights matrix. We could say that having reduced the output range to the very range of

the expected output as well as having restricted the weights matrixes only to non-negative numbers,

increases the quality of an ESN model by a little bit.

Having noticed that the quantization mechanism deletes a part of notes as seen in Fig. 16, 721, to

be exact, the mechanism was changed to lengthen the very shortest notes to the quant size. This is how

the histogram of notes looks like after this kind of change (Fig. 30). Now it does not null any of the

notes.

Having changed the quantization function and now having more notes, we ran a grid search in

about the same range of values again. In Table 8 we may observe that the errors increased by a tiny

bit. This seems logical as having more notes gets harder to predict them. However, we will stick with

this model for music generation since we do not want to lose notes.

 52

Fig. 30. Lengths of notes after change of quantization

Table 8. Sorted error data (top 5) using a logistic sigmoid and new quantization

leaking

rate

input

scaling

spectral

radius

reg mean rmse std

0.02 0.000225 0.01 0.001 0.040910 0.030737 0.056862

0.03 0.000225 0.01 0.001 0.040905 0.030746 0.056860

0.03 0.0002 0.01 0.001 0.040949 0.030749 0.056870

0.02 0.000225 0.01 0.001 0.040945 0.030757 0.056862

0.02 0.00025 0.01 0.001 0.040895 0.030757 0.056851

By randomly zeroing 10 percent of the reservoir weights matrix W, prediction model did not

become more accurate as seen in Table 9. Here the best value of error was 0.030761.

Table 9. Sorted error data (top 5) while 10 % of the reservoir weights were reduced to 0

leaking

rate

input

scaling

spectral

radius

reg mean rmse std

0.02 0.00025 0.01 0.001 0.040894 0.030761 0.056851

0.02 0.00025 0.02 0.001 0.040898 0.030762 0.056849

0.02 0.000225 0.02 0.001 0.040944 0.030768 0.056858

0.02 0.000225 0.01 0.001 0.040972 0.030772 0.056864

0.02 0.0002 0.02 0.001 0.040997 0.030773 0.056869

4.2. Prediction of music including the hand information

 53

Having given a hint to the neural network about the hand that pressed the piano key, we get a lot

better results according to RMSE (Table 10). This time hyperbolic tangent was used as the activation

function since the range of the outputs is from -1 to 1. Parameters of the best ESN model stay the same,

except regularization. Regularization is 100 times bigger. Best value of RMSE is 0.029015.

Table 10. Sorted error data (top 8) including hand information

leaking

rate

input

scaling

spectral

radius

reg mean rmse std

0.02 0.00023 0.02 0.1 -0.001642 0.029015 0.052773

0.01 0.00023 0.03 0.1 -0.001643 0.029018 0.052773

0.01 0.000225 0.03 0.1 -0.001641 0.029021 0.052776

0.02 0.00025 0.02 0.1 -0.001654 0.029021 0.052767

0.02 0.000237 0.02 0.1 -0.001652 0.029022 0.052771

0.02 0.000223 0.02 0.1 -0.001648 0.029022 0.052774

0.01 0.000225 0.02 0.1 -0.001643 0.029022 0.052774

0.01 0.00023 0.02 0.1 -0.001642 0.029022 0.052772

4.3. Generation of music

Having sampled the data by different degrees of power, we get results as seen in Table 11. For

comparison, the statistics for all zero output compared to original data are -0.00164782509,

0.039822453, 0.052771963 for mean, RMSE and standard deviation respectively. Therefore, even if

we get lower RMSE by increasing the degree of sampling, it also comes closer to the RMSE when all

states are zero. Also, we shall observe that the mean value and standard deviation decrease significantly

as well. Results are getting closer to zero when applying a high degree for the sampling. Sampling

works in such a way that the only values played are the ones that their values in a certain degree of

power are higher than a random number.

Table 11. Sampling results

mean rmse std deg

0. 00119512 0. 081092295074 0. 074045865994 1

0. 00070094 0. 052798627049 0.028107546679 1.25

0. 00042870 0. 044536801549 0. 010758374139 1.5

0. 000518302 0. 0429901646575 0. 007306312746 1.6

0. 000154387 0. 041229865806 0. 003188746708 1.8

3.9975463e-05 0. 0403228363280 0. 001287406962 2

 54

here deg stands for the power of degree of the value, predicted by the ESN.

In Fig. 1 we can see the results of the generation when no sampling and no rules are applied in

the first row. The result is kind of a mess. So many notes and most of them are just 60 ticks, so very

short. By applying the musical rules we get a much nicer result in the second row. Other rows are when

sampling is additionally increased from 1.05 to 1.1 to 1.15 to 1.2 to 1.3. As we can see, sampling does

is not as important as the rules are.

Fig. 31. Music generation results

The rule that took into account the length of the note look liked this. If the note was already

pressed, it would change the degree of sampling from its initial value to (9):

 1 +
𝑑𝑒𝑔𝑟𝑒𝑒−1

(𝑛𝑜𝑡𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 8)+1
 (9)

here notelength is in steps and it refers to how many steps of the note there were before the step at the

moment. And then since we had most notes of ticks 120, the procedure for 2nd step would be repeated

again if unsuccessful.

 55

5. CONCLUSIONS

1. Choice of music – classical music and, to be more precise, Mozart

First of all, with classical music we can work on the note level, thus it is easier for us to understand

and analyse the data as well as the predicted output, we can compare it with music theory It is also a

lot easier for the network since there are less dimensions. Also, classical music, particularly piano, was

easy to find on the internet. Mozart was chosen because of his genius and some haphazardness.

2. Programming language of choice – Python

Python was chosen because of its recognition in data science and machine learning among

scientists and developers. Also, because of the many data processing as well as machine learning

libraries although none of the machine learning libraries were used for this research.

3. Insights from the research of algorithms used for music composition.

In literature overview we have noted that the leading algorithms in music composition are

sequential recurrent neural networks. For the moment of writing of this thesis, the cutting edge

technology for music composition is the system of LSTM networks. Mostly because they are able to

remember a lot, have a long term memory whereas usual BPTT RNN networks have only short term

memory. As it turns out from all the research, music composition prefers long term memory.

4. Choice of algorithm – ESN (echo state network)

We have chosen ESN for several reasons. First of all, novelty. ESNs have not been used for

musical composition. Only one research could be found on rhythm generation. We have chosen ESNs

also because they are computationally cheap to train. Therefore, we can have a huge reservoir. A bigger

reservoir provides more memory for the model. Additionally, it has a leaking rate parameter which

regulates the update speed of the system.

5. Choice of evaluation for the algorithm – RMSE (root mean squared error)

The model was evaluated using RMSE as it is a common practice with neural networks.

6. Outcomes from the research of the algorithm

Having searched for the best parameters of the ESN model, we found out that the ESN has

spectral radius much higher than the input scaling. This agrees with the research of algorithms outcome

because this means that music is better predicted with longer term dependencies. Also, because both

spectral radius and input scaling are relatively low (compared to 1), this means that the model operates

in an almost linear style. Thus, the prediction function ought to be fairly simple. In addition, low

leaking rate suggests that the update of the system is rather slow as well. In a way, this adds some

memory too.

Using the logarithmic sigmoid as an activation function gives away slightly better results. Having

to predict more notes is harder for the network in the means of the RMSE. Depending on the

 56

quantization, the best values for the ESN were 0.02, 0.000225, 0.01 for leaking rate, input scaling and

spectral radius respectively when the quantization deleted some notes and 0.02, 0.00025 and 0.01 when

the quantization did not delete any of the note. Outcomes in the form of RMSE were 0.030737 and

0.030761 respectively.

7. Development of the algorithm for music composition

Giving the ESN a hint about the hand that pays the note on the piano, to be exact, changing back

to the hyperbolic tangent activation and mapping right hand to the state of 1 while left hand to the state

of -1, produces even better results.

It could also be said that using activation similar in form with the output can increase prediction

accuracy as well.

8. Insights for music generation

We can deduct from the process of generation that sampling is not so important in this case, more

important are the rules. By implying some of the music rules, the generation followed nicer results

according to the music theory. Therefore, for classical music as well. The closer the rules are to the

music theory, the better the results ought to be.

 57

6. REFERENCES

1. Why do whales sing? [seen on 2018-05-24] Access on the internet:

http://www.whalefacts.org/why-do-whales-sing/

2. MARTINELLI, D. Dainuojanti revoliucija – viena iš geriausiai (deja) saugomų Lietuvos

paslapčių. [seen on 2018-05-24] Access on the internet:

http://www.mic.lt/lt/diskursai/lietuvos-muzikos-link/nr-18-2015-sausis-gruodis/dainuojanti-

revoliucija/

3. The British Invasion: From the Beatles to the Stones, The Sixties Belonged to Britain. [seen on

2018-05-24] Access on the internet: 1. https://www.rollingstone.com/music/news/the-british-

invasion-from-the-beatles-to-the-stones-the-sixties-belonged-to-britain-19880714

4. G., PAPADOPOULOS, G., WIGGINS. AI Methods for Algorithmic Composition: A Survey,

a Critical View and Future Prospects. In AISB Symposium on Musical Creativity, pp. 110-117,

1999.

5. MIDI history: chapter 1 – 850 AD TO 1850 AD. [seen on 2018-05-25] Access on the internet:

https://www.midi.org/articles/midi-history-chapter-1

6. J., D., FERDINANDEZ, F., VICO. AI Methods in Algorithmic Composition: A

Comprehensive Survey. Journal of Artificial Intelligence Research, Volume 48, pp. 513-582,

2013.

7. L., A., HILLER, L., M., ISAACSON. Musical composition with a High-Speed digital

computer. Journal of the Audio Engineering Society, Volume 6 (3), pp. 154–160, 1958.

8. C., AMES. Automated composition in retrospect: 1956-1986. Leonardo, Volume 20 (2), pp.

169– 185, 1987.

9. Z., SUN, et al. Composing music with grammar argumented neural networks and note-level

encoding. 2016. Access on the internet: https://arxiv.org/abs/1611.05416

10. H., CHU, R., URTASUN, S., FIDLER. Song from PI: A Musically Plausible Network for Pop

Music Generation. 2016. Access on the internet: https://arxiv.org/abs/1611.03477

11. S., ENGELS, F., CHAN, T., TONG, Automatic Real-Time Music Generation for Games.

AIIDE Workshop, 2015.

12. Artificial music: the computers that create music. [seen on 2018-05-24] Access on the internet:

http://www.bbc.com/future/story/20140808-music-like-never-heard-before

13. Magenta: Make Music and Art Using Machine Learning. [seen on 2018-05-24] Access on the

internet: https://magenta.tensorflow.org/

http://www.whalefacts.org/why-do-whales-sing/
http://www.mic.lt/lt/diskursai/lietuvos-muzikos-link/nr-18-2015-sausis-gruodis/dainuojanti-revoliucija/
http://www.mic.lt/lt/diskursai/lietuvos-muzikos-link/nr-18-2015-sausis-gruodis/dainuojanti-revoliucija/
https://www.rollingstone.com/music/news/the-british-invasion-from-the-beatles-to-the-stones-the-sixties-belonged-to-britain-19880714
https://www.rollingstone.com/music/news/the-british-invasion-from-the-beatles-to-the-stones-the-sixties-belonged-to-britain-19880714
https://www.midi.org/articles/midi-history-chapter-1
https://arxiv.org/abs/1611.05416
https://arxiv.org/abs/1611.03477
http://www.bbc.com/future/story/20140808-music-like-never-heard-before
https://magenta.tensorflow.org/

 58

14. Hear the first ever full pop song by artificial intelligence. [seen on 2018-05-24] Access on the

internet: http://www.factmag.com/2016/09/22/hear-first-complete-pop-song-composed-

artificial-intelligence/

15. G., HADJERES, F., PACHET. DeepBach: a Steerable Model for Bach chorales. Proceedings

of the 34th International Conference on Machine Learning, Volume 70, pp. 1362-1371, 2017.

16. Electronic. [seen on 2018-05-24] Access on the internet:

http://www.allmusic.com/genre/electronic-ma0000002572

17. What is MIDI? [seen on 2018-05-24] Access on the internet:

http://www.instructables.com/id/What-is-MIDI/

18. What is MIDI? [seen on 2018-05-24] Access on the internet: https://www.midi.org/

19. About MIDI-part 4: MIDI Files. [seen on 2018-05-24] Access on the internet:

https://www.midi.org/articles/about-midi-part-4-midi-files

20. I., CHUSID. Time and Curiosity: Journey to the Outside. [seen on 2018-05-24] Access on the

internet: http://www.keyofz.com/after/

21. M., SIMONI. Algorithmic Composition: A Gentle Introduction to Music Composition Using

Common LISP and Common Music. Access on doi:

https://quod.lib.umich.edu/s/spobooks/bbv9810.0001.001

22. C., FOX. Genetic Hierarchical Music Structures. [seen on 2018-05-24] Access on the internet:

http://www.cs.brandeis.edu/~marc/misc/proceedings/flairs-2006/CD/07/FLAIRS06-047.pdf

23. J., A., BILES. Genjam: A Genetic Algorithm for Generating Jazz Solos. In Proceedings of the

International Computer Music Conference, 1994.

24. G., PAPADOPOULOS, G., WIGGINS. A Genetic Algorithm for the Generation of Jazz

Melodies. In STeP’98, 1998.

25. K., EBCIOGLU. An Expert System for Harmonizing Four-part Chorales. Computer Music

Journal, Volume 12 (3), pp. 43-51, 1988.

26. D., CONKLIN, I., H., WITTEN. Multiple Viewpoint Systems for Music Prediction. Journal of

New Music Research, Volume 24, pp. 51-73, 1995.

27. M. BODEN. What is Creativity. In M. Boden, editor, Dimensions of Creativity, pp. 75–118.

MIT Press, 1996.

28. J., ROWE, D., PARTRIDGE. Creativity: A survey of AI approaches. Artificial Intelligence

Review, Volume 7, pp. 43–70, 1993.

29. P., KUGEL. Myhill’s Thesis: There’s More than Computing in Musical Thinking. Computer

Music Journal, Volume 14 (3), pp. 12–25, 1990.

30. J., MYHILL. Some Philosophical Implications of Mathematical Logic: Three Classes of Ideas.

Review of Metaphysics, Volume 6 (2), pp. 165–198, 1952.

http://www.factmag.com/2016/09/22/hear-first-complete-pop-song-composed-artificial-intelligence/
http://www.factmag.com/2016/09/22/hear-first-complete-pop-song-composed-artificial-intelligence/
http://www.allmusic.com/genre/electronic-ma0000002572
http://www.instructables.com/id/What-is-MIDI/
https://www.midi.org/
https://www.midi.org/articles/about-midi-part-4-midi-files
http://www.keyofz.com/after/
https://quod.lib.umich.edu/s/spobooks/bbv9810.0001.001
http://www.cs.brandeis.edu/~marc/misc/proceedings/flairs-2006/CD/07/FLAIRS06-047.pdf

 59

31. E., M., GOLD. Limiting Recursion. Journal of Symbolic Logic, Volume 30 (1), pp. 28–48,

1965.

32. H., PUTNAM. Trial-and-Error Predicates and the Solution to a problem of Mostowski. Journal

of Symbolic Logic, Volume 30 (1), pp. 49–57, 1965.

33. G., M., RADER, A method for composing simple traditional music by computer.

Communications of the ACM, Volume 17 (11), pp. 631–638, 1974.

34. J., D., FERNANDEZ, F., VICO. AI methods in algorithmic composition: a comprehensive

survey. Journal of Artificial Intelligence Research, Volume 48 (48), pp. 513–582, 2013.

35. K., THYWISSEN. Genotator: an environment for exploring the application of evolutionary

techniques in computer-assisted composition. Organised Sound, Volume 4 (2), pp. 127–133,

1999.

36. D., COPE. Computer modeling of musical intelligence in EMI. Computer Music Journal,

Volume 16, (16), pp. 69–87, 1992.

37. M., ALLAN. Harmonising chorales in the style of Johann Sebastian Bach. Master’s Thesis,

School of Informatics, University of Edinburgh, 2002.

38. D., SILVER, et al. Mastering the game of Go with deep neural networks and tree search.

Nature, Volume 529 (7587), pp. 484–489, 2016.

39. A., HUANG, R., WU. Deep learning for music, 2016. Access on the internet:

https://arxiv.org/abs/1606.04930

40. Machine learning. [seen on 2018-05-24] Access on the internet:

http://whatis.techtarget.com/definition/machine-learning

41. Machine learning. [seen on 2018-05-24] Access on the internet:

https://www.britannica.com/technology/machine-learning

42. Machine learning. [seen on 2018-05-24] Access on the internet:

http://www.sas.com/en_us/insights/analytics/machine-learning.html

43. P., M., TODD. A connectionist approach to algorithmic composition. Computer Music

Journal, pp. 27–43, 1989.

44. M., C., MOZER. Neural network music composition by prediction: Exploring the benefits of

psychoacoustic constraints and multi-scale processing. Connection Science, Volume, 6 (2-3),

pp. 247–280, 1994.

45. R., N., SHEPARD. Geometrical approximations to the structure of musical pitch.

Psychological Review, Volume 89 (4), pp. 305, 1982.

46. J., A., FRANKLIN. Multi-phase learning for jazz improvisation and interaction. In

Proceedings of the Eighth Biennial Symposium for Arts & Technology, 2001.

https://arxiv.org/abs/1606.04930
http://whatis.techtarget.com/definition/machine-learning
https://www.britannica.com/technology/machine-learning
http://www.sas.com/en_us/insights/analytics/machine-learning.html

 60

47. D., ECK, J., SCHMIDHUBER. A first look at music composition using lstm recurrent neural

networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 2002.

48. J., A., FRANKLIN. Recurrent neural networks for music computation. INFORMS Journal on

Computing, Volume 18 (3), pp. 321–338, 2006.

49. P., MESSICK. Maximum midi, 1988.

50. N., BOULANGER-LEWANDOWSKI, Y., BENGIO, P., VINCEN. Modeling temporal

dependencies in high-dimensional sequences: Application to polyphonic music generation and

transcription, 2012. [seen on 2018-05-24] Access on the internet:

https://arxiv.org/abs/1206.6392

51. D., JOHNSON. Generating polyphonic music using tied parallel networks. EvoMUSART:

Computational Intelligence in Music, Sound, Art and Design, pp. 128-143, 2017.

52. D., JOHNSON. Composing Music with Recurrent Neural Networks, 2015. [seen on 2018-05-

24] Access on the internet: http://www.hexahedria.com/2015/08/03/composing-music-with-

recurrent-neural-networks/

53. F., V., VEEN. The neural network zoo. [seen on 2018-05-24] Access on the internet:

http://www.asimovinstitute.org/neural-network-zoo/

54. S., HOCHREITER, J., SCHMIDHUBER. Long short-term memory. Neural

computation, Volume 9 (8), pp. 1735–1780, 1997.

55. P., J., WERBOS. Backpropagation through time: what it does and how to do it. Proceedings

of the IEEE, Volume 78 (10), pp. 1550–1560, 1990.

56. A., J., ROBINSON, F., FALLSIDE. The utility driven dynamic error propagation network.

University of Cambridge Department of Engineering, 1987.

57. I.-T., LIU, B., RAMAKRISHNAN. Bach in 2014: Music Composition with Recurrent Neural

Network. [seen on 2018-05-24] Access on the internet: https://arxiv.org/abs/1412.3191

58. A., KARPATHY. The Unreasonable Effectiveness of Recurrent Neural Networks, 2015. [seen

on 2018-05-24] Access on the internet: https://karpathy.github.io/2015/05/21/rnn-

effectiveness/

59. P., SMOLENSKY. Information processing in dynamical systems: Foundations of harmony

theory, 1986.

60. I., SUTSKEVER, G., E., HINTON, T., W., GRAHAM. The recurrent temporal restricted

Boltzmann machine. In Advances in Neural Information Processing Systems, pp. 1601–1608,

2009.

61. Bachbot. [seen on 2018-05-24] Access on the internet: http://bachbot.com/

62. T., MIHAELA, H., JAEGER. Echo State Networks - Rhythm Generator for Music

Compositions. Jacobs University Bremen, 2013.

https://arxiv.org/abs/1206.6392
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
http://www.asimovinstitute.org/neural-network-zoo/
https://arxiv.org/abs/1412.3191
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://bachbot.com/

 61

63. C., J., PLACK, A., J., OXENHAM, R., R., FAY. Pitch: Neural Coding and Perception, New

York: Springer, 2005. ISBN: 0-387-23472-1.

64. Mido – MIDI objects for Python. [seen on 2018-05-24] Access on the internet:

https://mido.readthedocs.io/en/latest/

65. M., LUKOŠEVIČIUS. A Practical Guide to Applying Echo State Networks. Neural Networks

Tricks of the Trade, 2nd e., Springer, 2012

66. H., JAEGER. Echo state network, Scholarpedia. [seen on 2018-05-24] Access on the internet:

http://www.scholarpedia.org/article/Echo_state_network

67. Sample echo state network source codes. [seen on 2018-03-11] Access on the internet:

http://minds.jacobs-university.de/mantas/code

68. G., HINTON. Lecture 8.4. – Echo State Networks. [seen on 2018-05-24] Access on the

internet: https://www.youtube.com/watch?v=vlRwUV_sGcs

69. D., ROBINSON. The Incredible Growth of Python, 2017. [seen on 2018-05-24] Access on the

internet: https://stackoverflow.blog/2017/09/06/incredible-growth-python/

https://mido.readthedocs.io/en/latest/
http://www.scholarpedia.org/article/Echo_state_network
http://minds.jacobs-university.de/mantas/code
https://www.youtube.com/watch?v=vlRwUV_sGcs
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

	1. INTRODUCTION
	1.1. Aim of the research
	1.2. Objectives
	1.3. Novelty of research in science
	1.4. Structure of the document
	2. LITERATURE OVERVIEW
	2.1. Pitch
	2.2. Electronic music
	2.3. MIDI protocol
	2.4. Algorithmic music
	2.4.1. The process of algorithmic composition
	2.4.2. Mathematical models
	2.4.3. Knowledge based systems
	2.4.4. Grammars
	2.4.5. Evolutionary methods
	2.4.6. Systems that learn
	2.4.7. Evaluation of the systems
	2.4.8. Knowledge representation
	2.4.9. Computational creativity
	2.5. Machine learning
	2.5.1. Neural networks
	2.5.2. Recurrent neural networks
	2.6. Overview of the advancements in music generation
	2.6.1. Overview of advancements in music generation using RNN
	2.6.2. Echo state networks usage for music composition
	2.6.3. Choice of the network
	3. EXPERIMENT
	3.1. Choice of music
	3.2. Echo state network
	3.2.1. Systems equations
	3.2.2. Ridge Regression
	3.2.3. Evaluation of the model
	3.2.4. Echo state network tuning
	3.3. Data and tools
	3.4. Initial data analysis
	3.5. Experimental setup
	3.5.1. Predicting music
	3.5.2. Predicting music including the hand information
	3.5.3. Generating music
	4. RESULTS
	4.1. Prediction of music
	4.2. Prediction of music including the hand information
	4.3. Generation of music
	5. CONCLUSIONS
	6. REFERENCES

