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Introduction  

The objective of test generation is to find a test 
sequence that, when applied to a circuit, can be used to 
distinguish between a good circuit response and a faulty 
circuit response. The goal is to detect defects, to achieve a 
given fault coverage and to assure product quality and 
reliability. The test effectiveness is measured by the 
achieved fault coverage as well by the cost of performing 
the test. Test generation is a complex problem with many 
interacting aspects e.g. the cost of test generation, test 
length and the quality of generated test. Test generation 
can be accomplished at different levels: micro-level, gate-
level, and functional level [1-3].  

In the paper [4] the functional test generation 
problem was formulated as an optimisation problem and 
the following objective Ψ was proposed: 

    Ψ = α ∑ Fs (X□) - β | X□|, (1) 

  s∈ S 

A set of input stimuli is denoted by X□, and its 
cardinality (the number of stimuli) - by |X□|. A set of 
conditions that have to be fulfilled by input stimuli of the 
set X□ is marked by S. An input stimulus X∈X□ may fulfill 
several conditions s∈S. A condition s may be fulfilled by 
many input stimuli X∈X□. In order to assess the fulfillment 
of the conditions s∈S by the set of input stimuli X□, the 
estimate function Fs is defined. If at least one input 
stimulus X∈X□ fulfills the condition s, then the estimate 
function Fs has the value 1, i.e. Fs (X□) = 1, otherwise Fs 
(X□) = 0. The number of conditions fulfilled by an input 
stimuli set X□ is equal to the sum of values Fs (X□) taken 
over all conditions s∈S. α, β are positive coefficients. The 
test generation problem asks for a set of input stimuli at 
which the function Ψ is maximized. 

 Some test generation problems may be obtained 
and solved by changing conditions that have to be fulfilled. 
When the number of fulfilled conditions is more important 
factor than the number of input stimuli, we can take the 
coefficient β=0. An important aspect of functional test 
generation is that the fulfillment of the conditions cannot 

be evaluated analytically, and instead it has to be estimated 
using simulation techniques only. [4] 

One of specific problems in the area of functional test 
generation is determining the relationship between input 
and output variables of a given module M. 

Let us define the following terms used in the rest of 
the paper. 

Definition 1. The relationship between input xi and 
output zj is called even if a transition 1→0 (0→1) on the 
input xi causes the same transition 1→0 (0→1) on the 
output zj. 

Definition 2. The relationship between input xi and 
output zj is called uneven if a transition 1→0 (0→1) on the 
input xi causes the opposite transition 0→1 (1→0) on the 
output zj. 

Functional test generation can be related to the 
problem where the input stimuli set has to be found that 
would determine the parity of the relationship among all 
input pairs and outputs of the module. The results can be 
presented using the three-dimensional matrix D, where 
di, h, j = 1, if there exists at least one input stimulus that 
determines uneven relationship between the input xi and 
the output zj, and the same input stimulus determines 
uneven relationship between the input xh and the output zj 
as well. Similarly, di, h, j =1 if there exists at least one input 
stimulus that determines even relationship between the 
input xi and the output zj, and the same input stimulus 
determines even relationship between the input xh and the 
output zj as well. Whereas, di, h, j = 2 if there exists at least 
one input stimulus that determines either even or uneven 
relationship between the input xi and the output zj, and the 
same input stimulus determines the opposite parity of the 
relationship between the input xh and the output zj. In all 
other cases di, h, j = 0. We are asked to find a set of input 
stimuli that would determine maximum values for every 
entry of the three-dimensional matrix D. The sum of 
entries in the matrix D is proportional to the number of the 
fulfilled conditions s∈S divided by two, as the matrix D is 
symmetrical according to its definition. Thus, when β=0 
and α=1, the value of the objective function Ψ is equal to a 
half of the sum of entries in the matrix D. Let’s call this 
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problem of matrix identification the three-dimensional 
relationship determination problem. We are also interested 
in various modifications to this problem. We are unaware 
of analytical methods of solving this three-dimensional 
relationship problem even in the case when detailed 
module descriptions are at hands [5]. 

The aim of this paper is to explore the features of one 
of test generation subproblems, namely the functional test 
generation subproblem, and on the basis of the gained 
experience, to propose a practical method for functional 
test generation.  

Deterministic Search Procedure for Adjacent Input 
Stimuli 

The methods based on the generation of input stimuli 
adjacent to the selected ones [5] improve convergence of 
the random generation process. Two input stimuli are 
adjacent if they differ in the value of a single input. There 
could be defined a procedure for generation of adjacent 
input stimuli based on already selected ones. The 
procedure could iterate the process of generation of 
adjacent stimuli. The procedure would terminate a 
generation when no new adjacent input stimuli were 
formed from the selected ones. 

Let the set of stimuli adjacent to an input stimulus X 
be denotet by Θ(X). The set of stimuli adjacent to an 
subset X□ of the input stimuli is Θ(X□)= U Θ(X)| X∈ X□. 

The procedure PG for generating and selecting adjacent 
stimuli can formally be defined in the following way: 

 

 REPEAT 
                 FOR  X∈ Θ(X□) 
                    X□  ← X□ U {X}| Ψ(X□) < Ψ(X□ U {X}) 

    ENDFOR 
UNTIL Ψ(X□)≠ Ψ(X□ U  Θ(X□)) 

 RETURN  X□ 
 
Let’s analyze the capabilities of the procedure PG. 

For the experiments, we have used the benchmark circuits 
ISCAS’85 [6]. The strategy of generating adjacent input 
stimuli allowed to improve solutions for the three-
dimentional relationship determination problem. Table 1 
presents the results of adjacent stimuli generation and 
random stimuli generation. Adjacent stimuli generation 
was started with a single random stimuli. We express the 
solution quality in percent as the ratio between the 
obtained value of the objective function and the value of 
the best-known solution. The best known value of 
objective function Ψ which we have derived during various 
experiments is presented in the last column under heading 
“Best”. Table 2 presents the results of adjacent stimuli 
generation following random stimuli generation, the search 
size of which was equal to the number presented in column 
(Table 1) under heading “Number of random stimuli” for 
each circuit. Observe that the generation of adjacent 
stimuli  improved   the   solution   considerably   for   three  

 

Table 1. Adjacent and random stimuli generation 

Circuit 
Number of 

adjacent 
stimuli 

Value of 
the 

objective 
function Ψ 

Solution 
quality (%) 

Number 
of 

random 
stimuli 

Value of 
the 

objective 
function Ψ 

Best Solution 
quality (%) 

C432 21064 14518 95,17 21064 15222 15254 99,79 
C499 406365 360618 87,41 406365 412736 412736 100 
C880 225314 40078 72,49 225314 49474 55282 89,49 
C1355 442934 363828 88,15 442934 412736 412736 100 
C1908 231089 149242 96,73 231089 153868 154284 99,73 
C2670 429085 121538 64,90 429085 128384 188082 68,56 
C3540 362985 121428 98,45 362985 121298 123338 98,34 
C5315 1905000 264508 98,06 1905000 269646 269726 99,97 
C6288 325345 152614 99,87 325345 151529 152814 99,17 
C7552 3631863 690928 85,41 3631863 419534 809850 51,82 

Table 2. Adjacent stimuli generation following random generation 

Circuit The last column 
of Table 1 

Number of 
adjacent 
stimuli 

Value of the 
objective 

function Ψ 

Solution quality 
(%) 

Improvement 
(%) 

C432 99,79 10395 15222 99,79 0 
C499 100 120320 412736 100 0 
C880 89,49 192716 55156 99,77 10,28 

C1355 100 122186 412736 100 0 
C1908 99,73 64430 154080 99,86 0,13 
C2670 68,56 188514 174722 93,29 24.73 
C3540 98,34 194186 122856 99,60 1,26 
C5315 99,97 423183 269706 99,99 0,02 
C6288 99,17 64655 152712 99,94 0,77 
C7552 51,82 1103895 744878 92,08 40,26 
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circuits where the initial solution was quite far from the 
best one (C880, C2670, C7552). When the initial solution 
is close to the best one, the generation of adjacent stimuli 
improves the solution only slightly, and there is no 
guarantee of obtaining the best solution even in the case it 
is quite near. Thus, we can conclude that if the generation 
of adjacent stimuli did not improve the initial solution, we 
could expect that the solution can be close to the best one. 
Information that the generation of adjacent stimuli does not 
improve the solution is certain information about solution 
quality as well.  

In the paper [4] the random search termination 
condition was defined as well: 

 P= (( Ri – Ri/c)/Ri)*100, where C>1. (2) 

Ri is the number of selected stimuli at the moment 
when i random stimuli have been generated. Ri/c denotes 
the number of selected stimuli when i/C random stimuli 
have been generated. The difference Ri – Ri/c shows how 
many input stimuli were selected after generating C times 
more random stimuli. As the random search size increases, 
P decreases to zero. The rate of decrease depends on the 
coefficient C. The bigger coefficient means the slower 
convergence to zero. The value P can be calculated for 
every random input stimulus which has an index larger 
than C. If we assume that the termination condition of 
generation is P=0, this termination condition will be more 
demanding when the value of the coefficient C is larger.  

However, the termination condition P, which is 
applied during the random generation, cannot be applied in 
the case of adjacent stimuli. We can calculate the value P 
during the random stimuli generation till the moment the 
generation of adjacent stimuli starts up. A possible way to 
terminate the generation in this case will be discussed in 
the next section.  

Practical Functional Test Generation Method 

The ideas and results published in [4] together with 
the above presented analysis of random search and 
adjacent stimuli generation allow formulating a practical 
method for generating functional tests. The principles of 
optimization approaches applied to solve the quadratic 
assignment problem [7] will be used. However, we will not 
use the tabu search approach and the development of the 
initial solution will not be carried out after the local search, 
but instead the new random search will start. Our decision 
is based on the fact that functional test has a lot of input 
stimuli, which fulfill a condition s∈S, and it is not clear 
which one is the most acceptable. This method 
incorporates the mentioned termination condition of 
generation P [4], exploits the advantages of random and 
deterministic search, as well the feature that the sets of the 
selected input stimuli can be merged easily in order to 
obtain a better set of test patterns. 

Firstly, a predefined number K of random stimuli are 
generated and the stimuli that increase the value of the 
objective function are selected. Then the procedure PG of 
generating adjacent stimuli is applied to the selected 
stimuli. These two steps are combined and form the 
procedure G(K), which finds the initial set of the test 
stimuli (G(K) →X□). Next, the generation of random and 

adjacent stimuli is repeated from scratch and generation 
procedure G(K) finds a new set of stimuli X□1 (G(K) → 
X□1). During the next step, the stimuli from the set X□1 
that increase the value of the objective function are 
included into the set X□. The iterations of generation and 
inclusion of stimuli into the set X□ are repeated till we 
arrive at the state when the stimuli from a set X□1 do not 
increase the value of the objective function. Then the K, 
which value denotes the number of randomly generated 
stimuli, is increased by some parameter ∆K, and the 
iterations proceed again. The test generation procedure 
stops when the predefined random search size limit L is 
reached. The test generation (TG) procedure can be 
defined formally as follows: 

 

G(K) → X□ 
REPEAT  
 REPEAT  
 G(K) → X□

1   
 FOR X∈ X□

1 
               X□  ←X□U {X}| Ψ(X□) < Ψ(X□U {X}) 

 ENDFOR 
  UNTIL    Ψ(X□) = Ψ(X□ U X□

1 ) 

 K←K+∆K 
 UNTIL K>L 
RETURN X□ 

 

The use of the procedure in practice is strongly 
influenced by the runtime and memory limits of the 
computer. To overcome this difficulty, the procedure can 
be modified using heuristic simplifications and 
improvements. Various experiments were performed 
before we have implemented the procedure. The results 
will not be presented here due to a large size of tables; only 
the conclusions based on them will be given here. 

Adjacent stimuli generation starting with a single 
random stimulus was considered first. In general, 0s and 1s 
distribute nearly equally in randomly generated stimuli. 
Therefore, the possibility of starting the generation of 
adjacent stimuli with boundary stimuli, which have only 0s 
or 1s, was analyzed. After long-lasting experiments we 
have concluded that the best point to start generating 
adjacent stimuli is to take two stimuli where one stimulus 
has only 0s, and the other one has only 1s. In this case, the 
generation process converges after analyzing nearly two 
times less stimuli and the value of the objective function 
increases by several percents. Furthermore, the application 
of the adjacent stimuli generation procedure before the 
random search allows evaluating the search size of random 
generation more reasonably. Two initial stimuli are 
included into the stimuli set V. The functional test 
generation procedure is presented in Fig. 1. 

Let's analyze the presented functional test generation 
procedure. The adjacent stimuli generation for stimuli of 
the initial set V begins the overall test generation. The 
value of the objective function Ψ is calculated upon 
termination of the adjacent stimuli generation. Then the 
iterative process starts. A new set V1 of selected stimuli is 
formed. The sets V and V1 are merged. The stimuli that 
increase the value of the objective function are included 
into the resulting set V. The new value Ψ1 of the objective 
function is calculated. In order to evaluate the increase of 
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the value of the objective function, the values Ψ and Ψ1 
are compared, and the outcome of the comparison is 
expressed in percents. If the increase of the value is more 
than PP percents, the generation is repeated using the same 
random search size PK. Otherwise, the random search size 
PK is increased by PD times, and the generation is 
repeated. The iterations are terminated when the value of 
the objective function has not increased more than PP 
percents after enlarging the size of the random search by 
PD times. When iterations are completed the set V of 
selected stimuli can be minimized. However, the procedure 
of minimization will not be discussed here. The iterations 
can be repeated according to the presented algorithm by 
taking the set V of selected stimuli as the initial set and 
enlarging the size PK of the random search.  

The initial data: 
  input stimuli set V, 
  random search size PK, 
  solution improvement percent PP, 
  search size enlargement coefficient PD. 
  PB:=1;  // flag of the termination 
  DV:=0; // intermediate value of the objective function 

Generate the adjacent stimuli for stimuli of the set V. 
      Determine the value of the objective function Ψ. 
 While PB=1 
 Select a set V1 of input stimuli from the random 

search of size PK. 
Generate adjacent stimuli for stimuli of the set V1. 

 Merge V:= V1||V; 
Calculate the value of the objective function Ψ1.  

P:=(( Ψ1 – Ψ )/ Ψ1)*100;  
 Ψ := Ψ1; 

  
Y      

 
P<=PP 

           
N 

  
 
Y      

 
((Ψ-DV)/Ψ)*100<= PP 

 
  

N 
 PB:=0; PK:=PD*PK; 

DV:= Ψ ; 

DV:=0;

Minimize the set V; 
Stop; 

Fig. 1. Functional test generation procedure (FTGP) 

We should mention that the adjacent stimuli 
generation allows improving the search efficiency. The 
better solution obtained after the random generation allows 
the achievement of the better final solution after the 
generation of adjacent input stimuli. However, this finding 
does not suggest what generation strategy is the most 
effective. The experiments allowed us conclude that it is 
worth to use the adjacent stimuli generation procedure as 
intensively as possible. 

The obtained results of the procedure FTGP solving 
the three-dimensional relationship determination problem 
for two largest circuits c2670 and c7552 are presented in 
Tables 3 and 4, respectively. 

During the initial iteration, the adjacent stimuli for 
two initial stimuli, one of which consists of 0s only and the 
other – of 1s only, were generated. Such a generation 
strategy allows revealing the search size for the next 
iterations. Note that 324932 adjacent input stimuli were 

generated for two initial stimuli; 5245 input stimuli were 
selected and the obtained value of the objective function 
113068 reached 60.1% of the best-known solution. Then 
324932 input stimuli were generated randomly during the 
first iteration, 2273 were selected and the obtained value of 
the objective function was 128378. Whereupon 510297-
324932=185365 adjacent stimuli were generated for the 
selected stimuli and the total number of the analyzed 
stimuli reached 510297. 2943 input stimuli were selected 
and the obtained value of the objective function 172608 
reached 91.7% of the best-known solution. The obtained 
2943 input stimuli were merged with 5245 input stimuli 
that were selected during the initial iteration. Thus, 8188 
input stimuli were obtained in total. After stimuli merge 
operation there were selected 2946 and the obtained value 
of the objective function was 172614. Then 324932 input 
stimuli were generated randomly again and 3001 input 
stimuli were selected at the end of the generation of 
adjacent stimuli (the obtained value of the objective 
function was 173826). The selected stimuli were merged 
with 2946 stimuli, which were selected before, and the 
value 181452 (96.4% of the best-known solution, i.e. 
solution improvement - 4.88%) of the objective function 
was obtained. Consequently, the iterations have to be 
continued because the coefficient PP of solution 
improvement was set to 1. However, after the repetition of 
the generation of 324932 input stimuli again, the solution 
improvement (0.52%) was less than one percent. This 
outcome indicated that the size of random search has to be 
increased, and it was doubled to 649862. During the next 
two iterations the obtained value of the objective function 
186506 reached 99.1% of the best-known solution. 
However, after the second iteration the solution 
improvement was less than one percent, what indicated 
that the size of random search has to be increased. Having 
doubled the search size once more to 1299724, the solution 
improvement was less than one percent and the procedure 
FTPG terminated its work. 5049936 input stimuli were 
analyzed in total and the obtained value of the objective 
function 187130 reached 99.4% of the best-known 
solution. The results of generation 5049936 input stimuli 
randomly and supplementing the selected stimuli with the 
adajcent ones are presented in the row under heading “R”. 
The solution quality comparing with derived using 
procedure FTPG is less in two percents. Further results 
were obtained after reducing the PP value to 0.1 and 
performing an additional number of iterations. In this case, 
the process converged when obtained value of the 
objective function 187990 reached 99.9% of the best-
known solution. 8968840 input stimuli were analyzed in 
total. The random generation of such number of stimuli 
allows obtaining 1.5 % worse solution quality comparing 
with derived using procedure FTPG. The merging of 
selected stimuli after 9 iterations and after random 
8968840 input stimuli generation produced the value of the 
objective function 188082 that reached the value of the 
best-known solution. The results, which are presented in 
the last row, are obtained after generating one hundred 
million input stimuli randomly. Note that even in this case 
after generating adjacent stimuli the best-known value of 
the objective function was not obtained. 
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Table 3. Intermediate results obtained for circuit C2670 

Random generation Adjacent generation Merge 
Iteration Number of 

stimuli 

Objective 
function 

Ψ 

Select 
ed 

stimuli 

Total 
number of 

stimuli 

Objective 
function 

Ψ 

Select 
ed 

stimuli 

Stim 
uli 

Objecti 
ve func 
tion Ψ 

Select 
ed 

stimuli 

Solution 
quality (%) 

0    324932 113068 5245    60,1 
1 324932 128378 2273 510297 172608 2943 8188 172614 2946 91,7 
2 324932 128256 2273 514759 173826 3001 5947 181452 3224 96,4 
3 324932 125230 2255 492841 165830 2679 5903 182424 3285 96,9 
4 649862 128184 2308 836747 173164 2955 6240 184950 3393 98,3 
5 649862 126140 2330 840837 178264 3011 6404 186506 3518 99,1 
6 1299724 132990 2407 1490335 177718 3006 6524 187130 3547 99,4 
R 5049936 150993 2503 5248351 183218 3135    97,4 
7 1299724 141602 2406 1604131 178964 2954 6501 187506 3508 99,6 
8 1299724 138340 2419 1499219 180406 3146 6654 187906 3616 99,9 
9 1299724 137380 2393 1487683 178740 2961 6577 187990 3577 99,9 
R 8968840 160488 2502 9169456 185100 3177    98.4 
       6754 188082 3457 100 
 100000000 182366 2614 100205511 187270 3152    99,6 

Table 4. Intermediate results obtained for circuit C7552 

Random generation Adjacent generation Merge 
Iteration Number of 

stimuli 

Objective 
function 

Ψ 

Select 
ed 

stimuli 

Total 
number 

of stimuli 

Objective 
function 

Ψ 

Select 
ed 

stimuli 

Stim 
uli 

Objecti 
ve funct 
ion Ψ 

Select 
ed 

stimuli 

Solution 
quality 

(%) 

0 1604131 714928 17116       88,2 
1 1604131 391719 6288 2865462 792948 14583 31699 793506 14597 97,9 
2 1604131 391032 6292 2731445 745250 13511 28108 793778 14628 98,0 
3 3208262 418960 6722 4384683 779076 13717 28345 799358 14142 98,7 
R 9370138 457753 7425 10424180 745708 12623    92,0 
4 3208262 418472 6741 4468857 797230 14262 28404 806784 14476 99,6 
5 3208262 424200 6833 4440450 795774 14103 28579 809504 14396 99,9 
6 3208262 417547 6755 4457685 797030 14481 28877 809850 14705 100 
R 100000000 548563 9320 101103223 805932 13625    99,51 
R 200000000 596086 10468 201108397 809742 12414    99,98 

Additional three iterations 
1 19080784 480323 7963 20261816 795894 13634 28339 809956 14130 100,013 
2 19080784 484000 7911 20269258 793870 13790 27920 809998 14062 100,018 
3 19080784 491469 7915 202644657 797202 13581 27643 810040 13953 100,023 

 
 

The same experiment was carried out for the circuit 
c7552 as well (Table 4). Having set PP=1, the solution 
quality 98.7% was got. Continuing the iterations with 
PP=0.1, the best-known value of the objective function 
thus far was obtained (19080784 input stimuli were 
analyzed in total). The results of generation one and, 
respectively, two hundred million input stimuli are 
presented in the rows under heading “R”, however the 
best-known value of the objective function was not 
reached.  

In order to demonstrate that maximal value of the 
objective function was not reached three additional 
iterations was carried out generating randomly 19080784 
input stimuli and merging results with input stimuli of best 
obtained value of objective function. The results presented 
in the last three rows of Table 4 show that the best known 
value of objective function was slightly increased.  

The random search method without termination 
condition can not be evaluated adequately. The decision on 
computation stopping may require plenty enough 
resources. A method without termination condition is 
unpractical.  

The proposed procedure FTGP uses a reasonable 
search termination condition. The termination condition of 
the procedure is based on the rate of solution improvement. 
Such an approach can be applied for solving other 
optimization problems. Additionally, the procedure FTGP 
uses solutions’ merge operation successfully in order to 
improve its performance results. However, this is typical 
not for all optimization problems. 

The adjacent stimuli generation is limited by the 
selected stimuli, as the adjacent stimuli generation uses the 
selected stimuli only. This restriction ensures the 
convergence of the procedure of adjacent stimuli 
generation, and only a small part of input stimuli are 
available for analyzing during the procedure. Therefore, 
when the initial set of the selected stimuli is changed, the 
set of stimuli, which are got during the generation of 
adjacent stimuli, changes as well. Thus, various sets of 
stimuli, which may increase the value of the objective 
function, are available during the adjacent stimuli 
generation. This fact allows explaining the usefulness of 
generating new adjacent stimuli in order to increase the 
solution quality.  
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Conclusions 

In practice besides the deterministic algorithms of 
test generation the heuristic algorithms are used quite 
widely. The latter algorithms find the input stimuli that 
detect the fault but they cannot ensure that the fault is 
undetectable. And such are random search algorithms. In 
the paper the problem of test generation is formulated as an 
maximization problem. That enabled to use the random 
optimization methods for solving it. This is especially 
relevant for generating black-box functional tests. Such 
generation is based mostly on simulation and the use of 
deterministic algorithms is very limited practically. 

A deterministic procedure of adjacent stimuli 
generation was suggested. It is based on the assumption 
that input stimuli that are similar to test patterns have good 
testing features. The search among such input stimuli 
improves the overall efficiency and the convergence speed 
of the search.  

The nature of the task of functional test generation 
allows to select the test patterns from two independent test 
sets and to obtain a solution of no worse quality. That 
enabled to construct an iterative procedure for generating 
functional tests. The proposed procedure evaluates the rate 
of solution convergence, chooses the search size and uses 
solutions’ merge operation. This procedure can be applied 
to solving of other optimization problems if there is a 
possibility to construct a new solution of no less quality 
from two solutions.  
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Основная цель – проанализировать свойства функциональной генерации тестов и на основе данного анализа предложить 
практический метод для генерации функциональных тестов. В статье представленный анализ методов случайного поиска и 
генерации смежных наборов позволил создать практическую процедуру генерации функциональных тестов. Предложенная 
процедура эффективно использует преимущества случайного и детерминистического поиска, а также свойство генерации 
тестов, которое с целью получения тестов лучшего качества позволяет объединить в одно множество тесты, полученные в 
отдельных решениях. Ил. 1, библ. 7 (на английском языке; рефераты на английском, русском и литовском яз.).  
 
 
E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas. Funkcinio testų generavimo procedūros // Elektronika ir elektrotechnika. – 
Kaunas: Technologija, 2006. – Nr. 8(72). – P. 43–48. 

Pagrindinis tikslas – ištyrinėti funkcinio testų generavimo savybes ir, remiantis šia analize, pasiūlyti praktinį funkcinių testų 
generavimo metodą. Pateikta atsitiktinės paieškos metodų ir gretimų rinkinių generavimo analizė leido sudaryti praktinę funkcinių testų 
generavimo procedūrą. Ši procedūra efektyviai panaudoja atsitiktinės ir deterministinės paieškos teigiamybes bei testų generavimo 
ypatybę, kad, norint gauti kuo geresnės kokybės testus, atskirų sprendimų metu gautos testinės aibės gali būti lengvai sujungtos į vieną. 
Il. 1, bibl. 7 (anglų kalba; santraukos anglų, rusų ir lietuvių k.). 

 


