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1. Introduction 
 

Caused by loading columns and other structures 
deform elastically plastically. A column is not only com-
pressed, but also bended, if the column is eccentrically 
loaded or a force perpendicular to longitudinal axis is ap-
plied. Earthquake ground motion can be one of the reasons 
for extreme horizontal loading to building structures, pre-
sented by D. V. Val and F. Segal [1]. The influence the 
plastic deformations on structures and low cycle fatigue is 
discussed by A. Teran-Gilmore, E. Avila, G. Rangel [2]. 
Some simple expressions are found to calculate the input 
energy that is transformed into plastic energy of the system 
by A. M. F. Cruz, O. A. Lopez [3]. Research undertaken in 
various related disciplines (engineering seismology, soil 
and mechanical system dynamics, mechanics of materials) 
is reviewed by A. M. Chandler, N. T. K. Lam [4]. An in-
vestigation of beams yield deformation is presented by 
V.V. Sokolovskij [5]. Response of inelastic systems, ef-
fects of damping and yielding in structures are presented 
by A. K. Chopra [6]. In parallel with earthquake engineer-
ing wind-induced vibrations of structures, man-made mo-
tion of various mechanical systems also can be investi-
gated applying these methods. In general more comprehen-
sive analysis is essential when extremely high loading is 
applied and yielding in cross-sections of a structure arise. 

 
Fig. 1 Forces N, RH exerted on the column, and coordinate 

axes x, y, z 
 

 The main objective of this paper is to present 
strength of a double-tee section column when yield stresses 
emerge in some parts of cross-section. Load carrying ca-
pacity of the whole structure can be determined if this de-
pendence is solved out. An investigations of the specific 
structures are to be carried out in the future. 

Fig. 2 A column cross-section and normal stresses for the 
single-sided yield case 
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2. Single-sided yield in cross-section and longitudinal internal force 
  

Double-tee cross-section is one of the most uni-
versally employed column shapes (Fig. 1). For the solution 
to be less complicated the web width 
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A  
0δ  is assumed infini-

tesimal as compared with h, therefore  
0 0δ → , but the web 

area 
Internal resisting moment about center C 

1 0A b constδ= =  (Fig. 2).The whole area of cross-
section 

 
12 2A A hδ= + . The compression-tension is as-

sumed to be positive. The longitudinal forces  in Fig. 1 
and Fig. 2 coincide if no other external longitudinal forces 
are applied. 
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If dimensionless load parameters 
In this chapter yield stress is assumed to be only 

in one web, so stress in the other 
 

k yσ σ〈 , where yσ −  
yield stress. If ;
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=  (1)  η  is the distance from cross-section centre 
of gravity C to the yield point B, and e  is the distance 
from C to the neutral axis E, then 

 
and cross-section parameter 
 

12 /q A A=  (2)  
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are defined, these equations can be presented as 
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 (3) 

 
Dimensionless coordinates / hζ η= , /e hθ =  of 

yield point B and neutral axis E are used. If α  and β  are 
assumed given values the system of Eqs. (3) can be rear-
ranged to one equation 
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( 1, 1α ζ≠ ≠ − ),  
 
quadratic with respect of unknown (1 )ζ+ . The solution of 
this equation 
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where 
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and the constant 
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Treating as a function of 0D β  the minimum 
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can be found when 
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Quadratic polynomial  has two roots: the first 0D

1β α β ′= − =  and the second cqβ β β′′ ′= = ≥ . The 
negative minimum  exists between these roots, so 

 is positive if 
0minD

0D β β ′<  or β β ′′> . For positive  a real 
value of 

0D
ζ  can be calculated from Eq. (4) and from the 

system of Eqs. (3) 
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If 1β α= −  then  and value 0 0D = 1ζ = −  follows from 
Eq. (4). The function (6) is not defined when 1β α= −  for 
both numerator and denominator are 0, but the li  

exists when 

m 1θ = −

ε  approaches 0, and 1β α ε= − − . As posi-
tive e and η  are defined in opposite directions (Fig. 2), 
limit positions of the neutral line E and the yield point B 
coincide at the same web. 
 
3. Double-sided yield in cross-section 
 

*e η η e+ = −  (Fig. 3) the distance Since 
* 2eη η= + , therefore longitudinal internal force and mo-

ment 
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If dimensionless parameters (1) are used the equations  
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αθ =
−

 (7)  
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 is known value then can be deduced. If θα  can be ob-

tained from Eq. (7), and then  from Eq. (8). ζ

If  then * * / hζ η= * 2ζ ζ θ= + . The stress dia-
gram is really double-sided if necessary conditions 1ζ <  

and * 1ζ <  are hold. 
 

 
Fig. 3 A column cross-section and normal stresses for the 

double-sided yield case. Plastic hinge is shown on 
the right 

 
Shear stresses are neglected in this investigation, 

therefore in the case of plastic hinge (Fig. 3) * eη = , 
2 2

12 (M )eη = −  and y yA h h eσ σ δ= + − 2yN e, σ δ= . 
The same Eq. (7) forθ  is deduced and  
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This value of the dimensionless plastic hinge mo-

ment can be deduced alternatively from Eq. (8) if 
h e hζ η θ= = − = −  and Eq. (7) for θ  are used. 

It should be noted that /e hθ =  and e do not de-
pend on β  when yield is double-sided, so position of the 
neutral line in cross-section is constant when bending mo-



 15

ment M alters. Completely different situation is for single-
sided yield. Eq. (6) provides support for this statement. 

So if 

When plastic hinge Eq. (9) is inserted the general 
Eq. (8) can be presented 
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here condition 3β β≥  has to be observed. 
 
4. Single-sided and double sided yield regions 
 

When the bending moment and the longitudinal 
force are known stress distribution in cross-section can be 
solved from Eqs. (4), (6) or (7), (8). Nevertheless in these 
equations no sufficient additional conditions are included 
to assess single-sided or double-sided stress distribution in 
the cross-section. When some values of α  and β  are 
specified the real solutions (i.e. not complex) can be found 
from both (4), (6) or (7), (8) equations. Complementary 
conditions are necessary to determine regions of single-
sided yield, double-sided yield and elastic stresses.  

The yield in a web starts when hη =  in the dia-
gram of Fig. 2. The expressions in the chapter 2 are simpli-
fied for this case 
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 A dividing line between the completely elastic re-
gion and the single-sided region can be deduced from these 
equations 
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The line, dividing single-sided region and double-

sided region, can be deduced submitting k yσ σ=  in Fig. 2 

or  in Fig. 3 * hη =
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If dimensionless parameters (1) are inserted, the 

line is presented by 
 

 2 1 q
αθ =
−

; 
( ) ( )

( )2

1 1 2
3 1

q q
q

q
α α

β
− − − +

= +
−

 (11) 

 
When , i.e. when cross-section of the col-

umn is rectangle 
0q =
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0 1α< < , then 1 2 30 1β β β< < < < , and if 1α = , 
then 1 2 3 0β β β= = = . Therefore if , then completely 
elastic region 

0q =

1β β<  is succeeded by single-sided yield 
region 1 2β β β< <  and then follows double-sided region 

2 3β β β< <  (Fig. 4). 
 

 
Fig. 4 The regions of elastic stress state and yield stress 

state when 0q = (cross-section of the column is 
rectangle) 
 

Location of these regions is more complicated 
when 0q ≠ . If, for example, then 0.5q =
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So when  values ; ; 1 0.133β = 2 0.080β =0.8α =

( )2 3 1β β β< <,  can be calculated. If 3 0.110β = 0.9α =  
values of  and 2β 3β  are negative. This example proves 
that single-sided and double-sided yield regions are quite 
differently located when  and q  are sufficiently large. α

The dividing line of single-sided and double-sided 
regions  is investigated. Identities  2β β=
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can be proved inserting Eq. (11), therefore for 2β β=  
from Eq. (5) it follows that 
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( )0D b bε ε ε= + ≈then . Approximate values *
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01 bζ ε+ ≈ ,  This solution is deduced from single-sided yield formulae, 

but complementary condition  or  has to be 
satisfied. This inequality can be transformed to 

. As 1  for all cross-sec-
tions the inequality can be satisfied only when 

 * hη > * 1ζ >
can be deduced from Eq. (4) if infinitesimals of higher 
order are neglected. Thus from Eq. (6) 
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2β β= , then single-sided yield is not transformed to dou-

ble-sided yield, Eq. (9) loses its meaning as the condition 
of plastic hinge. The solution of single-sided yield (4) is 
real if , so the maximal value of dimensionless 
moment is 
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  Value  is presented because positive  
can be proved, so 3 rβ β≤  for any α  and , and equality q

3rβ β=  is possible only if 1 qα = − . It can be proved, that 

2 3 1r qβ β β α= = = − =  if 1 qα = − . Furthermore, deriva-
tives of functions (9) and (11) 
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are equal when 1 qα = − , so the straight line 1rβ α= −  is 
tangent of the curved lines ( )2 2β β α= , ( )3 3β β α=  at 
the point 1 qα = − . In this way the double-sided yield 
region ends at the point 1c qα = − , c qβ =  (Fig. 5). When 

1 qα > −  the single-sided yield region is restricted not by 
the parabola ( )2 2β β α= , but by the straight line 

1rβ α= − . The lower boundary of the region is the 
straight line ( )1 1β β α=  given by Eq. (10). If 0q =  then 
restriction of the double-sided yield region loses its mean-
ing because condition 1 q 1α > − =  can not be fulfilled. If 

1α ≠ , , then 1q ≠ 1rβ β<  so single-sided yield is reached 
for every increasing β  with exception of the only case 

0α = , i.e. when there is no compression force. 
 
5. Plastic piston 

 
If 1 qα < −  and 3β β→ , then stress diagram in 

the cross-section approaches plastic hinge. Neutral line of 
the double-sided yield does not depend on β  (Eq. (7)), 
and 1θ <  when 1 qα < − . If 1 qα > −  the double-sided 
yield region is absent and neutral line in cross-section 
changes its position (Eq. (6)). The limit of stress diagram 
of the cross-section can be deduced when 1 qα > −  and 

rβ β→ . Let 1rβ β ε α ε→ − = − −  and 0ε → . If 
 

 ( ) 8 11
3 1c
qq b

q
αα −
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ζ− η  and ζ  
are directed in opposition to *η *ζ or , and  or e θ  accord-
ingly (Figs. 2 and 3). If follows from these three formulae 
that B, C, and D approache point G at the upper web. The 
lower yield point B remains below than G, and neutral line 
E can be higher or below than G. This depends on the sign 
of the number 0.5 1qα + − 1 qα > −: if , then 

1 0qα + − > 0.5 1qα + −, but  can be positive and nega-
tive. It will be not a plastic hinge in any case because stress 
diagram approaches yield compression everywhere over 
the cross-section. May be such cross-section can be named 
as plastic piston. 

 

 
Fig. 5 The regions of elastic stress state and yield stress 

when 0.5q = . The double-sided yield region ends 
at the point 1c qβ α= − =  

 
The longitudinal section of the column is pre-

sented in Fig. 6 when compression force is relatively small 
( )1 qα < − . In this case single-sided yield, further double-
sided yield and plastic hinge develop when β  increases. 
The case of relatively large compression force ( )1 qα > −  
is presented in Fig. 7. The double-sided yield domain is 
absent in this longitudinal section and plastic piston forms 



 17

( )0h hη δ− > > − +when rβ β= . The neutral line is lower than the upper web 
because 

. For double-sided yield the same con-

ditions should be represented for the distance0.5 1 0.15qα + − = − . *η . 
 However, when the value 0δ  is assumed infini-

tesimal and the web area 1A  a constant, the investigation is 
more sophisticated in mathematics. The contradiction be-
tween the statements that yσ σ≤, , but 0 0δ →

0b constσδ =  can be resolved applying contemporary the-
ory of derivative and integral, generalized functions ( or 
distributions) [7]. An example of such contradiction can be 
the case when 1 qα > −  and the limit of increasing bend-
ing moment rβ β→  is not a plastic hinge, but uniform 
stress of the same direction. This outcome, named for plas-
tic piston, is impossible when web area . The issue 
may be simplified by adding two forces 

1 0A =

1y yS Aσ= , 

1k kS Aσ=  applied at the point A and G (Fig. 2) or opposite 
forces  (Fig. 3). When  is reasonably large these 
forces can be more important that stresses over the whole 
interval 

 
yS qFig. 6 Longitudinal cross-section of the column when 

, 0.50q = 0.10α = . The dimensionless moment 
values are h z h− ≤ ≤ . ; ; ; 1 0.600β = 2 0.6867β = 3 0.740β =

For determinate structures as simply supported 
beams, cantilevered beams the bending moment diagrams 
can be calculated first, and then elastic stress, single-sided 
yield or double sided yield domains deduced. When the 
structure is indeterminate the bending moment diagrams 
depend on the elastic stress, single-sided or double-sided 
yield in the structure and can not be depicted in advance. 
The whole problem is to be solved as interconnected.  

. Plastic hinge develops when  0.900rβ = 3β β=
 

 
6. Conclusions 
 

1. Structural strength calculation is different when 
stresses do not exceed the elastic limits, and when yielding 
begins and progresses in some places of the compressed 
and bended columns. 

2. Dimensionless parameter α  depends on the 
axial force, the area of the column cross-section and yield 
stress; parameter  is equal ratio of the web cross-section 
area to the entire column cross-section area. If 

 q
Fig. 7 Longitudinal cross-section of the column when 

, 
1 qα < −  

then elastic stress region is followed by the single-sided 
yield region, next is the double-sided yield region, and then 
the plastic hinge can be reached when bending moment is 
increasing. 

0.50q = 0.60α = . The dimensionless moment 
values are ; ; ; 1 0.2667β = 2 0.3867β = 3. 0.390β =

. Plastic piston develops when 0.40rβ = rβ β= , 
while the constants  and 2β 3β  are of no signifi-
cance 1 qα ≥ −3. If  then elastic stress region is fol-

lowed by the single-sided yield region, and this region 
concludes by plastic piston. The evaluation of plastic pis-
ton is quite different than the evaluation of plastic hinge. 

 
1ζ >The lines, depicted for , are simply an ab-

stract mathematical image. These lines do not present real 
stresses, but suggest an explanation of the stress diagrams 
for 

4. Neutral line position in cross-section does not 
depend on bending moment in double-sided yield domain, 
but the distance from neutral line to the  web changes if 
yield is single-sided. Calculation of the yield domain 
boundary is different for the double-sided and the single-
sided yield. 

1ζ ≤ . 
The web width 0δ  (Fig. 1) in this investigation is 

neglected and because of that the formulae for stress dia-
grams are relatively simple: only two alternatives have to 
be presented, the single-sided and the double-sided yield. 
If there is no 

5. The yield stresses in a longitudinal cross-sec-
tion of the column affect the deformation of the column 
and force-deformation relation. 0 0δ →  assumption the different formulae for 

every case is required. For single-sided yield no less than 
three formulae have to be deduced: when yield point B 
(Fig. 2) is located 0h hδ η+ > > h hη> > −, , 
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A. Žiliukas, V. Kargaudas, N. Adamukaitis 
 
TAKUMO ĮTEMPIAI GNIUŽDOMOSE IR  
LENKIAMOSE KOLONOSE IR SIJOSE  
 
R e z i u m e 

 
Veikiant didelėms apkrovoms plieninėse konst-

rukcijose atsiranda takumo įtempiai. Jei kolona ar kita 
konstrukcijos dalis ne tik lenkiama, bet ir gniuždoma, tai 
takumo įtempiai gali atsirasti vienoje skerspjūvio pusėje 
arba abiejose. Tokie įtempių būviai skiriasi vienas nuo kito 
ir nuo tampriųjų įtempių būvio. Straipsnyje parodoma, kaip 
keičiasi takumo įtempiai dvitėjėse kolonose. Daroma prie-
laida, kad lentynų storis yra labai mažas, ir apskaičiuojami 
ribiniai būviai didėjant lenkimo momentui. Įrodoma, kad, 
esant pakankamai dideliam lentynų skerspjūvio plotui, 
dvipusio takumo esant bet kokiam lenkimo momentui gali 
nebūti. Tyrimai taikytini esant ekstremalioms konstrukciją 
veikiančioms apkrovoms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Žiliukas, V. Kargaudas, N. Adamukaitis 
 
YIELD STRESSES IN COMPRESSED AND BENDED 
COLUMNS AND BEAMS 
 
S u m m a r y 
 

Yield stresses develop in steel structures when 
high loading is applied. If a column or other element of the 
structure is compressed, not only bended, then yield 
stresses can appear on one side of the cross-section, or on 
both sides. These states of stresses differ from one another 
and from elastic state also. Variation of the yield stresses in 
double-tee columns is presented in this paper. Thickness of 
the column webs is assumed infinitesimal and limit stress 
states are determined when bending moment is increasing. 
When the area of cross-section is sufficiently large the 
absence of double-sided yield region for any bending mo-
ment is proved. These investigations are applicable in the 
case of extreme structure loading. 
 
 
А. Жилюкас, В. Каргаудас, Н. Адамукайтис 
 
НАПРЯЖЕНИЯ ТЕКУЧЕСТИ В СЖИМАЕМЫХ И 
ИЗГИБАЕМЫХ КОЛОННАХ И БАЛКАХ 
 
Р е з ю м е 
 

Напряжения текучести появляются в стальных 
конструкциях под действием больших нагрузок. Если 
колонна или другой элемент конструкции не только 
изгибается, но и сжимается, то напряжения текучести 
могут появиться в одной стороне поперечного сечения 
или в обоих. Такие напряженные состояния отличают-
ся один от другого, как и от упругого напряженного 
состояния. В статье представлено изменение напря-
женного состояния в двутавровых колоннах. Принима-
ется допущение о бесконечной малости толщины по-
лок  и определяются предельные состояния при увели-
чении изгибающего момента. Доказывается, что при 
достаточно большой площади поперечного сечения 
полок двухсторонняя текучесть может не наступить ни 
при каком изгибающем моменте. Исследования могут 
быть применены при экстремальных нагрузках, дейст-
вующих на конструкцию. 
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