
73

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 2008. No. 1(81)

ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY

T 120
SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

The Transition Fault Model of Programmable Logic

V. Abraitis, Ž. Tamoševičius
The Department of Software Engineering, Kaunas University of Technology,
Studentų str. 50, LT-51368 Kaunas, Lithuania, phone: +370 37 300361; e-mail: abravida@elen.ktu.lt

Introduction

Recently the need for specialized devices is going
greater and greater. But need for such devices in the mar-
ket are in small quantities. To manufacture something in
small quantities mostly in all cases is unprofitable. This
problem can be resolved using universal devices. Such de-
vices are made so, what they don’t have a special function
yet. User can chose and program the final function for de-
vice. Such devices can be manufactured in big quantities
and if we will analyze economical aspect it increases the
profit. The final product will be device with specialized
function required by user. FPGA (Field Programmable
Gate Array) and CPLD (Complex Programmable Logic
Device) represent a class of PLD (Programmable Logic
Device). PLDs are such universal devices. Programmable
area and speed are growing very fast with years, when
price decreases at the same time. The reconfigurability of
such circuits is taking more significance for System-On
Chip (SOC) designers. Actually, reconfigurable logic gives
to SOC system designers much greater flexibility. For such
kind of reasons PLDs are very popular. User can choose
PLD from big variety, depending from size, speed, amount
of logic, triggers and memory or power supply.

At this time PLDs are used in civil industry, medici-
ne, military area and space technologies. The testability
and high reliability questions are very important for such
reasons. Internal PLD architecture is very specific and al-
ready known methods for ASIC can’t fully check them. So
why we need new methods or we have to modify the old
and adopt them for PLD testing. Problems related with
PLD testing are discussed in proceeding articles [1,2,3].

One of the most important PLD types is the SRAM-
based FPGA. In such FPGA, an array of logic cells and
interconnections can be configured to implement the
desired function by loading the SRAMs.

Aims of FPGA tests

Depending on who is testing FPGA, we can set two
different aims for test: full check of FPGA and partial
check of part of FPGA, what is used for function realiza-
tion. The manufacturers are interested in the first aim,

when users are interested in the second. Manufacturer must
check every cell, every connection and so on. Manufactu-
ring-Oriented tests are divided in few tasks for different
components testing: Configurable Logic Blocks (CLB)
[4,5]; interconnections between CLB, interconnections net-
work [6]; Look-Up Tables (LUT) [7]. When all such pro-
cedures passes the manufacturer test is completed. But user
tests are important too, because a set of different reasons,
like: devices are stored for a time, can be damaged by
transportation or damaged by some harmful emission. So
PLDs must be checked before using them in responsible
applications. But users are interested in good functionality
only of PLD’s part, witch need for application, after they
have programmed it. For this aim we can’t use traditional
automatic test patterns generators (ATPG) directly. Such
generators are used for traditional ASICs and test made by
them can’t fully check PLDs. It is because of different
realizations and it was proved by experiments [2]. Such
tests are not estimating internal PLD physical structure
[8,9]. ATPGs are not estimating possible failures in the
memory cells of PLD, so why we need to modify original
circuit and change it into model with the same functionali-
ty. And if we want to make a model of the real circuit with
the same functionality, at first we have to analyze the
internal structure and architecture of PLDs.

Architecture of FPGA

Usually each PLD’s family separates from others by
some features, but almost all of them consist of a matrix of
CLB (configurable logic blocks) and CIOB (configurable
blocks of inputs and outputs). All CLB and CIOB are
connected to each other by CBI (configurable blocks of
interconnections) and a lot of conductors (Fig. 1.). If we’ll
discus only about FPGA, then all configurations are re-
alized by loading the SRAMs with logic zero or logic one.
And almost all SRAM based PLDs have most same inter-
nal structure of CLB (Fig. 2.). CLB has three main compo-
nents: a look-up tables (LUT), multiplexers and D flip-
flops. The difference is only that each manufacturer uses
different sizes and quantities of LUTs, multiplexers and D
flip-flops in one CLB. And sometime they use some sim-
ple combinational logic, like OR, AND, XOR and others.



74

Fig. 1. Simplified architecture of PLD

L
U
T M

U
X

M
U
Xk M1M1_0

M1_1

L M2_0

M2_1

M2

DFF

D Q

AD F

CLB

I

M1_E M2_Eclk

Fig. 2. Simplified architecture of CLB

Fig. 3. Common structure of LUT

Grey boxes in Fig. 2 represent configuration memory
cells (SRAM in the FPGA). A LUT can be programmed to
implement any k-input combinational function or to work
as a 2k bit’s of RAM. In this paper the RAM mode is not
considered. The function of LUTs depends on Truth table,
with is saved in SRAM cells. The CLB internal intercon-
nections are configurable by corresponding SRAM cells
too. CBI consists of commutating transistors and each of
them is controllable by appropriate SRAM cell. All FPGAs
are programmable by writing appropriate value to due
SRAM cell. Such set of values is named configuration.

Analyzing FPGA devices and possible their faults we
have to analyze the internal structure of LUTs. The com-
mon structure is showed in Fig. 3 [10]. R0 – R2

k
-1 are

SRAM cells used to save the Truth table of the function of
LUT. AD controls multiplexers and so at the same time
only one Ri can be connected to the output L. The number
of stages and multiplexers in the stage depends on how
many LUT have inputs.

Almost all SRAM based FPGAs have most same
architecture and internal CLB and LUT structure, like it is
showed in Fig. 1, 2 and 3. Such FPGAs are Virtex–4 [11],
ProASIC™ [12], ispXPGA [13], Stratix II [14] and others.
They vary in number of IO, CLB, LUT’s inputs and flip
flops in one CLB.

The transition fault model of FPGA

It is usual to model the functionality of electronic de-
vices, but it is possible to model faults too. To do it we
need special models of real devices. Using them it is possi-
ble to make tests for real devices. Most popular are stuck-
at, path delay (transition) and element delay fault models.
The fault models describe what must be checked, what
faults are possible in the concrete node. The effectiveness
of model can be checked by experimenting.

Realistically, defects can be divided by derivation to
processing defects (bed contact, parasitic transistors, dis-
ruption of oxide), defects of silicon (fracture, crystal’s un-
solid and amorphous surface, migration of ions), time de-
pending faults (disrupted dielectric, leak of current), pack-
aging (damage of contacts and/or isolation). Almost all
these faults can be modeled by one wire fixation, open and
shortly connected transistor, transition and delay models.

Making transition and delay faults models there can
be mentioned two kinds of faults: STF – slow to fall; STR
– slow to rise. STR, wherever it is in the circuit, can be
took when transition from zero to one (from one to zero, in
transition to zero case) does not effects any output or trig-
ger of the circuit in particular set time period, when it be-
gins counting from transition’s lead-off. There is only one
difference between transition and delay faults: particular
set time range for delay fault for transition. And in case of
transition fault it is took that time for transition is infinite.
Transition and delay faults can appear for few reasons:
some manufacture process failure (resistance and capacity
exceeds projected) and harmful environmental impact,
overheat or too low environmental temperature of exploita-
tion (physical characteristics of crystal are changed).

There are couple of vectors (V1, V2) used for transit-
ion faults test. They can’t be equal. Also all R meanings
(Fig. 3) can’t be same; at least one of them must be equal
to 0 and at least one to 1. These are the main requirements
for testing LUT component [15]. V1 is a vector for
initiation, which sets testable node to appropriate logical
value (0 for STR and 1 for STF). V2 is the transition
vector, which not only initiate transition from one meaning
to another, but also generates wave of transitions in all net
to the output of circuit or to scan trigger, where this
transition can be seen and tested. Based on this we can
state that device will be fully tested if rising and falling
fronts will be formed on all possible nets (paths). Then ris-
ing front could check transition to logical one on the con-
crete path, and falling front could check transition to logi-
cal zero faults on the specific path. Unfortunately, some
faults can’t be checked for circuit’s function, because there
originate some limitations and it is impossible to set one or
other meaning in some node (0 or 1). So the transition
can’t be followed in the circuit’s primary outputs or scan-
ning triggers.

The hardest thing in programmable logical devices is
to check LUTs. Because of these blocks inner structures
and originate main differences between traditional ASIC
circuits and PLLs. Two small circuits could be taken as an
example. There is one OR element (Fig. 4a) in one circuit
and there is LUT of the same function in the other (Fig.
4b). First one has only 6 possible transition faults. It is two
STR and two STF on the inputs A and B, and one STR and



75

one STF faults in the output L. It is obvious, that second
(Fig. 4b) circuit differs from the first. It is enough one LUT
with two inputs to realize OR function. Such two inputs
LUT will have three multiplexers (SW00-01 SW02-03 and
SW10-11) and all of them will be connected into two stages.
So we will have already tree elements and all off them
have tree inputs and one output, so it will be 8 possible
faults per component and total 24. Half of them are STR
and half – STF. This simple example clearly shows how
different are these two circuits in low level schematic.
Possible faults are also different. So why tests generated
for one schematic using traditional methods and models
will fail, when it will be used for other schematic. Such test
will check only part of possible faults of the circuit with
same functionality and programmed in PLD. It was proved
by experiments and published earlier [2].

a) b)
Fig. 4. a) Simple OR element; b) LUT with OR function

Fig. 5. Model of the LUT

The transition fault model of LUT

The fault model can be used to get exhaustive test for
some configuration. Such model must fully represent the
functionality and faults of LUT. When we are making tests
for PLD’s circuits, we are facing with few main problems:
1. Testing vectors generated of ASIC’s circuits don’t
test PLL’s fully.
2. Circuits synthesized using libraries of PLL elements
are hardly testable. ATPG are overloaded with huge
amount of untestable faults and it takes big amount of time.
3. After synthesis it is known only what must be loaded
into LUTs, but ATPG doesn’t know the LUT’s structure.

For these problems it is proposed the model for tran-
sition faults for FPGA’s (Fig. 5). There the model of LUT
realizes some function with three operands. There is multi-
plexers group inserted in the output of LUT. This group re-
presents the internal structure of real LUT. So, the internal
structure of LUT is showed to ATPG. Now we have got
model representing the real LUT.

To increase speed of test generation it is possible to
limit set of faults with one condition – limitations can’t re-
duce the quality of test. Test patterns initiate wave of tran-

sitions in whole path from initiation point to primary out-
put or scanning trigger. Based on this we can reduce the set
of all possible faults to faults only in the inputs of first
stage of multiplexers (MUX0_0, MUX0_1, MUX0_2,
MUX0_3). These inputs represent all possible paths in the
LUT and such limitations don’t effect test quality. It was
checked by experiments. There is only one possible transi-
tion fault for one input – STF or STR; it depends on value
Rn. We’ll list only these possible faults, so we’ll be sure
that ATPG will check all possible paths if only they aren’t
limited by function. We’ll use the quantity of checked
paths as the gauge of quality of the generated test.

Such model can be used in this way:
 Circuit must be synthesized using PLD elements.

After synthesis we’ll get to know what CLB will be
used and which function implemented using specific
LUT.

 The new net list must be saved writing not the table
of truth, but structure of elements. There is important
only the same function, it will be used as black box in
ATPG.

 The groups of multiplexers must be inserted in the
outputs of LUTs. The size of group depends on
number of inputs of specific LUT.

 The list of possible faults must be limited as it is
described in the model.

 Some ATPG must be used to generate test patterns.
Such test will be the exhaustive and able to check
more possible faults of PLD.

Experimental results

ISCAS-85 benchmarks [16] and Synopsys software
“Design Analyzer” and “Tetra Max” [17] were used for ex-
periments. The results of experiments with tests for transi-
tion faults are showed in the Table 1. The objectives of
experiment were: compare quality of traditional ASIC and
exhaustive PLD tests; prove that tests generated for simple
ASIC circuits can not fully check circuits synthesized in
some PLD library of elements.

Table 1. Exhaustivity of tests of ISCAS-85 circuits
Exhaustivity of test

Circuit
Test for Class Test for Virtex Test for model

C17 52,08% 54,16% 70,83%
C432 55,85% 54,03% 81,35%
C499 41,16% 42,29% 51,35%
C880 55,97% 56,72% 71,1%
C1355 40,62% 41,12% 49,33%
C1908 47,45% 45,69% 58,83%
C2670 50,05% 50,67% 60,73%
C3540 54,48% 53,92% 65,88%
C5315 56,76% 56,93% 62,07%
C6288 44,68% 50,2% 52,38%
C7552 54,78% 54,74% 59,74%

The experiments were made in this way:
1. There are generated three different tests for transition

faults for circuits synthesized using Class (ASIC),
Virtex (PLD) and for described model.

2. All three tests compared to one criterion – how many
testable transition faults on the inputs of multiplexers
in the first stage of model they can check.



76

Tests generated for model are more exhaustive that
tests generated for Class circuits, as for Virtex circuits too.
The 1st table shows that. And there is a bigger probability
what more exhaustive test will check PLD better.

Conclusions

1. There was presented one model for exhaustive test
generation for transition faults of SRAM based PLDs.
The need of such model was proved by experiments.

2. Presented model can be used for testing of PLDs. The
traditional ATPG software for ASIC circuits can be
used for PLDs through this model.

3. Tests generated using model are more exhaustive then
tests generated using traditional methods and can
check PLD better.

References

1. Abraitis V., Bareiša E. The Fault Model of Programmable
Logic Block // Electronics and Electrical Engineering. – 2005.
– No. 6(62). – P. 52–56.

2. Abraitis V., Bareiša E., Benisevičiūtė R. The Testing
Methods of Programmable Integrated Circuits // Electronics
and Electrical Engineering. – 2003. – No. 5(47). – P. 43–47.

3. Bareiša E., Jusas V., Motiejūnas K., Šeinauskas R. Testing
of FPGA Logic Cells // Electronics and Electrical Engine-
ering. – 2004. – No. 7(56). – P. 37–42.

4. Abramovici M., Stroud C. BIST-Based Test and Diagnosis
of FPGA Logic Blocks // IEEE Transactions on VLSI Sys-
tems. – 2001. – No. 9–1. – P. 159–172.

5. Zhao L., Walker D.M., Lombardi F. Detection of Bridging
Faults in Logic Resources of Configurable FPGAs Using Iddq
// International Test Conference. – 1998. – P. 1037–1046.

6. Renovell M., Portal J. P., Figueras J., Zorian Y. Testing the
Interconnect of RAM-Based FPGAs // IEEE Design & Test of
Computers. – 1998. – P. 45–50.

7. Renovell M., Portal J. M., Figueras J., Zorian Y. SRAM-
Based FPGA’s: Testing the LUT/RAM Modules // IEEE
International Test Conference. – 1998. – P. 1102–1111.

8. Šeinauskas R. ASIC Design Flow and Test Generation
Capabilities // Information technology and control. – 2003. –
No. 1(26). – P. 55–60.

9. Renovell M., Figueras J., Zorian Y. Test of RAM-Based
FPGA: Methodology and Application to the Interconnect //
IEEE VLSI Test Symposium. – 1997. – P. 230–237.

10.Girard P., H´eron O., Pravossoudovitch S., Renovell M.
Delay Fault Testing of Look-Up Tables in SRAM-Based
FPGAs // Journal Of Electronic testing: Theory and Applica-
tions. – 2005. – No. 21. – P. 43–55.

11.Xilinx Inc. Virtex–4 Overview. – 2005. – http://www.xilinx.
com/products/silicon_solutions/fpgas/virtex/virtex4/overview/
index.htm .

12.Actel Corporation. ProASIC – The Nonvolatile Reprogram-
mable Gate Array. – 2004. – http://www.actel.com/products/
proasic/index.html .

13.Lattice Semiconductor Co. Instant-On FPGA Solutions:
ispXPGA. – 2006. –http://www.latticesemi.com/products/fpga
/ispxpga/index.cfm .

14.Altera Co. Stratix II Devices: The Biggest & Fastest FPGAs.
– 2006. – http://www.altera.com/products/devices/stratix2/st2-
index.jsp .

15.Girard P., H´eron O., Pravossoudovitch S., Renovell M.
Requirements for Delay Testing of Look-Up Tables in
SRAM-Based FPGAs // Eighth IEEE European Test Work-
shop. – 2003. – P. 147–152.

16.Collaborative Benchmarking Laboratory. ISCAS'85
Benchmark Information. – 1997. – http://www.cbl.ncsu.edu/
CBL_Docs/iscas85.html .

17.Synopsys Inc. Test Automation. – 2005. – http://www.
synopsys.com/products/solutions/galaxy/test/test.html.

Submitted for publication 2006 03 13

V. Abraitis, Ž. Tamoševičius. The Transition Fault Model of Programmable Logic // Electronics and Electrical Engineering. –
Kaunas: Technologija, 2008. – No. 1(81). – P. 73–76.

There is presented the fault model of programmable integrated circuits in this paper, when programmable integrated circuits are
configured to implement a given application. Proposed fault model can be used with traditionally automatic test sequence generators and
result will be exhaustive test of transition faults for programmable integrated circuits with given configuration. Model was tested using
Virtex family PFGAs. Ill. 5, bibl. 17 (in English; summaries in English, Russian and Lithuanian).

В. Абрайтис, Ж. Тамошявичюс. Модель неисправностей переключения программируемых интегральных схем // 
Электроника и электротехника. – Каунас: Технология, 2008. – № 1(81). – C. 73–76.

Рассматриваются модели неисправностей переключения элементов программируемых интегральных схем (ИС), когда 
программируемые интегральные схемы запрограммированы выполнять данную функцию. Предлагаемые модели 
неисправностей переключения могут быть использованы с традиционными генераторами тестовых последовательностей и 
результатом будет исчерпывающий тест для программируемой интегральной схемы с данной конфигурацией. Модели были 
проверены, используя программируемые интегральные схемы семейства Virtex. Ил. 5, библ. 17 (на английском языке; 
рефераты на английском, русском и литовском яз.).

V. Abraitis, Ž. Tamoševičius. Programuojamųjų loginių lustų perjungimo gedimų modelis // Elektronika ir elektrotechnika. –
Kaunas: Technologija, 2008. – Nr. 1(81). – P. 73–76.

Pateikiamas programuojamosios logikos elemento perjungimo gedimų modelis, leidžiantis naudoti tradicinius testinių sekų gene-
ratorius programuojamiesiems lustams tikrinti. Pateiktu modeliu tradicinis automatinis testinių sekų generatorius priverčiamas perrinkti
visas į elemento įėjimus patenkančių rinkinių kombinacijas, apribojamas tik elemento funkcijų. Prieš gaunant testinius rinkinius,
formuojamas tik patikrinamų gedimų sąrašas ir šitaip palengvinamas ir paspartinamas testinių sekų generatoriaus darbas. Atliktas
eksperimentinis modelio patikrinimas naudojant Virtex šeimos programuojamuosius lustus. Il. 5, bibl. 17 (anglų kalba; santraukos
anglų, rusų ir lietuvių k.).


