

KAUNO TECHNOLOGIJOS UNIVERSITETAS ELEKTROS IR ELEKTRONIKOS FAKULTETAS

Martynas Karobčikas

ELEKTROS ENERGETIKOS SISTEMOS SILPNOJO SIGNALO STABILUMO TYRIMAS

Baigiamasis magistro projektas

Vadovas Doc. dr. Virginijus Baranauskas

KAUNAS, 2018

KAUNO TECHNOLOGIJOS UNIVERSITETAS ELEKTROS IR ELEKTRONIKOS FAKULTETAS AUTOMATIKOS KATEDRA

ELEKTROS ENERGETIKOS SISTEMOS SILPNOJO SIGNALO STABILUMO TYRIMAS

Baigiamasis magistro projektas Valdymo technologijos (kodas 621H66001)

> Vadovas Doc. dr. Virginijus Baranauskas

> > **Recenzentas** Doc. dr. K. Ratkevičius

Projektą atliko Martynas Karobčikas

KAUNO TECHNOLOGIJOS UNIVERSITETAS

Elektros ir elektronikos fakultetas			
(Fakultetas)			
Martynas Karobčikas			
(Studento vardas, pavardė)			
Valdymo technologijos, 621H66001			
(Studijų programos pavadinimas, kodas)			

Baigiamojo projekto "Elektros energetikos sistemos silpnojo signalo stabilumo tyrimas" AKADEMINIO SĄŽININGUMO DEKLARACIJA

20 ____ m. ____ d.

Patvirtinu, kad mano **Martyno Karobčiko** baigiamasis projektas tema "Elektros energetikos sistemos silpnojo signalo stabilumo tyrimas" yra parašytas visiškai savarankiškai, o visi pateikti duomenys ar tyrimų rezultatai yra teisingi ir gauti sąžiningai. Šiame darbe nei viena dalis nėra plagijuota nuo jokių spausdintinių ar internetinių šaltinių, visos kitų šaltinių tiesioginės ir netiesioginės citatos nurodytos literatūros nuorodose. Įstatymų nenumatytų piniginių sumų už šį darbą niekam nesu mokėjęs.

Aš suprantu, kad išaiškėjus nesąžiningumo faktui, man bus taikomos nuobaudos, remiantis Kauno technologijos universitete galiojančia tvarka.

(vardą ir pavardę įrašyti ranka)

(parašas)

Karobčikas, Martynas. Elektros energetikos sistemos silpnojo signalo stabilumo tyrimas. Valdymo sistemų magistro baigiamasis projektas / vadovas doc. dr. Virginijus Baranauskas; Kauno technologijos universitetas, Elektros ir elektronikos fakultetas, Automatikos katedra.

Mokslo kryptis ir sritis: Elektros ir elektronikos inžinerija, Technologiniai mokslai.

Reikšminiai žodžiai: elektros energetikos sistema, stabilumas, tarpsisteminiai švytavimai, švytavimų slopintuvas, savųjų reikšmių analizė.

Kaunas, 2018. 99 p.

SANTRAUKA

Įgyvendinant Baltijos šalių elektros energetikos sistemos strateginius projektus, siekiama sinchronizuotis su kontinentinės Europos tinklais. Dėl pasikeitusios sistemos struktūros gali atsirasti stabilumo ir patikimumo užtikrinimo problemų. Tyrimo tikslas – įvertinti Baltijos šalių energetikos sistemos silpnojo signalo stabilumą ir nustatyti galimų problemos sprendimo metodų efektyvumą. Pagrindiniai tyrimo uždaviniai: atlikti tiriamos sistemos modalinę analizę, identifikuoti optimalias švytavimų slopinimo įrenginių diegimo vietas, patikrinti jų efektyvumą modeliuojant sistemos dinaminius procesus.

Tiriamasis modelis sudaromas Baltijos šalių 330 kV perdavimo tinklui, apimant esamus aukštos įtampos nuolatinės srovės keitiklius, o dinaminis modelis realizuojamas pagal tipinius parametrus. Tiriamajame darbe švytavimų charakteringiesiems dažniams aptikti taikoma tiesinės sistemos savųjų reikšmių analizė. Analizuojami šeši sistemos darbo režimai, kurie atspindi tipines bei ribines sistemos darbo sąlygas. Aptiktų charakteringųjų dažnių slopinimo metodų efektyvumui įvertinti modeliuojami atvejai, kai sistema veikia su ir be švytavimo slopinimo įrenginių, ir kai papildoma linija stiprinamas probleminis pjūvis tarp atskirų sistemos dalių. Darbo pabaigoje pateikiamas taikytų švytavimo slopinimo metodų efektyvumo įvertinimas.

Karobčikas, Martynas. Investigation of Power System Small-Signal Stability: *Master's* thesis in control systems qualification degree / supervisor assoc. prof. Virginijus Baranauskas. Kaunas University of Technology, Faculty of Electrical and Electronics Engineering, department of Automation.

Research area and field: Electrical and Electronics Engineering, Technological Sciences.

Key words: power system, stability, inter-area oscillations, power system stabilizer, eigenvalue analysis.

Kaunas, 2018. 99 p.

SUMMARY

The implementation of the strategic projects of the Baltic power system is aimed at synchronizing with continental European networks. Due to the changed structure of the system stability and reliability problems could arise. The aim of the study is to evaluate small-signal stability of the Baltic power system and to determine the effectiveness of possible problem-solving methods. The main tasks of the study: to carry out a modal analysis of the system under investigation, to identify the optimal places for the oscillations damping devices installation, to check their efficiency by modeling the dynamic processes of the system.

The research model is being developed for the 330 kV transmission network of the Baltic States including existing high voltage direct current converters, and the dynamic model is implemented according to typical parameters. In this study, linear system eigenvalue analysis method is used to detect oscillation modes. Six system operating modes are analyzed, which defines the typical and boundary conditions of the system. To evaluate the effectiveness of the oscillation damping methods several cases are modeled when the systems works with and without oscillation damping devices, and when the additional transmission line is modeled in restrictive cross-border between the individual parts of the system. At the end of the study, efficiency estimation of the applied oscillation damping methods is presented.

SANTRAUKA	4
TURINYS	
ĮVADAS	
1. APŽVALGINĖ DALIS	
1.1. Elektros energetikos sistemos stabilumas	
1.1.1. Elektros energetikos sistemu stabilumo svarba	1(
1.1.2. Elektros energetikos sistemų stabilumo rūšys	10
1.2. Silpnojo signalo stabilumas	
1.2.1. Elektros energetikos sistemu netiesiškumas	12
1.2.2. Švytavimų reiškinys didelėse elektros energetikos sistemose	12
1.2.3. Sistemos švvtavimu reiškinio pasekmės	
1.2.4. Švvtavimus salvgoiantvs veiksniai	
1.2.5. Elektros energetikos sistemos švytavimu reiškinio tipai	
1.2.6. Švytavimu problemos sprendimo priemonės ir ju parinkimo kriterijai	
1.3. Švytavimu elektros energetikos sistemose stabilizavimas	
1.3.1. Rotoriaus švytavimu reiškinys	
1.3.2. Švytavimu slopinimo metodai	
1.3.3. Elektros energetikos sistemu stabilizatoriai	
1.3.4. PSS tipai	
1.3.5. Generatoriaus valdymo struktūra su PSS	
1.4. Būsenų erdvės modelio matematinis aprašymas	
1.4.1. Sistema būsenu erdvės modeliu	
1.4.2. Sistemos ištiesinimas darbo taške	
1.4.3. Sistemos būsenos lygčių sprendinys	
1.4.4. Savieji vektoriai	
1.4.5. Sistemos stebimumas ir valdomumas	
1.4.6. Savosios reikšmės ir stabilumas	
1.4.7. Įtakos koeficientas	
1.5. Tyrimo metodikų tipai ir parinkimas	
1.5.1. Sistemos švytavimų analizės metodai	
1.5.2. Sistemos laikinė reakcija ir modalinė analizė	
1.5.3. Charakteringosios lygties savųjų reikšmių skaičiavimo metodai	
2 METODINĖ DALIS	20
2. METODINE DALIS	
2.1.1. Tinkle anglinės modelie struktūra	,
2.1.1. Tinkio analizes modello struktura	
2.1.2. Peruavimo unkio modellavimo prietataos	
2.2. Statillis ulikio modelis	21
2.2.1. Elektros peruavimo unijų modeliavimas	
2.2.2. Transformatorių modeliavimas	
2.2.5. Generatorių ir apkrovų modeliavimas	
2.2.4. Auksios jumpos nuolaunes si oves kelikilų modeliavimas	
 2.2.3. Reaktyviosios gauos kompensavimo įrenginių modeliavimas	
2.3. Dinaminis unkio mouchs 2.3.1. Sinchroniniu ganaratoriu dinaminiai modeliai	כ ט זכ
2.3.1. Sinchroninių generatorių anaminiai modeliai 2.3.2. Vėjo parkų dinaminis modelis	25 ۸۲
2.3.2. v ejo purkų unuminis moueus 2.3.3 HVDC kaitiklių dinaminiai modaliai	42 / /
2.3.3. 11 r DC recurring unuminian mouchan	44 ۸4
2.3.5. Generatorių turbinų reguliatorių dinaminiai modeliai	
2.3.6. PSS dinaminis modelis	

TURINYS

2.4. Baltijos šalių perdavimo tinklo modelis	51
2.4.1. Perspektyvinė tinklo topologija ir struktūra	51
2.4.2. Baltijos šalių energetikos sistemos generatorių duomenys ir dinaminiai modeliai	54
2.4.3. Modelio adekvatumo įvertinimas	58
2.5. Silpnojo signalo stabilumo tyrimo metodika	64
3. TYRIMO REZULTATŲ DALIS	68
3.1. Tiriami EES darbo režimai	68
3.2. Sistemos modalinės analizės rezultatai	70
3.3. SLLimpHVDC ir WPLnoHVDC režimų charakteringieji dažniai įdiegus PSS	84
3.4. Sistemos dinaminių procesų laikinės reakcijos	85
3.4.1. Generatorių rotorių greičių pokyčių laikinės reakcijos be PSS	85
3.4.2. Generatoriaus rotoriaus švytavimo priklausomybė nuo trikdžio vietos	87
3.4.3. Generatorių rotorių greičių pokyčių laikinės reakcijos su PSS ir papildoma linija	88
IŠVADOS	96
INFORMACIJOS ŠALTINIŲ SĄRAŠAS	97
1 PRIEDAS	99

ĮVADAS

Baltijos šalių elektros energetikos sistemos strateginiai planai yra iki 2025 metų atsijungti nuo IPS/UPS sistemos ir sinchronizuotis su kontinentinės Europos tinklais per aukštos įtampos nuolatinės srovės jungtį LitPol Link. Todėl atsiranda tikimybė avariniais atvejais dirbti izoliuoto darbo režimu. Bet to, 2019 metais numatoma atlikti izoliuoto darbo bandymą. Sistemai veikiant salos režimu sudėtingiau užtikrinti sistemos stabilumą ir patikimumą, palaikyti dažnį leidžiamose ribose. Sistema tampa jautri įvairiems trikdžiams, kurie gali sukelti rimtų problemų. Todėl atsiranda poreikis identifikuoti silpnąsias tinklo vietas, įvertinti galimas problemas ir pasekmes bei pasiūlyti jų sprendimus.

Lietuvos elektros perdavimo tinklas yra vienas geriausiai išplėtotų perdavimo tinklų aplink Baltijos jūra. Tiriamą sistemą sudaro tarpusavyje sujungtos Lietuvos, Latvijos ir Estijos elektros energetkos sistemos. Iš pirmo žvilgsnio ši jungtinė sistema nėra didelė ir jos infrastruktūra yra pakankamai stipri. Paprastai tokiose sistemose silpnojo signalo stabilumo problema nepasireiškia, kas yra būdinga didelėms ir silpnai sujungtoms sistemoms. Tačiau detaliau pažvelgus į tinklo struktūrą, Latvijos ir Estijos energetikos sistemas šiuo metu jungia tik dvi tarpsisteminės elektros perdavimo linijos. Dėl šio silpno elektrinio ryšio galimas elektromechaninių švytavimų tarp atskirų sistemų generatorių atsiradimas.

Tyrimo tikslas – ištirti Baltijos šalių elektros energetikos sistemos silpnojo signalo stabilumą ir pritaikyti galimus metodus identifikuotiems charakteringiesiems dažniams slopinti.

Tyrimo uždaviniai:

- sudaryti adekvatų Baltijos šalių elektros perdavimo tinklo statinį ir dinaminį modelį stabilumo tyrimui;
- atlikti savųjų reikšmių analizę ir identifikuoti nepakankamai slopinamus charakteringuosius dažnius bei jiems didžiausią įtaką darančius sistemos generatorius;
- įdiegti švytavimų slopinimo įrenginius ir įvertinti jų efektyvumą pagal dinaminių pereinamųjų procesų laikines reakcijas modeliuojant trikdį sistemoje.

Šiuo darbu tikimasi identifikuoti optimalias švytavimų slopinimo įrenginių diegimo vietas, siekiant geriausio rezultato. Taip pat palyginti švytavimų slopinimo įrenginių ir sistemos probleminio pjūvio stiprinimo sumodeliuojant papildomą liniją efektyvumą slopinant elektromechaninius generatorių rotorių švytavimus.

Silpnojo signalo tyrimui pasirinkta apjungti du metodus, nes tai leidžia visapusiškiau įvertinti sistemos stabilumą. Savųjų reikšmių analizė suteikia galimybę pažvelgti giliau į analizuojamos sistemos vidų, identifikuoti priklausomybes tarp charakteringųjų dažnių ir tam tikrų sistemos generatorių. Modeliuojant sistemos dinamines charakteristikas laiko atžvilgiu įvertinama netiesinio modelio įtaka, nustatomi kokybiniai pereinamųjų procesų rodikliai ir patikrinami modalinės analizės rezultatai.

Darbą sudaro trys dalys. Apžvalginėje dalyje aptariamos elektros energetikos sistemų stabilumo problemos, švytavimų priežastys ir jų slopinimo alternatyvos. Taip pat pateikiamas matematinis būsenų erdvės modelio aprašymas, kuriuo grindžiamas savųjų reikšmių analizes atlikimas bei galimos tyrimo metodikos. Metodinėje dalyje aprašomas statinio ir dinaminio modelio sudarymas, pateikiami naudoti tipiniai modelių parametrai. Atliekamas sudaryto modelio adekvatumo įvertinimas. Taip pat detaliai aprašoma tyrimo metodika. Tyrimo rezultatų dalyje pateikiami sudaryti tiriamieji sistemos darbo režimai ir jiems atliktos modalinės analizės rezultatai. Gauti rezultatai patikrinami modeliuojant dinamines laikines reakcijas įvedus trikdį sistemoje ir stebint švytavimų slopinimo efektyvumą panaudojant skirtingus metodus.

1. APŽVALGINĖ DALIS

1.1. Elektros energetikos sistemos stabilumas

1.1.1. Elektros energetikos sistemų stabilumo svarba

Elektros energetikos sistema (EES) yra didžiausia ir sudėtingiausia žmogaus sukurta sistema. Bėgant metams nuo elektros tampame vis labiau priklausomi, didėja elektros energijos vartojimas, nes ji neatsiejama beveik kiekvienos egzistuojančios sistemos dalis. Pagrindiniai EES rodikliai ir uždaviniai yra sistemos patikimas bei stabilus darbas, nepertraukiamas elektros energijos tiekimas, elektros kokybės ir efektyvaus sistemos darbo užtikrinimas. Jeigu sistema nesugebės išlaikyti stabilaus darbo režimo, akivaizdu, kad nebus įvykdomi ir likę uždaviniai.

EES yra be galo dinamiškos, todėl jas būtina valdyti realiu laiku atsižvelgiant į daugybę esamų sąlygų ir darbo parametrų. Nuolat egzistuoja *"force majeure"* situacijos, kurios gali įvykti bet kuriuo sistemos darbo metu, todėl visada reikia būti pasiruošus operatyviam kritinių situacijų valdymui ir problemų šalinimui.

EES nesugebant išlaikyti sinchronizmo ir stabilaus darbo, skaudžios pasekmės būtų jaučiamos kiekvienam. Pradedant nuo įvairios įrangos gedimų, dalies vartotojų atjungimo, sistemos dalijimo iki totalinės avarijos (angl. *Blackout*), kurios metu visiškai nutraukiamas elektros energetikos tiekimas. Tokiu atveju patiriami milžiniški ekonominiai nuostoliai, o visapusiškas sistemos normalaus darbo atstatymas gali užtrukti net iki keleto dienų. EES totalinę avariją galimą prilyginti visiškam chaosui ir katastrofai valstybiniu mastu.

1.1.2. Elektros energetikos sistemų stabilumo rūšys

Statinis stabilumas – tai elektros energetikos sistemos savybė išlaikyti sinchronizmą įvykus nedideliems trikdžiams. Trikdis laikomas pakankamai mažu jeigu sistemos lygčių ištiesinimas yra galimas sistemos analizės tikslais.

Dinaminis stabilumas – elektros energetikos sistemos savybė išlaikyti generatorių sinchroninį darbą įvykus dideliems trikdžiams (trumpieji jungimai, labai apkrautos linijos atsijungimas ir kt.).

Elektros energetikos sistemų stabilumo klasifikavimas [1]:

- 1. rotoriaus kampo stabilumas;
 - a. statinis stabilumas (angl. *Static Stability*);
 - i. silpnojo signalo stabilumas dėl tarpsisteminių švytavimų reiškinio (angl. Small-Signal Stability);
 - ii. nedidelio trikdžio statinis stabilumas;

- b. dinaminis stabilumas (angl. Transient Stability);
- 2. įtampos stabilumas ir įtampos griūtis;
 - a. įtampos stabilumas dėl didelio trikdžio;
 - b. įtampos stabilumas dėl nedidelio trikdžio;
- 3. dažnio stabilumas.

1.1 pav. Elektros energetikos sistemų stabilumo rūšys [1]

1.2. Silpnojo signalo stabilumas

Vienas svarbiausių elektros energetikos sistemos darbo uždavinių – jos stabilumas. Nuolat didėjantis sistemos galios poreikis ir tarpsisteminių ryšių integracija vis labiau komplikuoja energetinių sistemų darbą. Įvykus bet kokiam trikdžiui sistemoje (apkrovos pasikeitimas, trumpieji jungimai, žaibai ir kt.) neretai sukeliami generatorių rotorių elektromechaniniai švytavimai. Jie turi būti slopinami pakankamai greitai, kol dėl nuolat augančios amplitudės netapo pavojingi sistemos darbo stabilumui. Priešingu atveju, tam tikras generatorius gali būti atjungiamas nuo tinklo relinės apsaugos ir automatikos poveikio signalais, kas gali sukelti dažnio kritimą dėl atsiradusio generuojamos galios deficito [2].

Silpnojo signalo stabilumas – tai geografiškai didelių ir tarpusavyje silpnu elektriniu ryšiu sujungtų EES reiškinys, kurio metu vienos sistemos dalies generatorių grupė švytuoja prieš kitos sistemos dalies generatorių grupę.

Elektros energetikos sistemos struktūrą ir švytavimų atsiradimo priežastį galima paaiškinti paprastu mechaniniu pavyzdžiu. 1.2 paveiksle pavaizduota plokštelė, prie kurios lanksčiais ryšiais (virvelėmis) pritvirtinta keletas masių (rutuliukų). Esant nusistovėjusiai būsenai, rutuliukai išlaiko pusiausvyrą, masės centrai nesikeičia ir jie nejuda. Sistemoje įvykus bet kokiam trikdžiui (virvelės nutraukimas, mechaninės galios suteikimas rutuliukui jį pajudinant ar kt.), sistemos pusiausvyra nutraukiama, atsiranda masės centrų pokyčiai ir prasideda švytavimai, kurie tam tikru dydžiu paveikia visus sistemos elementus.

1.2 pav. Švytavimo reiškinio mechaninis pavyzdys

1.2.1. Elektros energetikos sistemų netiesiškumas

Dauguma elektros energetikos sistemos elementų, tokių kaip generatoriai, žadinimo sistemos, turbinų reguliatoriai bei apkrovos, turi netiesines charakteristikas. Šie elementai ir su jais susijusios valdymo sistemos turi įsotinimą ir išėjimo signalų ribojimus. Nepaisant to, kad netiesinių sistemų teorija gali būti naudojama analizuoti tokio tipo objektams, tai galioja tik mažoms ir paprastoms sistemos, o ne didelėms elektros energetikos sistemoms.

Kita vertus, tiesinių sistemų teorija gali suteikti naudingas įžvalgas jungtinių energetikos sistemų operatyviniame valdyme. Taip pat, ši teorija remiasi prielaida, kad sistemos dinamika yra tiesinė. Galiausiai, žemo dažnio švytavimai elektros energetikos sistemose yra praktiškai tiesinės priklausomybės, jeigu jie buvo sukelti nedidelio trikdžio. Sistemos dinaminių kintamųjų (rotoriaus kampo ar greičio) pokyčiai yra nedideli, įvertinant prielaidas ir aplinkybes, kad tiesinis modelis, sudarytas sistemos darbo pusiausvyros taške, duoda reikšmingų rezultatų. Todėl tiesinių modelių teorija gali būti pritaikoma ir didelėms energetikos sistemos analizuoti.

Sistemos charakteringosios lygties savosios reikšmės λ aprašo ištiesintų sistemų dinamines charakteristikas. Analizuojant tarpsisteminius generatorių švytavimus, juos aprašo tik apskaičiuotos kompleksinės savosios reikšmės.

Būsenų erdvės sistema yra stabili, jeigu visos charakteringosios lygties savosios reikšmės yra s-plokštumos kairėje pusėje. Kitaip sakant, visų savųjų reikšmių realiosios dalys turi būti neigiamos.

Jeigu sistema yra stabili, savųjų reikšmių analizė (angl. *Eigenvalue Analysis*) parodo sistemos švytavimų slopinimo lygį ir juos lemiančius veiksnius.

1.2.2. Švytavimų reiškinys didelėse elektros energetikos sistemose

Švytavimai tarp generatorių atsiranda vienu metu lygiagrečiai dirbant keletui kintamosios srovės agregatų. Pirmiausia ši problema buvo pastebėta sistemose su hidrogeneratoriais, kurie turėjo nedidelį švytavimų slopinimą, o pirminiam problemos sprendimui buvo įdiegtos slopinimo

apvijos. Vienas iš būdų sukurti neigiamą slopinimą buvo automatinio valdymo integravimas generatoriuose, kas puikiai sprendė susidariusią švytavimų problemą [3].

Viskas pradėjo keistis nuo 1960 metų, kai EES tapo apjungiamos tarpsisteminiais ryšiais. Elektros perdavimas ir generacija išsiplėtė į didelius geografinius plotus. Sistemų plėtra ir tarpsisteminių ryšių sukūrimas su ribotu pralaidumu paskatino švytavimų problemų atsiradimą. Pagrindinės to priežastys [3]:

- tarpsisteminiams švytavimams slopinimo apvijos generatoriuose tapo nebe efektyvios;
- dėl didėjančio automatinių valdymo sistemų diegimo padažnėjo sistemų suderinamumo problemos ir sąveikos tarp jų pačių;
- automatinio valdymo sistemos praktiškai yra vienintelis objektas, galintis sukurti neigiamą slopinimą, todėl EES be automatinio valdymo įrenginių turi labai nedidelį švytavimų slopinimo efektyvumą. Todėl keičiantis sistemos generacijai ar apkrovai, atsiranda švytavimai tarpsisteminiuose pjūviuose;
- nedidelis švytavimas kiekviename generatoriuje gali būti nereikšmingas jam pačiam, tačiau visi kartu jie gali sukelti pavojingus švytavimus tarpsisteminiuose ryšiuose;
- didėjant tarpsisteminių jungčių apkrovoms, didėja ir švytavimų svarba bei atsiradimo tikimybė.

1.2.3. Sistemos švytavimų reiškinio pasekmės

Elektros energetikos sistemos operatyviniame valdyme žemo dažnio švytavimai nėra pastebimi, todėl norint juos identifikuoti, reikia naudoti analitinius sistemų analizės metodus. Kadangi sistemos švytavimų problema nėra pastebima kasdieniuose sistemos darbo režimuose, dažnai tam nėra skiriamas didelis dėmesys. Tačiau tam tikrais tinklo darbo režimais ir sąlygomis, švytavimų reiškinys gali sudaryti rimtų problemų EES stabiliam ir patikimam darbui.

Elektros energetikos sistemose sudėtinga konkrečiai apibrėžti galimas tam tikro reiškinio ar problemos pasekmes. Tai priklauso nuo darbo režimo, aplinkos sąlygų, laiko ir begalės kitų veiksnių. Vienu atveju pasekmės gali būti nejuntamos nei sistemai nei vartotojams, kitu atveju, galimas didelio vartotojų kiekio atjungimas ar sistemos dalijimas. Apibendrinant galima išskirti šias pasekmes.

- Tinklo elementų ir įrenginių sugadinimas. Tai gali sukelti didelių ekonominių nuostolių, nes dalis EES įrangos, kaip autotransformatoriai ar generatoriai, yra pakankamai brangūs.
- 2. Dalies tinklo vartotojų atjungimas. Elektros perdavimo ir skirstymo tinklų operatorių vienas pagrindinių uždavinių yra nepertraukiamas elektros energijos tiekimas. Elektros

energijos nutraukimas stambiems pramonės gamintojams gali atnešti jiems milžiniškų nuostolių dėl gamybos proceso sustojimo.

- Sistemos dalijimas ir izoliuotas darbas. Atsirandantys švytavimai gali sutrikdyti sistemos stabilaus darbo pusiausvyrą ir pažeisti generatorių sinchronizmą. Tokiu atveju tikėtiniausias scenarijus – sistemos išdalijimas į atskiras izoliuotas zonas.
- 4. Totalinė avarija. Generatoriams neišlaikant sinchroninio darbo dėl rotoriaus kampų švytavimų ir išsiskyrimo, pastarieji gali atsijungti nuo tinklo. Dėl atsiradusio generuojamos galios deficito, sistemos dažnis gali nukristi žemiau leistinų ribų ir įvykti totalinė avarija.

1.2.4. Švytavimus sąlygojantys veiksniai

Tiriant paprasčiausią elektros energetikos sistemą, kurioje generatorius prijungtas prie begalinės galios sistemos, rotoriaus švytavimo dažnis gali būti apskaičiuojamas (1.1) lygtimi:

$$f = \frac{1}{2\pi} \sqrt{\frac{\omega_N E' V \cos \delta_0}{T_A X}}; \tag{1.1}$$

čia ω_N – nominalus kampinis dažnis, 1/s; E' – įtampa už generatoriaus pereinamojo rektanso, pu; V – įtampa begalinės galios sistemos taške, pu; δ_0 – nusistovėjusios būsenos rotoriaus kampas tarp E' ir V; T_A – generatoriaus inercijos laiko pastovioji (=2H), s; X – suminis rektansas tarp E' ir V.

1.3 pav. Paprasčiausios elektros energetikos sistemos modelis

Pagal (1.1) lygtį, gali būti daromos šios išvados:

- kuo ilgesnės elektros perdavimo linijos (didesnis suminis rektansas X), tuo žemesnis rotoriaus švytavimo dažnis;
- 2. kuo didesnė atiduodama galia (didesnis rotoriaus kampas δ_0), tuo žemesnis rotoriaus švytavimo dažnis;
- kuo didesnė elektros energetikos sistema ir turi daugiau generatorių (didesnė sistemos inercija), tuo žemesnis dažnis.

Kaip matoma, švytavimo dažnį nustatyti nėra sunku, tačiau įvertinti slopinimo lygį kiek sudėtingiau, nes jis susijęs su daug veiksnių. Be jau ankščiau paminėtų pagrindinių parametrų, slopinimo lygiui turi įtakos generatoriaus slopinimo apvijos, žadinimo sistemos su integruotais slopinimo įrenginiais, turbinos reguliatoriaus sistemos, FACTS įrenginiai elektros perdavimo tinkle.

1.2.5. Elektros energetikos sistemos švytavimų reiškinio tipai

EES atsirandantys švytavimai skirstomi pagal jų atsiradimo priežastis. Paprastai išskiriami keturi pagrindiniai tipai [3].

- Vietinių objektų švytavimai tai dažniausiai aptinkama švytavimų problema, atsirandant švytavimams tarp generatoriaus ir visos likusios EES. Tai sukelia automatinių įtampos reguliatorių (angl. *Automatic Voltage Control* (AVR) valdymo signalų poveikis generatoriams, kurie atiduoda didelę aktyviąją galią į silpną tinklą. Šie švytavimai paprastai yra 1–2 Hz dažnių diapazone. Švytavimų charakteristika lengvai suprantama ir reikiamas slopinimas gali būti pasiekiamas žadinimo sistemų su integruotais elektros energetikos sistemų švytavimų stabilizatoriais (angl. *Power System Stabilizer* (PSS).
- Tarpsisteminiai švytavimai tai sistemos darbo režimai, kai vienos sistemos generatorių grupė švytuoja prieš kitos sistemos generatorių grupę. Šie švytavimai atsiranda, kai dvi ar daugiau sistemų yra sujungtos silpnu elektriniu ryšiu. Paprastai šio tipo švytavimai yra nuo 0,1 Hz iki 1 Hz.
- Besisukančių agregatų švytavimai tai sistemos darbo režimai, susiję su turbinosgeneratoriaus mechaniniais sukimosi elementais. Šie švytavimai kyla dėl turbinų reguliatorių ir žadinimo sistemų sąveikos.
- 4. Valdymo įrenginių švytavimai tai sistemos švytavimai, susiję su generatorių valdymo sistemomis ir kita įranga. Juos gali sukelti netinkamai suprojektuotos žadinimo, turbinos reguliatorių, reaktyviosios galios kompensavimo įrenginių, aukštos įtampos nuolatinės srovės keitiklių (angl. *High Voltage Direct Current* (HVDC) valdymo sistemos.

1.2.6. Švytavimų problemos sprendimo priemonės ir jų parinkimo kriterijai

Kiekvienoje elektros energetikos sistemoje yra įdiegta įrenginių, kurie pagerina pereinamųjų procesų kokybę, švytavimų slopinimą ar įtampos stabilumą. Paprastai šie įrenginiai yra paremti galios elektronikos technologijomis. Tai reiškia, kad įrenginys gali būti greitai ir nepertraukiamai valdomas. Tokių įrenginių pavyzdžiai yra statiniai reaktyviosios galios kompensavimo įrenginiai (angl. *Static VAR Compensator* (SVC), STATCOM sistemos, tiristoriais valdomos kompensavimo grandinės (angl. *Thyristor-Controlled Series Compensation* (TCSC) ir unifikuoti galios srautų valdikliai (angl. *Unified Power Flow Controller* (UPFC). Norint pagerinti sistemos švytavimų

slopinimą, papildomi valdikliai gali būti diegiami generatorių ar kitų tinklo elementų pirminiuose reguliatoriuose [3].

Norint į EES integruoti švytavimus slopinančius įrenginius, o ypatingai siekiant slopinti tarpsisteminius švytavimus, projektavimo fazėje būtina tinkamai įvertinti šiuos aspektus [3].

Vieta. Minėtų įrenginių vieta tinkle turi labai didelę reikšmę švytavimų stabilizavimui. Dalis elektros energetikos sistemos valdomų įrengimų (HVDC ir generatoriai) yra įdiegti tinklo vietose, kurių parinkimas nėra susijęs su sistemos švytavimų slopinimu. Kiti įrenginiai, kaip SVC, STATCOM, TCSC arba UPFC, diegiami atsižvelgiant į optimalią tinklo vietą, kad pagerinti sistemos stabilumą. Dažniausiai vietos parinkimą lemia įrenginio įrengimo kaštai, tačiau siekiant optimalaus valdymo, egzistuoja tik viena tinklo vieta.

Valdymo tikslai. Elektros energetikos sistemoje diegiant valdymo įrenginius, reikia įvertinti šiuos stabilumo kriterijus.

- Išlaikyti keletą pirmųjų svyravimų sistemą paveikus dideliam trikdžiui, kartu įvertinant saugias ribas ir atsargos koeficientus.
- 2. Numatyti bent minimalų slopinimo lygį nusistovėjusiu poavariniu režimu.
- 3. Minimizuoti neigiamus pašalinius efektus, kurie gali būti klasifikuojami taip:
 - a. sąveika su elektros energetikos sistemos aukšto dažnio reiškiniais, kaip turbinos-generatoriaus vibracijos ir rezonansas;
 - b. vietinių įrenginių nestabilumas dėl nepakankamų valdymo signalų ribų.
- Valdymo algoritmas turi tenkinti valdomo objekto reikalavimus plačiose jo darbo ribose. Valdiklio jautrumas turėtų būti minimalus sistemai dirbant normaliu režimu, nes elektros energetikos sistemų darbo parametrai nuolat kinta.
- 5. Valdymo algoritmas turėtų būti labai aukšto patikimumo, užtikrinant, kad veikimas atitiks numatytas sąlygas. Tai svarbu, nes dažnai realiomis sąlygomis išbandyti valdymo sistemų veikimą yra per daug rizikinga, sudėtinga ir brangu.

Grįžtamojo ryšio valdymo algoritmų projektavimas. Praktiškai kiekvieno elektros energetikos sistemos įrenginio valdymo sistema yra paremta grįžtamuoju ryšiu, nes proceso stabilizavimo tikslai yra dažniau pasiekiami su mažesniu įrangos kiekiu ar mažesne įtaka nusistovėjusiam sistemos režimui, nei naudojant atviras valdymo sistemas. Svarbiausias žingsnis valdymo sistemos projektavime – tinkamo įėjimo signalo parinkimas.

Įėjimo signalo parinkimas. Valdymo sistemos, kurios tikslas yra švytavimų slopinimas, įėjimo signalo parinkimas turi būti paremtas keletu kriterijų.

 Įėjimo signalas turi būti jautrus atitinkamų sistemos būsenų švytavimams. Kitaip sakant, aktuali būsena turi būti stebima parinktame įėjimo signale. Tai yra privaloma kiekvienam reguliatoriui, kurio tikslas stabilizuoti proceso švytavimus.

- Įėjimo signalas turi turėti nedidelį jautrumą neaktualių sistemos būsenų kintamiesiems, nes taip gali būti nereikalingai praplečiama valdiklio veikimo zona, nors ir valdiklis neturi galimybės jas kontroliuoti.
- Valdiklio įėjimo signalas turi neturėti arba turėti labai nedidelį jautrumą savo pačio išėjimo signalui nesant švytavimų sistemoje. Taip pat rekomenduojamas kuo mažesnis jautrumas kitų stabilizavimo valdiklių poveikio signalams.

1.3. Švytavimų elektros energetikos sistemose stabilizavimas

Siekiant pagerinti tiriamos EES stabilumą, dažnai nepakanka pritaikyti vieną ar kitą metodą. Geriausias būdas yra derinti keletą metodų, kurie yra efektyviausi sprendžiant aktualias stabilumo problemas esant įvairiems trikdžiams, darbo režimams ir sąlygoms sistemoje. Analizuojant konkrečią sistemos stabilumo problemą svarbu ją įvertinti globaliai. Taikant stabilumo gerinimo metodus tam tikram sistemos objektui, reikia nepamiršti įvertinti visos elektros energetikos sistemos darbo sąlygų ir patikimumo [1].

1.3.1. Rotoriaus švytavimų reiškinys

Nusistovėjusiu sistemos darbo režimu yra palaikomas balansas tarp turbinos suteikiamos mechaninės galios ir generatoriaus į elektros tinklą atiduodamos aktyviosios galios. Tam tikru metu padidėjus sistemos apkrovai, generatoriaus tiekiama į tinklą galia taip pat išauga atitinkamai pagal turbinos suteikiamą mechaninę galią, tačiau mechaninė ir elektrinė galia tampa nesubalansuotos. Dėl šios priežasties statoriaus sukamasis magnetinis laukas padidėja kartu su pastoviu statoriaus magnetiniu lauku. Elektromagnetinis sukimo momentas, kuris yra priešingas rotoriaus sukimosi krypčiai, taip pat pakinta, todėl rotoriaus greitis pradeda mažėti padidėjus apkrovai. Tačiau pirminio mechanizmo suteikiamas sukimo momentas neleidžia keistis rotoriaus greičiui, todėl atsiranda elektromechaniniai švytavimai, paremti besisukančių masių principais. Jeigu sistemos apkrova sumažėja, vyksta analogiški, tačiau atvirkštiniai procesai ir rotoriaus greitis linkęs didėti. Kai generatoriaus rotorius švytuoja, jo sukimosi greičio. Jeigu greičio pokytis yra neigiamą tiek į neigiamą pusę nuo normalaus rotoriaus sukimosi greičia. Tai atliekama generatoriaus žadinimo sistemų su integruotais PSS pagalba [2].

1.3.2. Švytavimų slopinimo metodai

Žemo dažnio švytavimų sukeliamų stabilumo problemų sprendimų yra netgi keletas. Nors dažniausiai ši problema sprendžiama diegiant tinkle PSS, galimos ir kitos alternatyvos. Darbe [4]

minima, kad vietoj PSS gali būti naudojami ir PID reguliatoriai, kuriems tinkamai parinkus parametrus taip pat galima slopinti žemo dažnio švytavimus. Tai vienas paprasčiausių problemos sprendimo metodų, tačiau nėra labai efektyvus, todėl fizinėse sistemos praktiškai nenaudojamas.

Šaltinyje [5] atliktas tiriamasis darbas apie sistemos žemo dažnio švytavimų slopinimą įvairaus tipo energijos kaupikliais, panaudojant juos sistemos dažnio valdyme. Tyrimo rezultatai parodė, kad efektyviausiai švytavimai slopinami į sistemą įdiegus superlaidžius magnetinius energijos kaupiklius (angl. *Superconducting Magnetic Energy Storage* (SMES). Bet to jie pasižymėjo ir trumpiausiu energijos atstatymo laiku.

Vienas iš alternatyvių metodų slopinti žemo dažnio švytavimus sistemoje yra FACTS (angl. *Flexible Alternating Current Transmission System*) įrenginių panaudojimas. Šaltiniuose [6, 7] išanalizuotas jų efektyvumas ir pažymima, kad esminis bruožas yra didesnis lankstumas. Iš šios įrenginių grupės išskiriamos pagrinde STATCOM sistemos, kurios paprastai įdiegtos HVDC keitikliuose, bei SVC įrenginiai. Rezultatai parodė, kad tinkamai suprojektuoti STATCOM bei SVC įrenginiai padidina švytavimo slopinimo efektyvumą esant ir dideliems trikdžiams tinkle.

Darbe [8] analizuojamas PSS ir FACTS galios švytavimų slopinimo reguliatorių (angl. *Power Oscillation Damping* (POD) derinimas jiems veikiant kartu. Pagal blokines diagramas jų valdymo struktūra yra analogiška, tačiau skiriasi įėjimo ir išėjimo signalai. Išvadose pateikiama, kad optimizavimui panaudojant neuroninių tinklų algoritmus, PSS ir POD valdiklių lygiagretus veikimas duoda efektyvius rezultatus elektros energetikos sistemų žemų dažnių švytavimų slopinime.

Sistemos švytavimų slopinimas projektuojant valdiklį optimalaus valdymo algoritmu išanalizuotas moksliniuose darbuose [9, 10]. LQR (angl. *Linear Quadratic Regulator*) valdiklis paremtas neigiamu grįžtamuoju ryšiu, optimizuojant kokybės kriterijaus funkciją sistemos įėjimui, ir svorine būsenų matrica. Kadangi didelėje sistemoje sudėtinga išmatuoti visas esamas būsenas, papildomai realizuojamas ir būsenos įvertinimo uždavinys (angl. *State Estimator* (SE). Rezultatai parodo, kad geriausias rezultatas buvo pasiektas kartu veikiant PSS ir LQR valdikliui. Tokiu atveju sistemos stabilumas ženkliai pagerėja netgi ir avarijų tinkle metu.

Lietuvoje analogiško pobūdžio tiriamųjų darbų, kuriuose analizuojama Lietuvos ar Baltijos šalių energetikos sistemų silpnojo signalo stabilumas, atlikta nėra.

Švytavimų slopinimas panaudojant PSS šiuo metu yra vienas dažniausiai naudojamų metodų. Jo populiarumas grindžiamas pakankamai dideliu efektyvumu, santykinai nedideliais įrengimo kaštais ir galimybe nesudėtingai derinti su kitais metodais. Svarbiausiu kriterijumi tampa PSS vietos ir parametrų parinkimas. Dėl minėtų priežasčių, šiuo tiriamuoju darbu analizuojama EES švytavimų slopinimas integruojant PSS, todėl toliau kiti metodai nenagrinėjami.

1.3.3. Elektros energetikos sistemų stabilizatoriai

Elektros energetikos sistemų stabilizatoriai (PSS) yra naudojami sukurti papildomą valdymo signalą į generatorių žadinimo sistemas, kad pagerinti sistemos dinamines charakteristikas ir slopinti žemo dažnio švytavimus. Tinkamai suprojektuoti stabilizatoriai taip pat gali pagerinti ir sistemos dinaminį stabilumą. Įdiegus PSS, į valdymo grandinę įvedama proporcinga sukimo momento dedamoji, kurios fazė yra analogiška generatoriaus rotoriaus greičio pokyčio fazei. PSS įėjimais gali būti rotoriaus greičio pokyčio, dažnio pokyčio arba aktyviosios galios kitimo pagreičio signalas [4].

Elektros energetikos sistemos silpnojo signalo stabilumo ribą gali sąlygoti daugelis veiksnių, apimant pradines sistemos darbo sąlygas, ryšius tarp tinklo elementų ir kita. Tačiau dažniausiai didelio stiprinimo AVR, naudojami sinchroninių generatorių žadinimo sistemose, yra pagrindinis veiksnys sukeliantis žemo dažnio elektromechaninius švytavimus [4].

PSS sudaro trys pagrindiniai funkciniai blokai: stiprinimo blokas, fazės kompensavimo blokas ir "*washout*" blokas (1.4 pav.). Pagrindinis ir dažniausiai naudojamas PSS įėjimo signalas – rotoriaus greičio pokytis. Stiprinimo blokas nurodo PSS sukuriamą slopinimo dydį. Paprastai K_{PSS} reikšmė yra 0,1–50 diapazone. "*Washout*" blokas veikia kaip aukšto dažnio filtras, kuris praleidžia tik aukštesnio dažnio signalus nei užduota riba, o jo laiko pastovioji T_W paprastai yra 1–20 s ribose. Jeigu PSS projektuojamas tarpsisteminių švytavimų slopinimui, T_W parenkama > 10 s. Fazės kompensavimo blokas naudojamas sudaryti fazės postūmį, kad kompensuoti vėlinimą tarp PSS išėjimo ir žadinimo sistemos įėjimo. 1.4 paveiksle pavaizduoti du pirmos eilės blokai, tačiau jeigu reikalingas nedidelis fazės kompensavimas, gali pakakti ir vieno. Fazės postūmio laiko pastoviosios T_1 ir T_3 paprastai būna 0,06–1 s ribose, o fazės vėlinimo konstantos T_2 ir T_4 – 0,01– 0,05 s ribose [4].

1.4 pav. Tradicinio PSS blokinė diagrama [4]

Kai PSS įrenginiai yra diegiami į dideles sistemas, turinčias ne vieną generatorių, tinkamos diegimo vietos parinkimas yra labai svarbus etapas norint eliminuoti nepakankamai slopinamus sistemos charakteringuosius dažnius. Kadangi PSS diegimo kaštai kiekviename generatoriuje stipriai išauga, būtina surasti optimalią sistemos vietą PSS integravimui [4].

1.3.4. PSS tipai

Literatūroje [1] išskiriami 4 skirtingi PSS tipai.

- Delta-omega PSS. Įėjimo signalui naudojamas veleno greičio signalas. Diegiant šio tipo PSS turbogeneratorių valdymo sistemose rotoriaus švytavimams slopinti, yra tikimybė sudaryti sąlygas veleno sukamųjų švytavimų atsiradimui, todėl reikalingi atitinkami filtrai. Dėl filtrų atsiranda fazės vėlinimas žemuose dažniuose. Šie PSS turi būti suprojektuoti konkrečiai pagal generatoriaus veleno sukimosi charakteristikas.
- Delta-P-omega PSS. Įėjimo signalui naudojamas rotoriaus greičio pokytis, todėl eliminuojama veleno sukimosi charakteristikų įtaka. Pagrindiniai delta-P-omega PSS pranašumai prieš delta-omega PSS.
 - a. Signalas ΔP_e turi aukšto laipsnio veleno sukimosi švytavimų mažinimą, todėl nereikalingi atitinkami filtrai. Tai pašalina žadinimo sistemos sukeliamas stabilumo problemas, todėl galima taikyti didesnį PSS stiprinimą ir efektyviau slopinti švytavimus elektros energetikos sistemoje.
 - b. PSS įėjimui naudojant rotoriaus greičio pokyčio signalą, yra galimybė išėjime turėti generatoriaus mechaninės galios signalą. Tai leidžia standartiškai projektuoti PSS įvairiems generatoriams, nepriklausomai nuo jų veleno sukimosi charakteristikų.
- 3. Dažnio signalo PSS. Įėjimo signalui paprastai naudojamas generatoriaus gnybtų dažnis. Šio tipo PSS taip pat yra svarbu taikyti veleno sukimosi švytavimų filtrus, kai jie naudojami generatoriuose su garo turbinomis. Dažnio signalo PSS labiausiai tinkami naudoti silpnais ryšiais sujungtose elektros energetikos sistemose, nes tokiu atveju didesnis dažnio signalo jautrumas generatoriaus rotoriaus švytavimams. Pagrindiniai trūkumai:
 - a. dažnio signalas dažnai turi triukšmus dėl didelių pramonės įmonių apkrovų sistemoje;
 - b. reikalingi filtrai, pašalinantys veleno švytavimų charakteristikas iš PSS įėjimo signalo.
- Skaitmeninis PSS. Šio tipo PSS tiesiogiai integruojami į skaitmeninę žadinimo sistemą. Įvedus reikalingus įėjimo signalus, šis PSS yra tiesiog programa žadinimo sistemos valdymo procesoriuje.

1.3.5. Generatoriaus valdymo struktūra su PSS

1.5 paveiksle pateiktoje grįžtamojo ryšio generatoriaus galios valdymo blokinėje schemoje generatorius GS, E_G generatoriaus gnybtų įtampa, kuri neigiamu grįžtamuoju ryšiu paduodama į žadinimo sistemos bloką, kad reguliuotų rotoriaus magnetinį lauką E_{FD} . Turbina generatoriaus sukimosi ašiai perduoda mechaninę galią P_m . Šioje valdymo schemoje PSS reguliuoja žadinimo apvijos srovę I_f , kad padidintų generatoriaus švytavimų slopinimą. PSS įėjimo signalas yra generatoriaus rotoriaus greičio pokytis, pagal kurį PSS sudaro papildomą, trikdį atitinkantį, grįžtamojo ryšio signalą E_{PSS} . Tinkamam rotoriaus švytavimų stabilizavimui, žadinimo apvijos srovės pokytis turi būti vienodos fazės su rotoriaus greičio pokyčiu [2].

1.5 pav. Generatoriaus valdymo sistemos su grįžtamuoju ryšiu blokinė diagrama [2]

1.4. Būsenų erdvės modelio matematinis aprašymas

1.4.1. Sistema būsenų erdvės modeliu

Sistemos būsena – tai minimalus rinkinys skaičių $x_1(t_0), x_2(t_0), ..., x_n(t_0)$ bet kuriuo laiko momentu t_0 , kuris kartu su sistemos įėjimu $t \ge t_0$ yra pakankamas apibrėžti sistemos elgseną visiems $t \ge t_0$. Kitaip sakant, sistemos būsena vaizduoja minimalų informacijos kiekį, kurį reikia žinoti apie sistemą laiko momentu t_0 .

Dinaminės sistemos, kaip elektros energetikos sistema, elgsena gali būti aprašoma n netiesinių pirmos eilės diferencialinių lygčių rinkiniu [1]:

$$\dot{x} = f_i(x_1, x_2, \dots, x_n; u_1, u_2, \dots, u_r; t)$$
 $i = 1, 2, \dots, n;$ (1.2)

čia n – sistemos eilė; r – įėjimų skaičius.

Būsenų erdvės sistema gali būti išreikšta vektoriaus-matricos forma [1]:

$$\dot{x} = f(x, u, t); \tag{1.3}$$

čia:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}; \qquad \qquad u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_r \end{bmatrix}; \qquad \qquad f = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix}$$

- - -

Vektorius stulpelis x yra apibrėžiamas kaip būsenos vektorius, o jo įėjimai x_i – būsenos kintamieji. Būsenos kintamieji yra mažiausias reikiamas sistemos kintamųjų rinkinys, kuriuo pilnai galima apibūdinti visą sistemą bet kuriuo laiko momentu. Minimalus būsenos kintamųjų skaičius n paprastai yra lygus sistemos diferencialinių lygčių eilei. Vektorius stulpelis u yra sistemos įėjimų vektorius. Jeigu būsenos kintamųjų išvestinės neturi aiškios priklausomybės nuo laiko, tokios sistemos yra *automatinės*. Šiuo atveju (1.3) lygtis supaprastinama:

$$\dot{x} = f(x, u). \tag{1.4}$$

Kai analizuojami būsenų erdvės sistemų matematiniai modeliai, aktualūs tampa ir sistemų išėjimų būsenų kintamieji. Jie yra išreiškiami būsenos ir sistemos įėjimų kintamųjų atžvilgiu, šia forma [1]:

$$y = g(x, u); \tag{1.5}$$

čia:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}; \qquad \qquad g = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_m \end{bmatrix}.$$

Vektorius stulpelis y yra sistemos išėjimų vektorius, o vektorius g – netiesinių funkcijų, kurios aprašo būsenos ir įėjimų kintamųjų ryšį su išėjimo kintamaisiais, vektorius [1].

Sistemos būsenos vektorius x paprastai apima pagrindinius elektros energetikos sistemos parametrus [11]:

- įtampa tinklo mazguose (*U*);
- absoliutinis rotoriaus kampas (δ);
- absoliutinis rotoriaus kampinis greitis (ω);
- rotoriaus elektromagnetiniai būsenos kintamieji $(e''_d, e''_q, e'_d, e'_q)$;
- žadinimo sistemų ir pirminių įtampos valdymo sistemų būsenos kintamieji (x_v) ;
- kuro padavimo į pirminius įrenginius ir pirminio dažnio valdymo sistemų būsenos kintamieji.

Bendrinis sistemos aprašymas būsenų erdvėje yra šia forma:

$$\dot{x} = Ax + Bu; \tag{1.6}$$

$$y = Cx + Du; \tag{1.7}$$

čia A – sistemos matrica; B – įėjimo matrica; C – išėjimo matrica; D – trikdžio kompensavimo matrica (kadangi trikdžio kompensavimas sistemose yra naudojamas retai, tai dažniausiai ši dedamoji lygi nuliui).

1.6 pav. Būsenų erdvės lygčių blokinė diagrama [12]

1.4.2. Sistemos ištiesinimas darbo taške

Silpnojo signalo stabilumo tyrimuose elektros energetikos sistema turi būti ištiesinama aplink darbo tašką ir išreiškiama *n* skaičiumi diferencialinių bei algebrinių lygčių sistema [1].

Nusistovėjusios būsenos pusiausvyros taške sistema laikoma stabilia. Jeigu prie pradinių stabilaus darbo sąlygų sistemos būsenos vektorius x_0 , o išėjimo vektorius u_0 , tai

$$\dot{x} = f(x_0, u_0) = 0.$$
 (1.8)

Sutrikdžius sistemą stabilaus darbo taške, įvedamas nedidelis sistemos būsenos ir įėjimo pokytis [1]:

$$x = x_0 + \Delta x; \tag{1.9}$$

$$u = u_0 + \Delta u. \tag{1.10}$$

Pastarąsias lygtis įstačius į 1.8 lygtį, nauja būsena aprašoma taip [1]:

$$\dot{x} = \dot{x_0} + \Delta \dot{x} = f[(x_0 + \Delta x), (u_0 + \Delta u)].$$
(1.11)

Priimant, kad trikdis nedidelis, netiesinės funkcijos f(x, u) gali būti išreikštos Teiloro eilute [1]:

$$\dot{x}_i = \dot{x_{i0}} + \Delta \dot{x}_i = f_i(x_0, u_0) + \frac{\partial f_i}{\partial x_i} \Delta x_i + \dots + \frac{\partial f_i}{\partial x_n} \Delta x_n + \frac{\partial f_i}{\partial u_i} \Delta u_1 + \dots + \frac{\partial f_i}{\partial u_r} \Delta u_r.$$
(1.12)

Kadangi $\dot{x_{i0}}$ ir $f_i(x_0, u_0)$ lygūs nuliui, o aukštesnės eilės išvestinės nevertinamos, sistema supaprastinama ir ištiesinta forma aprašoma (1.13) bei (1.14) lygtimis [1]:

$$\Delta \dot{x} = A \Delta x + B \Delta u; \tag{1.13}$$

$$\Delta y = C\Delta x + D\Delta u; \tag{1.14}$$

čia:

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}; B = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \cdots & \frac{\partial f_1}{\partial u_r} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \cdots & \frac{\partial f_n}{\partial u_r} \end{bmatrix}; C = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial g_m}{\partial x_1} & \cdots & \frac{\partial g_m}{\partial x_n} \end{bmatrix}; D = \begin{bmatrix} \frac{\partial g_1}{\partial u_1} & \cdots & \frac{\partial g_1}{\partial u_r} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial g_m}{\partial u_1} & \cdots & \frac{\partial g_m}{\partial u_r} \end{bmatrix}.$$

Šios dalinės išvestinės aprašo sistemą pusiausvyros taške su įvestu nedideliu trikdžiu [1]. Analizuojamos sistemos elgsena aplink darbo tašką yra susijusi su sistemos matricos A savosiomis reikšmėmis (angl. *Eigenvalue*), kurios detaliau analizuojamos tolesniuose skirsniuose.

1.4.3. Sistemos būsenos lygčių sprendinys

Sistemos, aprašytos būsenos lygtimis, sprendinys gali būti randamas ieškant Δx ir Δy , kaip pateikiama žemiau. Turime lygtį [1]:

$$(\lambda I - A)\Delta x(\lambda) = \Delta x(0) + B\Delta u(\lambda).$$
(1.15)

Iš čia Δx ir Δy

$$\Delta x(\lambda) = (\lambda I - A)^{-1} [\Delta x(0) + B \Delta u(\lambda)] = \frac{adj(\lambda I - A)}{\det(\lambda I - A)} [\Delta x(0) + B \Delta u(\lambda)], \quad (1.16)$$

$$\Delta y(\lambda) = C \frac{adj(\lambda I - A)}{\det(\lambda I - A)} [\Delta x(0) + B \Delta u(\lambda)] + D \Delta u(\lambda).$$
(1.17)

 Δx ir Δy Laplaso transformacija turi dvi dedamąsias. Viena iš jų priklausoma nuo pradinių sąlygų, kita – nuo sistemos įėjimų. Šių sprendinių poliai yra (1.18) lygties šaknys [1]:

$$\det(\lambda I - A) = 0. \tag{1.18}$$

Lygtyje apibrėžtos λ reikšmės yra žinomos A matricos savosios reikšmės, o (1.18) lygtis – charakteringoji A matricos lygtis [1].

1.4.4. Savieji vektoriai

Sistemos matricos savosios reikšmės yra skaliarinis dydis λ , kurio priklausomybė apibūdinama (1.19) lygtimi [1]:

$$A\phi = \lambda\phi; \tag{1.19}$$

čia $\phi - nxl$ vektorius stulpelis.

Bet kuriai sistemos matricos savajai reikšmei λ_i , vektorius-stulpelis ϕ_i yra vadinamas matricos A dešiniuoju savuoju vektoriumi (angl. *Right Eigenvector*). Savasis vektorius ϕ_i aprašomas šia forma [1]:

$$\phi_i = \begin{bmatrix} \phi_{1i} \\ \phi_{2i} \\ \vdots \\ \phi_{ni} \end{bmatrix}.$$
(1.20)

Analogiškai vektorius-eilutė ψ_i , kuris apibūdinamas lygtimi:

$$\psi_i A = \lambda_i \phi_i. \tag{1.21}$$

 ψ_i vadinamas kairiuoju savuoju vektoriumi (angl. *Left Eigenvector*), susijusiu su savąja reikšme λ_i . Kairysis ir dešinysis savieji vektoriai, kurie priklauso skirtingai savajai reikšmei, yra ortogonalūs [1]. Tai reiškia, jeigu λ_i nėra lygus λ_j , tai

$$\psi_j \phi_i = 0. \tag{1.22}$$

Jeigu kairysis ir dešinysis savieji vektoriai priklauso tai pačiai savajai reikšmei, tai jų sandauga yra konstanta C_i , kuri nelygi nuliui [1]:

$$\psi_i \phi_i = C_i. \tag{1.23}$$

Dešinysis savasis vektorius, kuris susijęs su atitinkama savąja reikšme λ_i , yra apibrėžiamas kaip savosios reikšmės λ_i forma. Ji pateikia svarbią informaciją apie vieno ar keleto generatorių įtaką tam tikriems būsenos kintamiesiems. Savosios reikšmės forma yra labai naudinga identifikuojant generatorių grupę, sąlygojančią tarpsisteminius švytavimus [1].

1.4.5. Sistemos stebimumas ir valdomumas

Laikoma, kad ištiesinta dinaminė sistema aprašoma standartine būsenų erdvės forma, (1.6) ir (1.7) lygtimis. Pažymint matricą Φ , kurioje kiekvienas stulpelis yra sistemos matricos *A* savasis vektorius, ir pakeičiant $x = \Phi z$, gaunamos sistemos aprašymo lygtys [1]:

$$\dot{z} = \Lambda z + \Phi^{-1} B u; \tag{1.24}$$

$$y = C\Phi z + Du; \tag{1.25}$$

čia Λ – diagonalinė matrica, kuri sudaryta iš A matricos savųjų reikšmių.

Jeigu matricos $\Phi^{-1}B$ i-oji eilutė yra nelygi nuliui, tai i-ąją būseną galima valdyti įėjimo signalu \boldsymbol{u} . Jeigu yra kitų galimų įėjimo signalų (kadangi \boldsymbol{u} yra vektorius), tai kiti i-ojo stulpelio elementai identifikuoja, kuris išėjimas suteikia daugiausiai informacijos apie i-ąją būseną.

Jeigu matricos $C\Phi$ i-asis stulpelis nelygus nuliui, tai i-ąją būseną galima stebėti išėjime y. Jeigu yra kitų galimų išėjimų (kadangi y yra vektorius), tai kiti i-ojo stulpelio elementai identifikuoja, kuris išėjimas suteikia daugiausiai informacijos apie i-ąją būseną.

Tai reiškia, kad įėjimo signalo valdomumas ir grįžtamojo ryšio signalo stebimumas yra pagrindiniai parametrai valdymo ir švytavimų slopinimo įrenginių vietos parinkimui.

1.4.6. Savosios reikšmės ir stabilumas

Sistemos stabilumas yra nustatomas pagal jos savąsias reikšmes:

- savosios reikšmės, kurios turi tik realiąją dalį, atitinka nešvytuojančias būsenas;
- kompleksinės savosios reikšmės atitinka švytuojančias būsenas.

Savosios reikšmės realioji dalis nusako slopinimą, o menamoji – švytavimo dažnį. Neigiama realioji dalis nurodo, kad švytavimas yra slopinamas, o teigiama – švytavimo amplitudė yra nuolat auganti. Todėl tikrosios vertės kompleksinė pora [1]:

$$\lambda = \sigma \pm j\omega. \tag{1.26}$$

Švytavimo dažnis hercais, kuris nusako aktualų arba slopinamą dažnį [1]:

$$f = \frac{\omega}{2\pi}.\tag{1.27}$$

Savoji reikšmė, kurios menamoji dalis pagal (1.27) lygtį yra perskaičiuota į dažnį Hz, vadinama *charakteringuoju dažniu*. Slopinimo koeficientas išreiškiamas (1.28) formule:

$$\zeta = \frac{-\sigma}{\sqrt{\sigma^2 + \omega^2}}.\tag{1.28}$$

Slopinimo koeficientas apibrėžia švytavimo amplitudės slopinimo stiprumą. Amplitudės slopinimo laiko pastovioji yra $1/|\sigma|$. Kitaip sakant, švytavimo amplitudė sumažėja iki 1/e arba 37 % nuo pradinės amplitudės per $1/|\sigma|$ sekundės [1].

1.4.7. Įtakos koeficientas

Įtakos koeficientų matrica *P* apjungia dešinįjį ir kairįjį savuosius vektorius, apibrėždama ryšį tarp būsenos kintamųjų ir sistemos charakteringųjų dažnių. Lygtimis tai išreiškiama taip [1]:

$$P = [p_1 \quad p_2 \quad \cdots \quad p_n]; \tag{1.29}$$

$$p_{i} = \begin{bmatrix} p_{1i} \\ p_{2i} \\ \vdots \\ p_{ni} \end{bmatrix} = \begin{bmatrix} \phi_{1i}\psi_{i1} \\ \phi_{2i}\psi_{i2} \\ \vdots \\ \phi_{ni}\psi_{n1} \end{bmatrix};$$
 (1.30)

čia ϕ_{ki} – k-osios eilutes ir i-ojo stulpelio modalinės matricos Φ elementas, kur Φ = k-asis dešiniojo savojo vektoriaus ϕ_i įėjimas; ψ_{ik} – i-osios eiluės ir k-ojo stulpelio modalinės matricos Φ elementas, kur Ψ = k-asis kairiojo savojo vektoriaus ψ_i įėjimas [1].

Elementas $p_{ki} = \phi_{ki}\psi_{ik}$ yra vadinamas įtakos koeficientu (angl. *Participation Factor*). Jis nurodo k-ojo būsenos kintamojo įtaką i-ajai sistemos būsenai ir atvirkščiai. Įtakos koeficientų suma, susijusi su bet kuria sistemos būsena $\sum_{k=1}^{n} p_{ki}$ arba bet kuriuo būsenos kintamuoju, yra lygi 1. Įtakos koeficientas, iš tikrųjų, yra lygus savosios reikšmės λ_i jautrumui sistemos matricos A diagonaliniam elementui a_{kk} , pagal lygtį [1]:

$$p_{ki} = \frac{\partial \lambda_i}{\partial a_{kk}}.$$
(1.31)

1.5. Tyrimo metodikų tipai ir parinkimas

1.5.1. Sistemos švytavimų analizės metodai

Dažnai elektros energetikos sistemose vykstančių švytavimų problemoms analizuoti naudojama netiesinės sistemos reakcijos modeliavimas laike. Tačiau tiriant tarpsisteminių švytavimų problemą, šis metodas turi keletą praktinių trūkumų, kurie mažina jo efektyvumą [3].

 Sistemos reakcijos laiko atžvilgiu, tiriant tam tikrų sistemos charakteringųjų dažnių slopinimą, gali būti apgaulingos. Trikdžio tipo ir stebimų kintamųjų pasirinkimas yra sudėtingas, tačiau esminis dalykas. Parinktas trikdis nebūtinai gali turėti įtaką kritiniams charakteringiesiems dažniams. Stebima sistemos reakcija apima didelį kiekį būsenų, o kritinės ir nepakankamai slopinamos būsenos ne visada gali būti dominuojančios.

- Norint identifikuoti nuolat augančios amplitudės švytavimą, gali būti poreikis modeliuoti sistemos reakciją 15–20 ar netgi daugiau sekundžių. Analizuojant didelę sistemą tai gali trukti ilgą laiko tarpą.
- Sistemos reakcijoje laiko atžvilgiu dažniausiai neįmanoma nustatyti švytavimus sukeliančių šaltinių ir tinkamų problemos sprendimo metodų.

Norint pilnai įvertinti ir suprasti analizuojamoje elektros energetikos sistemoje vykstančius švytavimus, reikia apjungti keletą analitinių įrankių ir metodų. Silpnojo signalo stabilumo tyrimas atliekant savųjų reikšmių analizę ir netiesinės sistemos modeliavimas laiko atžvilgiu yra efektyviausia procedūra tiriant sistemos elektromechaninius švytavimus. Rekomenduojami žingsniai siekiant sistemiškai išanalizuoti sistemoje pasireiškiančius švytavimus [3].

- Atlikti savųjų reikšmių analizę, kurios pagalba identifikuojami nepakankamai slopinami sistemos charakteringieji dažniai.
- Identifikuotiems nepakankamai slopinamiems charakteringiesiems dažniams atlikti detalią savųjų reikšmių analizę. Jos metu nustatoma aktualios būsenos charakteristikos ir problemą sukeliantys šaltiniai. Taip pat nustatomi didžiausią įtaką turintys sistemos elementai, kurie bus analizuojami modeliavimu laiko atžvilgiu.
- Atlikti savųjų reikšmių analizės metu atrinktų kritinių charakteringųjų dažnių ir režimų modeliavimą laiko atžvilgiu. Taip yra patvirtinami savųjų reikšmių analizės metu gauti rezultatai, kartu įvertinant sistemos netiesiškumo įtaką.

1.5.2. Sistemos laikinė reakcija ir modalinė analizė

Didelėje sistemoje parametrų kitimo laike kreivės dažnai atrodo pakankamai sudėtingai ir yra sunku pastebėti tarp kurių generatorių atsiranda švytavimai. Sistemos reakcijos modeliavimas laike pateikia tik rezultatus, tačiau neparodo problemos kilimo priežasties. Pastarąsias galima identifikuoti atliekant modalinę analizę dažnių srityje. Ji atliekama apskaičiuojant sistemos savąsias reikšmes, savuosius vektorius ir įtakos koeficientus. 1.1 lentelėje ir 1.7 paveiksle pateikiamas sistemos parametrų laikinės reakcijos ir modalinės analizės palyginimas [13].

1.1 lentelė. Sistemos laikinės reakcijos modeliavimo ir modalinės analizės palyginimas [13]

	Trūkumai	Pranašumai
Sistemos laikinės reakcijos modeliavimas	Bandymų ir klaidų metodu modeliuojami trikdžiai ir stebima sistemos reakcija	Plačios taikymo sritys
	Reikalinga įvertinti skirtingo tipo trikdžius	Detaliai įvertinamas sistemos netiesiškumas
	Kiekvienam sistemos darbo režimui ir srautų pasiskirstymo sąlygoms reikia atlikti keletą skaičiavimo atvejų	Praktiškai nėra modeliavimo apribojimų
	Tam tikri nepakankamai slopinami ar nestabilūs sistemos charakteringieji dažniai negali būti stebimi	Proceso parametrų atvaizdavimas laike yra standartinis ir visiems suprantamas sistemų modeliavime
	Skirtingų dažnių ir slopinimo charakteringieji dažniai yra sumaišyti tarpusavyje	Modeliavimo programos yra gerai ištobulintos ir paplitusios visame pasaulyje
	Gautų rezultatų įvertinimas neretai sudėtingas ir gali būti klaidingas	Susistemintas požiūris leidžia pažvelgti giliau į tam tikrus sistemos dinaminius reiškinius
	Negaunama susisteminta informacija apie optimalias slopinimo įrenginių diegimo vietas	Nereikalinga modeliuoti sistemos trikdžius
Modalinė analizė	Yra tinkama tik sistemos silpnojo signalo stabilumo tyrimui	Kiekvienam sistemos darbo režimui ir srautų pasiskirstymo sąlygoms pakanka vienos modalinės analizės
	Sistemų netiesiškumas prastai atsispindi analizės rezultatuose	Atrenkami prastai slopinami ir nestabilūs charakteringieji dažniai, kurie analizuojami detaliau
	Tam tikrų elementų charakteristikų ištiesinimas sudėtingas	Individualiai galima išanalizuoti kiekvieną sistemos charakteringąjį dažnį
	Dažnių srities modalinės analizės rezultatai nėra įprasti daugumui žmonių	Analizės metu gaunami atitinkami rodikliai reikalingi PSS ar kitų slopinimo įrenginių projektavimui ir parametrų parinkimui
	Analizei reikalingų programų yra pakankamai nedaug	
	Sistemų modeliavimas ir savųjų reikšmių algoritmai yra sudėtingi ir modernūs	

1.7 pav. Sistemos reakcijos modeliavimo laiko atžvilgiu ir modalinės analizės palyginimas

1.5.3. Charakteringosios lygties savųjų reikšmių skaičiavimo metodai

Tiriamą Baltijos šalių elektros energetikos sistemą sudaro daug generatorių bei jų valdymo įrenginių dinaminių modelių, todėl sistemos eilė stipriai išauga. Sistemoje egzistuoja labai didelis skaičius būsenų, jų skaičiavimas reikalauja daug laiko ir resursų, o tam tikrais atvejais netgi neįmanomas. Apskaičiuoti ir žinoti visus sistemos būsenos kintamuosius nėra būtina, nes tyrimo tikslas yra identifikuoti tik kritinius charakteringuosius dažnius bei juos lemiančius veiksnius. Esant šioms aplinkybėms atliekama dalinė savųjų reikšmių analizė (angl. *Partial Eigenvalue Solution*) [13].

Keičiant analizuojamos sistemos parametrus, savosios reikšmės turi būti perskaičiuojamos. Naudojant dalinę savųjų reikšmių analizę, tai galima atlikti daug greičiau ir efektyviau, nes apskaičiuojamos tik aktualios charakteringosios lygties savosios reikšmės. Priešingai nei pilnos savųjų reikšmių analizės atveju, kurioje naudojamas QR algoritmas, čia pasitelkiama keletas metodų [13]:

- 1. apibrėžtos erdvės iteraciniai metodai;
- 2. savųjų reikšmių atrinkimo metodai;
- 3. dominuojančių polių iteraciniai metodai;
- 4. euristiniai iteraciniai metodai.

Tiriamajame darbe pasirinkta naudoti apibrėžtos erdvės iteracinį metodą (angl. *Subspace Iteration*). Šiuo metodu iš anksto apibrėžiama skaičiuojamų savųjų reikšmių zona s-plokštumoje, parenkant kampinio dažnio ir absoliutinio slopinimo ribines reikšmes. Zona paprastai nurodoma, kad apimtų charakteringuosius dažnius, kurių švytavimų dažnis yra iki 3 Hz, o slopinimas iki 35%.

2. METODINĖ DALIS

2.1. Elektros energetikos sistemos modeliavimas

2.1.1. Tinklo analizės modelio struktūra

Elektros energetikos sistemų analizė yra sudėtingas uždavinys, kuris apima tiek statinius tiek dinaminius procesus, todėl norint modeliuoti elektros tinklo darbą ir režimus, reikia sudaryti statinį ir dinaminį sistemos modelį. Sistemos modeliavimui naudojama Siemens PSS/E v33.10 programinė įranga, kuri suteikia platų modeliavimo funkcionalumą bei gausią dinaminių modelių biblioteką.

Statinį elektros tinklo modelį sudaro elektros perdavimo linijos, transformatoriai, generatoriai, apkrovos, HVDC jungtys ir reaktyviosios galios kompensavimo įrenginiai (SVC). Sudarant šį modelį yra apibrėžiama tinklo topologija, struktūra ir pagrindiniai tinklo elementų parametrai, nurodoma sistemos generuojama ir vartojama galia pagal atitinkamus generatorius ar apkrovas, sudaromas sistemos balansas. To pilnai pakanka norint atlikti tinklo srautų pasiskirstymo analizę, apskaičiuoti mazgų įtampas, įvertinti tinklo patikimumą, darbo režimus bei kitus tinklo parametrus.

Dinaminiu modeliu yra apibrėžiama sistemoje esančių generatorių, žadinimo sistemų, turbinų reguliatorių, HVDC keitiklių ir kitų įrenginių dinaminių procesų charakteristikos. Jis turi glaudų ryšį su statiniu modeliu, nes pastarasis aprašo sistemos konfigūraciją ir pradines sąlygas, todėl dinaminis modelis nėra reikalingas analizuojant statinius tinklo darbo režimus, tačiau yra būtinas, jeigu norima tyrinėti sistemos dinamiką. Sudarius šį modelį galima atlikti detalią tinklo elementų darbo analizę pereinamųjų procesų metu, modeliuoti avarinius režimus, tirti sistemos stabilumą.

2.1.2. Perdavimo tinklo modeliavimo prielaidos

- Matematinis modelis sudaromas 330 kV Baltijos šalių elektros perdavimo tinklui. Didžioji dalis 110 kV tinklo modeliuojamas kaip ekvivalentinė statinė apkrova, prijungta per 330/110 kV autotransformatorius prie atitinkamo regiono 330 kV pastotės. Modelyje realizuota tik keletas pagrindinių 110 kV tranzitinių linijų, prie kurių prijungta daug vėjo parkų. Likę generatoriai per aukštinančiuosius transformatorius prijungti prie artimiausių pastočių 110 kV pusės mazgų.
- Tinklo modelis sudaromas pagal dabartinę Baltijos šalių tinklo konfigūraciją įvertinant perspektyvinius tinklo plėtros planus ir sistemos parametrus. Sumodeliuotas tinklas atitinka 2025 metų perspektyvinį Baltijos šalių perdavimo tinklą izoliuotu darbo režimu.

- 3. Modelyje didžioji dalis parametrų įvedami SI sistemos vienetais ir automatiškai perskaičiuojami į santykinius vienetus (pu). Parametrai į santykinius vienetus paverčiami įvertinant tai, kad sistemos bazinė galia $S_{base} = 1000 MVA$.
- Modeliuojant tinklo įrenginius ir analizuojant sistemos darbo rodiklius laikoma, kad įtampa gali svyruoti ±10 % nuo įtampos lygio nominaliosios vertės.
- Dinaminiame tinklo modelyje generatorių ir jam priklausančių sistemų dinaminiai parametrai parenkami tipiniai, pagal žinynus, standartus ir PSS/E dinaminių modelių bibliotekos vartotojo dokumentaciją.
- 6. Modelyje esantiems vėjo parkams ir HVDC jungtims parenkami tipiniai dinaminiai modeliai su standartiniais parametrais.
- 7. Reaktyviosios galios kompensavimo įrenginiai modeliuojami tik Lietuvos energetikos sistemoje. Apie Latvijos ir Estijos sistemose esančius reaktyviosios galios kompensavimo įrenginius informacijos neturima, todėl reaktyvioji galia kompensuojama veikiančiais generatoriais arba sumodeliuojant šuntinius reaktorius reikiamose tinklo vietose dėl per aukštos įtampos sprendžiant srautų pasiskirstymo uždavinį.
- 8. Tinkle esantys autotransformatoriai modeliuojami kaip tipiniai dviejų apvijų transformatoriai.

2.2. Statinis tinklo modelis

2.2.1. Elektros perdavimo linijų modeliavimas

Elektros energija nuo generacijos šaltinių iki vartotojų atkeliauja per kintamosios srovės elektros perdavimo linijas. Paprastai didžiąją dalį perdavimo linijų sudaro oro linijos, nes kabeliai yra bent 10–15 kartų brangesni, todėl yra klojami tik išskirtinais atvejais, kai reikalinga liniją nutiesti per miestą arba po vandeniu. Modeliuojant Baltijos šalių 330 kV perdavimo tinklą visos linijos yra orinės, išskyrus nuolatinės srovės jungtis NordBalt ir ESTLINK1/2.

Teoriškai kintamosios srovės elektros linijos gali būti modeliuojamos "**T**" arba " π " linijų modeliais. PSS/E programiniame pakete linijos modeliuojamos " π " metodu, todėl "**T**" linijos modelis nebus apžvelgiamas.

Matematiškai liniją aprašo varža, kuri priklauso nuo fizinių laidininko parametrų, konstrukcijos ir linijos ilgio. Detaliau pažvelgiant į linijos varžą ir išskaidžius ją į atskiras sudedamąsias dalis, elektros linijos varžą charakterizuoja keturi pagrindiniai parametrai:

- aktyvioji varža *R*;
- induktyvioji varža X;
- skersinis laidis *G*;

• talpinis laidis B.

Šiuos parametrus galima apjungti į kompleksinės varžos Z ir laidžio Y lygtis [1]:

$$Z = R + j\omega X; \tag{2.1}$$

$$Y = G + j\omega B. \tag{2.2}$$

Ekvivalentinį linijos modelį PSS/E (2.1 pav.) sudaro kompleksinė linijos varža R + jX, dvi talpinio laidžio šakos $jB_{ch}/2$, ir dvi linijinių šuntinių reaktorių laidžių šakos G + jB. Kadangi modelyje linijinių šuntinių reaktorių neturime, tai modeliuojant elektros perdavimo linijas reikalinga suvesti šiuos parametrus:

- "Line R (pu)" ir "Line X (pu)" elektros perdavimo linijos aktyvioji ir reaktyvioji varžos;
- "*Charging B (pu)*" elektros perdavimo linijos talpinis laidis, nusakantis linijos generuojamą reaktyviąją galią;
- "Rate A (I as MVA)" linijos maksimali perduodama galia pagal laidininką.

2.1 pav. Tipinės elektros perdavimo linijos " π " modelio schema [14]

Modeliuojant aukštos įtampos linijas skersinis laidis *G* praktiškai lygus nuliui, o aktyvioji varža yra ženkliai mažesnė nei reaktyvioji $R \ll \omega L$, todėl aktyvioji dedamoji santykinai didelės reikšmės modelio kokybei neturi [1]. Aktyvioji ir reaktyvioji varžos bei talpinis laidis santykiniais vienetais apskaičiuojami pagal šias formules:

$$R^* = \frac{r_0}{n} * l * \frac{S_{base}}{U_{lbase}^2};$$
(2.3)

čia r_0 – savitoji laidininko varža vienam kilometrui, Ω/km ; l – linijos ilgis, km; n – fazės laidininkų skaičius; S_{base} – sistemos bazinė galia, MVA; U_{lbase} – bazinė įtampa, kV;

$$X^{*} = \frac{x_{0}}{n} * l * \frac{S_{base}}{U_{lbase}^{2}};$$
(2.4)

čia x_0 – savitoji laidininko reaktyvioji varža, Ω/km ;

$$B^* = \frac{b_0}{n} * l * \frac{S_{base}}{U_{lbase}^2} ;$$
 (2.5)

čia b_0 – savitasis linijos talpinis laidis, μ S /km.

Tipiniai oro linijų savitieji laidininkų parametrai 330 kV tinklui [1]:

• $r_0 = 0.037 \ \Omega/km;$

- $x_0 = 0,367 \ \Omega/km;$
- $b_0 = 4,518 \,\mu\text{S}/km$.

2.2.2. Transformatorių modeliavimas

Transformatoriai yra labai svarbūs perdavimo ir skirstomojo tinklo įrenginiai, kurie apjungia ir perduoda galią tarp skirtingų įtampos lygių sistemoje. Modeliuojant transformatorius ir neteisingai parenkant jų parametrus, statinėje tinklo analizėje gali atsirasti įtampos valdymo problemų, reaktyviosios galios srautų skaičiavimo paklaidų, ženkliai išaugti tinklo nuostoliai [15].

PSS/E standartinio dviejų apvijų transformatoriaus modelio schema pateikta 2.2 paveiksle. Šio tipo modelis leidžia įvertinti įmagnetinimo laidį Y_m ir sklaidos kompleksinę varžą Z_{eq} :

$$Y_m = G_{h+e} - jB_m; (2.6)$$

$$Z_{eq} = r_{eq} + j x_{eq}. aga{2.7}$$

2.2 pav. Dviejų apvijų transformatoriaus schema [14]

Dėl PSS/E funkcionalumo, įmagnetinimo laidžio ir sklaidos kompleksinės varžos skaičiuoti nereikia, tai atlieka pati programa. Modeliuojant transformatorius reikalinga nurodyti šių parametrų reikšmes [15]:

- "Impedance I/O Code" nurodomas "Z pu (winding kV system MVA)" tipas, kuriuo transformatoriaus aktyvioji ir reaktyvioji varža įvedama apskaičiavus pagal apvijų nominalias įtampas ir sistemos bazinę galią S_{base};
- "Admittance I/O Code" nurodomas "Y pu (system base)" tipas, kuriuo transformatoriaus laidis skaičiuojamas pagal sistemos bazinę galią S_{base};
- "*Rate A (MVA)*" transformatoriaus pilnutinė galia S_T ;
- "*Winding MVA*" apvijos galia, kuri prilyginama sistemos bazinei galiai S_{base};
- "Control Mode" parenkamas valdymo režimas pagal įtampą, o kontroliuojamas mazgas nurodomos transformatoriaus 110 kV pusės įtampa;
- "Tap Positions" laikoma, kad modeliuojami transformatoriai turi po 13 atšakų;

- "*R1max*" ir "*R1min*" įtampos reguliavimo ribos atšakų perjungimu, kurios modelyje nurodomos atitinkamai 1,1 ir 0,9 pu nuo apvijos bazinės įtampos;
- "Specified R" ir "Specified X" aktyvioji ir reaktyvioji transformatorių varža santykiniais vienetais, apskaičiuota pagal 2.8 ir 2.9 formules:

$$R_T = \frac{\Delta P_K}{S_T} * \frac{S_{base}}{S_T} ; \qquad (2.8)$$

$$X_T = \frac{u_{k\%}}{100} * \frac{S_{base}}{S_T} ;$$
 (2.9)

čia $u_{k\%}$ - transformatoriaus trumpojo jungimo įtampa, %. Pagal ABB žinyną [16] 20–200 MVA galios transformatoriams $u_{k\%}$ standartiškai priimama 12,5 %.

Kadangi modeliuojamas aukštos įtampos perdavimo tinklas ir 330/110 kV transformatorių $X_T \gg R_T$, aktyviosios varžos dedamoji tinklo darbo analizėje turi santykinai labai mažą įtaką, todėl ji neskaičiuojama ir modeliuojamuose transformatoriuose standartiškai nurodoma 0,001 pu.

2.2.3. Generatorių ir apkrovų modeliavimas

Modeliuojamame Baltijos šalių perdavimo tinkle egzistuoja įvairių rūšių generatorių, tačiau didžioji jų dalis priklauso sinchroninių generatorių tipui. Sudarant statinį elektros sistemos modelį, visų tipų generatoriai modeliuojami analogišku sinchroninio generatoriaus elementu. Jame reikia nurodyti šiuos parametrus:

- "*Pgen (MW*)" nurodoma generatoriaus generuojama aktyvioji galia;
- "Qgen (Mvar)" apskaičiuojamas srautų analizės uždavinio sprendimo metu, siekiant palaikyti nurodytas įtampas mazguose ir pasiekti sistemos režimo balansą;
- "*Pmax (MW*)" ir "*Pmin (MW*)" nurodomos aktyviosios galios generacijos ribos, nes kiekvienas generatorius turi darbo režimų ribas;
- "Qmax (Mvar)" ir "Qmin (Mvar)" nurodomos generatoriaus reaktyviosios galios generavimo/vartojimo ribos;
- "*Mbase (MVA)*" generatoriaus pilnutinė galia;
- "X Source (pu)" generatoriaus reaktyvioji varža. Laikoma, kad modeliuojami generatoriai turi proporcingo veikimo automatinį žadinimo reguliavimą, todėl generatoriaus reaktyvioji varža apytiksliai lygi pereinamajam rektansui X_G ≅ X'_d arba viršpereinamajam rektansui X_G ≅ X''_d, priklausomai nuo generatoriaus tipo ir parenkamo generatoriaus dinaminio modelio (1 priedas) [17];
- "Sched Voltage" ir "Remote Bus" nurodoma generatoriaus palaikoma įtampa kontroliuojamame mazge, įprastai esančiame už blokinio transformatoriaus. Generatoriaus palaikoma įtampa nustatoma 1,0÷1,1 pu ribose.

Sudarant statinį tinklo modelį ir norint atlikti srautų pasiskirstymo analizę, bent vienas iš generatorių nustatomas kaip balansuojantis (angl. *Swing Bus*). Tai reiškia, kad analizuojamame režime sistemoje esantis aktyviosios/reaktyviosios galios nebalansas talpinamas ant šio generatoriaus. Kadangi modelis sudarytas pakankamai didelei sistemai, net 4 generatoriai nustatyti kaip balansuojantys. Tai yra LE 9 blokas ir nuolatinės srovės jungtys, kurių pagrindinė funkcija subalansuoti reaktyviąją galią režime.

Modeliuojant vėjo parkus, reikia nurodyti analogiškus parametrus kaip ir kitiems generatoriams, tačiau parenkamas valdymo metodas "*Q limits based on WPF*". Taip nustatoma, kad vėjo generatoriaus aktyviosios ir reaktyviosios galios ribos yra apskaičiuojamos pagal užduotą generuojamą aktyviąją galią ir nurodytą galios faktorių WPF, kuris visiems vėjo parkams nurodomas 0,98.

Elektros sistemos suvartojamas elektros kiekis modeliuojamas statinėmis apkrovomis, prijungtomis prie 330/110 kV autotransformatorių. Prie generatorių šynų mazgų prijungiamos savųjų reikmių apkrovos. Norint sumodeliuoti statinę apkrovą prie pasirinkto tinklo mazgo, reikia nurodyti:

- "*Pload (MW*)" aktyvioji apkrovos dedamoji;
- "*Qload (Mvar)*" reaktyvioji apkrovos dedamoji.

Šių parametrų pakanka statinio modelio srautų pasiskirstymo uždavinio sprendimui, todėl papildomi parametrai modelyje nėra įvedami.

2.2.4. Aukštos įtampos nuolatinės srovės keitiklių modeliavimas

Modeliuojamas Baltijos šalių perdavimo tinklas turi keturias aukštos įtampos nuolatinės srovės jungtis (HVDC). Dvi iš jų yra Lietuvos elektros energetikos sistemoje, kitos dvi – Estijos. Paprastai nuolatinės srovės keitikliai įrengiami, kai norima sujungti dvi asinchroniškai veikiančias elektros energetikos sistemas, statant labai ilgas elektros perdavimo linijas (>400 km), arba tiesiant nuolatinės srovės kabelius po vandeniu. Esant šioms aplinkybėms, nuolatinės srovės jungtis yra patikimesnis ir ekonomiškesnis sprendimas, turintis ženkliai mažesnius galios perdavimo nuostolius nei kintamosios srovės linija.

Egzistuoja du pagrindiniai trifazių nuolatinės srovės keitiklių tipai:

- 1. Srovės šaltinio keitiklis (angl. Current Source Converter (CSC);
- 2. Įtampos šaltinio keitiklis (angl. Voltage Source Converter (VSC).

Srovės šaltinio keitiklis

CSC tipo nuolatinės srovės keitikliai yra paprastesnės linijinio komutavimo keitiklio (angl. *Line-Commutated Converter* (LCC) konstrukcijos, turintys mažesnius tiristorių perjungimo nuostolius bei įrengimo kaštus, tačiau jų veikimui reikalinga reaktyvioji galia ir atraminė įtampa tinkle dėl tiristorių valdymo, todėl negali būti panaudojamas kaip pirminis įtampos šaltinis siekiant atsistatyti po totalinės avarijos Be to, kintamosios srovės pusėje reikalingi dideli filtrai, dėl jo sukuriamų 12, 24 ir 36 eilės harmonikų eliminavimo. Šiuose keitikliuose srovės tekėjimo kryptis negali būti keičiama, todėl norint pakeisti galios srauto tekėjimo kryptį, sukeičiamas DC dalies įtampos poliariškumas. Tipinė CSC keitiklio schema pateikiama 2.3 paveiksle [18].

2.3 pav. CSC keitiklio tiltelio schema

Baltijos šalių energetikos sistemoje egzistuoja du šio tipo keitikliai, tai yra 500 MW "LitPol Link" ir 650 MW "ESTLINK 2". Sudarant statinį elektros energetikos sistemos modelį, CSC keitikliai modeliuojami dviem lygiagrečiais "2 *Terminal DC Line*" elementais, iš kurių įjungiamas tik vienas, priklausomai nuo perduodamos galios krypties. Kiekvieną elementą sudaro lygintuvas ir inverteris, kuriems reikia nurodyti šiuos parametrus:

- "*Control Mode" "Blocked/Power"* atitinkamai išjungti/įjungti keitiklį;
- "Setval (MW)" užduodama perduodama aktyvioji galia;
- "Vschedule" nuolatinės srovės intarpo įtampa. LitPol Link nurodoma 400 kV, ESTLINK2 – 450 kV;
- "*Rdc-Ohm (ohms)*" nuolatinės srovės keitiklio varža, modelyje laikoma ~2 Ω.
- "Rectifier Data/Inverter Data":
 - "Primary Base Voltage" atitinkamos keitiklio pusės įtampa;
 - "Bridges In Series" tiristorių tiltelių skaičius. Modeliuojami keitikliai turi po 2 tiristorių tiltelius;
 - "Max Firing Angle (deg)" ir "Min Firing Angle (deg)" uždelsimo, kuris nusako tiristorių įjungimo vėlinimą po to, kai įtampa pereina į teigiamą pusperiodį, ribos. Modelyje nurodoma atitinkamai 90 ir 0 laipsnių;
 - "Trans Ratio (pu)", "Tap Setting (pu)" ir kitų galimų parametrų reikšmės paliekamos standartiškai numatytosios PSS/E programinio paketo.
Įtampos šaltinio keitiklis

VSC tipo keitiklių technologija pradėta naudoti atsiradus izoliuotos užtūros bipoliariems tranzistoriams (angl. *Insulated-Gate Bipolar Transistor* (IGBT), kas suteikė HVDC keitikliams didesnį lankstumą. Inverterio kintamosios srovės pusėje įtampos sinusoidės signalo suformavimui juose yra naudojama įvairių tipų impulso pločio moduliacija (angl. *Pulse Width Modulation* (PWM). Pagrindiniai VSC keitiklio privalumai yra spartus aktyviosios ir reaktyviosios galios valdymas, aukštų galios kokybės parametrų išlaikymas, minimalus poveikis aplinkai ir galimybė prijungti prie silpnų ar netgi "mirusių" tinklų. Taip pat VSC keitikliai dažniausiai turi galimybę dirbti reaktyviosios galios kompensavimo STATCOM režimu [18].

Vienas esminių skirtumų tarp VSC ir CSC keitiklių yra, kad VSC naudojami automatiškai besikomutuojantys IGBT tranzistoriai, kas leidžia vieno ciklo metu atlikti tiristorių komutaciją daugelį kartų. CSC tipo keitikliuose, tiristorių komutacija atliekama tik vieną kartą cikle, kai įtampos sinusoidė kerta x ašį. Šis VSC privalumas leidžia išėjime turėti artimą sinusoidei signalą ir kontroliuoti galios faktorių, tačiau dėl to atsirandantis trūkumas – dideli komutaciniai nuostoliai. Be to, norint pakeisti galios perdavimo kryptį, tai galima atlikti pakeičiant srovės kryptį arba įtampos poliariškumą DC dalyje. Tipinė VSC keitiklio veikimo schema pateikiama 2.4 paveiksle [18].

2.4 pav. VSC keitiklio schema

Modeliuojamoje Baltijos šalių energetikos sistemoje yra įdiegti du šio tipo keitikliai, tai 700 MW "NordBalt" ir 350 MW "ESTLINK 1". Statiniame sistemos modelyje šie įrenginiai modeliuojami "*Voltage Source Converter DC Line*" elementu, kurį sudaro du keitikliai. Viename iš jų nurodoma kontroliuoti atitinkamo mazgo įtampą, o kitame – užduodama perduoti aktyvioji galia. Modeliuojant VSC keitiklį PSS/E nurodomi šie parametrai:

- "Control Mode" "Blocked/In-service" atitinkamai išjungtas/įjungtas keitiklis;
- "*Rdc*" nuolatinės srovės keitiklio varža, Ω;
- "AC Control Mode" kintamosios srovės pusės valdymo režimas nurodomas pagal įtampą;

- "Converter 1 Data":
 - "DC Control Type" nurodoma opcija "kV", kad palaikyti nurodytą įtampą mazge;
 - "DC Setpoint (kV)" DC dalies palaikoma įtampa, kuri NordBalt nurodoma 300 kV, ESTLINK 1 150 kV;
 - ▶ "AC Setpoint (pu)" AC dalies palaikoma įtampa nurodoma 1,0 pu;
 - "Max Q (Mvar)" ir "Min Q (Mvar)" reaktyviosios galios generavimo/vartojimo ribos prie maksimalios perduodamos galios, kurios NordBalt keitikliui atitinkamai nurodomos 350 Mvar ir -350 Mvar.
- "Converter 2 Data":
 - "DC Control Type" nurodoma opcija "MW", kad palaikyti nurodytą aktyviąją galią mazge;
 - > "DC Setpoint (MW)" užduodama keitikliu perduoti aktyvioji galia;
 - ▶ "AC Setpoint (pu)" AC dalies palaikoma įtampa nurodoma 1,085 pu;
 - "Max Q (Mvar)" ir "Min Q (Mvar)" reaktyviosios galios ribos nurodomos analogiškos kaip "Converter 1 Data" dalyje.

2.2.5. Reaktyviosios galios kompensavimo įrenginių modeliavimas

Reaktyvioji galia tinkle gali būti reguliuojama veikiančiais generatoriais, šuntiniais reaktoriais ir kondensatorių baterijomis. Lietuvos energetikos sistema turi labai gerai išvystytą ir stiprų tinklą. Savaitgaliais, švenčių dienomis ir ypač nakties metu, kai esama mažesnė tinklo apkrova, palaikomos pakankamai aukštos įtampos, todėl norint jas išlaikyti leistinose 297÷363 kV ribose, reikia suvartoti reaktyviąją galią ir taip sumažinti įtampą artimiausiuose mazguose. Tam yra įjungiami šuntiniai reaktoriai.

Lietuvos perdavimo tinkle esama dešimt 30 Mvar galios šuntinių reaktorių, prijungtų prie 330 kV pastočių. Taip pat, 72 Mvar šuntinis reaktorius yra prie "LitPol Link" jungties keitiklio. Šuntiniai reaktoriai ir kondensatorių baterijos modeliuojamos tuo pačiu "*Switched Shunt*" elementu. Įterpiant šį elementą nurodomas kontroliuojamos įtampos mazgas ir šie parametrai:

- "Control Mode" diskretinis, kai kontroliuojame mazge pasiekus įjungimo įtampą, šuntinis reaktorius ar kondensatorių baterija įjungiama pilna galia;
- "*Vhi (pu)*" ir "*Vlo (pu)*" šuntinio reaktoriaus ar kondensatorių baterijos įjungimo ir išjungimo įtampų ribos atliekant galios srautų analizę. Modelyje nustatoma *Vhi* 1,08 pu (356 kV), *Vlo* 1,05 pu (347 kV);

- "*Block 1 Steps*" mazge modeliuojamų šuntinių reaktorių/kondensatorių baterijų skaičius. Viename elemente galima sumodeliuoti iki 8 blokų;
- "Block 1 Bstep (Mvar)" bloke esančių šuntinių reaktorių/kondensatorių baterijų suvartojama(-)/generuojama(+) reaktyvioji galia, nurodoma vienam elementui.

Didelių įtampų problemų sukelia LitPol Link jungtyje esantys filtrai dėl harmonikų slopinimo. Šią problemą iki 2025 metų numatoma išspręsti perkeliant 180 MVar galios valdomą šuntinį reaktorių iš Ignalinos AE pastotės į Lietuvos elektrinės pastotę [19]. Šio reaktoriaus modelyje nurodomas tolydinis valdymo režimas, kurio metu reaktoriaus vartojama reaktyvioji galia nustatoma proporcingai pagal kontroliuojamo mazgo įtampos nuokrypį nuo užduotos įjungimo įtampos *Vhi*, kad mazgo įtampą palaikyti leistinose ribose. Valdomame šuntiniame reaktoriuje *Vhi* ir *Vlo* priimama 1,075 pu (355 kV).

Lietuvos tinklo modelyje patalpintos dvi 50 ir 60 Mvar galios kondensatorių baterijos, kurių paskirtis patiekti į tinklą reaktyviąją galią, kai kontroliuojamame mazge susiformuoja žemesnė įtampa nei nurodyta palaikyti. Dėl jau ankščiau nurodytų priežasčių, Lietuvos perdavimo tinkle kondensatorių baterijos praktiškai nėra įjungiamos.

2.3. Dinaminis tinklo modelis

2.3.1. Sinchroninių generatorių dinaminiai modeliai

Sudarant generatoriaus dinaminį modelį būtina atkreipti dėmesį į pagrindinius rotoriaus mechaninius parametrus [20].

 Inercijos laiko pastovioji H nusako sukauptą energijos kiekį rotoriuje, išreikštą MWs prie pilnutinės generatoriaus galios. Standartiškai inercijos laiko pastovioji kinta 3÷15 MWs/MVA ribose, priklausomai nuo generatoriaus tipo ir dydžio. Jeigu generatoriaus rotoriaus inercija J žinoma kgm/sec, tai H aspkaičiuojama pagal 2.10 formulę:

$$H = 5.48 * 10^{-9} * \frac{J(RPM)^2}{S_{MVA}}.$$
 (2.10)

- Dauguma generatorių dinaminių modelių turi slopinimo koeficiento *D* parametrą. Jis nusako generatoriaus rotoriaus modelio švytavimų slopinimo poveikį ir jo reikšmė standartiškai svyruoja 0÷4 ribose.
- 2.1 lentelė. Generatorių tipinės inercijos laiko pastoviosios reikšmės [1]

Generatoriaus tipas	Inercijos laiko pastovioji H, MWs/MVA
Turbogeneratorius 3600 r/min (2 polių)	2,5–6,0
Turbogeneratorius 1800 r/min (4 polių)	4,0–10,0
Hidrogeneratorius	2,0–4,0

2.5 pav. Generatoriaus rotoriaus mechaninis modelis

Generatorių dinaminiai modeliai parenkami pagal generatoriaus tipą iš PSS/E bibliotekos. Generatorių dinaminių modelių parametrai nustatomi PSS/E rekomenduojami tipiniai arba pagal pateiktas ribas.

GENCLS

Tipinis ir paprasčiausias generatoriaus dinaminis modelis, kurį sudaro tik pastovi elektrovara ir generatoriaus varža, kuri lygi pereinamajam rektansui X'_d (1 priedas). Pradinėse sąlygose šiame modelyje palaikoma pastovi tuščiosios veikos elektrovara E'_q ir pereinamojo proceso modeliavimo metu nekinta, todėl nereikia modeliuoti žadinimo sistemos. GENCLS modelyje nurodoma tik generatoriaus rotoriaus inercijos laiko pastovioji H (2.1 lentelė) ir slopinimas D [11].

Modeliuojamame Baltijos šalių elektros perdavimo tinkle GENCLS dinaminis modelis parenkamas generatoriams, apie kurių tipą, konstrukciją ir dinamines charakteristikas neturima daug informacijos. Generatoriams, kuriems parinktas GENCLS modelis, žadinimo sistemos ir turbinos reguliatoriaus dinaminiai modeliai nėra nurodomi.

GENSAL/GENSAE

GENSAL ir GENSAE generatorių dinaminiais modeliais charakterizuojami ryškiapoliai generatoriai, kurie dažniausiai naudojami hidroelektrinėse. Šio tipo modelio būtina sąlygą, kad viršpereinamasis rektansas X''_a būtų lygus generatoriaus reaktyviajai varžai, nurodytai statiniame modelyje. Viršpereinamųjų atviros grandinės laiko pastoviųjų T''_{d0} ir T''_{q0} reikšmės turi būti nurodomos ne mažiau nei keturis kartus didesnės už integravimo žingsnio laiką DELT. Dinaminiame elektros sistemos modelyje esant šio tipo generatorių modeliams ir atliekant pereinamųjų procesų analizę, integravimo žingsnis DELT standartiškai parenkamas 0,01 s, tačiau atsirandant modeliavimo klaidoms gali būti mažinamas [21].

2.2 lentelė. Tipiniai GENSAL dinaminio generatoriaus modelio parametrai [21]

Parametras	Reikšmė
$T_{d0} (>0) (sec)$	5

T''_{d0} (>0) (sec)	0,05
T''_{q0} (>0) (sec)	0,06
Inercijos laiko pastovioji H	5,084
Slopinimo koeficientas D	1
X _d	1,5
Xq	1,2
X'd	0,4
$X''_d = X''_q$	0,25
XI	0,12
S(1.0)	0,03
S(1.2)	0,25

2.6 pav. GENSAL generatoriaus dinaminio modelio blokinė diagrama [21]

GENROU/GENROE

Šie generatorių dinaminiai modeliai skirti modeliuoti neryškiapolius generatorius, kurie sutinkami kombinuoto ciklo, termofikacinėse ir kitų tipų kieto kuro ar dujų deginimo elektrinėse. Analogiškai GENSAL modeliui, viršpereinamasis rektansas X''_a turi būti lygus generatoriaus reaktyviajai varžai. Skirtingai nuo GENSAL modelio, čia reikalinga nurodyti skersinės rotoriaus ašies q pereinamąjį rektansą X'_q ir pereinamąją atviros grandinės laiko pastoviąją T'_{q0} [21].

2.3 lentelė. Tipiniai GENROU generatoriaus dinaminio modelio parametrai [21]

Parametras	Reikšmė
T'_{d0} (>0) (sec)	6
T''_{d0} (>0) (sec)	0,05
T'_{q0} (>0) (sec)	1

T''_{q0} (>0) (sec)	0,05
Inercijos laiko pastovioji H	3
Slopinimo koeficientas D	0
X _d	1,4
Xq	1,35
X'd	0,3
X'q	0,6
$X''_d = X''_q$	0,2
XI	0,1
S(1.0)	0,03
S(1.2)	0,4

2.7 pav. GENROU generatoriaus dinaminio modelio blokinė diagrama [21]

2.3.2. Vėjo parkų dinaminis modelis

Vėjo turbinos prie elektros energetikos sistemos gali būti prijungiamos su skirtingų tipų generatoriais. Išskiriami 5 pagrindiniai vėjo generatorių tipai. Pirmieji du aprašo vėjo turbinas prijungtas prie tinklo per asinchroninius generatorius su trumpai jungtu rotoriumi. Trečiasis tipas yra "*Doubly-Fed Induction Generator (DFIG)*", kuriame aktyviosios galios valdymas užtikrinamas per galios keitiklį, prijungtą prie rotoriaus išėjimo gnybtų. Ketvirtojo tipo generatorius yra prijungiamas per pilną galios keitiklį (AC/DC ir DC/AC). Paskutiniojo tipo vėjo turbinų generatoriai yra tradicinio tipo sinchroniniai generatoriai, tačiau jie nėra dažnai naudojami.

Naujai integruojamuose vėjo parkuose dažniausiai pasitaikantys yra pilno keitiklio generatorių tipai, todėl modelyje laikoma, kad visi modeliuojami vėjo parkai yra šio generatoriaus tipo.

Pilno keitiklio vėjo generatorių modelis WT4G1/WT4E1

Vėjo turbina nuo elektros sistemos yra atskirta per galios keitiklį, todėl dinaminį vėjo generatoriaus modelį sudaro dvi dalys: galios keitiklio/generatoriaus modulis ir valdymo modulis (2.8 pav.). Galios keitiklio/generatoriaus modulis apskaičiuoja į tinklą perduodamą srovę pagal valdymo modulio sugeneruotą aktyviosios ir reaktyviosios galios signalą. Valdymo modulis apima aktyviosios ir reaktyviosios galios srautų kontrolę, kad palaikytų pastovią įtampą nurodytame mazge, užduotą galios faktorių ir į tinklą perduodamą aktyviąją galią [21].

2.8 pav. Vėjo generatoriaus dinaminio modelio struktūra [21]

Tipiniais vėjo generatoriaus dinaminiais parametrais laikoma GE 2,5 MW vėjo jėgainės parametrai WT4G1/WT4E1 modeliui (3 ir 4 lentelės).

2.4 lentelė. WT4G	generatoriaus dinamin	io modelio t	ipiniai	parametrai [[21]	l
	0					

Parametras	Reikšmė
T _{IQCmd} , Converter time constant for IQcmd (sec)	0,02
T _{IpCmd} , Converter time constant for IPcmd (sec)	0,02
V _{LVPL1} – Low voltage power logic (LVPL), voltage 1 (pu)	0,4
V_{LVPL2} – LVPL voltage 2 (pu)	0,9
G_{LVPL} – LVPL gain	1,11
High Voltage reactive current (HVRC) logic, voltage (pu)	1,2
CUR _{HVRCR} – HVRC logic, current (pu)	2,0
R _{IpLVPL} , Rate of active current change	2,0
T _{LVPL} , Voltage sensor for LVPL (sec)	0,02

2.5 lentelė. WT4E1 valdymo modulio tipiniai dinaminiai parametrai [21]

Parametras	Reikšmė	Parametras	Reikšmė
T _a V regulator filter	0.15	dPMN – Min limit in power PI	0.5
$\Gamma_{\rm fv} - v$ -regulator linter	0,15	controller (pu)	-0,5
V V regulator proportional gain	10	T _{POWER} – Power filter time	0.05
$K_{pv} - v$ -regulator proportional gain	10	constant	0,03
K _{iv} – V-regulator integrator gain	5	K _{Qi} – MVAR/Volt gain	0,1
K _{pp} – T-regulator proportional gain	0,05	V _{MINCL}	0,9

K _{ip} – T-regulator integrator gain	0,1	V _{MAXCL}	1,1
K _f – Rate feedback gain	0,0	K _{Vi} – Volt/MVAR gain	120
T_f – Rate feedback time constant	0,08	T _v – Lag time constant in WindVar controller	0,05
Q _{MX} – V-regulator max limit	0,47	T_p – Pelec filter in fast PF controller	0,05
Q _{MN} – V-regulator min limit	-0,47	I _{maxTD} – Converter current limit	1,7
IP _{MAX} – Max active current limit	1,1	I _{phl} – Hard active current limit	1,11
TRV – V-sensor	0,0	I _{qhl} – Hard reactive current limit	1,11
dP _{MX} – Max limit in power PI controller (pu)	0,5		

2.3.3. HVDC keitiklių dinaminiai modeliai

HVDC jungčių dinaminiai modeliai parenkami pagal jų tipą. Kaip jau minėta, "LitPol Link" ir "ESTLINK2" turi CSC tipo nuolatinės srovės keitiklius, todėl jiems parenkamas atitinkamas modelis iš PSS/E bibliotekos, tai yra CDC4T. "ESTLINK1" jungties dinaminis modelis nėra nurodomas, dėl tipinių duomenų trūkumo apie vienintelį PSS/E bibliotekoje esantį VSC tipo HDVC jungties dinaminį modelį VSCDCT. "NordBalt" nuolatinės srovės jungties dinaminis modelis naudojamas pateiktas gamintojo, kurio prieiga prie parametrų peržiūros ir korekcijos vartotojui yra neprieinama.

CSC tipo nuolatinės srovės jungčių dinaminis modelis CDCT4

Tai yra vienas paprastesnių HVDC jungčių dinaminių modelių, kurie yra PSS/E bibliotekoje. Šis modelis pilnai leidžia įvertinti lygintuvo ir inverterio tiristorių uždelsimą, pagrindinių nuolatinės srovės intarpo parametrų užtikrinimą ir valdymą pagal elektros energetikos sistemos režimą. Tipiniai CDC4T dinaminio modelio parametrai pateikiami 2.6 lentelėje.

Parametras	Reikšmė	Parametras	Reikšmė
ALFDY (degree), minimum alpha for dynamics	5	RS _{CUR} (amps), minimum dc current following block	500
GAMDY (degree), minimum gamma for dynamics	15	V _{RAMP} (pu/sec), voltage recovery rate	5
T_{VDC} (sec), dc voltage transducer time constant	0,05	C _{RAMP} (pu/sec), current recovery rate	5
T _{IDC} (sec), dc current transducer time constant	0,05	C ₀ (amps), minimum current demand	400
V _{BLOCK} (pu), rectifier ac blocking voltage	0,6	V ₁ (kV), voltage limit point 1	300
V _{UNBL} (pu), rectifier ac unblocking voltage	0,65	C ₁ (amps), current limit point 1	1000
T _{BLOCK} (sec), minimum blocking time	0,1	V ₂ (kV), voltage limit point 2	500

2.6 lentelė. CDC4T dinaminio modelio tipiniai parametrai [21]

V _{BYPAS} (kV), inverter dc bypassing voltage	0.6	C ₂ (amps), current limit point 2	3000
V _{UNBY} (pu), inverter ac unbypassing voltage	0,65	V ₃ (kv), voltage limit point 3	500
T _{BYPAS} (sec), minimum bypassing time	0,1	C ₃ (amps), current limit point 3	3000
RS _{VOLT} (kV), minimum dc voltage following block	200	T _{CMODE} (sec), minimum time stays in switched mode	0,1

2.3.4. Generatorių žadinimo sistemų dinaminiai modeliai

SEXS

Šis modelis yra skirtas modeliuoti nesudėtingas, įvairių tipų žadinimo sistemas, todėl nepriklauso konkrečiam žadinimo sistemų tipui. Modelis yra dažniausiai naudojamas tais atvejais, kai reikia sumodeliuoti žadinimo sistemą, tačiau jos detalūs parametrai nėra žinomi. Stiprinimo koeficientas K, laiko pastovioji T_E ir jos ribinės reikšmės E_{MAX}/E_{MIN} yra pagrindiniai žadinimo sistemos šaltinio parametrai. Laiko pastoviosios T_A ir T_B apibūdina pereinamojo stiprinimo sumažinimą, kad išlaikyti patenkinamą sistemos dinamiką su aukštu pastovios būsenos stiprinimu. SEXS modelio tipinės reikšmės norint aprašyti nežinomą, tačiau pakankamai gerai suderintą žadinimo sistemą pateiktos 2.7 lentelėje [21].

2.7 lentelė. Žadinimo sistemos dinaminio modelio SEXS tipiniai parametrai [21]

Parametras	Reikšmė
T_A (sec)	1
$T_{\rm B}$ (sec)	10
Κ	200–400
$T_{\rm E}$ (sec)	0,05
E _{MIN}	0
Emax	2,5–6,0, priklausomai nuo generatoriaus galios

 $V_{S} = VOTHSG + VUEL + VOEL$

ESST1A

ESST1A dinaminis modelis aprašo žadinimo sistemas, kuriose žadinimo srovė yra gaunama per transformatorių iš generatoriaus gnybtų ir reguliuojama valdomu lygintuvu. Maksimali žadinimo sistemos įtampa yra susijusi su generatoriaus gnybtų įtampa. Šio tipo žadinimo sistemos modeliui būdingos laiko pastoviosios yra labai mažos, todėl žadintuvo stabilizavimas paprastai yra nebūtinas. Kita vertus, gali atsirasti poreikis sumažinti pereinamąjį stiprinimo koeficientą. Dauguma tokių žadinimo sistemų naudoja pilnai valdomą lygintuvo tiristorių tiltelio schemą, tačiau modelis taikomas ir su pusiau valdomose sistemose. Parametrai parenkami pagal PSS/E dokumentacijoje nurodytas tipines reikšmes ir esant poreikiui koreguojamos pagal pateiktas ribas (2.8 lentelė) [21].

2.10 pav. ESST1A žadinimo sistemos dinaminio modelio blokinė diagrama [21]

ESAC4A

Šio tipo modelis imituoja žadinimo sistemą, kurioje žadinimo srovė į lygintuvą paduodama iš atskiro generatoriaus. Tokia stipraus veikimo pradiniu laiko momentu žadinimo sistema naudoja pilną tiristorių tiltelio lygintuvo schemą žadintuvo išėjimo grandinėje, o įtampos reguliatorius tiesiogiai veikia tiristorius. Žadintuvo generatorius turi atskirą įtampos reguliatorių, kuris palaiko išėjimo įtampą pastovią. Parametrai parenkami pagal 2.8 lentelėje pateiktus tipinius parametrus ir esant poreikiui koreguojamai pagal nurodytas ribas [21].

Damana atma a	Baramatras Tipinė reikšmė		Dailtěmia vikas – Davamatu	Damana atma a	Tipinė	reikšmė	Doiltămia vihoa	
Parametras	ESST1A	ESAC4A	Kelksmes ribos	Parametras	ESST1A	ESAC4A	Kelksmes ridos	
T_R (sec)	0,1	0,01	$0 \le T_R \le 0, 1$	VAMAX	4,6	-	$3 \le V_{AMAX} \le 8$	
VIMAX	0,2	0,2	$0 \le V_{IMAX} \le 0,2$	VAMIN	-4,6	-	$-8 < V_{AMIN} \le -3$	
VIMIN	-0,2	-0,19	$\begin{array}{l} \text{-0,3} \leq V_{IMIN} \leq 0 \text{ for} \\ \text{ESST1A} \\ \text{-0,2} \leq V_{IMIN} \leq 0 \text{ for} \\ \text{ESAC4A} \end{array}$	V _{RMAX}	3,4	4,3	$3 \le V_{RMAX} \le 8$	
T _C (sec)	0,01	1,0	$0 \leq T_C < 10,0$	V _{RMIN}	-3,4	-3,0	$-8 \le V_{\rm RMIN} \le -3$	
T _B (sec)	10	1,0	$4 \times DELT < T_B < 20$	Kc	0,01	0,1	$0 \leq K_C < 0.3$	
T_{C1} (sec)	0,01	-	$0 \le T_{C1} < 10,0$	K _F	0,1	-	$0 < K_F \le 0.3$	

2.8 lentelė. ESST1A/ESAC4A žadinimo sistemų modelių tipiniai parametrai ir jų ribos [21] [22]

T _{B1} (sec)	0,1	-	$4 \times DELT < T_{\rm B1} < 20$	T _F (sec)	0,31	-	$0,3 < T_F \leq 1,5$
K _A	51	80	$50 < K_A \leq 1000$	K _{LR}	1,0	-	$0 < K_{LR} \leq 5,0$
T _A (sec)	0,01	0,4	$0 \leq T_A < 0,5$	I _{LR}	2,0	-	$0 < I_{LR} \leq 5{,}0$

2.11 pav. ESAC4A žadinimo sistemos dinaminio modelio blokinė diagrama [21]

2.3.5. Generatorių turbinų reguliatorių dinaminiai modeliai

Sistema, kuri suka generatoriaus rotorių, dažnai vadinama pirminiu mechanizmu. Šis apima turbiną, sukančią veleną, greičio reguliavimo sistemą ir turbinos sukimo momentui sukurti reikalingą energijos tiekimo sistemą. Dažniausiai pasitaikantys pirminiai mechanizmai [3]:

- garo turbina;
 - iškastinio kuro (anglis, dujos, mazutas) katilas;
 - ➤ atominis reaktorius;
- hidroturbina;
- kombinuoto ciklo turbina (garo ir dujų turbina);
- vėjo turbina;
- geoterminė turbina ir kt.

Pereinamųjų procesų ir švytavimų analizei pakanka žymiai supaprastintų pirminių mechanizmų modelių, nes turbinų reguliatorių reakcijos laikas yra didesnis nei aktualus pereinamojo proceso laikas, kuris paprastai yra 10–20 sekundžių ar netgi mažiau. Atliekant pereinamųjų procesų analizę, galima laikyti, kad turbinos mechaninė galia išlieka pastovi, išskyrus atvejus, jeigu yra naudojama garo turbina su greitaeigiu vožtuvu [3].

Tačiau tiriant ilgiau vykstančius dinaminius procesus, kaip silpnojo signalo stabilumas, reikia sumodeliuoti turbinos greičių reguliatorius. Pakankamai nesudėtingi ir plačiai pritaikomi standartiniai hidro bei garo turbinų reguliatorių modeliai yra pateikti *Institute of Electrical and Electronics Engineers* (IEEE) ir prieinami PSS/E programiniame pakete.

Turbinos slopinimo koeficientas D_{turb} yra lygus $\partial P_{turbine}/\partial_{speed}$ santykiniais vienetais, pagal agregato bazinę galią. Garo, dujų ar atominiuose reaktoriuose naudojamoms turbinoms, D_{turb} paprastai priimamas lygus nuliui, o hidroturbinoms šis parametras įprastai parenkamas 0÷0,5 pu ribose [21].

TGOV1

Tai yra paprasčiausias turbinos reguliatoriaus dinaminis modelis, įvertinantis reguliatoriaus poveikį ir perkaitinimo laiko pastoviosios įtaką garo turbinai. Santykis T_2/T_3 lygus turbinos galios dedamajai, kuri yra išvystoma tik aukšto slėgio turbinos dalies. T_3 yra garo perkaitinimo laiko pastovioji, o T_1 – reguliatoriaus laiko pastovioji. Tipiniai parametrai šio tipo modeliui nurodomi 2.9 lentelėje.

Parametras	Reikšmė
R (pu)	0,05
T_1 (>0) (sec)	0,5
V _{MAX}	1,0
V _{MIN}	-1,0
T_2/T_3	0,3
$T_3 (>0) (sec)$	5,0-9,0
Dt	0

2.9 lentelė. TGOV	dinaminio m	nodelio tipiniai	parametrai [21]
-------------------	-------------	------------------	-----------------

2.12 pav. TGOV1 turbinos reguliatoriaus dinaminio modelio blokinė diagrama [21]

HYGOV

HYGOV dinaminis modelis aprašo nesudėtingų hidroelektrinių turbinų reguliatorius. Šiuo modeliu galima įvertinti visus hidroelektrinių turbinų darbo režimus, nuo tuščiosios veikos turbinos greičio iki didžiausio galimo pralaidos vartų atidarymo. Modelis taip pat tinkamas dideliems greičio nuokrypiams arba apkrovos nukrovimui prie ribinių greičio reikšmių, jei nenumatomas atleidimo vožtuvo ar deflektoriaus veikimas, modeliavimui. Tipiniai hidroelektrinės turbinos reguliatoriaus parametrai pateikiami 2.10 lentelėje [21].

Parametras	Reikšmė
R (pu), Permanent droop	0,05
R (pu), Temporary droop	0,1–1,0
T _r (sec), Governor time constant	2-20
T_{f} (sec), Filter time constant	0,05
T _g (sec), Gate servo time constant	0,5
V _{ELM} (pu/sec). Gate velocity limit	0,167

2.10 lentelė. HYGOV dinaminio modelio tipiniai parametrai [2
--

G _{MAX} (pu), Maximum gate	1,0
G _{MIN} (pu), Minimum gate	0,0
T_w (sec), Water time constant	1,0–3,0
A _t , Turbine gain	1,2
	1,5–2,0 for Pelton (bucket)
D _{turb} , Turbine damping coefficient	0,0 for Kaplan (blade)
	0,5 for Francis
q _{NL} (pu), No power flow	0,08

2.13 pav. HYGOV turbinos reguliatoriaus dinaminio modelio blokinės diagrama [21]

Parametrų r ir T_r reikšmės turėtų būti parinktos, kad užtikrinti stabilų izoliuotos apkrovos reguliavimą. Parametrų parinkimo gairės nurodomos 2.11 ir 2.12 formulėmis [21]:

$$T_r = 4 * T_w; \tag{2.11}$$

$$r = \frac{T_w}{H}.$$
(2.12)

IEEEG1/IEEEG3

IEEEG1 yra IEEE rekomenduojamas bendrinis garo turbinų greičio reguliavimo sistemų modelis. Atitinkamai parinkus parametrus, šis modelis gali būti naudojamas įvairaus tipo garo turbinų reguliavimo sistemoms, apimant sistemas be garo perkaitinimo, nuoseklaus arba kryžminio junginio sistemų tipus [21].

2.11 lentelė. IEEEG1 turbinos reguliatoriaus modelio tipiniai parametrai ir rekomenduojamos nurodomų reikšmių ribos [21, 22]

Parametras	Tipinė reikšmė	Reikšmės ribos	Parametras	Tipinė reikšmė	Reikšmės ribos
JBUS	0	-	K1	0,2	$-2 \le K_1 \le 1$
М	0	-	K2	0	-
К	20	$5 \le K \le 30$	T_5 (sec)	7	$0 \leq T_5 < 10$
T_1 (sec)	0,5	$0 \leq T_1 < 5$	K3	0,1	$0 \le K_3 < 0,5$
T_2 (sec)	1	$0 \le T_2 < 10$	K4	0	$0 \leq K_4 < 0,5$

T ₃ (sec)	1	$0,04 < T_3 \le 1$	T_6 (sec)	0,6	$0 \leq T_6 < 10$
Uo (pu/sec)	0,1	$0,01 \leq U_O \leq 0,3$	K5	0,2	$0 \le K_5 < 0.34$
Uc (pu/sec)	-0,2	$-0.3 \le U_C \le -0.01$	K6	0	$0 \leq K_6 < 0,54$
P _{MAX} (pu)	1	$0,5 \le P_{MAX} \le 2$	T ₇ (sec)	0,3	$0 \leq T_7 < 10$
P _{MIN} (pu)	0	$0 \le P_{\text{MIN}} < 0.5$	K ₇	0,1	$0 \le K_7 < 0,29$
T ₄ (sec)	0,4	$0 < T_4 \leq 1$	K8	0	$0 \le K_8 < 0,29$

2.14 pav. IEEEG1 turbinos reguliatoriaus dinaminio modelio blokinė diagrama [21]

IEEEG3 yra alternatyvus hidroelektrinių turbinų greičio reguliavimo sistemų dinaminis modelis. Tam tikrais atvejais, dėl turimų duomenų tipo arba geresnio tikslumo, šiam modeliui yra teikiamas aukštesnis prioritetas lyginant su IEEEG1.

Tipinės parametrų reikšmės IEEEG3 modeliui:

- $T_R = 5,0 s;$
- $T_G = 0.5 s;$
- $T_P = 0.04 s;$
- *σ* = 0,05;
- $\gamma = 0,3.$

Parametras	Tipinė reikšmė	Reikšmės ribos	Parametras	Tipinė reikšmė	Reikšmės ribos
T _G (sec), Gate Servomotor Time Constant	0,2	$4 \times DELT \le T_G \le 1,0$	γ, Transient Speed Droop Coefficient	1	$0 < \gamma \le 1,2$
T _P (sec), Pilot Value Time Constant	0,099	$4 \times \text{DELT} \le \text{Tp} < 0,1$	T _R (sec)	6	$1,0 \le T_R < 50$
Uo, Opening Gate Rate Limit	0,1	$0 \le \text{Uo} < 0,3$	Tw (sec), Water Starting Time	1	$4 \times DELT < T_w < 10$
Uc, Closing Gate Rate Limit	-0,1	$-0,3 < Uc \le 0$	a 11	1	$0 < a_{11} < 1,5$
P _{MAX} (pu), Maximum Gate Position	1	$0,5 \leq P_{MAX} \leq 1,0$	a 13	1,49	$0 < a_{13} < 1,5$
P _{MIN} (pu), Minimum Gate Position	0	$0 \leq P_{\text{MIN}} \leq 0,5$	a ₂₁	1	$0 < a_{21} \leq 1,5$
σ , Permanent Speed Droop Coefficient	0,05	$0 < \sigma \le 0,1$	a23	1	$0 < a_{23} < 1,5$

2.12 lentelė. IEEEG3 turbinos reguliatoriaus modelio tipiniai parametrai ir rekomenduojamos nurodomų reikšmių ribos [21, 22]

2.15 pav. IEEEG3 turbinos reguliatoriaus dinaminio modelio blokinės diagrama [21]

2.3.6. PSS dinaminis modelis

Pagal modalinės analizės metu identifikuotas optimalias švytavimo įrenginių diegimo vietas, PSS modeliai integruojami į Baltijos šalių EES dinaminį modelį. Jiems parenkamas bendrinis PSS modelis STAB1, kuris turi vienintelį įėjimo signalą – generatoriaus rotoriaus greičio pokytį.

2.13 lentelė	. PSS	dinaminio	modelio	STAB1	tipiniai	parametrai	[21]
--------------	-------	-----------	---------	-------	----------	------------	-----	---

Parametras	Reikšmė
K/T	20
T (sec)	3
T_{1}/T_{3}	5
T_3 (sec)	0,05
T_2/T_4	5
T_4 (sec)	0,05
H _{LIM}	0,1

2.16 pav. STAB1 tipo PSS modelio blokinė diagrama [21]

2.4. Baltijos šalių perdavimo tinklo modelis

2.4.1. Perspektyvinė tinklo topologija ir struktūra

Baltijos šalių perdavimo tinklo modelis sudaromas imituojant 2025 metus, kai atsiranda potenciali galimybė avariniais atvejais dirbti salos režimu. Siekiant kuo tiksliau įvertinti šios izoliuotos sistemos darbą, tinklo modelis sudaromas remiantis šiandienine tinklo topologija ir sistemą sudarančiais elementais, kartu įvertinant visų Baltijos šalių perdavimo sistemų operatorių perspektyvinius planus 2025-iesiems metams.

Dabartinė tinklo topologija ir struktūra (2.17 pav.) bei Baltijos šalių perdavimo sistemoje esantys generacijos įrenginiai modeliuojami remiantis ENTSO-E (angl. *European Network of Transmission Systems Operators for Electricity*) interaktyviu žemėlapiu. Jame yra pateikta informacija apie esamų generatorių prijungimo vietą tinkle bei jų tipą [23]. Prie esamos tinklo situacijos šiai dienai, papildomai yra įvertinama naujų elektros perdavimo linijų integravimas, generacijos šaltinių prijungimas ir planuojamų darbo režimų pagrindiniai parametrai bei balansai, pagal Baltijos šalių perdavimo sistemų operatorių ir ENTSO-E dešimtmečius plėtros planus [19, 24, 25].

2.17 pav. Dabartinė Baltijos šalių perdavimo tinklo topologija ir struktūra [23]

Lietuvos energetikos sistemos perdavimo tinklo plėtra numatoma taip, kad iki 2025 metų Lietuva būtų pajėgi dirbti sinchroniškai su kontinentinės Europos tinklais. Iki to laiko planuojama atlikti visus pasirengimo ir tinklo rekonstrukcijų darbus, atnaujinti elektrinių valdymo ir stebėsenos sistemas [19].

2018 metais pradės veikti daugiau nei 50 km ilgio 330 kV oro linija nuo Kruonio hidroakumuliacinės elektrinės (toliau KHAE) iki Alytaus. Taip pat iki 2025 metų siekiama sustiprinti ir Vilniaus regiono mazgą. Tam planuojama nutiesti 330 kV liniją tarp Vilniaus ir Neries

pastočių ir pastatyti antrąją 330 kV linijos grandį nuo Vilniaus iki Lietuvos elektrinės. Tinklo plėtra palies ir šiaurės rytų regioną, kur taip pat numatoma 330 kV tinklo pertvarka, kurios metu rekonstruojama Utenos pastotė papildomai prijungiant 330 kV esamą liniją IAE–Neris. Būtina įrengti 330 kV Mūšos skirstyklą dėl tinklo patikimumo užtikrinimo, kadangi šiuo metu toje vietoje egzistuoja "T" tipo jungtis su ilgomis 330 kV linijomis. Šio tipo sujungimas mažina patikimumą, nes įvykus trumpajam jungimui bet kurioje iš jungties linijų, atjungiamos visos linijos kartu. Mūšos pastotė pagerintų sistemos valdymo, relines apsaugos ir automatikos veikimo selektyvumą, padidintų Lietuvos–Latvijos pjūvio pralaidumą. Tačiau nepaisant to, esminis dėmesys skiriamas Kauno ir Vilniaus regionams dėl stipriai augančio miestų galios poreikio ir reikiamo patikimumo užtikrinimo [19].

2.18 pav. Lietuvos elektros perdavimo sistemos perspektyvinė schema

Pagal Litgrid plėtros planą [19] Lietuvos energetikos sistemos generuojančių šaltinių pasikeitimai iki 2025 metų:

- 2018 m. pradeda veikti 24 MW "Fortum Heat" kogeneracinė jėgainė, kūrenama atliekomis ir biomase;
- 2018 m. pradeda veikti Vilniaus kogeneracinė jėgainė, kurioje 23 MW agregatas kūrenamas atliekomis ir 80 MW agregatas kūrenamas biomase;
- 2020 m. pradeda veikti papildomas 20 MW "Lifosa" generatorius;
- 2020 m. nutraukiama Petrašiūnų elektrinės eksploatacija;
- Prijungiami nauji vėjo parkai (VE) ir suminė VE įrengtoji galia pasiekia 750 MW:
 - ➢ Kikonių VE (60 MW);

- Kupriškių VE (60 MW);
- ➢ Kanteikių VE (60 MW);
- Lumpėnų VE (50 MW).

Remiantis Latvijos ir Estijos perdavimo sistemų operatorių bei ENTSO-E perspektyviniais tinklo plėtros planais [24, 25], Latvijoje numatoma nutiesti 330 kV liniją tarp Ventspils ir Imanta pastočių, viduryje įrengiant papildomai Tume skirstyklą. Estijoje taip pat planuojama stiprinti 330 kV tinklą, įrengiant perdavimo linijas Tartu–Kilingi-Nomme, Kilingi-Nomme–Sindi ir Sindi–Lihula–Harku. Dėl silpno tarpsisteminio ryšio tarp Latvijos ir Estijos energetikos sistemų, kuris šiuo metu yra tik per dvi 330 kV linijas, vienas svarbiausių plėtros objektų yra šio probleminio pjūvio stiprinimas. Tikėtina, kad papildoma linija RigaTEC–Kilingi-Nomme padidintų sistemos stabilumą ir patikimumą, leistų efektyviau išnaudoti pjūvio pralaidumą rinkoje.

2.19 pav. Estijos ir Latvijos perdavimo sistemų perspektyvinė schema

2.4.2. Baltijos šalių energetikos sistemos generatorių duomenys ir dinaminiai modeliai

Sumodeliuotoje Baltijos šalių elektros energetikos sistemoje realizuoti pagrindiniai Lietuvos, Latvijos ir Estijos generatoriai. Generacijos agregatų kiekis, instaliuota galia ir parinkti dinaminiai modeliai pateikti 2.14, 2.15 ir 2.16 lentelėse. Kadangi detalios informacijos apie mažos galios generatorius sistemose neturima, o jų įtaka analizuojamiems darbo režimams yra labai nedidelė, į sudaromą modelį jie neįtraukiami.

Elektrinė	Kuro tipas	Generatorių skaičius	Instaliuota galia	Generatoriaus dinaminis modelis	Žadinimo sistemos dinaminis modelis	Turbinos reguliatoriaus dinaminis modelis
Lietuvos E	Dujos, mazutas	2 × 300 MW 1 × 445 MW	1045 MW	GENROU	ESAC4A	TGOV1
Kruonio HAE	Vanduo	$4 \times 225 \text{ MW}$	900	GENSAL	ESST1A	HYGOV

2.14 lentelė. Lietuvos energetikos sistemos generatorių duomenys

Kauno HE	Vanduo	4 × 25,2 MW	100,8 MW	GENSAL	ESAC4A	HYGOV		
VE-2	Biokuras	1 × 12 MW 1 × 16,7 MW	28,7 MW	GENROU	SEXS	TGOV1		
VE-3	Dujos, mazutas	2 × 180 MW	360 MW	GENROU	ESST1A	TGOV1		
Vilniaus kogeneracinė	Atliekos, biokuras	1 × 65 MW 1 × 23 MW	88 MW	GENCLS	-	-		
Mažeikių E	Dujos	$2 \times 80 \text{ MW}$	160 MW	GENROU	ESST1A	IEEEG1		
Lifosa	Dujos	$\begin{array}{l} 2\times 6 \ \text{MW} \\ 1\times 25 \ \text{MW} \\ 1\times 20 \ \text{MW} \end{array}$	57 MW	GENROU	SEXS	TGOV1		
Achema	Dujos	1 × 21 MW 1 × 47 MW	68 MW	GENROU	GENROU SEXS			
Klaipėdos Fortum	Atliekos	$1 \times 20 \text{ MW}$	20 MW	GENROU	ESST1A	TGOV1		
Kauno Fortum	Atliekos	1×24 MW	24 MW	GENCLS	-	-		
Šiaulių E	Biokuras	$1 \times 11 \text{ MW}$	11 MW	GENCLS	-	-		
Didšilių VE		$10 \times 2,2 \text{ MW}$	22 MW		WT4G1/WT4E1			
Siauduvos VE		6 × 2,3 MW	13,8		WT4G1/WT4E1			
Kreivėnų VE		10×2 MW	20 MW		WT4G1/WT4E1			
Ciutelių VE		$17 \times 2,3 \text{ MW}$	39,1 MW		WT4G1/WT4E1			
Lauksargių VE		6 × 2,5 MW	15 MW		WT4G1/WT4E1			
Syša VE		$24 \times 2,5$ MW	60 MW		WT4G1/WT4E1			
Sudėnų VE		6 × 2,3	13,8 MW		WT4G1/WT4E1			
Benaičių VE		$17 \times 2 \text{ MW}$	34 MW		WT4G1/WT4E1			
Kikonių VE	Vėjas	$24 \times 2,5$ MW	60 MW		WT4G1/WT4E1			
Vejas I VE		$15 \times 2 \text{ MW}$	30 MW		WI4GI/WI4EI			
Kantelkių VE		$24 \times 2,5$ MW	60 MW		WT4GI/WT4E1			
Kupriskių VE Kabaldilijų VE		$24 \times 2,5$ MW	60 M W		WT4G1/WT4E1			
Kunigiškių VE		19×2.4 MW	43,0 W W		WT4G1/WT4E1			
Kunigiskių VE Stranaikių VE		$3 \times 2,3$	7,5 WW		WT4G1/WT4E1			
Lumnėnų VF		$30 \times 2,43$ WW	50 MW		WT4G1/WT4E1			
Geišiu VE		$20 \times 2,3$ WI W 8×3 MW	24 MW		WT4G1/WT4E1			
	1	0×3 IVI VV		W14G1/W14E1				

2.15 lentelė. Latvijos energetikos sistemos generatorių duomenys

Elektrinė	Kuro tipas	Generatorių skaičius	Instaliuota galia	Generatoriaus dinaminis modelis	Žadinimo sistemos dinaminis modelis	Turbinos reguliatoriaus dinaminis modelis	
Riga TEC1	Dujos	$3 \times 48 \text{ MW}$	144 MW	GENROU	ESST1A	TGOV1	
Riga TEC2	Dujos	2 × 210 MW 2 × 206 MW	832 MW	GENROU	ESST1A	TGOV1	
Riga HES	Vanduo	$6 \times 67 \text{ MW}$	402 MW	GENSAL	SEXS	IEEEG3	
Keguma HES	Vanduo	4 × 18 MW 3 × 56 MW	240 MW	GENSAL	SEXS	HYGOV	
Plavinu HES	Vanduo	10 × 86,9 MW	868,5 MW	GENSAL	SEXS	IEEEG3	
Fortum	Atliekos	1×24 MW	24 MW	GENCLS	-	-	
Pope VE		2,3 × 9 MW	20,7 MW		WT4G1/WT4E1		
Veju Parks VE	Vėjas	$33 \times 0,6$ MW	19,8 MW		WT4G1/WT4E1		
Liepaja VE		1×2 MW	2 MW		WT4G1/WT4E1		

2.16 lentelė. Estijos energetikos sistemos generatorių duomenys

Elektrinė	Kuro tipas	Generatorių skaičius	Instaliuota galia	Generatoriaus dinaminis modelis	Žadinimo sistemos dinaminis modelis	Turbinos reguliatoriaus dinaminis modelis
Eesti EJ	Naftos skalūnai	2 × 180 MW 2 × 190 MW 1 × 215 MW 1 × 400 MW	1355 MW	GENROU	ESAC4A	IEEEG1

Balti EJ	Naftos skalūnai	1 x 322 MW	322 MW	GENROU	ESAC4A	TGOV1		
Auvere EJ	Naftos skalūnai	1 x 300 MW	300 MW	GELCLS	-	-		
IRU	Dujos, atliekos	1 × 110 MW 1 × 17 MW	127 MW	GENROU	SEXS	TGOV1		
Kiisa PP	Dujos	1 × 110 MW 1 × 140 MW	250 MW	GENCLS	-	-		
Tartu EJ	Biokuras	$1 \times 25 \text{ MW}$	25 MW	GENROU	SEXS	TGOV1		
Parnu EJ	Biokuras	$1 \times 25 \text{ MW}$	25 MW	GENROU	SEXS	TGOV1		
Tallinna EJ	Biokuras	$1 \times 25 \text{ MW}$ $1 \times 21,4 \text{ MW}$	46,4 MW	GENROU	SEXS	TGOV1		
Paldiski VE		$18 \times 2,5 \text{ MW}$	45 MW					
Aulepa VE		$16 \times 3 \text{ MW}$	48 MW		WT4G1/WT4E1			
Tuhavalja VE		17 × 2,3 MW	39 MW		WT4G1/WT4E1			
Virtsu II/III VE		6 × 2,3 MW	13,8 MW		WT4G1/WT4E1			
Pakri VE	Vėjas	8 × 2,3 MW	18,4 MW		WT4G1/WT4E1			
Aseriaru VE		8×3 MW	24 MW		WT4G1/WT4E1			
Tooma VE		8×2 MW	16 MW		WT4G1/WT4E1			
Viru-Nigula VE		8×3 MW	24 MW	WT4G1/WT4E1				
Esivere VE		8×2 MW	8 MW	WT4G1/WT4E1				

PSS/E programiniame pakete modelis atvaizduojamas kaip duomenų lentelė, kur kiekvienas tinklo elementas ar mazgas aprašomas atskira eilute. Lentelės stulpeliuose nurodomi elementų parametrai arba tam tikros analizės metu gauti rezultatai. Modelis PSS/E aplinkoje pavaizduotas 2.20, 2.21, 2.22 ir 2.23 paveiksluose.

Ne	twork data x Dynami	cs data	_	-						Network data X Dynami	cs data							
	Bus Name	Area Name	Code	VSched (pu)	In Service	PGen (MW)	PMax (MW)	PMin (MW)	QGen (Mvar)	Bus Name	Area Name	Code	(pu)	In Service	PGen (MW)	PMax (MW)	PMin (MW)	QGen (Mvar)
	ESIVERE_VE 0.6900	EESTI	-2	1.0545		0.1647	9.0000	0.0000	-0.0334	RHES.G1 13.800	LV	-2	1.0200		0.0000	67.0000	25.0000	-46.5330
	TOOMA_VE 0.4000	EESTI	-2	1.0545		1.2650	24.0000	0.0000	-0.2569	RHES.G2 13.800	LV	4	0.9964		0.0000	67.0000	25.0000	-53.2510
	VIRTSU_VE 0.4000	EESTI	-2	1.0545		0.1647	6.9000	0.0000	0.0334	RHES.G3 13.800	LV	4	0.9964		0.0000	67.0000	25.0000	-0.1110
	VIRTSU_VE 0.4000	EESTI	-2	1.0545		0.1647	6.9000	0.0000	0.0334	RHES.G4 13.800	LV	-2	1.0200		0.0000	67.0000	25.0000	-17.5716
•	AULEPA_VE 0.6900	EESTI	-2	1.0545		1.7540	57.0000	0.0000	-0.3562	RHES.G5 13.800	LV	4	1.0073		0.0000	67.0000	25.0000	-5.3880
	PAKRI_VE1 0.5750	EESTI	-2	1.0545		0.1647	9.2000	0.0000	-0.0334	RHES.G6 13.800	LV	-2	1.0200		0.0000	67.0000	25.0000	-17.5716
	PAKRI_VE2 0.5750	EESTI	-2	1.0545		0.1647	9.2000	0.0000	-0.0334	RTEC-2 TG1 15.750	LV	4	0.9937		0.0000	206.0000	50.0000	-3.6540
	PALDISKI_VE10.5750	EESTI	-2	1.0545		1.1300	22.5000	0.0000	-0.2295	RTEC-2 TG2 15.750	LV	4	0.9905		0.0000	206.0000	50.0000	-28.4810
	PALDISKI_VE20.5750	EESTI	-2	1.0545		1.1300	22.5000	0.0000	-0.2295	RTEC-2 GG1 18.000	LV	-2	0.9400		150.0000	210.0000	80.0000	-140.0000
	V-NIGULA_VE0.6900	EESTI	-2	1.0545		1.2800	24.0000	0.0000	-0.2599	RTEC-2 GG2 18.000	LV	4	0.9722		150.0000	210.0000	80.0000	-28.8580
	TUHAVALJA_VE0.4000	EESTI	-2	1.0545		0.8237	39.1000	0.0000	-0.1673	KNS FORTUM 10.500	LITHUA	-2	1.0726		22.0000	24.0000	12.0000	-7.000
	LIEPAJA_VE 110.00	LV	-2	1.0441		0.5000	2.0000	0.0000	-0.1015	VE_DIDSIL 20.000	LITHUA	-2	1.0500		4.3000	21.8000	0.0000	-0.8733
	FORTUM 110.00	LV	-2	1.0830		20.0000	24.0000	10.0000	-10.0000	VE_SIAUDUVA 20.000	LITHUA	-2	1.0578		2.8000	13.8000	0.0000	-0.5686
	VEJU PARKS 110.00	LV	-2	1.0643		2.2000	19.8000	0.0000	-0.4467	VE_KREIVEN 20.000	LITHUA	-2	1.0676		6.0000	30.0000	0.0000	-1.2184
	POPE_VE 110.00	LV	-2	1.0633		2.1000	20.7000	0.0000	-0.4264	VE_CIUTELIAI20.000	LITHUA	-2	1.0606		7.8000	39.1000	0.0000	-1.5838
	KEGUM.G1 10.500	LV	-2	1.0400		0.0000	18.0000	12.0000	0.9990	VE_LAUKSARG 20.000	LITHUA	-2	1.2002		3.0000	15.0000	0.0000	-0.6092
	KEGUM.G2 10.500	LV	-2	1.0400		0.0000	18.0000	12.0000	0.9050	VE_SYSA 20.000	LITHUA	-2	1.0749		12.0000	60.0000	0.0000	-2.436
	KEGUM.G3 10.500	LV	4	1.0000	n i	0.0000	18.0000	12.0000	-3.4100	VE_SUDENAI 20.000	LITHUA	-2	1.0509		2.8000	14.0000	0.0000	-0.5686
	KEGUM.G4 10.500	LV	-2	1.0600		0.0000	18.0000	12.0000	3.7540	VE_BENAIC 20.000	LITHUA	-2	1.0515		10.0000	50.0000	0.0000	-2.0306
	KEGUM.G5 13.800	LV	4	0.9928		0.0000	56.0000	50.0000	0.9260	VE_KIKONIAI 20.000	LITHUA	-2	1.0593		12.0000	60.0000	0.0000	-2.4387
	KEGUM.G6 13.800	LV	4	0.9928		0.0000	56.0000	50.0000	5.5350	VE_VEJAS 1 20.000	LITHUA	-2	1.0529		16.9000	39.1300	0.0000	-3.4317
	KEGUM.G7 13.800	LV	-2	1.0000		0.0000	56.0000	50.0000	7.5170	VE_KANTEIKIU	LITHUA	-2	1.0597		12.0000	60.0000	0.0000	-2.436
	PLAV.G1 13.800	LV	-2	1.0040		0.0000	86.8500	65.0000	-4.1520	VE_KUPRISKJU20.000	LITHUA	-2	1.0749		12.0000	60.0000	0.0000	-2.436
	PLAV.G2 13.800	LV	-2	1.0040		0.0000	86.8500	65.0000	-60.9371	VE_KABALDIK 0.6600	LITHUA	-2	1.0000		9.1000	45.6000	0.0000	0.000
	PLAV.G3 13.800	LV	-2	1.0040		0.0000	86.8500	65.0000	-50.3810	VE_KUNIGISK 20.000	LITHUA	-2	1.0413		1.5000	7.5000	0.0000	-0.3046
	PLAV.G4 13.800	LV	4	0.9964		0.0000	86.8500	65.0000	-21.5570	KLP FORTUM 10.500	LITHUA	-2	1.0264		18.0000	20.0000	0.5000	5.000
	PLAV.G5 13.800	LV	4	0.9964		0.0000	86.8500	65.0000	-14.3050	SIAULIU E 10.500	LITHUA	2	1.0365		9.6250	10.8100	8.0000	-0.0300
	PLAV.G6 13.800	LV	4	0.9964		0.0000	86.8500	65.0000	-37.2430	KHAE G1 15.750	LITHUA	2	1.0788		-220.0000	225.0000	-220.0000	27.002
	PLAV.G7 13.800	LV	4	0.9964	Ē	0.0000	86.8500	65.0000	-16.6430	KHAE G2 15.750	LITHUA	2	1.0788		-220.0000	225.0000	-220.0000	27.002
	PLAV.G8 13.800	LV	4	0.9964	П	0.0000	86.8500	65.0000	-50.0020	KHAE G3 15.750	LITHUA	4	1.0788		0.0000	225.0000	-220.0000	19.2899
	PLAV.G9 13.800	LV	-2	1.0060	n i	0.0000	86.8500	65.0000	-53.6575	KHAE G4 15.750	LITHUA	-2	1.0788		0.0000	225.0000	-220.0000	22.4390
	PLAV.G10 13.800	LV	-2	1.0100	n i	0.0000	86.8500	65.0000	-8.4070	LE B9 20.000	LITHUA	3	1.0749		429.6711	445.0000	230.0000	11.1442
	TEC1.TG1 10.500	LV	-2	1.0000	H I	0.0000	48.0000	15.0000	-5.3750	LE B7 20.000	LITHUA	2	1.0749		268.7120	300.0000	130.0000	-122.7619
	TEC1.TG2 10.500	LV	-2	1.0000	П	0.0000	48.0000	15.0000	-5.2830	LE B8 20.000	LITHUA	2	1.0749		280.0000	300.0000	130.0000	-122.7619
	TEC1.TG3 10.500	LV	-2	1.0000	Н	0.0000	48.0000	15.0000	-4.8840	KHE G2 10.500	LITHUA	2	1.0000		24.0610	25.0000	15.0000	3.3661
\ B	us & Plant & Machine /	Load A	Fixed	Shunt A	Switched S	hunt à In	duction Machine	λ NCSECO	1	Bus A Plant A Machine	Load)	Fixed S	shunt)	Switched S	ihunt) Ir	duction Machin	NCSFC	:/
14	A N Burger and F	auinme	at (B	anch 1 M	Inde Break	er) Other	1			GALE BUSES and E	quipmer		anch λ M	lode-Break	er à Other	1		

2.20 pav. PSS/E statinio modelio generatoriai ir vėjo parkai

Name	Name	Code	VSched (pu)	In Service	PGen (MW)	PMax (MW)	PMin (MW)	QGen (Mvar)
KHE G2 10.500	LITHUA	2	1.0000		24.0610	25.0000	15.0000	3.366
KHE G4 10.500	LITHUA	2	1.0000		24.0610	25.0000	15.0000	6.732
KHE G4 10.500	LITHUA	2	1.0000		0.0000	25.0000	15.0000	2.800
ME G1 10.500	LITHUA	2	1.0364		30.0000	80.0000	18.0000	-43.160
ME G2 10.500	LITHUA	4	1.0545		0.0000	80.0000	18.0000	-35.800
LIFOSA2 10.500	LITHUA	-2	1.0636		23.0000	25.0000	15.0000	-5.000
LIFOSA1 6.3000	LITHUA	-2	1.0636		5.0000	6.0000	4.0000	-3.000
LFOSA1 6.3000	LITHUA	-2	1.0636		5.0000	6.0000	4.0000	-3.000
LIFOSA1 6.3000	LITHUA	-2	1.0636		18.0000	20.0000	15.0000	-5.000
VE2 B1 6.3000	LITHUA	-2	1.0285		9.6250	12.0000	6.0000	-2.000
VE2 B2 6.3000	LITHUA	-2	1.0278		14.4370	16.7000	8.0000	-2.000
VE3 B1 15.750	LITHUA	4	1.0546		0.0000	180.0000	65.0000	36.915
VE3 B2 15.750	LITHUA	4	1.0618		0.0000	180.0000	65.0000	-63.854
VKJ 1 15.800	LITHUA	4	1.2002		0.0000	80.0000	20.0000	-10.000
VKJ 2 15.800	LITHUA	-2	1.2002		20.0000	23.0000	12.0000	10.000
ACHEMA1 10.500	LITHUA	-2	1.0545	Π	0.0000	21.0000	10.0000	-2.000
ACHEMA2 10.500	LITHUA	2	1.0545		42.0000	47.0000	24.0000	6.34
VE_STREPEIK 20.000	LITHUA	-2	1.0500		14.7000	73.5000	0.0000	2.985
VE_LUMPENAI 20.000	LITHUA	-2	1.0706		10.0000	50.0000	0.0000	-2.03
VE_GEISIAI 0.6600	LITHUA	-2	1.0000		9.0000	24.0000	0.0000	0.00
ASERI_VE 0.6900	EESTI	2	1.0545		0.0000	24.0000	0.0000	1.854
EESTI G3 15.800	EESTI	-2	1.0650		0.0000	180.0000	80.0000	0.21
EESTI G4 15.800	EESTI	-2	1.0650		0.0000	180.0000	80.0000	0.21
EESTI G5 15.800	EESTI	-2	1.0650		164.0000	190.0000	90.0000	-35.000
EESTI G6 15.800	EESTI	-2	1.0650		0.0000	190.0000	90.0000	0.215
EESTI G8 15.800	EESTI	-2	1.0650		0.0000	215.0000	80.0000	0.215
AUVERE EJ 10.500	EESTI	-2	1.0000		0.0000	300.0000	180.0000	23.27
EESTI G9 18.000	EESTI	2	1.0650		210.0000	400.0000	80.0000	-117.82
IRU TG2 10.500	EESTI	4	1.0000		90.0000	110.0000	30.0000	48.195
BALTI 15.800	EESTI	2	1.0127		129.0000	215.0000	80.0000	9.74
TALLINN1 10.500	EESTI	2	1.0000		12.0000	30.8000	4.0000	3.09
TARTU_EJ 11.000	EESTI	2	1.0000		10.0000	25.0000	5.0000	14.33
PARNU_EJ 11.000	EESTI	-2	1.0000		10.0000	25.0000	5.0000	15.000
IRU TG1 10.500	EESTI	-2	1.0000		9.0000	17.0000	0.0000	2.50
KIRCA4 45.000	FESTI	-2	1.0500	Π	0.0000	110.0000	50.0000	1.62

2.21 pav. PSS/E statinio modelio generatoriai ir vėjo parkai

110	Bus	In	Generator	In	Type	Exciter	In	Type	Turbine	In		Bus	In	Generator	In	Туре	Exciter	In	Туре	Turbine	In
	Name	Servio		Servic	.,,,		Servic	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Governor	Service	-	Name	Servic	OFNEAL	Servic	Clad	FOOTAA	Servic	Chad	Governor	Service
	FORTUM 110.00		GENCLS		Stnd	None	Ц.		None		-	KHAE 03 15.750		CENSAL	M	Stad	ECOTIA	M	Stad	HYCOV	
	KEGUM.G1 10.500		GENSAL		Stnd	SEXS		Stnd	HYGOV	<u> </u>	-	LE B9 20.000		CENDOLL		Stad	ESACAA	M	Stud	TCOVI	
	KEGUM.G2 10.500		GENSAL		Stnd	SEXS		Stnd	HYGOV		-	15.87 20.000		CENDOU		Stod	ESACAA	- M	Stod	TOOVI	
	KEGUM.G3 10.500		GENSAL		Stnd	SEXS		Stnd	HYGOV		-	15 89 20.000		CENDOU		Ctod	ESACAA		Stad	TOOVI	
	KEGUM.G4 10.500		GENSAL		Stnd	SEXS		Stnd	HYGOV	Ø –	-	KHE C2 10 500		CENSAL	M	Sted	ESACAA	M	Stad	HYCOV	
	KEGUM.G5 13.800		GENSAL		Stnd	SEXS		Stnd	HYGOV		-	KHE G2 10.500		GENSAL		Stod	ESAC4A	H	Stad	HYGOV	
	KEGUM.G6 13.800		GENSAL		Stnd	SEXS		Stnd	HYGOV		-	KHE G4 10 500		CENSAL		Stad	ESACAA	M	Stad	HYGOV	
	KEGUM.G7 13.800		GENSAL		Stnd	SEXS		Stnd	HYGOV		-	KHE 04 10.500		CENSAL		Stad	ESACAA		Stud	HYGOV	
	PLAV.G1 13.800		GENSAL		Stnd	SEXS		Stnd	IEEEG3		-	ME G1 10.500	H	GENDOU		Stod	ESST1A	M	Stnd	IFFEG1	
	PLAV.G2 13.800	Ē	GENSAL		Stnd	SEXS	M	Stnd	EEEG3		-	ME G2 10 500		GENROU		Stod	ESST1A		Stnd	EEEG1	
	PLAV.G3 13.800		GENSAL		Stnd	SEXS		Stnd	IEEEG3		-	LIEOSA2 10 500		GENROU		Stad	SEVS	M	Stad	TGOVI	
	PLAV.G4 13.800		GENSAL		Stnd	SEXS	П	Stnd	IEEEG3		-	LEOSA1 63000		CENDOU	M	Stad	SEXS	H	Stad	TGOVI	
	PLAV.G5 13.800	H	GENSAL	N	Stnd	SEXS	N	Stnd	EEEG3		-	LEOSA1 6 3000		GENROU		Stod	SEXS		Stad	TGOV1	
	PLAV.G6 13.800		GENSAL		Stnd	SEXS		Stnd	EEEG3		-	LEOSA1 6 3000		GENROU		Stod	SEXS		Stad	TGOVI	
	PLAV G7 13 800	H	GENSAL		Stnd	SEXS		Stnd	EEEG3		-	VE2 B1 6 3000		GENROU		Stod	SEXS	M	Stad	TGOVI	
	PLAV.G8 13.800	H	GENSAL		Stnd	SEXS	- H	Stnd	EEEG3		-	VE2 B2 6 3000		GENROU		Stod	SEXS		Stod	TGOV1	
	PLAV G9 13,800	H	GENSAL		Stod	SEXS	H	Stod	EEEG3		-	VE3 B1 15 750		GENROU		Stod	ESST1A		Stod	TGOV1	
	PLAV G10 13 800		GENSAL		Stad	CEYC		Stad	EFEC3		-	VE3 B2 15 750	H	GENROU		Stod	ESST1A	N N	Stad	TGOV1	
	TEC1 TG1 10 500		GENDOU		Stad	ESST1A		Sted	TGOVI		-	VKJ 1 15 800	H	GENCLS		Stnd	None	H	ound	None	
-	TEC1.TG1 10.000		CENDOU	M	Sted	ECOTIA	M	Sted	TGOVI		-	VK12 15.800		GENCLS		Stnd	None	H		None	H
	TEC1.TO2 10.000		OFNDOU		Chad	ESSTIA		Chad	TOOVI		-	ACHEMA1 10 500		GENROU		Stod	SEXS	H	Stod	TGOV1	
	TECT.TG3 10.000		GENROU		Sund	ESSTIA	M.	Suid	IGOVI			ACHEMA2 10 500		GENROU		Stod	SEXS	- H	Stod	TGOV1	
	RHES.G1 13.800		GENSAL		Stnd	SEXS	M.	Stnd	EEEG3		4	FESTIG3 15 800		GENROU		Stod	ESAC4A	- M	Stod	IFFEG1	
	RHES.G2 13.800		GENSAL		Stnd	SEXS	M	Stnd	EEEG3	<u> </u>	-	EESTI G4 15.800	H	GENROU		Stnd	ESAC4A		Stnd	EEEG1	
	RHES.G3 13.800		GENSAL		Stnd	SEXS		Stnd	EEEG3		-	FESTI G5 15.800		GENROU		Stnd	ESAC4A		Stnd	EFEG1	
	RHES.G4 13.800		GENSAL		Stnd	SEXS	M	Stnd	EEEG3		-	FESTI G6 15 800		GENROU		Stod	ESAC4A	- H	Stnd	EFEG1	
	RHES.G5 13.800		GENSAL		Stnd	SEXS		Stnd	IEEEG3		-	FESTI G8 15 800	H	GENROU		Stod	ESAC4A		Stod	IEEEG1	
	RHES.G6 13.800		GENSAL		Stnd	SEXS		Stnd	IEEEG3		-	AUVERE EJ 10.500	H	GENCLS		Stnd	None	H		None	
	RTEC-2 TG1 15.750		GENROU		Stnd	ESST1A		Stnd	TGOV1		-	EESTI G9 18 000		GENROU		Stnd	ESAC4A	H	Stnd	EEEG1	
	RTEC-2 TG2 15.750		GENROU		Stnd	ESST1A		Stnd	TGOV1		-	IRU TG2 10.500	H	GENROU		Stnd	SEXS	N	Stnd	TGOV1	
	RTEC-2 GG1 18.000		GENROU		Stnd	ESST1A		Stnd	TGOV1		-	BALTI 15.800		GENROU		Stnd	ESAC4A	- N	Stnd	TGOV1	N
	RTEC-2 GG2 18.000		GENROU		Stnd	ESST1A		Stnd	TGOV1		-	TALLINN1 10.500		GENROU		Stnd	SEXS		Stnd	TGOV1	
	KNS FORTUM 10.500		GENCLS		Stnd	None			None		-	TARTU EJ 11.000		GENROU	E .	Stnd	SEXS		Stnd	TGOV1	
	KLP FORTUM 10.500		GENROU	Ø	Stnd	ESST1A	M	Stnd	TGOV1		-	PARNU EJ 11.000		GENROU		Stnd	SEXS	E C	Stnd	TGOV1	
	SIAULIU E 10.500		GENCLS		Stnd	None			None			IRU TG1 10.500		GENROU		Stnd	SEXS		Stnd	TGOV1	
-	KHAE G1 15.750		GENSAL		Stnd	ESST1A		Stnd	HYGOV		-	KIISA1 15.000	- H	GENCLS		Stnd	None	H		None	
	KHAE G2 15.750		GENSAL		Stnd	ESST1A		Stnd	HYGOV		-	KIISA2 15.000	H	GENCLS		Stnd	None	H		None	H
	KHAE G3 15.750		GENSAL		Stnd	ESST1A		Stnd	HYGOV		-	TALLINN2 10.500		GENROU		Stnd	SEXS	H	Stnd	TGOV1	
14	A DE Machine	Renew	able Machine	A Ind	uction Ma	achine λ 2.	Term DC	À vsc	DC & N-Ten	m DC A FA I	1	() Machine	Reper	able Machine	à Indu	ction Ma	chine \ 2	Term DC) ver	DC A N-Ter	DC A FA
	wice Models Drotes	Hon Mod	ale 1 Other I	Modele	Data	T		1.50	A ren		Des	ice Medels (Drotest	ion Med	ala à Other I	Madala	Data	I	. chin DC	N	N III III	

2.22 pav. PSS/E generatorių dinaminis modelis

Bus Name	In Service	Generator	In Service	Туре	Electrical	In Service	Туре
ESIVERE_VE 0.6900		WT4G1	\checkmark	Stnd	WT4E1	\checkmark	Stnd
TOOMA_VE 0.4000		WT4G1		Stnd	WT4E1		Stnd
VIRTSU_VE 0.4000		WT4G1		Stnd	WT4E1		Stnd
VIRTSU_VE 0.4000		WT4G1		Stnd	WT4E1		Stnd
AULEPA_VE 0.6900		WT4G1		Stnd	WT4E1		Stnd
PAKRI_VE1 0.5750		WT4G1		Stnd	WT4E1		Stnd
PAKRI_VE2 0.5750		WT4G1		Stnd	WT4E1		Stnd
PALDISKI_VE10.5750		WT4G1		Stnd	WT4E1		Stnd
PALDISKI_VE20.5750		WT4G1		Stnd	WT4E1		Stnd
V-NIGULA_VE0.6900		WT4G1		Stnd	WT4E1		Stnd
TUHAVALJA_VE0.4000		WT4G1	\checkmark	Stnd	WT4E1		Stnd
LIEPAJA_VE 110.00		WT4G1		Stnd	WT4E1		Stnd
VEJU PARKS 110.00		WT4G1		Stnd	WT4E1		Stnd
POPE_VE 110.00		WT4G1		Stnd	WT4E1		Stnd
VE_DIDSIL 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_SIAUDUVA 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_KREIVEN 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_CIUTELIAI20.000		WT4G1		Stnd	WT4E1		Stnd
VE_LAUKSARG 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_SYSA 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_SUDENAI 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_BENAIC 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_KIKONIAI 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_VEJAS 1 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_KANTEIKIU		WT4G1		Stnd	WT4E1		Stnd
VE_KUPRISKIU20.000		WT4G1		Stnd	WT4E1		Stnd
VE_KABALDIK 0.6600		WT4G1		Stnd	WT4E1		Stnd
VE_KUNIGISK 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_STREPEIK 20.000		WT4G1		Stnd	WT4E1		Stnd
VE_LUMPENAI 20.000		WT4G1		Stnd	WT4E1		Stnd
VE GEISIAL 0.6600		WT4G1		Stnd	WT4E1		Stnd
12_02/00 0 0.0000							

2.23 pav. PSS/E vėjo parkų dinaminis modelis

2.4.3. Modelio adekvatumo įvertinimas

Lietuvos energetikos sistema šiuo metu sujungta su Latvijos, Baltarusijos, Rusijos, Lenkijos ir Švedijos sistemomis. Lietuvos ir Švedijos energetikos sistemas jungia nuolatinės srovės kabelis "NordBalt", kurio galia 700 MW. Su Lenkijos sistema esame sujungti per nuolatinės srovės keitiklį Alytaus pastotėje ir dvigrande 400 kV įtampos perdavimo linija "LitPol Link", kurios instaliuota galia yra 500 MW. Lietuvą ir Baltarusiją jungia penkios 330 kV linijos, o Lietuvą ir Rusiją – trys 330 kV linijos. Darant prielaidą ir modeliuojant, kad Baltijos šalių energetikos sistema dirbai izoliuotai, šie elektriniai ryšiai nutraukiami [19].

Izoliuoto darbo bandymas – vienas svarbiausių pasirengimo sinchronizacijai žingsnių. Šio bandymo metu Baltijos šalys atsijungs nuo Baltarusijos ir Kaliningrado srities energetikos sistemų. Elektros poreikį ir pirminį dažnio valdymą Baltijos šalyse turės užtikrinti Estijos, Latvijos ir Lietuvos generatoriai bei valdymo centrai. Bandymą planuojama atlikti 2019 metais.

Prognozuojama, kad Lietuvos energetikos sistemos didžiausias poreikis 2026 metais bus apie 2190 MW. Tai yra pagal optimistinį scenarijų. Būtent šis rodiklis yra naudojamas techniniuose skaičiavimuose ir modeliavime [19]. Latvijos ir Estijos energetikos sistemoms prognozuojamas poreikis nustatomas pagal 2017 metų vidutinį poreikį žiemos ir vasaros mėnesiais, įvertinus analogišką procentinį prieaugį, kaip Lietuvos energetikos sistemoje.

Pusę visos Lietuvoje pagaminamos elektros energijos yra gaunama iš atsinaujinančius energijos išteklius naudojančių elektrinių. 2016 m. prie perdavimo tinklo prijungtų vėjo elektrinių

išnaudojimo koeficientas siekė 0,27. Aukščiausią išnaudojimo koeficientą pasiekė Šyšos vėjo parkas – 0,44. Tai parodo, kad nauji vėjo parkai su pažangesnėmis technologijomis leidžia geriau išnaudoti vėjo energiją ir pagerina sistemos darbo režimą [19]. Kadangi modeliavimas atliekamas 2025 metams, skirstant generaciją elektrinėms, laikoma, kad bendras vėjo jėgainių išnaudojimo koeficientas gali būti apie 0,35. Šis rodiklis šiek tiek koreguojamas įvertinant, kad vasaros metu vėjo greitis bus mažesnis nei žiemą.

Nustatant tinklo modelio adekvatumą ir jo vertinimo rezultatus daroma išvada, kad jau nuo 2023 metų Baltijos šalių elektros energetikos sistema bus priklausoma nuo tarpsisteminių jungčių, nes sistemoje esančios elektrinės nesugebės užtikrinti reikiamos galios generacijos [19].

Elektros energetikos sistemų analizei naudojami tipiniai žiemos maksimalaus poreikio ir vasaros minimalaus poreikio režimai, nes tai atvaizduoja sistemos darbo ribines sąlygas. Silpnojo signalo stabilumo tyrimui atlikti, sekančiuose etapuose bus įvertinama ir keitiklių įtaka, todėl papildomai numatoma modifikuoti režimus importuojant/eksportuojant elektros energiją į kaimynines šalis per HVDC jungtis.

Statinio modelio paruošimo tinklo analizei ir adekvatumo įvertinimui sprendžiamas srautų pasiskirstymo uždavinys (angl. *Power Flow*) "*Full Newton-Raphson*" metodu. Sprendinio ataskaitoje esminis rodiklis yra sistemos absoliutinis srautų neatitikimas (angl. *System Total Absolute Mismatch*), kuris nurodo koks buvo didžiausias galios srautų neatitikimas ieškant sprendinio. Paprastai, tiriant panašaus dydžio sistemas, modelis laikomas adekvačiu ir sprendimo rezultatai laikomi teisingais, jeigu šis parametras < 2. Analizuojamame žiemos maksimumo režime su pradiniais balansais be HVDC keitiklių įtakos šis parametras lygus 0,05 (2.24 pav.), todėl galima daryti išvadą, kad modelis yra sumodeliuotas tinkamai, režimas yra konverguojantis ir galima atlikti su juo tolimesnius analizės etapus.

Reached tolerance in 5 iterations

Largest mismatch: 0.00 MW -0.02 Mvar 0.02 MVA at bus 3017 [EESTI_330 330.00] 0.05 MVA System total absolute mismatch: SWING BUS SUMMARY: BUS# X-- NAME --X BASKV PGEN PMAX PMIN QGEN QMAX QMIN 2 BUS_2 410.00 -399.4 9999.0 -9999.0 421.8 9999.0 -9999.0 3.9* 445.0 230.0 5823 LE B9 20.000 5.9 260.0 -120.0 10612 EKB411 400.00 401.1 500.0 -500.0 194.0 1000.0 -1000.0 99961 FINSWING 400.00 802.3 9999.0 -9999.0 -100.7 9999.0 -9999.0

2.24 pav. Srautų pasiskirstymo uždavinio sprendinio ataskaita

Srautų pasiskirstymo analizės rezultatai atvaizduojami sudarytoje Baltijos šalių energetikos sistemų tinklo diagramoje, kuri atitinka 2025 metų perspektyvinę topologiją. Iš šios diagramos vaizdo galima analizuoti aktyviosios/reaktyviosios galios srautus per kiekvieną sumodeliuotą tinklo liniją, stebėti mazgų įtampas bei kitus norimus parametrus (2.25 pav.).

2.25 pav. PSS/E Baltijos šalių EES srautų pasiskirstymo analizės rezultatai ir schema

Pagal elektros energetikos sistemų stabilumo teoriją, jeigu sistema tenkina dinaminio stabilumo sąlygas, tai ji tenkins ir statinio stabilumo sąlygas. Kitaip sakant, jeigu sistema sugeba išlaikyti generatorių stabilumą ir sinchronizmą įvykus dideliam trikdžiui, tai sistema išliks stabili ir įvykus mažam trikdžiui. Todėl norint įsitikinti, kad sudarytas modelis yra adekvatus atlikti stabilumo analizę, pakanka patikrinti ar sumodeliuota sistema tenkina dinaminio stabilumo sąlygas. Dinaminio stabilumo įvertinimo proceso diagrama pateikiama 2.26 paveiksle.

2.26 pav. Modelio dinaminio stabilumo įvertinimo proces

Dinaminio modelio adekvatumo įvertinimui atliekamas trumpojo jungimo pereinamojo proceso modeliavimas PSS/E. Norint įsitikinti, kad tenkinamos dinaminio stabilumo sąlygos, reikia gauti slopstančius laike pereinamuosius procesus. Modeliuojamas trifazis trumpasis jungimas Lietuvos–Latvijos pjūvio tarpsisteminėje linijoje Panevežys–Aizkraukle. Pereinamųjų procesų stebėjimui pasirinkti visų trijų Baltijos šalių energetikos sistemų didieji generatoriai, tai

yra Rigas TEC-2, EESTI G9, KHAE G1 (veikiantis siurblio režimu), Lietuvos elektrinės G9 (kombinuoto ciklo) ir G8 agregatai. Pagal 2.26 paveiksle pateiktą proceso diagramą, atlikto trifazio trumpojo jungimo modeliavimo rezultatai pateikiami 2.27–2.30 paveiksluose.

2.27 pav. Aktyviosios galios kitimas pereinamojo proceso metu

2.28 pav. Reaktyviosios galios kitimas pereinamojo proceso metu

Iš gautų generatorių aktyviosios ir reaktyviosios galios kreivių matoma, kad įvykus modeliuojamam trumpajam jungimui tinkle, atsiranda aktyviosios galios svyravimai, o generatorių reaktyvioji galia staigiai pakyla. Po 0,14 s atjungtus trumpojo jungimo vietą nuo tinklo, aktyvioji galia laikui bėgant nusistovi prie pradinės reikšmės. Didžiausios amplitudės nuokrypiai pasireiškia generatoriuose, kurie yra arčiausiai trikdžio vietos.

2.29 pav. Generatorių gnybtų įtampos kitimas pereinamojo proceso metu

2.30 pav. Generatorių rotorių greičių pokyčių kitimas pereinamojo proceso metu

Pagal generatorių gnybtų įtampos kreives pastebima, kad avarijos metu stipriai krenta generatorių įtampa, o didžiausias kritimas matomas LE G8 generatoriuje. Eliminavus avariją, generatorių įtampa su tam tikru perreguliavimu grįžta prie pradinės reikšmės. Žiūrint į generatorių rotorių greičių pokyčių kreives, matoma, kad trumpojo jungimo metu prasideda rotorių greičių švytavimai. Iš gautų kreivių pastebima, kad skiriasi ir generatorių fazė.

Iš atliko trumpojo jungimo modeliavimo matoma, kad pereinamojo proceso stebimi parametrai nusistovi prie pradinių reikšmių po atitinkamo laiko tarpo, todėl galima teigti, kad modelis yra statiškai ir dinamiškai stabilus, todėl adekvatus tolimesniems analizės etapams.

2.5. Silpnojo signalo stabilumo tyrimo metodika

Kritiniai švytavimus sukeliantys charakteringieji dažniai identifikuojami atliekant modalinę sistemos režimo analizę. Kritiniais laikomi tie, kurie turi nepakankamą slopinimo lygį. Pagal CIGRE (angl. *International Council on Large Electric Systems*) rekomendacijas, minimalus slopinimo koeficientas turėtų būti -5 %.

Silpnojo signalo stabilumui tyrimui pasirinkti 6 sumodeliuotos sistemos darbo režimai. Tai yra vasaros minimalaus poreikio ir žiemos maksimalaus poreikio tipiniai režimai, bei jų modifikacijos su HVDC jungtimis, kada galia yra importuojama/eksportuojama iš kaimyninių sistemų. Kadangi HVDC instaliuota galia yra santykinai didelė lyginant su bendru Baltijos šalių energetikos sistemos galios poreikiu, HVDC jungčių darbas stipriai keičia sistemos parametrus, darbo režimus ir stabilumo charakteristikas. Kai kuriuose tinklo režimuose netgi reikia riboti HVDC perduodamą galią, nes sistema nepajėgi priimti ar atiduoti pilną galią per HVDC jungtis. Šiais 6 režimais siekiama išanalizuoti sistemos darbą ir silpnojo signalo stabilumą ribinėmis, tačiau realiai tikėtinomis sąlygomis.

Atliekamo silpnojo signalo stabilumo tyrimo metodo žingsniai.

- 1. Atliekant silpnojo signalo stabilumo analizę, pirmiausia EES dinaminis modelis ištiesinamas stabilaus darbo taške.
- 2. Dalinių savųjų reikšmių sprendimo metodu ieškomos charakteringosios lygties (1.18) savosios reikšmės. Savųjų reikšmių kampinio dažnio ω dedamoji perskaičiuojama į švytavimo dažnį Hz pagal (1.27) formulę ir charakteringieji dažniai atvaizduojami grafiškai s-plokštumoje. Charakteringieji dažniai, kurie yra y ašies dešinėje pusėje, identifikuoja, kad jie yra nestabilūs. Sprendiniai esantys kairėje s-plokštumos pusėje ir daug nutolę nuo menamosios ašies laikomi stabiliais ir greitai slopinamais charakteringaisiais dažniais, todėl toliau neanalizuojami.

2.31 pav. Charakteringųjų dažnių s-plokštumoje įvertinimo diagrama [13]

3. Įvertinami apskaičiuotų charakteringųjų dažnių slopinimo koeficientai. Absoliutinį slopinimą nusako realioji savosios reikšmės dalis σ. Pagal (1.28) formulę skaičiuojami santykiniai slopinimo koeficientai. Santykinis slopinimo koeficientas grafiškai gali būti atvaizduojamas kaip kampas tarp tiesės nuo atitinkamos tikrosios vertės iki s-plokštumos koordinačių pradžios ir menamosios ašies. S-plokštumos kairėje pusėje esantys charakteringieji dažniai, tačiau turintys didesnį nei -5 % slopinimo koeficientą – aktualūs charakteringieji dažniai, kuriems būtina detalesnė analizė.

2.32 pav. Santykinis slopinimo koeficientas [13]

4. Skaičiuojami dešinysis ir kairysis savieji vektoriai. Dešinysis savasis vektorius apibrėžia santykinį charakteringojo dažnio stebimumą. Dažnai tai dar vadinama *charakteringojo dažnio forma*. Ji gali būti analizuojama pasirinkus įvairius išėjimo kintamuosius, tačiau praktikoje dažniausiai naudojamas generatoriaus rotoriaus kampo pokytis Δω. Kairysis savasis vektorius aprašo santykinį charakteringojo dažnio valdomumą. Tai parodo

skirtingų sistemos būsenos kintamųjų (generatorių) įtaką analizuojamam charakteringajam dažniui.

- 5. Charakteringojo dažnio formos analizės metu nustatoma ar tam tikras charakteringasis dažnis priklauso tarpsisteminių švytavimų grupei. Tai atliekama visiems charakteringiesiems dažniams, kurie identifikuoti kaip kritiniai, o švytavimo dažnis yra nuo 0,1 Hz iki 1,5 Hz.
- 6. Įvertinami analizuojamo charakteringojo dažnio įtakos koeficientai. Pagal juos yra nustatoma, kurie tinklo generatoriai ar jų valdymo sistemos labiausiai daro įtaką identifikuotam kritiniam charakteringajam dažniui. Šie elementai yra laikomi efektyviausia ir optimalia tinklo vieta PSS ar kitų švytavimų slopinimą gerinančių įrenginių diegimui.
- 7. Tinklo vietose, kurios buvo nustatytos kaip efektyviausios švytavimų slopinimo įrenginių diegimui, dinaminiame modelyje integruojami PSS.
- 8. Elektros perdavimo tinklo statiniame modelyje stiprinimas elektrinis ryšys probleminiame Estijos–Latvijos pjūvyje, sumodeliuojant papildomą elektros perdavimo liniją.
- 9. Atliekamas analizuojamos sistemos dinaminių procesų modeliavimas laiko atžvilgiu, įvedant trikdį į vieną iš probleminio pjūvio linijų. Trikdis parenkamas nedidelis, kuris sužadintų galios švytavimus generatoriuose. Šiam tikslui modeliuojamas 100 ms trunkantis linijos atsijungimas, po kurio linija relinės apsaugos ir automatikos pagalba įjungiama atgal į darbą. Tiriami keturi atvejai:
 - a. sistema be PSS;
 - b. sistema su integruotu PSS;
 - sistema su sumodeliuota papildoma elektros perdavimo linija probleminiame pjūvyje;
 - d. sistema su PSS ir trečia elektros perdavimo linija probleminiame pjūvyje.
- Analizuojamos gautos generatorių, kuriuose buvo integruojami PSS, rotorių greičio pokyčio kreivės ir įvertinama pereinamojo proceso kokybė bei švytavimų slopinimo efektyvumas skirtingais atvejais.

Silpnojo stabilumo tyrimo metodikos proceso blokinė diagrama pateikiama 2.33 paveiksle.

2.33 pav. Silpnojo signalo stabilumo tyrimo metodikos proceso diagrama

Atliekant modalinę analizę tiriami generatoriaus rotoriaus greičio pokyčio būsenos kintamieji ir charakteringieji dažniai ieškomi jų atžvilgiu. Tiriant dinaminių procesų reakcijas laike stebimi ir grafiškai atvaizduojami taip pat generatoriaus rotoriaus greičio pokyčio kintamieji. Šis kintamasis pasirenkamas todėl, nes tai yra pagrindinis parametras tiriant generatorių stabilumą, o taip pat naudojamas kaip PSS įėjimo signalas.

3. TYRIMO REZULTATŲ DALIS

3.1. Tiriami EES darbo režimai

Režimas #1: Vasaros minimalus poreikis be HVDC (SLLnoHVDC)

Baltijos šalių EES trūkumas – generuojamos galios stoka. Analizuojant režimą, kai neveikia HVDC jungtys, pagrindiniai sistemų generatoriais nesunkiai padengia esamą aktyviosios galios poreikį. Dėl mažo elektros energijos suvartojimo ir išjungtų HVDC keitiklių, EES patiriami maži aktyviosios galios nuostoliai ir srautas per EE–>LV pjūvį nedidelis.

	Apk	rova	Generacija	H	VDC jun	gtys	Srautas	Nuostoliai
Sistema	P, MW	Q, Mvar	P, MW	NordBalt, MW	LitPol Link, MW	ESTLINK1 + ESTLINK2, MW	EE– >LV, MW	P _{loss} , MW
Lietuva	892	201	868					10,7
Latvija	490	91	489	-	-	-	40	4,7
Estija	539	139	592				42	12,2
Suma	1921	427	1949		-			27,6

3.1 lentelė. SLLnoHVDC režimo balansas

Režimas #2: Vasaros minimalus poreikis ir maksimalus galios importas per HVDC (SLLimpHVDC)

Šio režimo atveju importuojamas elektros energijos kiekis per HVDC jungtis yra didesnis nei suminis EES poreikis, todėl 4 KHAE agregatai paleidžiami siurblio režimais. Norint išlaikyti sistemą dinamiškai stabilią, būtina tam tikra sistemos besisukančių masių inercija, kurią sukuria sinchroniniai generatoriai, todėl HVDC importuojama galia ribojama iki 1700 MW. Kiekvienoje sistemoje veikia tik keletas pagrindinių generatorių bei vėjo parkų, kurių išnaudojimas įvertintas 10 % nuo instaliuotos galios. Dėl neigiamos generacijos Lietuvos EES susidaro didelis srautas per EE–>LV pjūvį.

	Apk	rova	Generacija	H	VDC jun	gtys	Srautas	Nuostoliai
Sistema	P, MW	Q, Mvar	P, MW	NordBalt, MW	LitPol Link, MW	ESTLINK1 + ESTLINK2, MW	EE– >LV, MW	P _{loss} , MW
Lietuva	892	201	-348					18,6
Latvija	490	91	253	500	400	800	616	18,2
Estija	539	139	380				010	20,5
Suma	1921	431	285		1700			57,3

3.2 lentelė. SLLimpHVDC režimo balansas

Režimas #3: Vasaros minimalus poreikis ir maksimalus galios eksportas per HVDC (SLLexpHVDC)

Eksportuojant maksimalų kiekį elektros energijos per HVDC keitiklius, kurie yra Estijos ir Lietuvos sistemose, didelis vaidmuo atitenka Latvijai. Nors Latvijos EES poreikis yra pakankamai nedidelis šiame darbo režime, gausus hidrogeneratorių kiekis tampa vienu pagrindinių generacijos šaltinių. Dėl tokio balansų ir generacijos pasiskirstymo, srautas per EE–>LV pjūvį yra priešingos krypties.

	Apk	rova	Generacija	H	VDC jun	gtys	Srautas	Nuostoliai
Sistema	P, MW	Q, Mvar	P, MW	NordBalt, MW	LitPol Link, MW	ESTLINK1 + ESTLINK2, MW	EE– >LV, MW	P _{loss} , MW
Lietuva	892	201	1673					28,9
Latvija	490	91	1300	-700	-500	-1000	227	18,1
Estija	539	139	1237				-337	37,3
Suma	1921	431	4228		-2200			84,3

3.3 lentelė. SLLexpHVDC režimo balansas

Režimas #4: Žiemos maksimalus poreikis be HVDC (WPLnoHVDC)

Žiemos maksimalaus poreikio režimo atveju, Baltijos šalių EES veikia daugelis esamų generatorių. Šaltuoju metų laiku šiek tiek didesnė generacijos dalis numatoma Estijoje dėl turimo didelio šiluminių elektrinių kiekio. Neveikiant HVDC keitikliams, Lietuvos, Latvijos ir Estijos sistemos pakankamai gerai subalansuotos, o srautas per EE–>LV pjūvį nėra didelis.

Sistema	Apkrova		Generacija	HVDC jungtys			Srautas	Nuostoliai
	P, MW	Q, Mvar	P, MW	NordBalt, MW	LitPol Link, MW	ESTLINKI + ESTLINK2, MW	EE– >LV, MW	P _{loss} , MW
Lietuva	2180	471	2153					21,7
Latvija	1377	288	1338	-	-	-	106	18,1
Estija	1580	333	1721				100	35,1
Suma	5137	1090	5212		-			74,9

3.4. lentelė. WPLnoHVDC režimo balansas

Režimas #5: Žiemos maksimalus poreikis ir maksimalus galios importas per HVDC (WPLimpHVDC)

Importuojant didelę elektros energijos dalį per HVDC keitiklius ir siekiant sistemų balanso, reikia aktyvuoti daug Latvijos generatorių. Žiemos metu esantis aukštesnis vėjo elektrinių išnaudojimo koeficientas sudaro galimybes mažiau dirbti pagrindiniams sistemų generatoriams,

nes daugiau galios poreikio padengia vėjo elektrinės. Srautas per probleminį EE–>LV pjūvį išlieka panašus į esantį WPLnoHVDC režime.

	Apkrova		Generacija	HVDC jungtys			Srautas	Nuostoliai
Sistema	P, MW	Q, Mvar	P, MW	NordBalt, MW	LitPol Link, MW	ESTLINK1 + ESTLINK2, MW	EE– >LV, MW	P _{loss} , MW
Lietuva	2180	469	1028					25,7
Latvija	1377	288	1277	700	500	1000	104	17,5
Estija	1580	333	717				104	29,3
Suma	5137	1090	3022	2200				72,5

3.5 lentelė. WPLimpHVDC režimo balansas

Režimas #6: Žiemos maksimalus poreikis ir maksimalus galios eksportas per HVDC (WPLexpHVDC)

Maksimalaus žiemos poreikio atveju sistema nėra pajėgi padengti savo galios poreikį ir eksportuoti maksimalią galią per HVDC keitiklius, nes trūksta veikiančių generacijos agregatų. Tai pagrindžia faktą, kad Baltijos šalių EES dalinai jau yra ir ilgainiui taps labai priklausoma nuo tarpsisteminių nuolatinės srovės jungčių. Dėl šios priežasties, šiame režime HVDC keitiklių eksportuojama galia ribojama iki 1000 MW.

	Apkrova		Generacija	HVDC jungtys			Srautas	Nuostoliai
Sistema	P, MW	Q, Mvar	P, MW	NordBalt, MW	LitPol Link, MW	ESTLINK1 + ESTLINK2, MW	EE– >LV, MW	P _{loss} , MW
Lietuva	2180	469	2215					27,4
Latvija	1377	288	1966	-300	-200	-500	62	26,9
Estija	1580	333	2055				-02	38,0
Suma	5127	1090	6224	-1000				92,3

3.6 lentelė. WPLexpHVDC režimo balansas

3.2. Sistemos modalinės analizės rezultatai

Modalinė analizė atliekama visiems tiriamiems sistemos režimams. Charakteringųjų dažnių grafikuose raudona kreivė žymi -5 % slopinimo koeficiento ribą, o geltona – -10 %. Detaliau analizuojami visi charakteringieji dažniai, kurie yra dešiniau -10 % slopinimo koeficiento ribos. Jeigu charakteringojo dažnio slopinimo koeficientas yra didesnis nei -5 %, tai jis laikomas kritiniu, kuris gali būti pavojingas sistemos stabilumui.

Pateiktuose apskaičiuotų charakteringųjų dažnių grafikuose y ašis nurodo dažnį, Hz, o x ašis – slopinimą, rad/s. Charakteringųjų dažnių formos ir įtakos koeficientų grafikuose žalios spalvos žymekliai nurodo Lietuvos EES generatorius, raudonos – Latvijos, o mėlynos – Estijos.

Režimas #1: SLLnoHVDC

3.1 pav. SLLnoHVDC režimo charakteringieji dažniai

3.2 pav. SLLnoHVDC režimo charakteringojo dažnio forma

3.3 pav. SLLnoHVDC režimo charakteringojo dažnio įtakos koeficientai

Pagal SLLnoHVDC režimo rezultatus, pateiktus 3.1, 3.2 ir 3.3 paveiksluose, identifikuotas vienas charakteringasis dažnis, kurio slopinimo koeficientas -4,5 %. Detaliau analizuojant šį charakteringąjį dažnį pagal dešinį savąjį vektorių, matoma, kad yra fazės skirtumas tarp Estijos ir Lietuvos/Latvijos EES generatorių. Tai parodo, kad šis charakteringasis dažnis priklauso tarpsisteminių charakteringųjų dažnių grupei. Pagal apskaičiuotus įtakos koeficientus, galima teigti, kad didžiausią įtaką analizuojamam charakteringąjam dažniui turi KHAE G1 agregatas.

Režimas #2: SLLimpHVDC

3.4 pav. SSLimpHVDC režimo charakteringieji dažniai

3.5 pav. SLLimpHVDC režimo charakteringojo dažnio forma

Režimas #2: 1 charakteringojo dažnio įtakos koeficientai

3.6 pav. SLLimpHVDC režimo charakteringojo dažnio įtakos koeficientai

SLLimpHVDC režimo atveju (3.4 pav., 3.5 pav. ir 3.6 pav.) taip pat identifikuotas vienas kritinis charakteringasis dažnis, kurio slopinimo koeficientas 2,9 %. Dėl fazės išsiskyrimo tarp Estijos generatorių ir Lietuvos/Latvijos generatorių, tai taip pat tarpsisteminis charakteringasis dažnis. Pagal analizuojamo charakteringojo dažnio įtakos koeficientus, aktualiausias generatorius – EESTI G9.

Režimas #3: 1 charakteringojo dažnio forma

3.8 pav. SLLexpHVDC režimo 1 charakteringojo dažnio forma

3.9 pav. SLLexpHVDC režimo 2 charakteringojo dažnio forma

3.10 pav. SLLexpHVDC režimo 1 charakteringojo dažnio įtakos koeficientai

75

3.11 pav. SLLexpHVDC režimo 2 charakteringojo dažnio įtakos koeficientai

Atliekant SLLexpHVDC režimo modalinę analizę (3.7–3.11 pav.) identifikuoti du charakteringieji dažniai su nepakankamu slopinimu. Jų dažnis atitinkamai -0,3 % ir -6,2 %. Pagal dešinio savojo vektoriaus fazę, tai tarpsisteminiai charakteringieji dažniai. Ypač tai pastebima antrojo charakteringojo dažnio atveju, kuomet fazė tarp Estijos ir Lietuvos/Latvijos generatorių išsikyrusi apytiksliai 150 laipsnių. Įvertinus gautus įtakos koeficientus, pirmąjį kritinį charakteringąjį dažnį labiausiai sąlygoja LE G9 generatorius, o antrąjį – EESTI G9.

Režimas #4: WPLnoHVDC

3.12 pav. WPLnoHVDC režimo charakteringieji dažniai

3.13 pav. WPLnoHVDC režimo 1 charakteringojo dažnio forma

3.14 pav. WPLnoHVDC režimo 2 charakteringojo dažnio forma

3.15 pav. WPLnoHVDC režimo 1 charakteringojo dažnio įtakos koeficientai

Režimas #4: 2 charakteringojo dažnio įtakos koeficientai

3.16 pav. WPLnoHVDC režimo 2 charakteringojo dažnio įtakos koeficientai

Pagal WPLnoHVDC režimo analizės rezultatus (3.12–3.16 pav.), identifikuoti du nepakankamai slopinami charakteringieji dažniai. Pirmojo slopinimo koeficientas -4,2 %, o antrojo – -5,5 %. Žvelgiant į charakteringųjų dažnių dešiniuosius savuosius vektorius, ženkliai išsiskiria EESTI G9 generatoriaus fazė. Net ir nepaisant to, fazės skirtumas matomas tarp Estijos ir Lietuvos/Latvijos generatorių grupių, todėl taip tarpsisteminės grupės charakteringieji dažniai.

Pagal apskaičiuotus įtakos koeficientus, pirmojo charakteringojo dažnio švytavimui aktualiausias EESTI G9 generatorius, o antrajam didžiausią įtaką turi LE G9 agregatas.

Režimas #5: WPLimpHVDC

3.17 pav. WPLimpHVDC režimo charakteringieji dažniai

3.18 pav. WPLimpHVDC režimo 1 charakteringojo dažnio forma

3.19 pav. WPLimpHVDC režimo 2 charakteringojo dažnio forma

Režimas #5: 1 charakteringojo įtakos koeficientai

3.20 pav. WPLimpHVDC režimo 1 charakteringojo dažnio įtakos koeficientai

3.21 pav. WPLimpHVDC režimo 2 charakteringojo dažnio įtakos koeficientai

WPLimpHVDC režimo modalinės analizės rezulatai (3.17–3.21 pav.) rodo, kad egizistuoja du charakteringieji dažniai, kurie nors ir tenkina -5 % minimalaus slopinimo koeficiento ribą, tačiau tam tikromis sąlygomis gali būti pavojingi. Dėl šios priežasties jie analizuojami detaliau. Kaip ir praeito režimo atveju, matomas ryškus fazės isiskyrimas tarp Estijos ir Lietuvos/Latvijos sistemos generatorių, todėl tai taip pat tarpsisteminiai charakteringieji dažniai. Įvertinus apskaičiuotus įtakos koeficientus, pirmajam charakteringajam dažniui didžiausią įtaką turi EESTI G9 generatorius, antrajam – KHAE G1.

Režimas #6: WPLexpHVDC

3.22 pav. WPLexpHVDC režimo charakteringieji dažniai

3.23 pav. WPLexpHVDC režimo 1 charakteringojo dažnio forma

Režimas #6: 1 charakteringojo dažnio įtakos koeficientai

3.24 pav. WPLexpHVDC režimo 1 charakteringojo dažnio įtakos koeficientai

WPLexpHVDC režime identifikuotas vienas charakteringasis dažnis, kurio slopinimo koeficientas -6,9 %. Nepaisant to, kad slopinimo koeficientas tenkina minimalią ribą, detalesnės analizės metu matoma, kad tai tarpsisteminis charakteringasis dažnis, o jam didžiausią įtakos koeficientą turi EESTI G9 generatorius.

Modalinės analizės metu identifikuoti kritiniai charakteringieji dažniai yra iki 1 Hz, todėl ir teoriškai jie priklauso tarpsisteminių charakteringųjų dažnių švytavimų grupei. Pagal 3.25 paveiksle pateiktą grafiką, matoma, kad aukštesnio dažnio švytavimai atsiranda žiemos maksimumo režimuose. WPLimpHVDC režime antrasis charakteringasis dažnis siekia 0,98 Hz. Kiek mažesnio dažnio švytavimai atsiranda vasaros minimumo režimuose. SLLnoHVDC ir SLLimpHVDC režimuose švytavimų dažniai yra apie 0,5 Hz, o SLLexpHVDC režime vienas charakteringasis dažnis siekia 0,83 Hz.

Identifikuotų charakteringųjų dažnių slopinimo koeficientai (3.26 pav.) žiemos maksimumo režimuose yra artimi minimaliai -5% ribai. WPLnoHVDC režime buvo rastas vienas charakteringasis dažnis, kuris yra žemiau minimalios ribos, o likusieji tenkina minimalius slopinimo reikalavimus. Analizuojant vasaros minimumo režimus, identifikuoti charakteringieji dažniai, kurie turi nepakankamus švytavimų slopinimo koeficientus. Pavojingiausias charakteringasis dažnis rastas SLLimpHVDC režime. Jo dažnis 0,58 Hz, o slopinimo koeficientas 2,93 %. Teigiamas slopinimo koeficientas parodo, kad šis charakteringasis dažnis prie tam tikro trikdžio ir sistemos sąlygų gali iššaukti nuolat augančios amplitudės elektromechaninius švytavimus. Nesiimant jokių priemonių sistema gali tapti nestabili dėl generatorių rotorių kampų išsiskyrimo.

Iš visų tirtų sistemos darbo režimų tolimesnei analizei su įdiegtais švytavimų slopinimo įrenginiais pasirenkami du skirtingų tipų režimai su prasčiausiai slopinamais charakteringaisiais dažniais. Iš vasaros minimalaus poreikio režimų grupės mažiausiai slopinamas charakteringasis dažnis rastas SLLimpHVDC režime, o žiemos maksimalaus poreikio grupėje – WPLnoHVDC režimas. Tiriant laikines sistemų reakcijas likę režimai toliau neanalizuojami.

3.3. SLLimpHVDC ir WPLnoHVDC režimų charakteringieji dažniai įdiegus PSS

Tolimesnei analizei atrinktuose režimuose, dinaminio modelio KHAE G1, LE G9 ir EESTI G9 generatoriuose įdiegiami tipiniai PSS įrenginiai, siekiant pagerinti identifikuotų charakteringųjų dažnių slopinimą. Pakartotinai atliekama modalinė analizė, kurios rezultatai pateikiami 3.27 ir 3.28 paveiksluose.

Režimas #2 su PSS: Charakteringieji dažniai

3.27 pav. SLLimpHVDC režimo su įdiegtais PSS charakteringieji dažniai

Režimas #4 su PSS: Charakteringieji dažniai

3.28 pav. WPLnoHVDC režimo su įdiegtais PSS charakteringieji dažniai

Iš gautų rezultatų galima matyti, kad įdiegus PSS įrenginius nepakankamą slopinimą turėję charakteringieji dažniai pasistūmė į kairę s-plokštumoje. Tai reiškia, kad jų slopinimo koeficientas sumažėjo (geriau slopinamas švytavimas), ir šiuo atveju jis tenkina minimalaus slopinimo koeficiento ribą. SLLimpHVDC režime identifikuoto kritinio charakteringojo dažnio slopinimo koeficientas sumažėjo iki -7,2 %. WPLnoHVDC režimo atveju identifikuotų charakteringųjų dažnių slopinimo koeficientai atitinkamai sumažėjo iki -8,1 % ir -11,9 %.

3.4. Sistemos dinaminių procesų laikinės reakcijos

3.4.1. Generatorių rotorių greičių pokyčių laikinės reakcijos be PSS

Modalinės analizės metu identifikuoti vasaros ir žiemos prasčiausiai slopinamus charakteringuosius dažnius turintys režimai, kurie patikrinami pagal generatorių rotorių greičių pokyčių laikines reakcijas. Taip įvertinama netiesinio dinaminio modelio įtaka ir patikrinami modalinės analizės rezultatai.

3.29 pav. SLLimpHVDC režimo generatorių rotorių greičių pokyčiai be PSS

Pagal gautas pereinamųjų procesų kreives (3.29 pav.), didžiausios amplitudes švytavimai atsiranda EESTI G9 generatoriuje. To priežastys yra didžiausia generuojama aktyvioji galia lyginant su kitais generatoriais, ir mažiausias atstumas iki modeliuojamo trikdžio vietos. Lietuvos generatorių KHAE G1 ir LE G9 rotorių greičių pokyčių pereinamieji procesai tarpusavyje panašūs. Kiek didesnės amplitudės švytavimai pastebimi KHAE G1 generatoriuje.

Modalinės analizės metu pagal dešiniojo vektoriaus formą buvo nustatyta, kad išsiskiria fazė tarp Estijos ir Lietuvos/Latvijos generatorių. Analogiški rezultatai pastebimi ir laikinėse charakteristikose. EESTI G9 generatoriaus fazė visiškai priešinga KHAE G1 ir LE G9 generatoriams, tai yra persistūmusi 180 laipsnių.

3.30 pav. WPLnoHVDC režimo generatorių rotorių greičių pokyčiai be PSS

WPLnoHVDC režimo atveju (3.30 pav.) generatorių rotorių švytavimų amplitudės yra ženkliai mažesnės nei SLLimpHVDC režime. Pagrindinė to priežastis, kad šiame režime ženkliai mažesnis galios srautas per elektriškai silpną Estijos–Latvijos pjūvį. Be to, modalinės analizės metu taip pat nustatyti charakteringieji dažniai su didesniu slopinimo koeficientu. Tai reiškia geresnį švytavimų slopinimą. Kaip ir SLLimpHVDC režimo atveju, pereinamųjų procesų kreivėse aiškiai matomas fazės skirtumas tarp Estijos ir Lietuvos generatorių.

Modalinės analizės metu buvo nustatyti nepakankamai slopinami charakteringieji dažniai hercais. Panašaus pobūdžio švytavimus galima pastebėti ir dinaminių procesų laikinėse reakcijose. Pagal gautas WPLnoHVDC režimo analizuojamų generatorių rotorių greičių pokyčių kreives, švytavimų dažnis apytiksliai kinta 0,9–1,0 Hz ribose. Panašaus dažnio švytavimai buvo nustatyti ir modalinės analizės metu, o esami skirtumai grindžiami modelio netiesiškumu.

3.4.2. Generatoriaus rotoriaus švytavimo priklausomybė nuo trikdžio vietos

Modalinės analizės metu charakteringieji dažniai apskaičiuojami esant tam tikram trikdžiui sistemoje, kuris sužadina mažiausiai slopinamus charakteringuosius dažnius. Vienintelis trūkumas yra tai, kad nėra identifikuojamas trikdis, kuris sužadino atitinkamus charakteringuosius dažnius. Pagal esamą Baltijos šalių EES topologiją, pavojingus elektromechaninius generatorių rotorių švytavimus gali sužadinti trikdis vienoje iš dviejų probleminio Estijos–Latvijos pjūvio linijų Valmiera–Tartu bei Valmiera–Tsirgulina. Šiuo atveju siekiama įvertinti, kokią įtaką generatoriaus rotoriaus švytavimams turi trikdžio parinkimo vieta. Pagrindinis skirtumas tarp minėtų linijų yra jų ilgis ir prijungimo vieta. Valmiera–Tsirgulina linija su toliau nueinančia 330 kV linija prijungta prie EESTI G9 generatoriaus mazgo.

3.31 pav. SLLimpHVDC režimo EESTI G9 generatoriaus rotoriaus greičio pokytis trikdžiui esant Valmiera–Tartu (LN301) arba Valmiera–Tsirgulina (LN354) linijose

3.32 pav. WPLnoHVDC režimo EESTI G9 generatoriaus rotoriaus greičio pokytis trikdžiui esant Valmiera–Tartu (LN301) arba Valmiera–Tsirgulina (LN354) linijose

Iš gautų rezultatų (3.31 pav. ir 3.32 pav.) matoma, kad skirtumas tarp šių dviejų analizuojamų trikdžių labai nedidelis. Kiek mažesnis pereinamojo proceso slopinimas pastebimas, kai 100 ms linijos atjungimo trikdis modeliuojamas Valmiera–Tartu linijoje. To priežastimi gali būti didesnis galios srautas per liniją, bei trikdžio metu likusios įjungtos Valmiera–Tsirgulina linijos ilgis, kuris tranzitu per Tsirgulina mazgą iki Eesti EJ yra ženkliai didesnis nei sutrikdytosios.

WPLnoHVDC režimo atveju srautas per analizuojamas linijas yra priešingų krypčių, todėl gautoje kreivėje matomas 180° fazės postūmis. Generatorių elektromechaninių švytavimų slopinimo skirtumas tarp šių modeliuojamų trikdžių taip pat minimalus.

3.4.3. Generatorių rotorių greičių pokyčių laikinės reakcijos su PSS ir papildoma linija

Modalinės analizės metu buvo identifikuoti generatoriai, kuriuose įdiegus PSS galima tikėtis efektyviausio charakteringųjų dažnių švytavimų slopinimo. Iš visų tirtų sistemos režimų, buvo nustatyti trys generatoriai – KHAE G1, LE G9 ir EESTI G9. Dinaminiame sistemos modelyje šiems generatoriams sumodeliuoti standartiniai PSS įrenginiai su tipiniais parametrais, kurie buvo pateikti 2.13 lentelėje.

Švytavimų slopinimas panaudojant PSS įrenginius yra vienas dažniausiai naudojamų metodų dėl santykinai nedidelių jo kaštų. Tačiau tiriant silpnojo signalo stabilumo švytavimus per silpną elektrinį ryšį tarp energetinių sistemų, alternatyvus problemos sprendimo būdas yra tarpsisteminio elektrinio ryšio stiprinimas. To įgyvendinimui, reikia nutiesti trečia elektros perdavimo liniją per probleminį Estijos–Latvijos pjūvį. Šis metodas yra labai efektyvus, tačiau reikalauja labai didelių investicijų, o įgyvendinimas užtrunka ilgą laiko tarpą.

Žemiau esančiuose grafikuose pateikiamos nustatytų PSS diegimui optimalių generatorių rotorių greičių pokyčių laikinės reakcijos SLLimpHVDC ir WPLnoHVDC režimuose. Charakteristikos gautos modeliuojant atvejus, kai generatoriai be PSS, su PSS, be PSS, tačiau su papildoma linija, su PSS ir su papildoma linija. 3.7 ir 3.8 lentelėse pateikiami gautų pereinamųjų procesų kokybiniai rodikliai, pagal kuriuos įvertinamas taikomų metodų švytavimams slopinti efektyvumas.

3.33 pav. SLLimpHVDC režimo KHAE G1 generatoriaus rotoriaus greičio pokytis be PSS, su PSS, su 3 linija, su PSS bei 3 linija

3.34 pav. SLLimpHVDC režimo LE G9 generatoriaus rotoriaus greičio pokytis be PSS, su PSS, su 3 linija, su PSS bei 3 linija

3.35 pav. SLLimpHVDC režimo EESTI G9 generatoriaus rotoriaus greičio pokytis be PSS, su

PSS, su 3 linija, su PSS bei 3 linija

Tiriamasis atvejis	Generatorius	Amplitudė × 10 ⁻³ , pu	Paklaidos integralas × 10 ⁻³ , pu		
be PSS	KHAE G1	0,609	0,895		
	LE G9	0,443	0,636		
	EESTI G9	1,44	2,18		
su PSS	KHAE G1	0,59	0,645		
	LE G9	0,305	0,312		
	EESTI G9	1,33	0,6		
su 3 linija	KHAE G1	0,133	0,182		
	LE G9	0,103	0,125		
	EESTI G9	0,322	0,418		
su PSS ir 3 linija	KHAE G1	0,126	0,151		
	LE G9	0,0756	0,072		
	EESTI G9	0,255	0,11		

3.7 lentelė. SLLimpHVDC režimo pereinamųjų procesų kokybės rodikliai

Iš gautų SLLimpHVDC režimo KHAE G1 generatoriaus rotoriaus greičio pokyčių kreivių (3.33 pav.) ir nustatytų amplitudžių (3.36 pav.) pastebima, kad šiame agregate PSS įrenginio diegimas didelės įtakos švytavimo amplitudės slopinimui nepadarė. Atveju su PSS amplitudė sumažėjo tik 3,1 %. LE G9 ir EESTI G9 generatoriuose amplitudė taip pat ženkliai nesumažėjo. Vertinant apskaičiuotus paklaidos nuo nusistovėjusios reikšmės integralus (3.37 pav.), didžiausias efektyvumas rotoriaus švytavimų slopinime matomas EESTI G9 generatoriuje. Jo paklaidos integralas sumažėjo 72 %. KHAE G1 ir LE G9 generatorių paklaidos integralai atitinkamai sumažėjo 28 % ir 51 %.

Tiek pagal reakcijos amplitudės reikšmes, tiek pagal paklaidos nuo nusistovėjusios būsenos reikšmės integralus, papildomos linijos diegimas į perdavimo tinklą sėkmingiau slopina atsirandančius charakteringųjų dažnių švytavimus ir patikimiau užtikrina sistemos silpnojo signalo

stabilumą. KHAE G1 ir EESTI G9 generatorių pereinamojo proceso amplitudinė reikšmė sumažėjo net 78 %, o LE G9 – 77 %. Analizuojant pereinamųjų procesų paklaidos integralaus, pastarieji sumažėjo generatoriuose apie 80 %.

Didžiausias skirtumas tarp atvejų, kai modeliuojama papildoma linija ir kai taikomi abu metodai, pastebimas EESTI G9 generatoriuje, kuomet paklaidos integralas sumažėjo 74 %. KHAE G1 ir LE G9 generatoriuose tarp šių atvejų didelis skirtumas nepastebimas. Žvelgiant į amplitudines vertes, žymus skirtumas taip pat neaptiktas.

Akivaizdu, kad geriausias generatorių rotorių švytavimų rezultatas pasiektas taikant abu metodus, tai yra įdiegus PSS ir sumodeliavus papildomą liniją. Palyginus EESTI G9 generatoriaus švytavimų slopinimo paklaidos integralus, kai modeliuoja be PSS, ir kai su PSS ir papildoma linija, šis rodiklis sumažėja netgi 95 %.

3.38 pav. WPLnoHVDC režimo KHAE G1 generatoriaus rotoriaus greičio pokytis be PSS, su PSS, su 3 linija, su PSS bei 3 linija

3.39 pav. WPLnoHVDC režimo LE G9 generatoriaus rotoriaus greičio pokytis be PSS, su PSS, su 3 linija, su PSS bei 3 linija

3.40 pav. WPLnoHVDC režimo EESTI G9 generatoriaus rotoriaus greičio pokytis be PSS, su PSS, su 3 linija, su PSS bei 3 linija

Tiriamasis atvejis	Generatorius	Amplitudė × 10 ⁻³ , pu	Paklaidos integralas × 10 ⁻³ , pu		
be PSS	KHAE G1	0,12	0,24		
	LE G9	0,105	0,202		
	EESTI G9	0,218	0,349		
su PSS	KHAE G1	0,0778	0,124		
	LE G9	0,076	0,11		
	EESTI G9	0,0939	0,0985		
su 3 linija	KHAE G1	0,0356	0,0635		
	LE G9	0,0334	0,0541		
	EESTI G9	0,0682	0,085		
su PSS ir 3 linija	KHAE G1	0,0342	0,0365		
	LE G9	0,0313	0,0358		
	EESTI G9	0,032	0,0319		

3.8 lentelė. WPLnoHVDC režimo pereinamųjų procesų kokybės rodikliai

WPLnoHVDC režimo atveju charakteringųjų dažnių švytavimai mažesni ir geriau slopinami nei SLLimpHVDC režime. Čia pastebima, kad PSS diegimas pagerina rotoriaus greičio pokyčio pereinamojo proceso kokybę pagal amplitudines reikšmes ir paklaidos integralus. Nors pirmojo periodo metu amplitudinė reikšmė nesiskiria ženkliai nuo atvejo, kai modeliuojama be PSS, tačiau antrojo periodu metu pastebima, kad amplitudė sumažėja įdiegus PSS. KHAE G1 generatoriaus amplitudė sumažėjo 35 %, LE G9 – 28 %, o EESTI G9 – 57 %. Vertinant pagal paklaidos integralus (3.42 pav.), taip pat matoma, kad švytavimų slopinimo efektyvumas padidėjo integravus PSS.

Papildomos linijos diegimas perdavimo tinkle WPLnoHVDC režimo atveju taip pat geriau slopina generatorių rotorių švytavimus nei su PSS. Tai ypač matoma KHAE G1 ir LE G9 generatoriuose, kuomet paklaidos integralai atitinkamai sumažėjo 74 % ir 73 %. Pagal 3.42

paveikslą pastebima, kad EESTI G9 generatoriuje PSS diegimas buvo efektyviausias iš visų generatorių, tačiau skirtumas nuo atvejo su papildoma linija yra nedidelis.

Analogiškai SLLimpHVDC režimui, geriausi švytavimų slopinimo rezultatai pasiekiami taikant abu metodus. Tačiau pagal amplitudinės charakteristikas galima pastebėti, kad KHAE G1 ir LE G9 pirmojo periodo amplitudinė reikšmė yra beveik lygi tiek atveju tik su papildoma linija, tiek atveju su PSS ir papildoma linija. Žvelgiant į paklaidos integralus ir lyginant juos su atveju, kai modeliuojama be PSS, KHAE G1 generatoriaus paklaidos integralas nuo nusistovėjusios reikšmės sumažėjo 85 %, LE G9 – 82 %, o EESTI G9 – 91 %.

IŠVADOS

- Atlikus literatūros analizę nustatyta, kad elektromechaniniai švytavimai tarp atskirų sistemų generatorių grupių gali būti slopinami įvairiais valdymo įrenginiais, tokiais kaip PSS, POD, SVC, FACTS ir kitais, tačiau įrengimo kaštų ir efektyvumo santykiu dažniausiai naudojami PSS.
- 2. Sprendžiant srautų pasiskirstymo uždavinį ir atliekant trumpojo jungimo sistemoje modeliavimą nustatyta, kad sudarytas Baltijos šalių EES statinis ir dinaminis modelis yra konverguojantis ir stabilus, o sprendinys rastas per 5 iteracijas. Pagal trumpojo jungimo modeliavimo rezultatus, gautos laikinės reakcijos yra slopstančios amplitudės, todėl sumodeliuota sistema dinamiškai stabili. Pagal tai galima teigti, kad modelis adekvatus silpnojo signalo stabilumo analizei.
- Eksperimentiškai atlikus savųjų reikšmių analizę tiriamiems sistemos darbo režimams nustatyta, kad blogiausiai slopinami charakteringieji dažniai identifikuoti SLLimpHVDC ir WPLnoHVDC režimuose. Atitinkamai jų dažnis 0,581 Hz ir 0,871 Hz, o slopinimo koeficientai – 2,9 % ir -4,2 %.
- Savųjų reikšmių analizės metu, pagal dešiniuosius savuosius vektorius nustatyta, kad aptikti charakteringieji dažniai priklauso tarpsisteminių charakteringųjų dažnių grupei, nes švytavimo dažniai žemesni nei 1 Hz.
- Įvertinus tiriamųjų režimų įtakos koeficientus identifikuotiems nepakankamai slopinamiems charakteringiesiems dažniams nustatyta, kad PSS diegimo optimali vieta yra KHAE G1, LE G9 ir EESTI G9 generatoriuose.
- Eksperimentiškai gauta, kad įdiegus PSS nustatytose vietose, nepakankamai slopinami charakteringieji dažniai pasislenka kairiau s-plokštumoje ir tenkina minimalaus slopinimo koeficiento ribą.
- Eksperimentiškai ištyrus generatorių laikines reakcijas modeliuojant 100 ms linijos atjungimo trikdį nustatyta, kad atsirandančių taprsisteminių elektromechaninių švytavimų stiprumas priklauso nuo aktyviosios galios srauto per elektriškai silpną Estijos–Latvijos pjūvį.
- 8. Eksperimentiškai nustatyta, kad švytavimų slopinimo įrenginių diegimas ir metodų taikymas didžiausią efektyvumą turėjo EESTI G9 generatoriuje. Lyginant tarp atvejų be PSS ir su PSS bei papildoma linija, pagal pereinamųjų procesų paklaidos nuo nusistovėjusios reikšmės integralus, EESTI G9 generatoriaus rotoriaus švytavimų slopinimas padidėjo 95 % SLLimpHVDC režime ir 91 % WPLnoHVDC režime.

INFORMACIJOS ŠALTINIŲ SĄRAŠAS

- 1. KUNDUR, Prabha; BALU, Neal J.; LAUBY, Mark G. *Power system stability and control*. New York: McGraw-hill, 1994.
- FERDOUSH, Asif; RABBANI, M. G. Power system stabilizer tuning based on frequency response method. In: *Electrical and Computer Engineering (ICECE), 2014 International Conference on*. IEEE, 2014. p. 536-539 [žiūrėta 2018 m. kovo 9 d.]. Prieiga per: <u>http://ieeexplore.ieee.org/document/7026927/</u>
- 3. FARMER, Richard G. Power system dynamics and stability. *The Electric Power Engineering Handbook*, 2001, 2.
- DEY, Prasenjit ir kt. Small signal stability improvement of large interconnected power systems using power system stabilizer. In: *Convergence in Technology (I2CT), 2017 2nd International Conference for*. IEEE, 2017. p. 753-760 [žiūrėta 2018 m. kovo 9 d.]. Prieiga per: http://ieeexplore.ieee.org/document/8226229/
- LASTOMO, Dwi, ir kt. The effects of energy storages on small signal stability of a power system. In: *Intelligent Technology and Its Applications (ISITIA), 2017 International Seminar* on. IEEE, 2017. p. 52-57 [žiūrėta 2018 m. kovo 11 d.]. Prieiga per: http://ieeexplore.ieee.org/document/8124054/
- LI, Can; DENG, Jingchao; ZHANG, Xiao-Ping. Coordinated design and application of robust damping controllers for shunt FACTS devices to enhance small-signal stability of large-scale power systems. *CSEE Journal of Power and Energy Systems*, 2017, 3.4: 399-407 [žiūrėta 2018 m. kovo 11 d.]. Prieiga per: <u>http://ieeexplore.ieee.org/document/8233585/</u>
- LI, Can, ir kt. Enhancement of power system small-signal stability by coordinated damping control of multiple FACTS devices. 2017 [žiūrėta 2018 m. kovo 25 d.]. Prieiga per: <u>http://ieeexplore.ieee.org/document/7934936/</u>
- AGHAZADE, Asiye; KAZEMI, Ahad; ALAMUTI, Mohsen Mohammadi. Coordination among facts POD and PSS controllers for damping of power system oscillations in large power systems using genetic algorithm. In: *Universities Power Engineering Conference (UPEC)*, 2010 45th International. IEEE, 2010. p. 1-6 [žiūrėta 2018 m. kovo 9 d.]. Prieiga per: http://ieeexplore.ieee.org/document/5649409/
- JOSEPH, Thomas; TYAGI, Barjeev; KUMAR, Vishal. Small signal stability analysis and optimal control of multi-area power system. In: *Power India International Conference* (*PIICON*), 2016 IEEE 7th. IEEE, 2016. p. 1-6 [žiūrėta 2018 m. sausio 23 d.]. Prieiga per: <u>http://ieeexplore.ieee.org/document/8077316/</u>
- FIRDAUS, Ayesha; MISHRA, Sukumar; SHARMA, Dushyant. Quadratic regulator based optimal state feedback controller for stability improvement of inverter based microgrids. In: *Region 10 Conference, TENCON 2017-2017 IEEE*. IEEE, 2017. p. 2165-2170 [žiūrėta 2018 m. kovo 25 d.]. Prieiga per: <u>http://ieeexplore.ieee.org/document/8228219/</u>
- 11. EREMIA, Mircea; SHAHIDEHPOUR, Mohammad. *Handbook of electrical power system dynamics: modeling, stability, and control.* John Wiley & Sons, 2013.
- 12. Internetinė enciklopedija [interaktyvus]. *State-space representation* [žiūrėta 2017 m. balandžio 9 d.]. Prieiga per: <u>https://en.wikipedia.org/wiki/State-space_representation</u>
- 13. SIEMENS vartotojo vadovas. NEVA PSS®NETOMAC Eigenvalue Analysis, Online Documentation. 2011.
- 14. SIEMENS vartotojo vadovas. *PSS®E Program Operation Manual*. Siemens Industry, Inc, 2017.

- 15. Carlos Grande-Moran. Modeling of Two-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS®E. Siemens Power Technology.
- 16. ABB žinynas. Switchgear Manual 1.1 edition.
- 17. AŽUBALIS, Vaclovas. Statinis ir dinaminis elektros sistemų stabilumas: mokymo priemonė. Vilnius, 1989.
- 18. SOOD, Vijay K. *HVDC and FACTS controllers: applications of static converters in power systems.* Springer Science & Business Media, 2006.
- LITGRID, AB. Lietuvos elektros energetikos sistemos ir perdavimo tinklų plėtra 2017–2026 m. [interaktyvus]. Vilnius, 2017 [žiūrėta 2018 m. sausio 10 d.]. Prieiga per: <u>http://www.litgrid.eu/index.php/tinklo-pletra/lietuvos-elektros-perdavimo-tinklu-10-metu-pletros-planas-/3850</u>
- 20. GRIGSBY, Leonard L. Power system stability and control. CRC press, 2016.
- 21. SIEMENS vartotojo vadovas. *PSS®E Program Application Guide, Volume 2.* Siemens Industry, Inc, 2016 m.
- 22. SIEMENS vartotojo dokumentacija. BOSL Controllers Package "Free_License". 2013.
- 23. ENSTO-E. European Network of Transmission Systems Operators for Electricity Europos perdavimo tinklų žemėlapis [interaktyvus] [žiūrėta 2018 m. sausio 3 d.] Prieiga per: https://www.entsoe.eu/map/Pages/default.aspx
- 24. AST. Development plan of transmission power system 2018–2027 [interaktyvus]. Riga, 2017 [žiūrėta 2018 m. sausio 10 d.]. Prieiga per: http://www.ast.lv/files/ast_files/gadaparskzinoj/Attistibasplans20182027.pdf
- 25. ENTSO-E. *TYNDP 2018* [interaktyvus] [žiūrėta 2018 m. sausio 4 d.]. Prieiga per: http://tyndp.entsoe.eu/tyndp2018/

1 PRIEDAS

Bendriniai sinchroninių generatorių tipiniai parametrai

Parametras	Žymėjimas	Matavimo vienetas	Neryškiapoliai generatoriai			Ryškiapoliai generatoriai	
			Aušinamas oru	Aušinamas vandeniliu	Aušinamas vandeniliu/van deniu	4 polių	Daugia poliai
Sinchroninis rektansas	X_d	pu	2,0–2,8	2,1–2,4	2,1–2,6	1,75–3,0	1,3–1,9
	Xq	pu	1,8–2,7	1,9–2,4	2,0–2,5	0,9–1,5	0,8–1,0
Pereinamasis rektansas	X' _d	pu	0,2–0,3	0,27–0,33	0,3–0,36	0,26–0,35	0,24– 0,4
	X' _q	pu	-	-	-	0,3–1,0	
Viršpereinamasis rektansas	X"d	pu	0,15–0,23	0,19–0,23	0,21–0,27	0,19–0,25	0,16– 0,25
	X"q	pu	0,16–0,25	0,19–0,23	0,21–0,28	0,19–0,35	0,18– 0,24
Pereinamoji laiko pastovioji	T' _d	s	0,6–1,3	0,7–1,0	0,75–1,0	0,4–1,1	0,25–1
Viršpereinamoji laiko pastovioji	T"d	s	0,013–0,022	0,017–0,025	0,022–0,03	0,02–0,04	0,02– 0,06
	T"q	S	0,013-0,022	0,018-0,027	0,02–0,03	0,025- 0,04	0,025– 0,08
Pereinamoji atviros grandinės laiko pastovioji	T' _{d0}	s	6–12	6–10	6–9,5	3–9	1,7–4,0
	T' _{q0}	S	-	-	-	0,5–2,0	
Viršpereinamoji atviros grandinės laiko pastovioji	T" _{d0}	S	0,018–0,03	0,023–0,032	0,025-0,035	0,035- 0,06	0,03– 0,1
	T ["] q0	S	0,026-0,045	0,03–0,05	0,04–0,065	0,13–0,2	0,1– 0,35
Statoriaus sklaidos rektansas	\mathbf{X}_{1}	pu	0,1–0,2			0,1–0,2	
Statoriaus varža	R _a	pu	0,002–0,02			0,0015-0,005	

1 lentelė. Sinchroninių generatorių tipinės dinaminių parametrų reikšmės [1]

Pastaba: Tipinės reikšmės pateiktos esant neįsotintai grandinei.