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Abstract

In nonlinear systems long term dynamics is governed by the attractors present in phase

space. The presence of a chaotic saddle gives rise to basins of attraction with fractal

boundaries and sometimes even to Wada boundaries. These two phenomena involve

extreme difficulties in the prediction of the future state of the system. However, we show

here that it is possible to make statistical predictions even if we do not have any previous

knowledge of the initial conditions or the time series of the system until it reaches its final

state. In this work, we develop a general method to make statistical predictions in systems

with fractal basins. In particular, we have applied this new method to the Duffing oscillator

for a choice of parameters where the system possesses the Wada property. We have

computed the statistical properties of the Duffing oscillator for different phase space reso-

lutions, to obtain information about the global dynamics of the system. The key idea is that

the fraction of initial conditions that evolve towards each attractor is scale free—which we

illustrate numerically. We have also shown numerically how having partial information

about the initial conditions of the system does not improve in general the predictions in the

Wada regions.

Introduction

Predicting the future state of a nonlinear dynamical system may be very challenging. Recently

the use of sophisticated prediction techniques, like neural networks, has allowed researchers to

improve the prediction ability in such systems [1]. But this type of methods cannot be always

easily applied. In many nonlinear dynamical systems, complex structures arise and change

their shape within phase space as one parameter is varied. Basins of attraction are an interest-

ing example of these structures in dissipative and Hamiltonian systems. Roughly speaking, we

can say that a basin of attraction is the set of initial conditions that evolve in time towards a

given attractor. In many nonlinear systems there are several attractors coexisting in phase
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space, which can have fractal boundaries separating their basins. This fact can make the study

of the global dynamics and the predictability of the system a very difficult task. Nonlinear sys-

tems with fractal basins can be classified basically in four different categories: intertwinned

basins, Wada basins, riddled basins and sporadically fractal basins [2]. When a dynamical sys-

tem possesses this kind of basins it is very difficult to make predictions, due to the fact that

there is an intrinsic uncertainty on the final state of a given initial condition taken in the neigh-

borhood of the fractal boundary. The physical reason behind this is the finite accuracy in the

measurement of the initial conditions for any real system. Furthermore, in systems with fractal

basins there are infinitely many close points that can go to a different attractor. The situation

gets even more complicated if we do not have access to the time series of the dynamical system

and the only observables of the system are the attractors.

Although the problem is far from being solved, recently two useful ideas proposed by

Menck et al. and Daza et al. namely basin stability [3] and basin entropy [4] have shed some

light on important properties of complex basin structures. Here, we present a general proce-

dure to provide some kind of statistical prediction in nonlinear systems with fractal basins,

where the only observables that we have access to are the attractors of the system. We assume

that we are not able to measure the time series before they reach the final attractor, but we

assume that we have some knowledge about the probability density function of the initial con-

ditions. In this way, we consider that the dynamical system is like a black box, as depicted in

Fig 1, where only the final output can be measured. In this framework, the behavior of the

dynamical system is very similar to that of a die, although the behavior of this one is neither

chaotic nor random [5]. The key point of the prediction mechanism developed here, is (as we

show in several ways) that the ratio or probability of initial conditions going to each attractor

in the phase space is scale free. This is precisely what allows the statistical prediction. We show

here how this procedure works for Wada basins, but it should also work for systems showing

any of the other kind of fractal basins.

A dynamical system has Wada basins if it has three or more basins sharing the same fractal

boundary. This topological idea was introduced by Kennedy and Yorke [6]. Wada basins usu-

ally appear in two-dimensional dynamical systems as a result of a boundary crisis of a chaotic

attractor. This fact often leads to the fractalization of the entire basin boundary. Wada basin

boundaries are frequently observed in both dissipative and Hamiltonian systems. We can find

this topological property in relation to mechanical models of billiard balls [7] or chaotic advec-

tion of fluid flow [8] and in the context of the Hénon-Heiles Hamiltonian system in celestial

Fig 1. Black box diagram. We consider that the dynamical system that we are going to study is a black box to which we do not have any

internal access. We can only measure the final state of the system for a given initial condition. In this sense, the problem that we face is very

similar to the problem of predicting the final state of a die.

https://doi.org/10.1371/journal.pone.0194926.g001
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mechanics [9]. Due to the structural complexity of the Wada basin boundaries, in practice,

these structures imply serious problems in the long term prediction of dynamical systems, also

known as final state sensitivity [10, 11].

Here, we study the Duffing oscillator for a choice of parameters that verifies the Wada prop-

erty, based on the work of Aguirre and Sanjuan [12]. The Duffing oscillator is one of the best

known models of nonlinear oscillators, with applications in many fields of applied sciences

and engineering. The structure of the paper is as follows. Section 2 is devoted to the description

of the Duffing oscillator and the methodology used to explore its phase space. The one-dimen-

sional analysis of the model is described in Section 3. The two-dimensional analysis is done in

Section 4. The implication of fractal boundaries on the probabilities of each basin of attraction

is given in Section 5. Finally, some conclusions are drawn in the last section.

Description of the Duffing oscillator

We consider here the periodically driven Duffing oscillator [13] that is described by the follow-

ing differential Eq (1),

€x þ 0:15 _x � x þ x3 ¼ 0:245 cosðotÞ: ð1Þ

The Duffing oscillator of Eq (1) has a transient chaotic behavior and there are three coexist-

ing periodic attractors whose basins of attraction have Wada boundaries [12]. We have used

the stroboscopic map with T = 2π associated with the Duffing oscillator to compute the posi-

tion of the attractors in phase space. We define as P1R and P1L the period-1 attractors located

on the right and on the left, respectively. We define as P3L, P3C and P3R the points belonging

to the period-3 attractor. The period-1 attractors are located at P1R� (0.815, 0.242) and

P1L� (−0.933, 0.299). The period-3 attractor is located at P3L� (−1.412, −0.137), P3C�
(−0.354, −0.614), and P3R� (0.645, −0.464) [12]. The frequency is a critical parameter in the

study of nonlinear oscillators [14, 15]. But this parameter is not so important in chaotic sys-

tems, since they have a broad spectrum which covers a wide range of frequencies [16].

To compute the basins of attraction, we have taken all the initial conditions inside the

square [−2, 2] × [−2, 2] of the phase space, and we have integrated the system using a fourth-

order Runge-Kutta integrator with a fix integration step of 2π/4 × 105, until their orbits reach

the corresponding attractor. Different colors have been chosen according to which attractor

an initial condition goes to, as shown in Fig 2. Every initial condition belonging to the basins

of attraction of the period-1 attractors P1L and P1R have been plotted in red and green respec-

tively. All the initial conditions belonging to the basin of attraction of the period-3 attractor

have been plotted in blue. The phase space resolution depends on the amount of points taken

in the horizontal and vertical axes. More points imply more resolution. For example, if we

divide _x and x in 400, we obtain a 400 × 400 matrix with 160, 000 initial conditions, where

every initial condition has a two decimal precision. In the next sections we have studied the

following matrices of initial conditions: 50 × 50, 100 × 100, 200 × 200, 300 × 300, 400 × 400,

500 × 500, 1000 × 1000, 2000 × 2000 and 3000 × 3000. We have started with a matrix of 2, 500

(50 × 50) initial conditions and finished with a matrix of 9 × 106 (3000 × 3000) initial

conditions.

To find the probability of reaching a given state in a dynamical system it is necessary to

know its final probability density function (invariant measure). The evolution of an arbitrary

probability density function in a dynamical system f is described by the Perron-Frobenius

operator.

rnþ1ðxÞ ¼ LPFrnðxÞ; ð2Þ

From local uncertainty to global predictions: Making predictions on fractal basins

PLOS ONE | https://doi.org/10.1371/journal.pone.0194926 April 18, 2018 3 / 13

https://doi.org/10.1371/journal.pone.0194926


where ρn is the natural invariant after the n − th iteration of the map. The operator can be

explicitly written as,

LPFrnðxÞ ¼
Z

rnðxÞdðx � f ðyÞÞdy: ð3Þ

When only a finite number of non-chaotic attractors can be found in phase space, the evo-

lution of the probability density function described by the Perron-Frobenius operator con-

verges to delta functions. With knowledge of its invariant measure it is possible to determine

the probability of ending on each attractor. However, in our case it is very difficult to use this

analytical approach since we do not know the explicit expression of the time-2π map of the

Duffing oscillator. For that reason, in the following sections we have used a much more quanti-

tative procedure to compute the probabilities of the final state of the system. We have done

Fig 2. The basins of attraction of the Duffing oscillator of Eq 1. A fine grid of 2000 × 2000 of initial points is considered

and different colors are chosen according to which attractor an initial condition goes to. The points that end up in the P3

attractor are colored in blue. The points that goes to the P1R attractor are colored in green. The initial conditions which final

state is P1L are colored in red.

https://doi.org/10.1371/journal.pone.0194926.g002
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this by directly sampling the entire phase space with a uniform grid of initial conditions, and

computing the ratio of the number of points (of those initial conditions) ending in a particular

final state relative to the number of the sample. Interestingly, we have found that this method

works even for very low resolution samples.

We have divided the statistical analysis of the model into two parts. First, we have studied

the probabilities obtained by sampling the phase space along horizontal (or vertical) one-

dimensional straight lines. Second, we have used a two-dimensional grid covering the whole

phase space to compute the probabilities associated with each attractor in phase space.

One-dimensional analysis of the model

Our goal in the first analysis is to compute the probabilities of ending on a given attractor,

assuming that we know only one of the two coordinates of the initial condition, either x or _x.

This means that we need to compute a conditional probability. We could do this formally by

taking as our initial probability density function ρ0 the one that is zero everywhere except in

the coordinate that we know, and recursively applying the Perron-Frobenius operator until it

converges. We then integrate the resulting probability density function in the neighborhood of

each attractor to find the conditional probabilities

PðP1Ljx ¼ xiÞ; PðP1Rjx ¼ xiÞ; PðP3jx ¼ xiÞ: ð4Þ

These are the conditional probabilities of ending up in each attractor given that we know

the coordinate xi of the initial condition. However, as we have already mentioned, finding

the final probability density function using the Perron-Frobenius operator is usually very

complicated.

An alternative way to compute these conditional probabilities is to sample the phase space

in xi along _x with a uniform one-dimensional grid, and then compute the final state of all of

those initial conditions. Then taking the ratio of initial conditions that belongs to each basin of

attraction gives us P(P1L|x = xi), P(P1R|x = xi) and P(P3|x = xi). We have done this for every xi

in different resolutions. We have followed a similar procedure to compute the conditional

probabilities PðP1Lj _x ¼ _xiÞ, PðP1Rj _x ¼ _xiÞ and PðP3j _x ¼ _xiÞ, where we assume that we know

the coordinate _xi of the initial condition. We summarize the results in the diagrams and graphs

shown in Fig 3.

As we can see in Fig 3, for the resolution 300 × 300 and higher, the conditional probabilities

remain constant for almost every xi. It is also clear in Fig 3 that the period-3 attractor (blue

basin) is the most probable attractor and the two period-1 attractors have almost the same

probability (around 0.25). For the interval _x ¼ ½0; 0:5�, a big change in the trend occurs, when

PðP3j _x ¼ _xiÞ (blue) loses over 24% of its value and PðP1Lj _x ¼ _xiÞ (red) sums 33% to its value.

In this interval, the P1L attractor (red) is the most common, additionally PðP1Rj _x ¼ _xiÞ

(green) sums 20% too and becomes more frequent inside this interval. The location of the two

large basin cells of the period-1 attractors in phase space lies inside this interval, which explains

the new trend of probabilities. In the interval x = [0.8, 1] another big change in the trend

occurs when P(P3|x = xi) (blue) loses about 25% of its value and P(P1R|x = xi) (green) attractor

increases its value by 55% of its value and becomes the most frequent attractor in phase space.

Additionally, in the interval x = [1.3, 1.6] there is a peak in P(P1L|x = xi) (red). This attractor

sums over 40% of its value and becomes the most common attractor in this small interval.

Again this result arises from the location of the basin cells of the period-1 attractor in phase

space. However, despite of those big local changes of the conditional probabilities near to the

large basin cells, we find that in the rows or columns with a strong Wada property (which are
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Fig 3. Conditional probabilities of each attractor in the Duffing oscillator for different resolution grids. Panels (a), (d) and (g) are the

basins of attraction of the Duffing oscillator for grids of 50 × 50, 300 × 300 and 1000 × 1000 correspondingly. The points are colored according

to which attractor an initial condition goes to. In panels (b), (e) and (h) we have plotted the conditional probabilities associated with each

vertical line of the phase space, PðP1Lj _x ¼ _xiÞ (red), PðP1Rj _x ¼ _xiÞ (green) and PðP3j _x ¼ _xiÞ (blue). In panels (c), (f) and (i) we have plotted

the conditional probabilities associated with each horizontal line of the phase space, P(P1L|x = xi) (red), P(P1R|x = xi) (green) and P(P3|x = xi)

(blue).

https://doi.org/10.1371/journal.pone.0194926.g003

From local uncertainty to global predictions: Making predictions on fractal basins

PLOS ONE | https://doi.org/10.1371/journal.pone.0194926 April 18, 2018 6 / 13

https://doi.org/10.1371/journal.pone.0194926.g003
https://doi.org/10.1371/journal.pone.0194926


the most common) the conditional probabilities are almost constant. The conditional proba-

bilities only change in the regions with big basin cells.

We can also treat the total length (found in a given horizontal or vertical straight line in the

phase space) associated to the basin with each attractor, as a continuous random variable

which will have associated a probability density function (pdf), γ(L). These pdfs allow us to

compute the probability that the length of each attractor of a horizontal (or vertical) straight

line (in phase space) is within a Δδ interval, this is P(L − Δδ< L< L + Δδ). We have obtained

the pdfs by counting the number of initial conditions for every one-dimensional horizontal (or

vertical) straight line that goes to each attractor, and computing later the histogram of the

number of horizontal (or vertical) lines vs the number of initial conditions. Normalizing this

histogram by the number of horizontal (or vertical) lines we obtain the desired pdf. We can

see the results of the computed pdfs for different resolutions in Fig 4. The length associated

with each attractor in every straight line is measured by the number of initial conditions. In

order to compare the different resolutions, we have also normalized the horizontal axes where

we represent the points ratio per line. As we can see, as the phase space resolution increases

the pdf shapes become smoother. On the one hand, from the statistical coefficients calculated

from the data, we can conclude that the pdf associated with the length of the P3 attractor in

either vertical or horizontal straight lines is not normally distributed and has a long tail in the

left side. On the other hand the pdfs associated with the lengths in horizontal (or vertical)

straight lines for the P1L and P1R attractors, are not normally distributed either, and have a

long tail on the right side. As expected the mean of the pdf associated with the P3 attractor

Fig 4. Kernel probability density estimation (KPDE) of the points ratio associated with each attractor for an horizontal or a vertical line.

This figure shows the KPDE related to each attractor for a random picked horizontal or vertical line. The horizontal axis measures the ratio

points per line. The vertical axis represents the probability density of each attractor, for horizontal lines on the left and for vertical lines on the

right. Here, γP3 (blue) is the probability density function associated with the P3 attractor, γP1R (green) is the probability density function

associated with the P1R attractor and γP1L (red) is the probability density function associated with the P1L attractor. We have repeated the same

computation for the following resolutions: 50 × 50 as dash line, 300 × 300 as dot dash line and 1000 × 1000 as solid line.

https://doi.org/10.1371/journal.pone.0194926.g004
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doubles the mean of the P1L and P1R attractors, either in the horizontal or the vertical direc-

tion. Interestingly, the standard deviation is about the same for all the pdfs—in both the hori-

zontal and vertical directions.

Two-dimensional analysis of the model

In the two-dimensional case the invariant probability density function would be computed

taking as our initial probability density function ρ0, the one that is one everywhere in the

square [−2, 2][−2, 2], and applying recursively the Perron-Frobenius operator until it con-

verged. We would integrate the resulting probability density function in the neighborhood of

each attractor to find the total probabilities,

PðP1LÞ; PðP1RÞ; PðP3Þ: ð5Þ

These are the total probabilities of ending in each attractor assuming that we do not know

any of the coordinates of the initial conditions. However, as in the previous case, to find the

final probability density function using the Perron-Frobenius operator is usually difficult.

An easy way to compute the total probabilities is taking a uniform two-dimensional grid

and computing the ratio of initial conditions that belongs to each basin of attraction. We have

done this for different resolutions of the grid as we can see in Fig 5, where it can be clearly

observed that the pattern of the basins of attraction is almost stable for resolutions higher than

300 × 300. All the basins of attraction keep their shape near the location of the attractors, but

as we move away from them, they begin to mix and become fractal. In Table 1 we summarize

the number of initial conditions taken for every resolution and going to each attractor.

For very low grid resolutions there is a large change in the probabilities going to each

attractor. But beyond a given threshold in the resolution, the probabilities remain constant.

This is what we show in Fig 6. We can clearly see how, for a resolution of 300 × 300 or higher,

the probabilities converge to constant values. The total probability of landing in the period-3

attractor P(P3) (blue basin) converges to 0.456 (45.6%), the total probability of landing in the

period-1 attractor to the right P(P1R) (green basin) converges to 0.270 (27%) and the total

probability of ending in the period-1 attractor to the left P(P1L) (red basin) converges to 0.274

(27.4%). This clearly indicates that the results are robust and can be used in the statistical pre-

diction that we are looking for. As expected, due to the convergence of the Perron-Frobenius

operator these probabilities are scale free. Fig 7 shows how the probability of each attractor

changes depending on its location over the phase space. Now we can actually visualize why and

even where the probability of being in the basin of the period-3 attractor, for example, is great-

est over the phase space. The orange color on the left panel in Fig 7 illustrates how the high

probability of the period-3 attractor dominates in the fractalized zones, while in the other two

panels the dark red color illustrates the low probability of the period-1 attractors over the same

palaces in the phase space. The fact that the fractal zones occupy a larger area of the phase space

explains why at the aggregate level we obtain the results above. We can state that the long term

dynamics of this system depends on the attractor that governs in the fractal zones.

Surprisingly, we find here a very remarkable result in the rows and columns with a strong

Wada property. In those regions it is satisfied that

PðP1Ljx ¼ xiÞ � PðP1Lj _x � _xiÞ � PðP1LÞ

PðP1Rjx ¼ xiÞ � PðP1Rj _x ¼ _xiÞ � PðP1RÞ

PðP3jx ¼ xiÞ � PðP3j _x ¼ _xiÞ � PðP3Þ:

ð6Þ
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This means that in the regions with the Wada property the knowledge of one of the coordi-

nates of the initial condition does not improve our prediction capability. It is the same as not

knowing any of the coordinates of the initial condition. The conditional probability and the

total probability differ only in the regions with large basin cells.

As we have just seen, the probabilities of each basin of attraction converge to a constant

probability when the resolution of the phase space increases as shown in Fig 6. It seems that

improving the resolution does not affect the probabilities anymore. To show that this result

Fig 5. Basins of attraction for different resolutions. The picture shows the basin of attraction plotting, each one with different

resolution. (a) 50 × 50, (b) 100 × 100, (c) 200 × 200, (d) 300 × 300, (e) 400 × 400, (f) 500 × 500, (g) 1000 × 1000, (h) 2000 × 2000 and (i)

3000 × 3000.

https://doi.org/10.1371/journal.pone.0194926.g005
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does not have any grid dependence, we have carried out a Monte Carlo simulation. We have

chosen the Monte Carlo method because the error on the results typically decreases as 1=
ffiffiffiffi
N
p

[17].

To implement the Monte Carlo method, we have chosen randomly 50, 000 initial condi-

tions with 15 decimals precision in phase space. This precision is equivalent to a fine grid of

1016 × 1016 initial points. We have used a uniform probability distribution to generate the ini-

tial conditions as shown in Fig 8. Then, we have integrated them using a fourth-order Runge-

Kutta integrator with a fix integration step of 2π/200 and classifying them depending on the

attractor towards which they converge. We have chosen bigger integration steps for this calcu-

lation because of the high precision of initial conditions. Next, we have computed the ratio of

Table 1. Points per basin.

Phase space size Precision Initial points P3 (Blue) P1D (Green) P1I (Red)

50 × 50 0.08 2,500 1,092 700 708

100 × 100 0.04 10,000 4,623 2,687 2,690

200 × 200 0.02 40,000 18,248 10,845 10,907

300 × 300 0.0133 90,000 41,089 24,326 24,585

400 × 400 0.01 160,000 73,159 43,218 43,623

500 × 500 0.008 250,000 114,298 67,780 67,922

1,000 × 1,000 0.004 1,000,000 455,877 270,612 273,511

2,000 × 2,000 0.002 4,000,000 1,826,335 1,081,648 1,092,017

3,000 × 3,000 0.00133 9,000,000 4,104,916 2,434,470 2,460,614

https://doi.org/10.1371/journal.pone.0194926.t001

Fig 6. The attractors probability trends. This figure shows the probabilities of each basin of attraction in the phase space (vertical axis) and the

resolutions of each phase space given by it matrix size (horizontal axis). The blue line represents the initial condition probability belonging to

the period-3 attractor P3, the green line corresponds to the period-1 attractor P1R, and the red line to the period-1 attractor P1L.

https://doi.org/10.1371/journal.pone.0194926.g006
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Fig 7. The probability of the attractors on the phase space. We have divided the original phase space into 90, 000 samples squares where each

square possesses a sample of 100 grid points from the the original 3000 × 3000 phase space. Then, we have computed the relative frequency of

each attractor in each square over the phase space. We have plotted the probability of each attractor on the phase space separately. P3 on the left

panel, P1R on the central panel and P1L on the right panel. When there is 100 percent probability for the square to fall into a particular attractor

we have colored the square in white. When there is no chance (probability 0) for a particular square to fall into a particular attractor we have

colored the square in black. When the probability of falling into a particular attractor is between 0 and 1 we have colored the square in some red

scale color, where dark red is close to probability 0 and yellow is close to probability 1. Note that here we are not plotting the basins of attraction,

but the spatial probability function associated with each attractor.

https://doi.org/10.1371/journal.pone.0194926.g007

Fig 8. The probability of the attractors when the initial conditions are chosen randomly. (a) Shows the initial conditions taken in the Monte

Carlo method to compute the probability associated to each attractor. The pie diagram in (b) shows the probability of each attractor in the phase

space according to this sample of initial conditions.

https://doi.org/10.1371/journal.pone.0194926.g008
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initial conditions going to each attractor versus the total number of initial conditions in the

sample to obtain the attractors probabilities. We have obtained the following results; the total

probabilities of the period-1 attractors P1R and P1L are 0.270 and 0.272 respectively. The total

probability of the period-3 attractor is 0.458. These probabilities are almost identical to the

probabilities found in the statistical analysis found with the uniform grid. With this result, we

can confirm the probabilities obtained with the uniform grid for the statistical predictions of

an arbitrary initial condition are very accurate.

Implication of fractal boundaries on the probabilities of each basin

of attraction

There is a very intuitive explanation for the convergence of the total probability of each

attractor towards a constant value, as shown in the previous sections. The fractal basins that

we study here have a fractal dimension, though we have not computed it since it is not relevant

for the statistical predictions that we were studying. Simply by looking at Fig 5 it is clear that

we face self similar basins of attraction that do not change with the scale at which they are mea-

sured [18]. The method used to compute the probability of each basin of attraction in phase

space, is somehow like measuring the area that each basin occupies in the phase space. This is

similar to what happens in the famous coastline paradox [19]. As we increase the resolution,

the perimeter of the coastline increases towards the infinity. But the area enclosed by that

perimeter remains constant [20, 21]. A completely analogous behavior is found in the case of

the Duffing oscillator. We get more points on the basin boundaries and the precision of each

point increases as well. But the area of each basin of attraction occupies the same space in all

scales of the phase space from a given threshold resolution. This behavior is helpful when we

are interested in the global dynamics of the system. In some dynamical systems with sensitive

dependence on initial conditions, knowing the attractor’s probabilities is enough to under-

stand the system and to do statistical predictions. In many cases, making clever decisions in

accordance to the probability of every attractor in the system is good enough.

Conclusion

In this paper, we have studied the Duffing oscillator model with a choice of parameters show-

ing the Wada property. Then, by using methods from statistical analysis, the probabilities of

ending up in a particular attractor of the phase space have been found. We have also shown

that these probabilities might be scale invariant. This result is related to the fractal nature of

the basins boundaries. A Monte Carlo simulation has been used to verify the values of the

attractor probabilities and we have found that are very similar to the values calculated in the

statistical analysis. We have shown that knowing the attractors probabilities in some cases is

enough to predict the future state of the system and to tackle the final state sensitivity problem,

even if we do not have any knowledge about the initial conditions of the system. We have also

shown how relatively low grid resolutions (300 × 300 or higher) are enough to obtain the statis-

tical information needed for the statistical predictions about the future state of the system,

even in systems as complicated as the Duffing oscillator with the Wada property. This means

that we can save a lot of time, effort and memory space when computing the probabilities asso-

ciated with this kind of systems. Finally, we have also seen how in terms of prediction, the

knowledge of one of the coordinates of the initial condition, provides similar results to the case

when the two coordinates in the Wada regions are unknown. The technique presented here

can be applied to any dynamical system with fractal basins or even Wada basins over its phase

space. We believe that using this technique with relative low resolution phase space samples

might give a good understanding of the attractors distributions and probabilities helping
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decision makers and researchers to make decisions and even predict, optimizing their compu-

tational time and resources.
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