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Abstract. Conventional finite element method (FEM) is capable of obtaining wave
solutions, but large discretized structures at high frequency require high computa-
tional resources, the computational domain can be reduced by combining FEM with
analytical assumption for guided wave. Semi Analytical Finite Element (SAFE) for-
mulation for immersed waveguide in perfect fluid is used for acquiring propagating
wave modes as dynamic equilibrium states. Modes are solutions to eigenvalue prob-
lem and provide with important characteristic features of the guided waves - phase
velocity, attenuation, wave structure, etc. The effect of surrounding leaky medium
is modeled via traction boundary condition, which is based on assumption of the
continuity of stresses at solid-fluid interface. The boundary condition causes wave
attenuation due to energy leakage into outer medium. The derivation of the eigen-
problem takes into account complex wavenumbers of leaky wave in fluid and guided
wave in a three-dimensional waveguide. Linearization procedure for solving non-
linear eigenvalue problem is used. Dispersion relations for immersed waveguide with
Rayleigh damping are obtained. The limits of applications of Rayleigh damping and
convergence analysis of immersed waveguide model are discussed.
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1 Introduction

Periodic loading on the structure causes its dynamic response as an elastic wave.
Guided waves can be widely applied in various fields such as non-destructive
testing (NDT) [3]. Any structure, which is uniform (both in geometrical and
physical sense) in at least one direction, can be regarded as a waveguide. The
simplest waveguides are plates, rods, beams, etc. Important features of guided
waves are dispersion relations. They provide information about wavenumbers,
group and phase velocities, displacement patterns of the waves, etc. and can
be retrieved analytically just in the cases of simplest waveguides [5, 22].

Obtaining dispersion characteristics in complex structures requires a differ-
ent numerical approach most often based on finite element method (FEM) [24].
FEM is robust and flexible tool widely preferred for solving general problems
for structures of generic geometry and material setup. However, this approach
becomes unsuitable as it requires a lot of computation resources when large
structures at high frequencies are considered. The size of FE models of three-
dimensional (3D) waveguides can be simplified by taking just a small repre-
sentative portion of the waveguide structure with the periodicity condition
along the waveguide. This enables to obtain the wave characteristics via eigen-
problem, where the whole number of wavelengths is contained in the length
of the structure. This technique is used in wave and finite element method
(WFEM) and is easily adopted in commercial FE software by optimizing com-
putational resources for simulation of propagating waves [17]. Another ap-
proach based on semi-analytical method is Scaled Boundary Finite Element
Method (SBFEM) [10]. The Semi Analytical Finite Element Method (SAFE)
requires discretization of the cross-section of the waveguide [12, 23]. The com-
mon assumption for WFEM, SBFEM and SAFE as semi analytical techniques
considers the travelling wave displacement field as separable by using harmonic
term e−ikz along the axis of the waveguide infinite in OZ direction.

More general and realistic propagation scenario includes several possible
damping mechanisms resulting in amplitude attenuation. The decay of elas-
tic wave may be caused by material damping, fluid viscosity or by energy
leakage into the infinite medium surrounding the waveguide [16]. Analysis of
damped waveguides involves complex numbers into eigenproblem formulation.
Viscoelasticity is modeled by using hysteretic or Kelvin Voigt approaches, or
by introducing complex-valued Young’s modulus [2, 21]. Fluid viscosity must
be taken into account in case the waveguide interacts with in the fluid domain.
A hypothetical isotropic solid can be used for representation of the fluid ac-
commodating viscosity [15]. The attenuation due to energy leakage affects both
elastic and viscoelastic waveguide.

While there are many works addressed to waveguides in vacuum with stress-
free condition, the techniques, that support interaction with leaky medium,
are still under development. The problems including concrete rods buried in
soil or thin walled pipes (hollow cylinders) filled with fluid require modeling
the surrounding leaky medium, which causes propagating wave to attenuate
due to leakage of the energy. A common way to simulate the wave trans-
mission to surrounding infinite medium by FEM requires to eliminate or to
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significantly reduce the reflections from the boundaries of the computational
domain via absorbing regions around the waveguide immersed/imbedded in
simulated leaky medium [4]. As the travelling wave in surrounding medium
approaches boundaries of medium’s domain, it gradually disappears. However,
this external domain requires the number of finite elements many times bigger
than the number of finite elements in the waveguide. The perfectly matched
layer (PML) approach is similar to the technique of absorbing layers, but the
domain representing medium and high attenuating region remains [20]. Fur-
ther additional sorting procedure is necessary afterwards in order to keep only
physically meaningful solutions. The 2.5 D boundary element technique was
used to model the surrounding leaky medium. This approach involves com-
plex non-linear eigen problem for obtaining wavenumbers for damped waveg-
uide, however computational time for this technique is greater in comparison
to SAFE formulation coupled to infinite element or PML [14]. As demon-
strated, the simple approximation by dashpot boundary conditions included
in SBFEM can lead to sufficiently accurate results for waveguides embedded
in surrounding solid medium [8]. An iterative exact dashpot boundary con-
dition was employed in SBFEM for obtaining the wavenumbers for waveguide
immersed in perfect fluid [7], Hayashi et al has extended SAFE formulation for
plates loaded with leaky medium [11]. Waveguides interacting with fluid sup-
port distinct quasi-Scholte surface waves, which are absent in case of vacuum.
Scholte wave propagates at the interference between the waveguide and fluid
and tends to dissipate energy rather slowly.

This study adopts the approach of immersed plate for acquiring dispersion
relations for three-dimensional waveguide of rectangular cross-section immersed
in perfect fluid using SAFE procedure. The used damping mechanism for
waveguide combines leaky waves and material damping. The attenuation due
to energy leakage is considered in this study, as it does not require modeling of
outer leaky medium in case of perfect fluid. The theoretical investigation of the
impact of Rayleigh damping to dispersion relations for immersed waveguide is
carried out.

2 Traction condition for immersed waveguide in perfect
fluid

2.1 SAFE formulation for traction-free waveguide

In this section the waveguide in vacuum will be described and the outer me-
dium, a perfect fluid, will be discussed in the next section. SAFE approach
assumes that the waveguide with arbitrary cross-section has no geometrical
variation along at least one axis. Therefore, only the cross-section has to be
discretized using FE. A rectangular bar with cross-section parallel to XOY
plane and infinite along OZ direction is considered in this study. Hamilton’s
virtual work principle for discretized structure in vacuum yields the eigen prob-
lem as

(K1 + ikZK2 + k2ZK3 + ω2M)U = 0. (2.1)

The solution of (2.1) provides wavenumbers kZ as eigenvalues and U am-
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plitudes of nodal displacements as eigenvectors of wave solution at given real
valued angular frequency U. The matrices for a single FE involved in eigenvalue
problem (2.1) are defined as

Me =

∫∫
N(x, y)T ρeN(x, y)dxdy, K1e =

∫∫
BT

1 DeB1dxdy,

K2e =

∫∫
(BT

1 DeB2 −BT
2 DeB1)dxdy, K3e =

∫∫
BT

2 DeB2dxdy,

where T denotes matrix transform operator, N is the matrix of shape functions,
ρ is the mass density, D is elasticity matrix, B1 and B2 are strain matrices
containing partial derivatives of shape functions. As a result, the displacement
in spatial and time domain reads as

U(x, y, z, t) = U(x, y)ei(kz−ωt),

which indicates that the displacement field is expressed via harmonic wave
propagating in OZ direction.

In this way, SAFE formulation exploits harmonic spatial and temporally ex-
ponential function ei(kz−ωt) to numerically reduce the three-dimensional model
to two-dimensional one.

2.2 Traction condition for the waveguide

Let’s consider a waveguide that has infinite length in OZ direction, immersed
in infinite leaky medium, assumed to be perfect non-viscous fluid, which does
not support shear waves (Figure 1(a)).

(a) (b)

Figure 1. (a) Scheme of immersed waveguide; (b) Discretization of cross-section of the
waveguide.

The guided wave is assumed to be travelling in a waveguide along OZ direc-
tion with wavenumber vector kz (direction of which coincides with OZ axis) at
angular frequency ω. SAFE approach represents the finite element domain Ω
as discretized cross-section of the waveguide and is a boundary perimeter of the
cross-section (Figure 1(b)). The coordinate system of the structure is oriented
in such a way that the directions of nodal displacements 1) uτ tangential to
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surface of cross-section, 2) un normal to surface of cross-section, 3) uz parallel
to waveguide axis on upper side of Γ respectively match OX or OY and OZ
global directions depending on the concerned side of waveguide. Displacements
uτ and uz would excite shear waves in surrounding leaky medium. In case of
the perfect fluid only displacement un excites the longitudinal wave in outer
fluid.

The traveling wave in the waveguide also generates the pressure wave in
the surrounding fluid. This pressure wave can be found as a superposition
of two separate waves traveling in the directions of waveguide axes OZ and
un respectively. The wave in the fluid is characterized by wavenumber vector
k̃. The norm of the wavenumber vector associated with this pressure wave is
related with acoustic properties of the leaky medium as

k̃ = ω/c̃L,

where tilde superscript denotes that the parameter corresponds to the leaky
medium.

The direction of wavenumber vector k̃ reads as

k̃2 = k̃2L + k̃2z , (2.2)

where k̃L is the projection of k̃ in plane perpendicular to the cross-section of
the waveguide, k̃z is the projection of k̃ on axis OZ and coincides with the
wavenumber of travelling wave in the waveguide, i.e., k̃z = kz (Figure 2(a)).
In this work the analysis is restricted to convex cross-sections in order to avoid
travelling wavefield back to the waveguide surface. Let Γ1 be the segment

(a) (b)

Figure 2. (a) Wavenumbers at interface of waveguide and fluid; (b) schematic
classification of nodal displacements in the cross-section.

of the cross-section perimeter determined between two points 0, y1 and x1, y1
(Figure 1(b)). Let xarb being on Γ1 to coincide with FE nodes with respect
to OX axis, while following the assumption, that stress and displacements
are continuous at interface of solid and fluid. That yields waveguide surface
traction caused by fluid:

tΓ1 =

tntτ
tz

 = NTje
ikzz, (2.3)
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where N is the shape function with constraint y = y1, j = 1, m, (m − 1) is
the number of FEs along boundary Γ1, Tj is nodal external traction vector at
waveguide boundary as:

Tj =

tn0
0

 = −iω
2

k̃L

ρ̃ 0 0
0 0 0
0 0 0

unuτ
uz

 = −iω
2

k̃L
C

unuτ
uz

 . (2.4)

The surface traction for waveguide (2.4) accounts for the load caused by fluid,
which is the function of acoustic properties of the fluid, angular frequency of
the travelling wave and displacements at the boundary of solid and fluid. A
detailed derivation of (2.3) is given in Appendix.

3 Obtaining dispersion relations

3.1 Nonlinear eigenvalue problem

The external boundary condition must be included into the general eigenvalue
problem as

(K1 + ikZK2 + k2ZK3 − ω2M)u = Ffluid + Floading, (3.1)

where Ffluid is the nodal force vector due to fluid traction condition, Floading
is the nodal force vector due to external dynamic loading in case the forced
wave response is concerned. In case Floading = 0, (3.1) is treated as an eigen-
value problem, the solution of which gives dispersion relations for waveguide
immersed in fluid.

Ffluid summarizes the external traction caused by fluid loading:

Ffluid = i
ω2

k̃L
Qu = i

ω2

k̃L
QUe−ikzz,

where coefficient matrix Q characterizes the distribution of fluid tractions
among the nodes on surface perimeter Γ as in [8]:

Q =

∫
s∈Γ

(N(s))
T
CN(s)ds,

where N(s) is one-dimensional shape function used to interpolate x and y
coordinates on Γ , s is a circumferential integral coordinate running along Γ .

Finally, the governing equation for immersed waveguides is obtained:(
K1 + ikZK2 + k2ZK3 − ω2M− iω

2

k̃L
Q

)
U = 0. (3.2)

3.2 Solving eigenvalue problem

In this study (3.2) is solved by extending the technique proposed in paper [11] to
three-dimensional waveguide. Two stage procedure of algebraic transformation
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and linearization of (3.2) is employed. The m-th wavemode (kZm, k̃Lm,ϕm)
must satisfy equation:(

K1 + ikZmK2 + k2ZmK3 − ω2M− i ω
2

k̃Lm
Q

)
ϕm = 0. (3.3)

Further transformation is based on symmetry of wave solutions with respect
to XOY plane. Identical waves propagating in positive and negative OZ di-
rections are described by (3.3). In order to exploit this feature, we split eigen
vector ϕm with respect of displacements in directions of OZ and other than
OZ:

ϕm =

(
ϕom
ϕzm

)
.

For convenience of post-processing of modal results eigen vector ϕm is split
by separating nodal degrees of freedom (dof) with respect to displacements un
on Γ , that correspond to the longitudinal wave in the fluid (denoted by L),
displacements uτ on Γ , that would excite shear wave (denoted by S), displace-
ments uz along OZ axis on entire cross-section (denoted by z) and introduced
displacements uC in the core of cross-section (denoted by C) (Figure 2(b)).

The preferable reordering of dof could be summarized as

ϕm =

(
ϕom
ϕzm

)
=
(
ϕLm,ϕSm,ϕCm,ϕzm

)T
. (3.4)

The matrices in (3.3) are divided into block components in accordance with
(3.4) resulting in( (

K1L K1S K1C K1Z

)
+ ikzm

(
K2L K2S K2C K2Z

)
+ k2zm

(
K3L K3S K3C K3Z

)
− ω2

(
ML MS MC MZ

)
− i ω

2

k̃Lm

)(
ϕLm,ϕSm,ϕCm,ϕzm

)T
= 0. (3.5)

Symmetrical solution with respect to OZ direction means that displacement

distribution with −kZm wavenumber and corresponding eigenvector

(
ϕom
−ϕzm

)
also satisfies equation:( (

K1L K1S K1C K1Z

)
− ikzm

(
K2L K2S K2C K2Z

)
+ k2zm

(
K3L K3S K3C K3Z

)
− ω2

(
ML MS MC MZ

)
− i ω

2

k̃Lm
− iω2

(
QL QS QC QZ

) )(
ϕLm,ϕSm,ϕCm,−ϕzm

)T
=0. (3.6)

Linear combination of (3.5) and (3.6) – ((3.5) + (3.6))/2 + kzm((3.5)− (3.6))/2
– provides the eigenvalue problem as( (

K1L K1S K1C K1Z

)
+ ikzm

(
0 0 0 K2Z

)
+ k2zm

(
K3L K3S K3C K3Z

)
− ω2

(
ML MS MC MZ

)
− i ω

2

k̃Lm

(
QL QS QC QZ

) )(
ϕLm,ϕSm,ϕCm, kzmϕzm

)T
= 0,

Math. Model. Anal., 23(2):309–326, 2018.
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which can be further simplified to(
H11 + k2zmH12 +

H0

k̃Lm

)(
ϕLm,ϕSm,ϕCm, kzmϕzm

)T
= 0, (3.7)

where:

H11 =
(
K1L K1S K1C K1Z

)
− ω2

(
ML MS MC MZ

)
,

H12 =
(
iK2L + K3L iK2S + K3S iK2C + K3C iK2Z + K3Z

)
,

H0 = −iω2
(
QL QS QC QZ

)
. (3.8)

As the mechanical energy of waveguide is transferred to the fluid in normal
direction only, the matrix block H0 in (3.8) can be simplified to the form

H0 = −iω2
(
QL 0 0 0

)
.

By substituting (2.2) to (3.7) we obtain(
H1 + k2LmH3 +

H0

k̃Lm

)(
ϕLm,ϕSm,ϕCm, kzmϕzm

)T
= 0, (3.9)

where H1 = H11 + k̃2H12, H3 = −H12. Finally, (3.9) can be rewritten as the
3rd order polynomial eigenvalue problem:

(kLmH1 + k3LmH3 + H0)
(
ϕLm,ϕSm,ϕCm, kzmϕzm

)T
= (kLmH1 + k3LmH3 + H0)ϕ′m = 0. (3.10)

(3.10) now can be recast to linear eigenvalue problem as0 H1 H0

I 0 0
0 I 0

− k̃Lm
−H3 0 0

0 I 0
0 0 I

k̃2Lmϕ′m
k̃Lmϕ′m
ϕ′m


=
(
A− k̃LmB

) (
k̃2Lmϕ′m, k̃Lmϕ′m,ϕ

′
m

)T
= 0,

(3.11)

where I is the identity matrix of dimensions N ×N , where N is the number of
dof over the waveguide cross-section.

(3.11) can be reduced by omitting zero members as:0 H1 H′0
I 0 0
0 I′ 0

− k̃Lm
−H3 0 0

0 I 0
0 0 I′′

k̃2Lmϕ′m
k̃Lmϕ′m
ϕ′′m


=
(
A′ − k̃LmB′

) (
k̃2Lmϕ′m, k̃Lmϕ′m,ϕ

′′
m

)T
= 0,

(3.12)

where matrices I′, I′′ and H′0 are matrices I and H0 with last rows and columns
removed as necessary. Consequently, ϕ′′m has as many rows, as QL, that is, as
many, as there are dofs in contact with the fluid.
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It is convenient to present (3.12) as the standard eigenvalue problem:

(
(B′)

−1
A′ − k̃LmI

)k̃2Lmϕ′m
k̃Lmϕ′m
ϕ′′m

 =
(

(B′)
−1

A′ − k̃LmI
)
Y = 0. (3.13)

The fluid load can be taken into account in cases of both elastic and vis-
coelastic waveguide materials. Rheological model of linear viscoelasticity is ex-
pressed by using complex Young’s modulus in the generalized Maxwell model.
This study considers Rayleigh damping in order to account for the linear vis-
coelasticity of the waveguide under harmonic excitation. Though Rayleigh
damping has no unambiguous physical interpretation, it is widely applied due
to its convenient mathematical formulation. Rayleigh damping matrix C is
produced from mass and stiffness matrices (M and K):

C = aM + bK,

where a and b are scalar coefficients. Substitution of matrix C into (3.2) yields
[1]: (

K̂1 + ikZK̂2 + k2ZK̂3 − ω2M̂− iω
2

k̃L
Q

)
U = 0, (3.14)

here
K̂j = (1− iωb)Kj , j = 1, 2, 3, M̂ = (1− iω−1a)M.

It can be noted that the Rayleigh damping term presents the attenuation
dependent on frequency. It is important to note that the commonly used gov-
erning equation of SAFE formulation (2.1) is derived by assuming k∗z ≈ kz;
where * denotes complex conjugate [1]. Therefore, the Rayleigh damping model
supports just low damping for modes, where Re(kz)� Im(kz).

The loss factor of the waveguide at frequency ω reads as

η = 2ξ = a/ω + bω,

where ξ is the damping ratio.
For small to moderate values of damping ratio, the Rayleigh damping and

the generalized Maxwell models are equivalent [18] to each other. (3.14) can
be linearized and solved as was explained by formulas (3.3) to (3.13). (3.13)
provides solutions of ˜kLm, therefore 2(2N + 2M) solutions for kz are acquired
as

kz = ±
√
k̃2 − k̃2L.

The 2N wavenumbers of form Re(kz) + Im(kz) and 2N wavenumbers of
form −Re(kz)− Im(kz) represent, repectively, outgoing forward and backward
wavemodes. The outgoing modes radiate mechanical energy to the surround-
ing medium while traveling. This energy dissipation causes the decrease of
amplitudes characterized by the magnitudes of imaginary part (Im(kz) 6= 0).
2N wavenumbers of form Re(kz) − Im(kz) and 2N wavenumbers of form
−Re(kz) + Im(kz) represent, respectively, forward and backward incoming
modes. Incoming modes represent inward wave from the surrounding medium

Math. Model. Anal., 23(2):309–326, 2018.
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into the waveguide, which amplify the amplitude of the wave within the waveg-
uide. 2M wavenumbers of form Re(kz) + 0 and 2M wavenumbers of form
−Re(kz) + 0 represent the forward and backward quasi-Scholte wavemodes.
They propagate at the waveguide and fluid interface.

Their energy distribution is concentrated along the interface as they travel.
Quasi-Scholte waves do not attenuate and disperse much.

In case the Rayleigh damping of immersed waveguide is considered in (3.14),
the imaginary parts of the resulting wavenumbers account for energy losses due
to geometrical energy spreading and internal friction. The dispersion relations
can be presented by phase velocity cph = ω

Re(kz)
, which is a ratio between given

ω and real part of calculated wavenumbers kz.

4 Mode tracking

SAFE models with refined discretization of the waveguide cross-section provide
more wavemode solutions to (3.13) due to multi-modal nature of the waves. Dif-
ferent modes with numerically similar wavenumbers for the same angular fre-
quency may appear. Therefore, it is difficult to distinguish the dispersion curves
of different relaying just on the graphical appearance of dispersion curves. At
different angular frequencies, tracking a mode of an individual modal shape
is of interest as the dispersion curves are generated. The approach described
in [13] is adopted in this study for tracking the wavenumbers obtained from
(3.13) and assigning them to the same mode characterized by its individual
modal shape.

Tracking wavenumber k̃Lm at given value ω is based on finding the incre-
ment ∆k̃Lm at which the updated wavenumber k̃Lm +∆k̃Lm at ω+∆ω would
belong to m-th mode. Right and left eigen vectors (um and vm) of m-th mode
in (3.12) at frequency ω satisfy equations(

A′ − k̃LmB′
)
um = 0, vm

(
A′ − k̃LmB′

)
= 0. (4.1)

At frequency ω +∆ω (4.1) can be rewritten:(
(A′ +∆A′)−

(
k̃Lm +∆k̃Lm

)
(B′ +∆B′)

)
(um +∆um) = 0, (4.2)

where matrices ∆A′ and ∆B′ are calculated at frequency ∆ω. After expanding
the terms in (4.2) the second order differential terms are omitted for simplicity,
therefore ∆ω must be selected and varied along ω with caution. While more
sophisticated estimation methods exist (for example, with employment of Pade
expansion [6, 9], in our case just the linear estimation was sufficient. (4.2) can
be simplified to(

A′ + k̃LmB′
)
∆um =

(
k̃Lm∆B′ +∆k̃LmB′ −∆A′

)
um. (4.3)

Vector ∆um can be expanded in the base of independent right eigenvectors
ul
(
l = 1, 2N + 2M

)
as

∆um =

2N+2M∑
l=1

αlmul,
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where α is the superposition weight of l-th mode for vector ∆um of the tracked
m-th mode, and 2N + 2M is the number of solutions k̃Lm.

Application of orthogonality condition as

vmA′ul =

{
vmA′um, m = l,

0, m 6= l,

vmB′ul =

{
vmB′um, m = l,

0, m 6= l,

k̃Lm = vmA′um

vmB′um

leads to extraction of the wave number increment from (4.3):

∆k̃Lm ≈
vm

(
A′ +∆k̃LmB′

)
um

vmB′um
. (4.4)

This estimate can be used for identifying the wavenumber eigenvalue, which
should be chosen for m-th dispersion curve at the next angular frequency value.

5 Numerical examples

The phase velocities of modes of immersed waveguide SAFE model with 3× 3
FE over the rectangular cross-section is presented in (Figure 3(a)).
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Figure 3. (a) Phase velocities of modes in immersed waveguide; (b) phase velocities of
fundamental and quasi-Scholte modes in immersed waveguide.

The material properties of the aluminum waveguide are as follows: mass
density m = 2780 kg/m3, Young’s modulus E = 7.24 · 1010 Pa, Poisson’s ratio
ν = 0.34, cross-section 0.001× 0.001m. The material properties of the perfect
fluid (based on water) are as follows: mass density m = 1000 kg/m3, velocity
of pressure (longitudinal) wave c̃L = 1500m/s. The results of tracking only the
fundamental and quasi-Scholte modes using (4.4) are shown in (Figure 3(b)). It
can be noted that fluid load mostly affects torsional and flexural modes in the
low frequency range. However, the longitudinal mode in immersed waveguide
does not exhibit evident influence of attenuation at low frequencies, since the
displacement field is predominant in OZ direction. Interaction of this mode
with fluid at low frequencies is insignificant. The analysis demonstrated that
the immersed waveguide of square cross-section supported three distinct groups
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of Scholte waves (zoomed part in Figure 3(b)). The threshold of velocity of
these types of modes is c̃L = 1500m/s, which determines them as subsonic
waves with respect to the sound velocity in the leaky medium.

The obtained attenuation curves are presented in (Figure 4(a)). The atten-
uation of fundamental modes is relatively small when compared with the atten-
uation of higher modes (Figure 4(b)). However, quasi-Scholte modes exhibited
low attenuation constant over the frequency range. Therefore, quasi-Scholte
modes were almost non-dispersive. They tend to retain their wave shape while
travelling, which is a useful feature in many practical applications.
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Figure 4. (a) Attenuation of modes in immersed waveguide; (b) attenuation of
fundamental and quasi-Scholte modes in immersed waveguide.

For comparing the obtained dispersion curves results against the dispersion
curves exhibited by lossless waveguide surrounded by vacuum, the waveguide
with Rayleigh damping and the immersed waveguide was analyzed. Initially,
the analysis was carried out by examining a single FE over the cross-section
model in order to reveal the main properties of the solutions, which are inherent
for the analyzed waveguide. The results are summarized in (Figure 5). For
obtaining better precision solutions, further we employ the finer mesh over the
of the cross-section.

Figure 5(a) demonstrates that in case of surrounding vacuum three fun-
damental modes exist at zero frequency. The higher modes appear at cut-
on frequency, where attenuation Im(kZ) approaches zero. Thus, evanescent
modes become propagative. Wavenumbers at frequency of 1 MHz (repre-
sented by dashed line) on the complex plane come out as symmetric with
respect to the axes of the complex plane. The propagative modes correspond
to wavenumbers with Im(kZ) = 0, end modes (local vibrations not capable
of transferring energy) correspond to Re(kZ) = 0 and the remaining modes
are evanescent modes with rapidly decaying amplitude. The wavenumbers of
form ±(Re(kZ)−Im(kZ)) have no physical meaning as they represent fictitious
wavemodes with increasing amplitude as they travel.

In case the damping is present, (Figure 5(b)), all the modes are evanescent.
Their wavenumbers do not retain symmetry on the complex plane and the cut-
on frequencies do not apply anymore. At higher frequencies in case of severe
damping (for example, a = 1 · 106, b = 3 · 10−8) the phase velocity curve does
not converge to the phase velocity of Rayleigh’s surface wave. This indicates
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Figure 5. Phase velocity (1), attenuation (2) and wavenumbers (3; at 1 MHz (dashed
line)) of waveguide in vacuum (a); with Rayleigh damping a = 1 · 106, b = 3 · 10−8 (b);

immersed in water (c).

the appearance of certain errors of wave solutions, which are caused by the
commonly used assumption k∗Z = kZ in case of some more damped waveguides.

In case of the immersed waveguide (Figure 5(c)) all the modes (with ex-
ception of quasi-Scholte modes) are evanescent. Some modes have cut on fre-
quencies the same as in case of being surrounded by vacuum instead, and the
wavenumbers demonstrate symmetry with respect to the axes of the complex
plane.

The dispersion results for fundamental modes of immersed waveguide with
Rayleigh damping, where coefficients a and b have been varied, are shown in
(Figure 6). As damping was increased, quasi-Scholte wavemode remained unat-
tenuated and merged to the common group of wavemodes with constant phase
velocity. In case of severe damping (Figure 6(c)) the phase velocity curves of
fundamental modes at higher frequencies tended to bend away from the disper-
sion curves of quasi-Scholte modes. This clearly indicates non-feasible results,
and the symmetry of wavenumbers on complex plane is destroyed. The cause of
the inadequacy of the damped immersed waveguide model is likely due to the
fact, that assumption about complex conjugate of the wavenumbers was as pre-
viously no longer met. In this analysis the model is considered to be adequate
as long phase velocities asymptotically and monotonically approach Rayleigh
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surface wave phase velocity value. This is valid for isotropic waveguides [19].
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Figure 6. Phase velocity (1) and wavenumbers (2; at 1 MHz (dashed line)) of immersed
waveguide with Rayleigh damping; a = 1 · 105, b = 1 · 10−10 (a); a = 1 · 106, b = 1 · 10−9

(b); a = 1 · 107, b = 1 · 10−8 (c).

The verification of the model has been performed by using the numerical
experiments where the waveguide had cross-section of 0.006×0.012m, FE mesh
was 3×6. Initially, the ratio between the height and length of the cross-section
is 1 : 2. As this ratio increases, the obtained dispersion curves converge to
those of the plate (Figure 7).

As the longitudinal mode at close to zero frequency approaches the threshold

of wave velocity in the plate as cplate =
√
E√

ρ(1−ν2)
(dashed line in Figure 7) it can

be assumed that the obtained fundamental modes of the analyzed waveguide
match those of the plate of the same height as the height of the cross-section
of the waveguide. The results show evident convergence and reasonably well
agree with results published in [11] for the plate.

6 Conclusions

This study deals with the different techniques of acquiring dispersion relations
for damped three-dimensional waveguide immersed in the perfect fluid, as well
as with the analysis of the obtained wavemodes. This enables further inves-
tigation of quasi-Scholte waves. Up to date three-dimensional quasi-Scholte
modes haven’t been given much attention yet. The coupling of two attenua-
tion mechanisms due to energy leakage and material damping has shown that
the models of immersed waveguide used in this study support only weak and
moderate Rayleigh damping. Adequacy of the model supporting solutions for
more severe damping also requires consideration of the complex conjugate of
the wavenumber in the governing finite element formulation, which would lead
to non-linear eigenproblems.
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(a) (b)

(c) (d)

Figure 7. The convergence of the model for cases (a) mesh 3 × 6 and cross-section size
ratio 1 : 2, (b) mesh 3 × 10 and cross-section size ratio 1 : 10, (c) mesh 3 × 15 and

cross-section size ratio 1 : 100, (d) mesh 3 × 15 and cross-section size ratio 1 : 1000.

The future directions of this research include derivation of group velocity,
force response and further explorations on effects of Rayleigh damping.
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Appendix

The amplitudes of the wave displacement field in fluid at arbitrary xarb above
the waveguide side Γ1 (Figure 1(b)) is the two-dimensional wave

ũfluid1 =

(
ũy
ũz

)
=

(
k̃L
k̃z

)
aLe

i(k̃Ly+kzz), (6.1)

where aL is an arbitrary scalar.
The amplitude of the resulting wave depends on wavenumbers of both

waves. Since excited wave in leaky medium is longitudinal and perpendicu-
lar to Γ1, displacements ũx = 0. The displacement field for leaky wave on
boundary Γ1 at z = 0 and xarb is:

ũΓ1 =

(
un
uz

)
=

(
ũn
ũz

)
=

(
k̃L
k̃z

)
aLe

ik̃Ly1 .

Scalar aL can be then expressed as

aL =
un

k̃L
e−ik̃Ly1 .

Then the (6.1) can be rewritten:

ũfluid1 =

(
ũy
ũz

)
=

(
1

k̃z/k̃L

)
une

i(k̃L(y−y1)+kZz). (6.2)

The strain vector for leaky wave in fluid affected by boundary Γ1 is

ε̃fluid1=

(
Ly

∂

∂y
+Lz

∂

∂z

)
ũfluid1=

(
ik̃LLy+ikzLz

)( 1
k̃z
k̃L

)
une

i(k̃L(y−y1)+kzz),
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where Ly =

1 0
0 0
0 1

 and Lz =

0 0
0 1
1 0

.

The strain vector for leaky wave on boundary Γ1 is:

ε̃Γ1 =

ε̃yyε̃zz
γ̃yz

 =
(
ik̃LLy + ikzLz

)( 1
k̃z
k̃L

)
une

ikZz.

However, the stress on boundary Γ1 is present only in direction of displacements

un and can be expressed using projection k̃L =
√
k̃2 − k̃2Z of the wavenumber

vector k̃:

σ̃Γ1 =

σ̃yyΓ1

σ̃zzΓ1

τ̃zyΓ1

 =

σ̃yyΓ1

0
0

 ,

where

σ̃yyΓ1 = −iρ̃c̃Lωũ
(
k̃L, y = y1, z

)
= −iρ̃ ω√

k̃2 − k̃2Z
ωũy = −iρ̃ω

2

k̃L
ũy.

Using (6.2) σ̃yyΓ1 can be rewritten:

σ̃yyΓ1 = −iρ̃ω
2

k̃L
ũy = −iρ̃ω

2

k̃L
ũne

ikZz.

Assuming the continuity for stresses at the boundary of solid and fluid, the
stress on boundary Γ1 in fluid corresponds to surface traction condition for
waveguide as

tΓ1 =
(
tn, tτ , tz

)T
=
(
tn, 0, 0

)T
.

It can be noted, that the stress in the fluid at the interface may be regarded
as surface stress applied on the waveguide. Both stress in fluid and interface of
waveguide along OZ direction is governed by harmonic wave:

tΓ1 =
(
tn, tτ , tz

)T
= NTje

ikZz,

where Tj is nodal external traction vector on Γ1.
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