
 26

ELECTRONICS AND ELECTRICAL ENGINEERING 
 ISSN 1392 – 1215   2006. Nr. 2(66) 

ELEKTRONIKA IR ELEKTROTECHNIKA 
 
 

ELECTRONICS  
T170 

ELEKTRONIKA 
 
 

Defining Random Search Termination Conditions 
 
E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas 
Software Engineering Department, Kaunas University of Technology 
Studentų St. 50-406, Kaunas, Lithuani;, e-mail: eduardas.bareisa@ktu.lt, vacius.jusas@ktu.lt, kestutis.motiejunas@ktu.lt, 
rimantas.seinauskas@ktu.lt 
 
 
1. Introduction 

 
Test generation is a complex problem with many 

interacting aspects e.g. the cost of test generation, test 
length and the quality of generated test. Test generation 
can be accomplished at different levels: micro-level, gate-
level and functional level [2]. Functional test generation is 
usually based on simulation during which output values are 
computed for given input stimuli. The problems arising in 
this context can be solved by random and deterministic 
search methods for discrete optimization. 

Pure random search consists of sampling a stream of 
independent and identically distributed random vectors and 
then selecting the best one as a solution. Pure random 
search is very easy to implement. Unfortunately, the 
convergence is extremely slow in most cases of interest. 
Much attention has been devoted to modifying pure 
random search to improve its convergence rate. There are 
approaches involving adaptive construction of distribution, 
which assign more mass to promising regions of the search 
space or shrink the domain by some factor. The rigorous 
mathematical comparisons of different approaches are 
reported in [2]. 

Most adaptive random search methods differ in 
several respects. In particular, they differ in the choice of 
the neighborhood structure, in the mode of selecting a 
candidate for solution, in the way the next point is 
determined and in the way the estimate of the optimal 
solution is defined [3]. The genetic algorithms, which are 
based on the biological process of natural selection, are 
modern heuristic approaches for stochastic optimization. 
Note that typically a stopping criterion is not included in 
the algorithm for solving deterministic and stochastic 
optimization problems. A key reason for this is that the 
convergence rate for these algorithms is asymptotic as the 
number of iterations goes to infinity. However, in practice, 
it is obviously necessary to select an appropriate criterion 
to stop search. 

Random search methods that require only a small 
number of attempts per iteration can move more rapidly 
towards the optimal solution than random search methods 
for which each iteration involves a substantial amount of 

computer effort. Most (adaptive) random search methods 
for discrete optimization choose the current estimate as the 
optimal solution after m iterations have been completed 
with the same solution [4]. 

A test generation task formulated as the optimization 
problem can be solved using various stochastic 
optimization methods [5]. However the most convenient 
strategy and criteria have to be chosen for every problem 
being solved. The attempts to apply methods based on 
search area restrictions, which strive to perform the search 
only in the most promising areas [6], were not shown to be 
successful for the test generation problem.  

The aim of this paper is to formulate the test 
generation problem as an optimization problem and to 
define random search termination conditions. The main 
attention will be paid to criteria for search termination. 

 
2. Formulating test generation problem as an 
optimization problem 

 
When dealing with the development of test 

generation methods one usually faces various optimization 
problems. In the general case, the functional test 
generation problem can be formulated in the following 
way. 

The input stimulus to the functional module M having 
n input and m output variables is described by the vector X 
= <x1,x2,x3, ...,xi,...,xn>, and the output response is 
described by the vector Z= <z1,z2,z3,...,zj,...,zm>, where Z 
values directly depend on the X values, xi∈{0,1} and 
zj∈{0,1}. In general, 2n input stimuli may occur. The 
collection of all possible sets of input stimuli is denoted by 
XD. A set of input stimuli is denoted by X□, where X□∈XD, 
and its cardinality (the number of stimuli) - by |X□|. 
Suppose there is given a set S of conditions that have to be 
fulfilled by input stimuli of the set X□. An input stimulus 
X∈X□ may fulfill several conditions s∈S.  A condition s 
may be fulfilled by many input stimuli X∈X□. In order to 
assess the fulfillment of the conditions s∈S by the set of 
input stimuli X□, the estimate function Fs is defined. If at 
least one input stimulus X∈X□ fulfills the condition s, then 
the estimate function Fs has the value 1, i.e. Fs (X□) = 1, 
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otherwise Fs (X□) = 0. The number of conditions fulfilled 
by an input stimuli set X□ is equal to the sum of values Fs 

(X□) taken over all conditions s∈S.  On the base of the 
estimate function Fs, the objective function Ψ is defined as 
follows: 
 

 Ψ = α ∑ Fs (X□) - β | X□|, 
  s∈ S, 
 

where α, β are positive coefficients. 
The test generation problem asks for a set of input 

stimuli at which the function Ψ is maximized: 
 

 Max (α ∑ Fs (X□) - β | X□|),  
 X□∈XD   s∈ S. 
 

Specific test generation problems may be obtained 
and solved by changing conditions that have to be fulfilled. 
When the number of fulfilled conditions is more important 
factor than the number of input stimuli, we can take the 
coefficient β=0. An important aspect of functional test 
generation is that the fulfillment of the conditions cannot 
be evaluated analytically, and instead it has to be estimated 
using simulation techniques only. 

 
3. Random Search Termination Conditions 
 

As it is well known, random search applied to an 
optimization problem requires some termination condition 
to be defined. The simplest termination condition is the 
number of randomly generated input stimuli; the best 
solution is chosen from these stimuli. The number of 
randomly generated input stimuli for finding the best 
solution depends in large part on an instance of the 
problem being solved.  

Having a solution obtained after performing a fixed 
number of random search iterations nothing can be said 
about its quality. In practice, frequently it is not possible to 
obtain an optimal solution; often one has no such purpose. 
First of all one faces limited time and computer resources. 
However, in practice it is always worth to evaluate how 
much the solution could be improved, and how much time 
and computer resources it would take. Usually such an 
evaluation is considerably more expensive than finding the 
solution. When looking for random search termination 
conditions one has to evaluate both aspects – cost of 
solution finding and its quality estimation.  

More information about the solution quality is gained 
when a sequence of solutions is constructed. Comparing 
the distribution of objective function values of these 
solutions one can decide whether the time allotted for 
random search is enough. Wide scattering of objective 
function values shows that termination of random search is 
premature. Theoretically, when the time allotted for 
random search is long enough, optimal or close to optimal 
solutions are to be found. 

Suppose we have N solutions with objective function 
values Ψ1, Ψ2, Ψ3, ..., Ψi,... ΨN. Let Ψmax denote the 
maximum of these values. The distribution of objective 
function values is characterized by the following quantity 
expressed in percents: 

 
 D= (((∑N

i=1 (Ψmax - Ψi))/N)/ Ψmax )*100 

For the experiment we will use the benchmarks of 
logical circuits ISCAS’85. Optimal solutions of the 
objective function Ψ [7] for these circuits were obtained 
analytically for the case, when the coefficients are α=1 and 
β=0. For each of these circuits million input stimuli were 
generated ten times and input stimuli that fulfill the 
conditions s∈S were selected. During every run of the 
search procedure we recorded the number „|X□|“ of the 
selected input stimuli and current number of the last 
selected stimulus „Last“. The analytically obtained optimal 
values of the objective function Ψ (for α=1 and β=0) are 
listed in column „Best” of Table 1. The sum of entries of 
relationship matrix [8] was used as the value of the 
objective function. In order to unify the values of the 
objective function with [7], the sums were doubled. These 
sums, which correspond to the values of the objective 
function when the coefficients are α=1 and β=0, are listed 
in the penultimate column. As we see, the best solutions 
were obtained generating a million of random input stimuli 
for all the circuits except c2670 and c7552. There was a 
success of obtaining the best solution for the circuit c2670 
when generating 20 million input stimuli; whereas no best 
solution was obtained for the circuit c7552 even generating 
90 million random stimuli. The results of these generations 
are presented in Table 1 in an additional second line under 
the circuit’s results. Table 1 shows the largest and the 
smallest amount of the selected stimuli (Columns 5 and 6), 
the largest and the smallest current number of the last 
selected stimulus (Columns 2 and 3) from all 10 random 
generations of every circuit. As we see, the striving for the 
best solution required generating a very different amount 
of input stimuli (from several thousands to nearly a 
million) for different circuits. The value that defines the 
scattering of the results is presented in the column that is 
the third to the end. The magnitude 0 indicates that the 
same objective function value was obtained for all 10 
random searches. This result testifies that a million input 
stimuli randomly generated for these circuits is an amount 
sufficient for obtaining the best result. Ten random 
searches in turn achieving the solution with the same 
objective function value signify that there is a high 
possibility for this solution to be the best.  

In total, 100 million input stimuli were generated for 
all the circuits in Table 1. The current number of the last 
selected stimulus is presented in the third column of the 
table. It indicates how many random stimuli had to be 
generated for obtaining the same solution ten times. Based 
on the numbers of this column, we can conclude that there 
was no need in generating a million input stimuli randomly 
for some circuits. Therefore, the random search may be 
worth of performing several times enlarging the space of 
random stimuli for the circuits when the obtained solutions 
were not uniform during ten runs.  In order to explore the 
last prediction, the random search was performed for each 
circuit ten times, generating 100 000 random stimuli for 
each one. The results are presented in Table 2, which has 
the same format as Table 1. In this case, the best solutions 
were obtained only for three circuits. In general, ten 
million random stimuli had to be generated for all the 
circuits. Therefore generating a million input stimuli for 
every circuit where the best solution was not achieved, the 
same result will be obtained after generating 80 million 
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input stimuli in total. The results would be better if the 
space of the first random search was enlarged to 300 000 
or if more than two search levels of different spaces were 

used. It is not easy to predict what generation steps are to 
be included in order to obtain the same result under the 
minimum amount of generated input stimuli. 

Table 1. 1000000 random stimuli 
Circuits Last (Min) Last (Max) Last (Max)/ 

Last (Min) 
|X□| 

(Min) 
|X□| 

(Max) 
D% Ψ  Best 

C432 2862 4899 1,7 55 67 0 540 540 
C499 82877 102442 1,2 485 522 0 5184 5184 
C880 80123 192373 2,4 171 218 0 1326 1326 
C1355 70645 88129 1,2 470 511 0 5184 5184 
C1908 96861 124203 1,3 282 329 0 3004 3004 
C2670 965000 984508 1,0 184 194 3,73 3016 3320 
20 million 16550550 16550550 1,0 257 257 ? 3320 3320 
C3540 90093 438846 4,9 227 263 0 2588 2588 
C5315 83650 205820 2,5 552 605 0 10540 10540 
C6288 81668 649648 7,9 115 131 0 3068 3068 
C7552 958935 981376 1,0 633 686 2,65 9334 12188 
90 million 82999170 82999170 1,0 851 851 ? 10564 12188 

Table 2. 100000 random stimuli  

Circuits Last (Min) Last (Max) |X□|  
(Min) 

|X□| 
(Max) D% Ψ Best 

C432 2708 5251 56 76 0 540 540 
C499 79255 89611 478 519 0 5184 5184 
C880 84411 99638 173 200 >0 1326 1326 

C1355 71877 82246 452 521 0 5184 5184 
C1908 92973 99951 284 340 >0 3002 3004 
C2670 63253 98654 130 144 >0 2788 3320 
C3540 79747 99995 233 275 >0 2588 2588 
C5315 84272 99651 548 593 >0 10540 10540 
C6288 56950 96385 105 134 >0 3068 3068 
C7552 98259 99468 494 560 >0 10564 12188 

Table 3. Generation based on the number of selected stimuli 
K=1000 K=5000 

Circuits Min, 
gen. Max. gen. D% Ψ Min. gen. Max. gen. D% Ψ Best 

C432 58000 65000 0 540     540 
C499 458000 503000 0 5184     5184 
C880 146000 206000 0,15 1326 181084 1060000 0 1326 1326 
C1355 492000 514000 0 5184     5184 
C1908 278000 338000 0 3004     3004 
C2670 108000 147000 6,13 2676 988263 1015000 5,77 3072 3320 
C3540 240000 263000 0,15 2588 486098 1375000 0 2588 2588 
C5315 559000 597000 0 10540     10540 
C6288 109000 130000 0,65 3068 181084 1060000 0 3068 3068 
C7552 623000 651000 3,43 8970 2523409 2530000 2,69 9872 12188 
Total  3414000    4359938    

 
It is worth to bind the condition of the termination of 

random search to the number of the selected input stimuli. 
The generation can be terminated when the total number of 
the generated input stimuli exceeds the number of the 
selected input stimuli multiplied by the coefficient K. The 
results of the experiment are presented in Table 3. Ten 
independent random searches were accomplished for every 
circuit. The left part of Table 3 contains the minimum and 
the maximum numbers of the generated input stimuli, size 
D, and the values of objective function Ψ, when K=1000. 
The random search was repeated for the circuits where 
there was no success in obtaining the same solution ten 
times, when K=5000 (the right part of Table 3). Note that 
to achieve the same best solutions or even better ones (as 

in Tables 1 and 2), less than 78 million of input stimuli had 
to be generated in total. Termination of random search 
generation based on the number of the selected input 
stimuli allows adjusting to resource requirements 
necessary for the generation more flexibly and effectively.  

When the same value of the objective function is 
achieved during several random searches, it is evident that 
the best solution is obtained. The more times the same 
value of the objective function is achieved during several 
independent searches, the higher the possibility that the 
obtained solution is the best. However, the space of the 
random search is increased as well. If the best solution was 
not obtained in all the cases, then it remains unclear what 
the next size of the space of random search has to be used. 
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The dependence of the size D on the enlargement of the 
space of random search was analyzed. The possibilities to 
predict the size of the space of random search when the 
value of D will become 0 were analyzed, too. It was 
noticed that the convergence is very slow; the law of the 
decrease of size D is asymptotical. Therefore, any 
prediction showed to be very imprecise.  

 The completeness of the search can be defined by 
the ratio of how many the last input stimuli selections are 
rarer than in the beginning of the search. Let’s assume Ri is 
the number of selected stimuli when i random stimuli were 
generated. The percent P= (( Ri – Ri/c)/Ri)*100, where C>1, 
has a tendency to decrease during the random search. Ri/c is 
the number of selected stimuli when i/C (i divided by C) 
input stimuli were generated. The difference Ri – Ri/c 
shows how many input stimuli were selected after 
generating C times more random stimuli. As the space of 
the random search increases, P decreases to zero. The rate 
of decrease depends on the coefficient C. The bigger 
coefficient means the slower approximation to zero. The 
value P can be calculated for every random input stimulus 
which has an index larger than C. If we assume that the 
termination condition of generation is P=0, this termination 
condition will be stricter when the value of the coefficient 
C is larger. The dependence of P value on the increase of 
the space of random stimuli can be determined and on the 
basis of this dependence one can evaluate how many 

random stimuli are required till P obtains a zero value. If a 
required amount of random stimuli cannot be generated 
due to the limitation of calculation resources, there is a 
possibility to evaluate how far the obtained solution can 
differ from the best one according to the P value. The 
values of P obtained during one instance of random search 
are plotted in Fig. 1. The number of selected stimuli is 
shown on X axis, and the coefficient P is shown on Y axis. 
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Fig. 1. P values and the number of selected stimuli 

 
However, the analysis of P values indicated in Fig. 1 

shows that the estimate of P value becoming zero is quite 
problematic. 
 

Table 4. Generation according to the number of selected stimuli  
C=2 C=3 Circuit. Min. Max. K Worst Ψ Min. Max. K Best 

C432 5744 8930 10 540 8622 11757 10 540 
C499 163880 181774 10 5184 252240 291060 10 5184 
C880 193948 355604 9 1324 302022 551604 10 1326 
C1355 143778 164968 10 5184 222822 256842 10 5184 
C1908 194186 242276 10 3004 282540 371805 10 3004 
C2670 22760 29965284 4 2488 28043244 42046896 10 3320 
C3540 177504 526998 9 2586 275688 1040529 10 2588 
C5315 171400 466498 10 10540 294960 573948 10 10540 
C6288 183186 710416 7 3060 375942 1679799 10 3068 
C7552 * * * * * * * 12188 
Total 1256386 32622748  34754 30058080 30092834  34754 

 
Table 4 reports the results of ten random generations 

when termination condition of generation was based on the 
number of selected stimuli. In the case of coefficients C=2 
and C=3, random generation reached zero value of P for all 
the circuits, except circuit c7552, for which random 
generation had come short of calculation resources. 
Nevertheless, the generation did not achieve the best 
solution for the circuits c880, c2670, c3540 and c6288 
when coefficient C was 2, though the difference from the 
best value was tiny (except the circuit c2670). The worst 
obtained solution is shown in Column „Worst Ψ“. The 
number of experiments (out of ten) we succeeded to obtain 
the best solution is shown in columns „K“. The smallest 
and the largest amounts of input stimuli till the termination 
condition was fulfilled (P=0) are presented in columns 
„Min.“ and “Max.“, respectively. The increase of 
coefficient C from 2 to 3 allowed obtaining the best 
solutions for all the circuits in all ten runs. On this basis, 
we recommend to use only the value 3 of coefficient C 
while solving such problems in practice, and to perform 

the random search only one time thereby reducing the need 
for computer resources. The total number of the analyzed 
random stimuli when the coefficient C=3 was in use 
evaluating the maximum number of generated random 
stimuli for every circuit would be approximately 30 
millions only. The generation which fails in fulfilling the 
termination condition of the generation has to be 
terminated when it runs out of resources, and the 
approximation to the best solution is to be evaluated 
according to the value P.  

 
4. Conclusions 
 

The random search may last very long. The quality of 
the solution depends on the tackled task. The random 
search that spans too short may produce not qualitative 
solution, however, long random search may be inefficient 
and waste computer resources. It is especially relevant 
when the task is solved for the first time. Therefore, the 
defining of random search termination conditions is 
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essential and integral part of the optimization problem. In 
many cases the termination condition determines quality of 
the solution. It is demonstrated that during functional test 
generation there may be used various random search 
termination conditions and experimentally evaluated the 
quality of the obtained solution. The proposed random 
search termination conditions may be used in solving of 
other optimization problems. The presented research 
results enable reasonably to choose the appropriate 
termination conditions for proper search scope and 
precision of the solution. 
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