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Abstract. Recently, genetic algorithms (GAs) and their hybrids have achieved great success in
solving difficult combinatorial optimization problems. In this paper, the issues related to the per-
formance of the genetic search in the context of the grey pattern problem (GPP) are discussed.
The main attention is paid to the investigation of the solution recombination, i.e., crossover op-
erators which play an important role by developing robust genetic algorithms. We implemented
seven crossover operators within the hybrid genetic algorithm (HGA) framework, and carried out
the computational experiments in order to test the influence of the recombination operators to the
genetic search process. We examined the one point crossover, the uniform like crossover, the cy-
cle crossover, the swap path crossover, and others. A so-called multiple parent crossover based
on a special type of recombination of several solutions was tried, too. The results obtained from
the experiments on the GPP test instances demonstrate promising efficiency of the swap path and
multiple parent crossovers.
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1. Introduction

The grey pattern problem (GPP) (Taillard, 1995) is based on a rectangle (grid) of dimen-
sions n1×n2 containing n = n1×n2 points (square cases) with m black points and n−m

white points. By juxtaposing many of these rectangles, one gets a grey pattern (frame)
of density m/n. The objective is to get the finest grey pattern, that is, the black points
have to be spread on the rectangle as regularly as possible. The grey pattern problem is a
special case of a more general problem, the quadratic assignment problem (QAP) (Koop-
mans and Beckmann, 1957) which is known to be NP-hard. The QAP is formulated in
the following way. Let two matrices A = (aij)n×n and B = (bkl)n×n and the set Π
of all possible permutations of the integers from 1 to n be given. The goal is to find a
permutation π = (π(1), π(2), . . . , π(n)) ∈ Π that minimizes

z(π) =
n∑

i=1

n∑
j=1

aijbπ(i)π(j). (1)
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More complete discussions and surveys on the QAP can be found in (Burkard et al.,
1998; Çela, 1998; Pardalos and Resende, 2002; Pardalos and Wolkowicz, 1994; Pitsoulis
and Pardalos, 2001; Rendl, 2002).

In the grey pattern problem, the matrix (aij)n×n is defined as aij = 1 for i,
j = 1, 2, . . . ,m and aij = 0 otherwise. The matrix (bkl)n×n is defined by the
given values – the distances between every two of n points. More precisely, bkl =
bn2(r−1)+s,n2(t−1)+u = frstu, where

frstu = max
v,w∈{−1,0,1}

1
(r − t + n1v)2 + (s − u + n2w)2

, (2)

r, t = 1, . . . , n1, s, u = 1, . . . , n2.

frstu may be thought of as an electrical repulsion force between two electrons (to be
put on the grid points) i and j (i, j = 1, . . . , n) located in the positions k = π(i) and l

= π(j) with the coordinates (r, s) and (t, u) (see also Taillard, 1995). The ith (i � m)
element of the permutation (solution) π, π(i) = n2(r − 1) + s, gives the location in
the rectangle where a black point has to be placed in. The coordinates of the location
π(i) of the black point are derived according to the formulas: r =� (π(i) − 1)/n2� + 1,
s = ((π(i) − 1)mod n2) + 1, i = 1, 2, . . . ,m.

Many heuristic approaches can be applied for solving both the QAP and, at that time,
its particular case – the grey pattern problem (see, for example, Burkard et al., 1998;
Taillard, 1995). Recently, genetic algorithms (GAs) are among the advanced heuristic
techniques for the combinatorial problems, like the QAP (see Ahuja et al., 2000; Drezner,
2003; Merz and Freisleben, 2000; Misevicius, 2004b; Taillard and Gambardella, 1997).

Very roughly, genetic algorithms in the context of the QAP/GPP can be characterized
as follows (Goldberg, 1989). Let P be a subset of Π; it is referred to as a population,
and it is composed of individuals, i.e., solutions (permutations), π1, π2, . . . , πPS=|P |.
Each individual (πi) is associated with a fitness, i.e., the corresponding objective function
value (z(πi)). In this case, the individual πi is preferred to individual πj if z(πi) <

z(πj). (Further, we also shall call the solution (permutation), π, as a chromosome, the
single position, i, of the solution (chromosome) – as a gene, and the value at the given
position (gene), π(i) – as an allele.) The following are the main steps of the genetic
search. A pair (or fraction) of members of P is selected to be parents. New solutions (i.e.,
offspring) are created by combining (merging) the parents; this recombination operator
is known as a crossover. Afterward, a replacement (culling) scheme is applied to the
previous generation and the offspring to determine which individuals survive to form
the next generation. In addition, some individuals may undergo mutations to prevent a
premature loss of the diversity within the population. Over many generations, less fit
individuals (worse solutions) tend to die-off, while better individuals (solutions) tend to
predominate. The process is continued until a certain termination criterion is met.

For a more thorough discussion on the principles of GAs, the reader is addressed to
(Davis, 1991; Goldberg, 1989; Reeves and Rowe, 2001).

In this paper, the issues related, namely to the genetic search for the grey pattern
problem are discussed. The main attention is paid to the investigation of the solution
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recombination (crossover) operators, which play an important role by constructing effi-
cient genetic algorithms. The paper is organized as follows. A hybrid genetic algorithm
(HGA) framework and recombination operators are discussed in Section 2. In Section
3, we present the results of testing of the various crossover operators within the HGA
framework for the grey pattern problem. Section 4 completes the paper with conclusions.

2. A Hybrid Genetic Algorithm Framework and Recombination Operators

2.1. A Hybrid Genetic Algorithm Framework: the State-of-the-Art and Further
Extensions

Traditional genetic algorithms face some difficulties, first of all, a huge amount of local
optima over the search space. The second negative aspect is presence of cycles, i.e., re-
peating sequences of the search trajectories. There exists also the third phenomenon – the
case in which the convergence to local optima and the cycles are absent but the search
is still confined in limited portions of the solution space (this phenomenon is known as
“chaotic attractors”). The algorithms that try to overcome these difficulties are rather hy-
brid, i.e., combined genetic local search algorithms which incorporate additional heuristic
components (Moscato, 1999). The example of such component is a post-crossover pro-
cedure which is used to play the role of a local improvement algorithm applied to the
solution previously produced by the crossover. Heuristic algorithms can also be applied
for the construction of high quality initial populations. As a result, the genetic search is
done in an optimized search space, where the populations consist solely of local optima
– this appears to be much more effective process than when searching in a pure random
solution space.

Applying hybrid genetic algorithms still does not necessarily mean that good solu-
tions are reached at reasonable computation time. Indeed, HGAs often use the elaborated
improvement heuristics (like simulated annealing, tabu search, etc.) that in general are
quite time-consuming. This could be thought of as a serious shortcoming, especially if
we wish to create HGAs that are competitive with other modern optimization techniques.
In these circumstances, it is important to make some additional extensions to HGAs. The
following are the basic principles by designing of the extended hybrid genetic algorithms
(EHGAs).

1. EHGAs should incorporate as fast (robust) local improvement algorithms as pos-
sible. Here, we assume that the algorithm A1 is “faster” than the algorithm A2 (in the
other words, A1 dominates over A2 in terms of run time) if A1 finds (in average) the so-
lution(s) with the average objective function value (quality) f♦ in less time (t1) than A2.
Naturally, the long time behaviour does not matter as long as we are speaking of the
fast algorithms in the context of EHGAs: the only matter is how quickly an algorithm
achieves solution(s) with the quality f♦. One of the examples of robust algorithms is an
iterated tabu search (ITS) (see, for example, Misevicius, 2005).

2. In EHGAs, the compactness of the population is greatly desirable. As long as po-
werful local improvement procedures are used, the large populations of solutions are not
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necessary at all: the small size of the population is fully compensated by the robustness of
the heuristic improvement algorithm. Obviously, the compact populations allow to save
the computation time when comparing to other HGAs which deal with larger populations.

3. EHGAs must maintain a high degree of the diversity within the population. This is
especially true for the small populations. Indeed, the smaller the size of the population,
the larger the probability that the diversity will be lost quickly by using robust improve-
ment heuristics. To fight this difficulty, so-called “cold restarts” may be proposed; here,
as “cold restarts” we call deep reconstructions of the population, for example, the muta-
tions applied to the members of a population with the subsequent local improvement (to
keep the local optimality of the population). “Cold restart” takes place each time the fact
of a premature convergence (“stagnation”) is determined, i.e., the level of the diversity
within the current population is below a certain threshold. As a measure for the diversity,
entropy of the population may be used (Misevicius, 2003a).

The generalized framework of the extended hybrid genetic-tabu search algorithm is
depicted in Fig. 1. Note that, within this framework, we applied a limited iterated tabu
search procedure in the role of a local improvement algorithm. Remind that combining
of the iterated tabu search and the genetic operators has been proven highly effective for
the QAP (Misevicius, 2004a, 2004b). The favourable feature of the ITS procedure is that
there is no need in the mutations within GA itself (which is the case in the ordinary GAs):
each solution already undergoes mutation-like transformations during the execution of the
iterated tabu search. The ITS procedure (but with the increased number of iterations) is
also used at both the initial population construction and the restart process.

As stated above, the fast execution of the local improvement procedure is of high
importance. This is even more true for the iterated tabu search where many iterations of
the tabu search (TS) take place. Fortunately, as the GPP is a special case of the QAP,

Fig. 1. Basic flowchart of the extended hybrid genetic algorithm.
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lots of computations can be shorten and simplified due to the very specific character of
the matrix A in the grey pattern problem, as shown in (Taillard, 1995). For the GPP, the
exploration of the neighbourhood in the TS procedure is restricted to the interchange of
one of the first m elements (black points) with one of the last n − m elements (white
points). Therefore, the neighbourhood size decreases to O(m(n−m)), instead of O(n2)
for the ordinary QAP. In addition, evaluating the difference in the objective function
values becomes more faster because the matrix A is consisting of entries 0 and 1 only.
So, instead of the standard formula of calculation difference in the values of the objective
function when exchanging the ith and jth elements in the current permutation:

∆z(π, i, j) = (aii − ajj)
(
bπ(j)π(j) − bπ(i)π(i)

)
+ (aij − aji)

(
bπ(j)π(i) − bπ(i)π(j)

)

+
n∑

k=1,k �=i,j

(aik − ajk)
(
bπ(j)π(k) − bπ(i)π(k)

)

+
n∑

k=1,k �=i,j

(aki − akj)
(
bπ(k)π(j) − bπ(k)π(i)

)
, (3)

i = 1, 2, . . . , n − 1, j = i + 1, . . . , n,

the simplified formula:

∆z(π, i, j) = 2
m∑

k=1,k �=i

(
bπ(j)π(k) − bπ(i)π(k)

)
, (4)

i = 1, 2, . . . , m, j = m + 1, . . . , n,

is used. As a result, the TS algorithm complexity is reduced from O(n3) to O(m2(n −
m)).

Recently, Drezner (2005) proposed a very inventive trick which allows reducing the
computation time even more. Based on this approach, ∆z(π, i, j) is calculated as follows:

∆z(π, i, j)=2
(
cπ(j)−cπ(i)−bπ(i)π(j)

)
, i=1, 2, . . . , m, j =m+1, . . . , n, (5)

where cπ(i), cπ(j) are the entries of the array C of size n. The values of C are calculated
once at the beginning of the algorithm for the initial solution π according to the formula
ci =

∑m
j=1 biπ(j), i = 1, 2, . . . , n. Suppose that the permutation π′ is obtained after the

exchange of the kth and lth elements in the permutation π. Then, the (old) values of ci

are replaced by the following (new) values ci + biπ′(k) − biπ′(l), i = 1, 2, . . . , n. This
takes place after every m(n−m) iterations only. The resulting complexity thus becomes
O(mn). As the TS procedure is invoked many times during the execution of EHGA, the
overall effect is even more evident, especially, in the cases when m � n.

The other details of the ITS algorithm are omitted for the sake of brevity. The reader
interesting in ITS approach is addressed to (Misevicius, 2005).
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2.2. Recombination Operators

HGAs incorporate local improvement procedures and operate with high quality optimized
populations. Despite this fact, the recombination of solutions still remains one of the cri-
tical things by constructing competitive genetic algorithms. Very likely, the role of re-
combination operators within the hybrid genetic algorithms is more significant than in
the canonical GAs. In fact, we can think of HGA as a process that combines intensi-
fication and diversification (I&D) of the search. The intensification (local improvement
algorithm) concentrates the search in limited portions of the solution space, while the
diversification is responsible for escaping from the current local optimum and moving
towards unvisited so far solutions. (For more details on I&D methodology, see, for exam-
ple, (Misevicius, 2003b, 2005).) From this point of view, the crossover is a special sort
diversification (solution reconstruction) mechanism, which – generally speaking – guides
the global search, i.e., exploration of new and new regions of the solution space. Hope-
fully, better locally optimal solutions will be discovered. Thus, the proper exploration
strategy is, in some sense, even more severe than the intensification process, and may add
a crucial influence on the resulting efficiency of the search.

2.2.1. Basic Characteristics of Recombination Operators
The crossover is one of the main genetic search operators. It is capable of producing a
new feasible solution (i.e., child) by exchanging the information contained in both par-
ents. From the philosophical point of view, crossover is a structured and, at that time,
randomized process (operation) that guarantees both inheritance of the existing charac-
teristics and creation of entirely new features. Mathematically, crossover can be defined
as a binary operator (function) ψ: Π×Π → Π such that ψ(π′, π′′) �= π′∨ψ(π′, π′′) �= π′′

if π′ �= π′′; here, we assume that the solutions are represented by permutations. As a rule,
the recombination operators ensure that the offspring definitely inherits the alleles which
are common to both parents; more formally, π′(i) = π′′(i) ⇒ π◦(i) = π′(i) = π′′(i),
i = 1, 2, . . . , n, where π′, π′′, π◦ are the parents and offspring, respectively. The inheri-
tance of the remaining genes can be accomplished in a variety of ways. Before describing
some of these ways, we discuss certain characteristics of the crossover operators, which
seem to be quite severe in the context of HGAs. Firstly, the crossover operators can be
characterized by a “distance” factor which may be viewed as a measure of how “far” is
the offspring from the parents. Let d(πx, πy) be Hamming distance between permutations
πx and πy , i.e.:

d(πx, πy) =
∣∣∣{i |πx(i) �= πy(i)

}∣∣∣. (6)

The normalized integrated distance between the offspring and the parents, δ, is then de-
fined as follows:

δ =
δmin + δmax

2
, (7)
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where

δmin =
min{d(π◦, π′), d(π◦, π′′)}

n
, (8a)

δmax =
max{d(π◦, π′), d(π◦, π′′)}

n
, (8b)

where d(π◦, π′), d(π◦, π′′) are the distances between the offspring and the first and sec-
ond parent, respectively. This normalized distance takes on values between 0 and 1. Of
course, it is desirable that δ > 0 to prevent the loss of the diversity and the premature
convergence of GA.

The other important criterion of the crossover operators is a “degree of disruptiveness
(randomness)”. Disruptiveness can be thought of as a measure of “foreign” elements,
i.e., elements that are not contained in the corresponding positions of the parents. More
formally, the degree of disruptiveness, ρ, is defined as follows:

ρ =

∣∣{i|π◦(i) �= π′(i) ∧ π◦(i) �= π′′(i)}
∣∣

n
, (9)

where π′, π′′ are the parents and π◦ is the offspring. It is obvious that 0 � ρ � 1; in
addition, δmax � δ � δmin � ρ. The low degree of randomness does not necessarily
mean that the distance is also small; however the experiments show some correlation
between the statistical values of δ and ρ (see Section 3, Table 1). In general, there are
two situations in the recombination process: 1) ρ = 0; 2)ρ > 0. The first situation is also
referred to as an explicit mutation. Radcliffe and Surry (1994) use the term “assorting
crossover”. In this case, the offspring is different from both first and second parent (if
δmin > 0), in addition, every allele of the child is from the corresponding gene of either
first or second parent; that is, π◦ �= π′ ∧ π◦ �= π′′ ∧ (π◦(i) = π′(i) ∨ π◦(i) = π′′(i),
i = 1, 2, . . . , n). This is a quite strict condition. That is the reason why the assorting
recombination is hardly accomplished for some problems. The second situation is known
as an implicit mutation (Radcliffe and Surry use the term “respectful crossover”). In this
case, the only requirement to fulfil is that the offspring is different from the parents, i.e.,
δmin > 0 (provided that the offspring necessarily inherits common parents’ alleles). More
formally, the implicit mutation takes place if there exists (at least one) such an i that
π◦(i) �= π′(i) ∧ π◦(i) �= π′′(i).

The crossover operators can be classified as less disruptive (if ρ is relatively small)
and more disruptive (if ρ is relatively large) (see Fig. 2). Within hybrid GAs, it could be
conjectured that more disruptive crossovers are preferable to less disruptive crossovers.
Indeed, as new solution produced by the recombination operator is again transformed into
an optimized solution by the improvement heuristic, the crossover is highly desirable to
be “strong” enough to allow to escape the current locally optimal solution and to move
towards new regions in the solution space. Nevertheless, the crossover should also be
“gentle” enough to keep the characteristics of the good solutions since parts of these
solutions may be close to the ones of the global optimum. In addition, the following facts
should be taken into consideration. If the recombination operator is too “disruptive”, the
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Fig. 2. Less disruptive crossover (a) vs more disruptive crossover (b).

resulting algorithm might be similar to a random multistart, which is known to be not a
very efficient method. On the other hand, if the recombination operator is too “weak”, the
improvement procedure might possibly fall back into the previous local optimum.

2.2.2. Conceptual Comparison of Recombination Operators
Below we give a short outline (conceptual comparison) of several representatives of the
recombination operators. We start our discussion with the one point crossover (OPX)
operators (Goldberg, 1989). They are classical recombination procedures widely used in
early versions of the genetic algorithms. One of the variants of OPX for the permutation-
based solutions is due to Lim et al. (2000). The idea of OPX is quite simple. A crossing
point (site) is chosen randomly between 1 and n − 1 in one of the parents (say, π′). The
corresponding alleles are copied to the offspring, the remaining elements are then copied
from the “opposite” parent (π′′) in such a way that the feasibility of the resulting solution
is preserved. As a result, a child chromosome is obtained, containing information partially
determined by each of parent chromosomes. The visual example of OPX is shown in
Fig. 3.

The other popular crossover is based on a uniform recombination principle (Syswerda,
1989). The uniform like crossover (ULX) for the QAP was proposed by Tate and Smith
(1995). ULX works as follows. First, all items assigned to the same position in both
parents are copied to this position in the child. Second, the unassigned positions of a
permutation are scanned from left to right: for the unassigned position, an item is chosen
randomly, uniformly from those in the parents if they are not yet included in the child.
Third, remaining items are assigned at random (see also Fig. 4).

Fig. 3. Example of one point crossover.

Fig. 4. Example of uniform like crossover.
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Further, let us describe a variant of the well-known recombination operator, the
partially-mapped crossover (PMX) (Goldberg and Lingle, 1985). The main idea of PMX
is that it works with a part of a chromosome – mapping section – located between two
crossover points (sites). PMX has been proven to be highly effective for the traveling
salesman problem, however the straightforward PMX procedure does not work well for
the QAP like problems. For this reason, Migkikh et al. (1996) proposed a modified
partially-mapped crossover (MPMX) based on using a number of random mapping points
– instead of one mapping segment. The basic steps of MPMX are as follows: a) clone the
offspring π◦ from the first parent π′; b) choose a position pos1 of the offspring at random;
c) find a position pos2 in the offspring where the content is equal to the content of pos1

in the second parent π′′, i.e., π◦(pos2) = π′′(pos1); d) swap the content of π◦(pos1)
and π◦(pos2); e) repeat steps a-e k times, where k =� αn� (we used α = 0.15). An
illustration of MPMX is presented in Fig. 5.

The recombination operator we are going to outline falls into the category of “as-
sorting” operators; it is quite different from those just discussed, which may be viewed
as “respectful”. This operator is known as a cycle crossover (CX) (Merz and Freisleben,
2000; Oliver et al., 1987). The key point is that CX preserves the information contained in
both parents, that is, all the alleles of the offspring are taken either from the first or second
parent. The main steps of CX are as follows. 1. All the alleles found at the same locations
in both parents are assigned to the corresponding locations in the child. 2 Starting from
the first (or randomly chosen location) (provided that the corresponding element has not
been included in the offspring yet), an element is chosen in a random way from the two
parents. After this, one performs additional assignments to ensure that no random assign-
ment (i.e., implicit mutation) occurs. Then, the next unassigned location is processed in
the same manner until all the locations have been considered. An illustrative example is
presented in Fig. 6.

Ahuja et al. (2000) implemented a swap path crossover (SPX) for the QAP, however
the original idea of this type of recombination was developed by Glover (1994) under
the entitlement “path relinking”. So, let π′, π′′ be a pair of parents. In SPX, one starts
at the first (or some random) gene, and the parents are examined from left to right until

Fig. 5. Example of modified partially mapped crossover.

Fig. 6. Example of cycle crossover.
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all the genes have been considered. If the alleles at the position being looked at are the
same, one moves to the next position; otherwise, one performs a swap (interchange) of
two alleles in π′ or in π′′ so that the alleles at the current position become alike. (For
example, if the current gene is i, and a = π′(i), b = π′′(i), then, after a swap, either
π′(i) becomes b, or π′′(i) becomes a.) Ahuja et al. (2000) suggest to perform the swap
for which the corresponding solution has a lower cost (objective function value). The
elements in the two resulting solutions are then considered, starting at the next position,
and so on. The best solution obtained during this process (the fittest child) serves as an
offspring. The “fragment” of the swap path crossover is illustrated in Fig. 7. The specific
feature of SPX is that the problem-oriented knowledge (fitness of the parents/offspring)
is taken into account. This is the contrast to the above crossovers, which may be viewed
as “pure” operators.

Drezner (2003) introduced a quite interesting recombination operator – a cohesive
crossover (COHX). The approach is based on maintaining a special distance matrix M .
The matrix M is filled in according to a wave propagation fashion starting from some
initial (pivot) position (i0, j0) (see Fig. 8a). In case of the GPP, M = (mij)n1×n2 where
n1, n2 are the GPP dimensions. The matrix M corresponds to a one-dimensional vector
µ such that mij =µ(i−1)n2+j , i = 1, 2, . . . , n1, j = 1, 2, . . . , n2 (see Fig. 8b).

Depending on the pivot position, there exist n different distance vectors: µ(1),
µ(2), . . . ,µ(k), . . . ,µ(n). Then, the kth recombined solution π(k) (k = 1, 2, . . . , n) is
generated in the following four steps:

1) the median, η, of µ(k) is calculated;
2) the positions which are closer than the median to the pivot position are assigned

the alleles from the first (better) parent, i.e., π(k)(i) = πbetter(i) if µ
(k)
i < η, where

i = 1, 2, . . . , n, πbetter = argmin {z(π′), z(π′′)}, π′, π′′ are the solutions-parents;

Fig. 7. Example of swap path crossover.

Fig. 8. Example of the special distance matrix: two-dimensional (a) and one-dimensional (b) representations.
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Fig. 9. Example of cohesive crossover.

3) all other positions are assigned the alleles from the second (worse) parent, i.e.,
π(k)(i) = πworse(i) if µ

(k)
i � η, where i = 1, 2, . . . , n, πworse = argmax {z(π′), z(π′′)};

4) it is possible that some alleles are assigned twice and some are not assigned at all;
so, a list of unassigned alleles is created and all alleles from the second parent that are
assigned twice are replaced with an allele from the list (provided that the allele is not yet
included in the offspring).

An example of generation of the recombined solution is given in Fig. 9. In all, n

solutions are produced, but only the best of them is regarded as an offspring, i.e., π◦ =
arg mink=1,2,...n z(π(k)). It should be noted that the vectors µ(1),µ(2), . . . ,µ(n) may
simply be substituted by the “real distances”, i.e., the corresponding rows of the matrix B

(see Section 1). This results in an effective problem-oriented crossover. For more details
on COHX, see (Drezner, 2003).

Multiple parent crossover (MPX) was described by Misevicius and Rubliauskas
(2005), although the idea of using combinations of several solutions goes back to (Boese
et al., 1994; Fleurent and Glover, 1999; Mühlenbein, 1989). MPX is distinguished for the
fact that the offspring derives the information from many parents – this is the contrast and,
at that time, the advantage to the traditional operators, where the useful information may
be left out of account because of using two parents only. In MPX, ith element, i.e., allele
of the offspring π◦ is created by choosing such a number j (among those not yet chosen)
that the probability that π◦(i) = j Pr(π◦(i) = j) is maximized. Here, the probability
Pr(π◦(i) = j) is equal to dij/

∑n
j dij , where dij is the entry of a so-called desirability

matrix D = (dij)n×n; the value of dij is determined by the sum qij + ε, where qij is
the number of times that the element i is assigned to the position j = π(i) in µ parents
(which participate in creation of the child), and ε is a correction (noise). The process is
to be continued until all the genes of the offspring take on their values. The example of
producing of the offspring in multiple parent crossover (µ = 5) is given in Fig. 10.

3. Testing of the Hybrid Genetic Algorithm for the Grey Pattern Problem

In this section, we present the results of the experimental comparison of the crossovers
outlined above. In the experiments, we used the instances of the GPP generated according
to the method described in (Taillard, 1995). For the set of problems tested, the size of the
instances, n, is equal to 256, and the frames (rectangles) are of dimensions 16 ×16, i.e.,
n1 = n2 = 16. The instances are denoted by the name grey_16_16_m, where m is
the density of grey; it varies from 3 to 128. Remind that, for these instances, the data
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Fig. 10. Example of multiple parent crossover.

matrix B remains unchanged, while the data matrix A is of the form
[

1 0
0 0

]
, where 1 is a

sub-matrix of size m × m composed of 1s only (Taillard and Gambardella, 1997).
Firstly, we conducted a small experiment to determine the approximate (empirical)

values of the characteristics discussed in Section 2.2.1 for the two-parent crossovers.
These values are presented in Table 1. They confirm that SPX, CX are less disruptive,
while ULX, OPX are more disruptive, as conjectured. The only exception was the rel-
atively high degree of disruption for COHX. For the respectful crossovers (OPX, ULX,
MPMX, SPX, COHX), we found that the average values of δ (the integrated distance),
ρ (the degree of disruptiveness), and the aspect ratio δ

ρ are approximately equal to 0.5,
0.13, and 4, respectively.

We then carried out more thorough computational experiments. The goal was to find
out how difficult are the grey pattern problems for different recombination operators.
As an experimental basis for the crossovers, we used the extended hybrid genetic-tabu
search algorithm discussed in Section 2.1. The efficiency measure for the crossovers is the
average deviation of the solutions obtained from the best known solution – AD (AD =
100(z̄ − z̆)/z̆[%], where z̄ is the average objective function value over 10 restarts (single
applications of EHGA to a given instance), and z̆ is the best known value (BKV) of the
objective function).

Table 1

The empirical values of the characteristics of the crossovers

Crossovers
Factors

OPX ULX MPMX CX SPX COHX

δmin 0.27 0.55 0.25 0.16 0.025 0.35

δmax 0.69 0.64 0.72 0.66 0.95 0.54

δ 0.48 0.59 0.49 0.41 0.49 0.44

ρ 0.13 0.23 0.12 0 0.012 0.16

Note. The values of δmin, δmax, δ , and ρ were obtained on the GPP instance
grey_16_16_50 by performing 100 calls to the corresponding crossover procedure.
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In the experimental comparison, equated conditions are created: all the crossover vari-
ants use the identical initial solutions and require approximately the same CPU time
(some fluctuations in CPU times are due to the non-deterministic number of restarts dur-
ing the execution of EHGA). The following are the values of the control parameters of
EHGA (of course, they are equivalent for all the crossovers compared): population size
−8; number of generations −25; number of offspring (crossovers) per generation −1;
number of iterations of the post-crossover, i.e., the iterated tabu search procedure − 1

10n2.

Table 2

Results of the experiments with the GPP I: comparison of the crossover operators

AD
Instance BKV CPU

time
OPX ULX MPMX CX SPX COHX MPX

grey_16_16_10 242266a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.5

grey_16_16_15 644036a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.7

grey_16_16_20 1305744a 0.000 0.007 0.000 0.000 0.000 0.000 0.000 1.9

grey_16_16_25 2215714b 0.012 0.011 0.004 0.005 0.008 0.009 0.011 2.2

grey_16_16_30 3373854a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.5

grey_16_16_35 4890132a 0.011 0.005 0.001 0.007 0.008 0.012 0.005 2.7

grey_16_16_40 6613472a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.0

grey_16_16_45 8674910c 0.069 0.110 0.062 0.061 0.041 0.047 0.048 3.2

grey_16_16_50 11017342a 0.005 0.011 0.003 0.004 0.001 0.001 0.001 3.5

grey_16_16_55 13661614b 0.019 0.060 0.025 0.024 0.016 0.021 0.017 5.0

grey_16_16_60 16575644a 0.004 0.000 0.000 0.002 0.000 0.008 0.000 5.9

grey_16_16_65 19848790b 0.022 0.023 0.019 0.000 0.012 0.025 0.006 6.5

grey_16_16_70 23852796b 0.176 0.217 0.171 0.176 0.167 0.164 0.140 6.8

grey_16_16_75 28114952b 0.058 0.111 0.078 0.058 0.057 0.053 0.048 7.0

grey_16_16_80 32593088b 0.095 0.147 0.122 0.106 0.095 0.077 0.045 7.2

grey_16_16_85 37379304b 0.053 0.114 0.055 0.055 0.029 0.046 0.039 7.7

grey_16_16_90 42608826c 0.057 0.098 0.063 0.067 0.044 0.042 0.037 8.3

grey_16_16_95 48081112d 0.129 0.167 0.149 0.136 0.123 0.123 0.122 8.5

grey_16_16_100 53838088a 0.090 0.111 0.104 0.100 0.081 0.092 0.090 9.0

grey_16_16_105 59854744a 0.085 0.091 0.089 0.102 0.092 0.092 0.097 9.7

grey_16_16_110 66120434d 0.088 0.057 0.071 0.051 0.044 0.071 0.083 10.2

grey_16_16_115 72630764a 0.019 0.073 0.024 0.031 0.000 0.000 0.000 11.1

grey_16_16_120 79375832a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.3

grey_16_16_125 86327812a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.4

Average: 0.040 0.057 0.042 0.039 0.033 0.035 0.032

Notes. 1. The best results obtained are printed in bold face.
2. Average CPU times per restart are given in seconds.
3. 3 GHz PENTIUM computer was used in the experiments.

a reference: (Taillard and Gambardella, 1997);
b reference: (Misevicius, 2003b);

c reference: (Misevicius, 2003a);
d reference: (Misevicius, 2005).
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The number of parents in the MPX crossover is equal to the population size. The results
of comparison are presented in Table 2.

The deviation averaged over the set of instances examined (see the last row of Ta-
ble 2) may not reflect all aspects of the performance of crossovers. For example, the
performance of MPMX is rather poor with respect to AD accumulated over 24 instances,
but we can see that, by using this operator, the number of times that all 10 restarts out of
10 succeed in finding BKV, i.e., AD = 0, is greater or equal than when using the OPX,
ULX, CX, and COHX operators. Our analysis is therefore based on several cumulative
measures. These measures are collected in Table 3.

The results from Tables 2, 3 are quite “flat” and the differences in values of the per-
formance measures are rather small. Most probably, this is due to the powerful post-
crossover procedure used; on the other hand, this may have be caused by the specific
nature of the GPP instances, which look to be easy, in particular, for the extended hybrid
genetic algorithm. Nevertheless, it can be seen that the crossover operators, which are
responsible for the exploration of new regions in the solution space, hide certain potential
and still have appropriate influence on the final solutions.

The regularities we observed are as follows. It seems, with few exceptions, that less
disruptive crossovers (for example, SPX) tends to be more efficient than the crossovers
with a higher degree of disruption (for example, ULX); but the cycle crossover (the min-
imally available disruptive crossover) produces only medium-quality results. So, it could
be conjectured that a good crossover should bring some randomness to the offspring,
however this must be done in a subtle way. It can also be noted that the crossovers that in-
corporate some a priori knowledge about the problem being solved (for example, COHX,
SPX) appear to be better than the “pure” operators (for example, OPX, ULX). Lastly, the
ordinary two-parent crossovers are somewhat inferior to the multiple parent crossover,

Table 3

Cumulative measures and ranking of the crossovers

Values (ranks)Cumulative
measures

OPX ULX MPMX CX SPX COHX MPX

CUMAD 0.040 (5) 0.057 (7) 0.042 (6) 0.039 (4) 0.033 (2) 0.035 (3) 0.032 (1)

MINAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MAXAD 0.176 (5-6) 0.217 (7) 0.171 (4) 0.176 (5-6) 0.167 (3) 0.164 (2) 0.140 (1)

MEDIAN 0.019 (5) 0.040 (7) 0.022 (6) 0.016 (3) 0.010 (2) 0.017 (4) 0.009 (1)

NAD=0 7 (6-7) 7 (6-7) 8 (3-5) 8 (3-5) 9 (1-2) 8 (3-5) 9 (1-2)

Resulting rank: 6 7 5 4 2 3 1

The following notations are used:
CUMAD – cumulative average deviation (over 24 instances);
MINAD – minimum average deviation;
MAXAD – maximum average deviation;
MEDIAN – median of deviations;
NAD=0 – number of times that all 10 restarts out of 10 succeeded in finding BKV
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which is distinguished for the fact that many individuals take part in producing an off-
spring (i.e., “orgies” take place). However, we found that MPX consumes some more
CPU time.

We were also interested in seeing how our hybrid genetic-tabu search algorithm com-
pares to other approaches. With that end in view, we provide some additional results
of comparison of EHGA with other three genetic algorithm variants: 1) GA1 (Tate and
Smith, 1995); 2) GA2 (Lim et al., 2000); 3) GA3 (Fleurent and Ferland, 1994). GA1
is a simple genetic algorithm without local improvement (except the optimized initial
population). The next two GA versions use local optimization procedures (descent local
search – in GA2, tabu search – in GA3); however, the remaining structure of these al-
gorithms is quite different from that of EHGA. The results obtained on 11 selected GPP
instances (see Table 4 and Fig. 11) confirm the power of EHGA, which incorporates both
the rapid (robust) procedure for local improvement and the right mechanism for avoiding
premature convergence.

The goal of the further extensive experimentation was to determine the average com-
putation time needed to find the pseudo-optimal (best know) solutions for the GPP in-
stances grey_16_16_3..grey_16_16_128. For each of these instances, we performed 30
independent runs (multi-restarts) each consisting of 10 restarts of EHGA. The SPX op-
erator (ranked as the second, but slightly faster than MPX) was utilized within EHGA at
these long runs. Various combinations of the control parameters were used in the different
runs. The best CPU times obtained during these multi-restarts are presented in Table 5.
The corresponding graphical illustration is depicted in Fig. 12.

Table 4

Results of comparison of EHGA with other algorithms on 11 GPP instances

AD
Instance CPU time

GA1 GA2 GA3 EHGA

grey_16_16_50 3.273 0.884 0.231 0.001 3.5

grey_16_16_55 4.446 0.817 0.200 0.017 5.0

grey_16_16_60 5.682 1.418 0.103 0.000 5.9

grey_16_16_65 6.373 2.360 0.123 0.006 6.5

grey_16_16_70 5.303 1.301 0.328 0.140 6.8

grey_16_16_75 4.447 0.844 0.207 0.048 7.0

grey_16_16_80 4.342 0.754 0.265 0.045 7.2

grey_16_16_85 4.605 0.769 0.207 0.039 7.7

grey_16_16_90 4.305 0.552 0.177 0.037 8.3

grey_16_16_95 4.202 0.549 0.247 0.122 8.5

grey_16_16_100 4.196 0.510 0.202 0.090 9.0

Average: 4.652 0.978 0.208 0.050

Note. The MPX operator was utilized within EHGA
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Table 5

Results of the experiments with the GPP II: CPU times needed to find pseudo-optimal solutions

Instance Best
known
value

Time‡ Instance Best
known
value

Time‡ Instance Best
known
value

Time‡

grey_16_16_3 7810a 0.0 grey_16_16_45 8674910c 180 grey_16_16_87 39389054b 26.1

grey_16_16_4 15620a 0.0 grey_16_16_46 9129192c 74 grey_16_16_88 40416536b 25.6

grey_16_16_5 38072a 0.0 grey_16_16_47 9575736a 3.4 grey_16_16_89 41512742b 211

grey_16_16_6 63508a 0.0 grey_16_16_48 10016256a 2.1 grey_16_16_90 42597626d 198

grey_16_16_7 97178a 0.0 grey_16_16_49 10518838b 3.6 grey_16_16_91 43676474d 275

grey_16_16_8 131240a 0.0 grey_16_16_50 11017342a 2.9 grey_16_16_92 44759294f 200

grey_16_16_9 183744a 0.0 grey_16_16_51 11516840b 7.8 grey_16_16_93 45870244d 297

grey_16_16_10 242266a 0.0 grey_16_16_52 12018388b 7.3 grey_16_16_94 46975856d 250

grey_16_16_11 304722a 0.1 grey_16_16_53 12558226a 8.6 grey_16_16_95 48081112g 231

grey_16_16_12 368952a 0.1 grey_16_16_54 13096646b 4.5 grey_16_16_96 49182368a 297

grey_16_16_13 457504a 0.1 grey_16_16_55 13661614b 11.7 grey_16_16_97 50344050a 327

grey_16_16_14 547522a 0.1 grey_16_16_56 14229492b 3.0 grey_16_16_98 51486642a 223

grey_16_16_15 644036a 0.1 grey_16_16_57 14793682b 2.5 grey_16_16_99 52660116a 236

grey_16_16_16 742480a 0.1 grey_16_16_58 15363628b 2.4 grey_16_16_100 53838088a 132

grey_16_16_17 878888a 0.2 grey_16_16_59 15981086a 3.7 grey_16_16_101 55014262a 98

grey_16_16_18 1012990a 0.1 grey_16_16_60 16575644a 2.8 grey_16_16_102 56202826g 47

grey_16_16_19 1157992a 0.2 grey_16_16_61 17194812b 2.4 grey_16_16_103 57417112a 81

grey_16_16_20 1305744a 0.3 grey_16_16_62 17822806b 3.6 grey_16_16_104 58625240g 78

grey_16_16_21 1466210a 0.5 grey_16_16_63 18435790a 1.9 grey_16_16_105 59854744a 44.5

grey_16_16_22 1637794a 0.3 grey_16_16_64 19050432a 2.3 grey_16_16_106 61084902a 40.2

grey_16_16_23 1820052a 0.2 grey_16_16_65 19848790b 3.2 grey_16_16_107 62324634a 23.3

grey_16_16_24 2010846a 0.6 grey_16_16_66 20648754b 4.7 grey_16_16_108 63582416a 13.3

grey_16_16_25 2215714b 3.2 grey_16_16_67 21439396b 11.5 grey_16_16_109 64851966a 14.4

grey_16_16_26 2426298c 18.5 grey_16_16_68 22234020b 22.0 grey_16_16_110 66120434g 13.8

grey_16_16_27 2645436a 1.1 grey_16_16_69 23049732b 31.5 grey_16_16_111 67392724a 9.7

grey_16_16_28 2871704a 0.9 grey_16_16_70 23852796b 33.7 grey_16_16_112 68666416a 8.8

grey_16_16_29 3122510a 0.8 grey_16_16_71 24693608b 86 grey_16_16_113 69984758a 11.2

grey_16_16_30 3373854a 0.5 grey_16_16_72 25529984b 97 grey_16_16_114 71304194a 7.5

grey_16_16_31 3646344a 0.7 grey_16_16_73 26375828d 345 grey_16_16_115 72630764a 5.6

grey_16_16_32 3899744a 0.6 grey_16_16_74 27235240e 350 grey_16_16_116 73962220a 5.8

grey_16_16_33 4230950a 0.7 grey_16_16_75 28114952b 53 grey_16_16_117 75307424a 4.1

grey_16_16_34 4560162a 2.7 grey_16_16_76 29000908b 134 grey_16_16_118 76657014a 3.9

grey_16_16_35 4890132a 3.3 grey_16_16_77 29894452e 172 grey_16_16_119 78015914a 2.5

grey_16_16_36 5222296a 2.0 grey_16_16_78 30797954e 129 grey_16_16_120 79375832a 1.9

grey_16_16_37 5565236a 1.8 grey_16_16_79 31702182b 14.2 grey_16_16_121 80756852a 1.7

grey_16_16_38 5909202a 0.9 grey_16_16_80 32593088b 3.8 grey_16_16_122 82138768a 1.5

grey_16_16_39 6262248a 1.1 grey_16_16_81 33544628b 4.4 grey_16_16_123 83528554a 1.0

grey_16_16_40 6613472a 0.9 grey_16_16_82 34492592b 81 grey_16_16_124 84920540a 0.7

grey_16_16_41 7002794a 0.6 grey_16_16_83 35443938d 65 grey_16_16_125 86327812a 0.4

grey_16_16_42 7390586a 0.7 grey_16_16_84 36395172d 71 grey_16_16_126 87736646a 0.3

grey_16_16_43 7794422b 3.4 grey_16_16_85 37378800d 186 grey_16_16_127 89150166a 0.3

grey_16_16_44 8217264b 17.2 grey_16_16_86 38376438c 125 grey_16_16_128 90565248a 0.2

‡time is given in seconds (on 3GHz Pentium computer) that is needed to find the best known solution (BKS) under condition that all the 10
restarts out of 10 succeeded in finding BKS;

a reference: (Taillard and Gambardella, 1997); b reference: (Misevicius, 2003b); c reference: (Misevicius, 2003a);
d reference: this paper; e reference: (Misevicius, 2004b); f reference: (Stützle, 1997);
g reference: (Misevicius, 2005).

There are several distinct “regions” of densities m (see Fig. 12). The instances with
m � 44, m = 47..70, m = 80, 81, m = 87, 88, m � 105 are very easy to solve by the
extended hybrid genetic algorithm. The instances with the remaining values of m appear
to be relatively difficult for EHGA. Nevertheless, the overall performance of EHGA is
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Fig. 11. Results of comparison of EHGA with other algorithms.

Fig. 12. Illustration of CPU times needed to find pseudo-optimal solutions for the GPP instances.

really promising. We guess that the run times may be decreased even more by a more
careful tuning of the control parameters of EHGA.

During the experimentation, we were successful in finding new record-breaking so-
lutions for eight GPP instances with m = 73, 83, 84, 85, 90, 91, 93, 941. These solutions
are presented in Table 6. As a confirmation of the quality of new solutions obtained, we
also give the visual representation of these solutions in Fig. 13 – the reader can thus judge
the quality of the grey frames obtained.

1During the preparation of our paper we found out that, simultanesly, Drezner (2005) obtained the same
new solutions; he also proved the optimality of the solutions for the instances grey_16_16_3..grey_16_16_8 by using
a branch and bound algorithm.
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Fig. 13. Pseudo-optimal grey frames of densities 73/256 (a), 83/256 (b), 84/256 (c), 85/256 (d), 90/256 (e),
91/256 (f), 93/256 (g), 94/256 (h).
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Table 6

New best known solutions for the GPP

Instance Previous best
known value

New best
known value

grey_16_16_73 26382310a 26375828

grey_16_16_83 35444806b 35443938

grey_16_16_84 36397376b 36395172

grey_16_16_85 37379304a 37378800

grey_16_16_90 42608826b 42597626

grey_16_16_91 43694968c 43676474

grey_16_16_93 45883642c 45870244

grey_16_16_94 46979436c 46975856

areference: (Misevicius, 2003b);
breference: (Misevicius, 2003a);
creference: (Misevicius, 2005).

4. Conclusions

In this paper, we presented the results of the experiments of the effective hybrid genetic
algorithm when applied to the grey pattern problem, the special case of the quadratic as-
signment problem, which is known to be NP-hard. The main attention was paid to the
investigation of the crossover operators which play one of the main roles in the construct-
ing of the competitive genetic algorithms.

We implemented seven different crossover procedures within the extended hybrid ge-
netic algorithm framework and carried out the extensive experiments in order to find out
how is the difference of the quality of solutions produced by the different crossovers. We
examined the one point crossover (OPX), the uniform like crossover (ULX), the modified
partially-mapped crossover (MPMX), the cycle crossover (CX), the swap path crossover
(SPX), the cohesive crossover (COHX), and finally the multiple parent crossover (MPX).

After the analysis of the experimental results, we obtained the crossovers ranking
which shows relatively high performance of the crossovers with a lower degree of disrup-
tion, as well as the crossovers that incorporate the problem-oriented knowledge, including
the multiple parent crossover. On the whole, three recombination operators (MPX, SPX,
COHX) seem to be superior to the remaining operators. In particular, the swap path op-
erator enabled discovering new best know solutions for eight GPP instances and solving
all the GPP instances pseudo-optimally at surprisingly small computational times. Some
more experiments would be useful in order to acknowledge that these operators are re-
ally the best. Nevertheless, MPX, SPX, and COHX may be recommended as promising
recombination operators for the designers of new genetic algorithms for the GPP, QAP
and similar combinatorial problems. The designers, however, must be careful by imple-
menting the particular versions of the crossovers. They should not forget about exploiting
the specific structure of a problem – it is of extreme importance by seeking near-optimal
solutions.
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The additional experimental results for the GPP demonstrate that EHGA is preferable
to standard hybrid GAs where instruments of escaping stagnation of the search are miss-
ing or insufficient. These results support the opinion that is very helpful to use proper
mechanisms for premature convergence avoidance in the presence of rapid improvement
of the offspring.

There is still a room for the further modifications and enhancements of the crossover
operators. This is especially true for the multiple parent crossover, which allows pro-
ducing the offspring in many different ways. The investigation of new multiple parent
operators could be one of the possible directions of the future research.
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Eksperimentai su hibridiniu genetiniu algoritmu „pilk ↪u šablon ↪u
(freim ↪u)“ sudarymo uždaviniui

Alfonsas MISEVIČIUS

Pastaruoju metu genetiniai algoritmai (GA) yra tap ↪e labai populiarūs sprendžiant ↪ivairius kom-
binatorinio optimizavimo uždavinius. Šiame straipsnyje nagrinėjami hibridinio genetinio algoritmo
efektyvumo klausimai vadinamajam „pilk ↪u šablon ↪u (freim ↪u)“ sudarymo uždaviniui, kuris yra atski-
ras gerai žinomo kvadratinio paskirstymo uždavinio atvejis.

Pagrindinis dėmesys skirtas kryžminimo („krosoverio“) operatoriams. Pastarieji, kaip žinoma,
yra gana svarbūs sudarant efektyvius genetinius algoritmus, galinčius sėkmingai „konkuruoti“
su kitais moderniais euristiniais algoritmais. Straipsnyje aptariama krosoverio operatori ↪u bendri
funkcionavimo principai, specifinės savybės, ypatumai. Kryžminimo operatoriai lyginami tiek kon-
ceptualiniu požiūriu, tiek eksperimentiškai. Eksperimentai atlikti su šiais kryžminimo operatoriais:
„vieno taško“ krosoveriu, tolygiojo paskirstymo krosoveriu, dalinio atvaizdavimo krosoveriu, ciklo
krosoveriu, sukeitim ↪u krosoveriu, suliejimo krosoveriu. Išbandytas ir gana originalus kryžminimo
būdas – daugel↪i sprendini ↪u-tėv ↪u naudojantis operatorius („keli ↪u tėv ↪u“ krosoveris).

Pateikiami atlikt ↪u tyrim ↪u rezultatai, gauti eksperimentiškai palyginus minėtus kryžminimo ope-
ratorius „pilk ↪u šablon ↪u“ sudarymo uždaviniui. Viso spr ↪esta 126 testiniai pavyzdžiai („gairės“).
Rezultatai liudija, kad santykinai geresnės kokybės sprendiniai pasiekiami, panaudojant daugelio
tėv ↪u, sukeitim ↪u, suliejimo operatorius. Dėl geresni ↪u paieškos laiko charakteristik ↪u paildomiems
eksperimentams panaudotas sukeitim ↪u krosoveris. Ši ↪u eksperiment ↪u metu buvo surasti aštuoni
sprendiniai, kuriems tikslo funkcijos reikšmės pasirodė esančios rekordinės – geresnės negu iki tol
buvusios geriausios žinomos. Visiems 126 testiniams pavyzdžiams buvo gauti pseudo-optimalūs
sprendiniai per labai trump ↪a hibridinio genetinio algoritmo vykdymo laik ↪a.

Rekomenduojama sukeitim ↪u, „keli ↪u tėv ↪u“ krosoverius, atitinkamai adaptavus, išbandyti ir ki-
tiems kombinatorinio optimizavimo uždaviniams spr ↪esti.


