| Abstract [eng] |
The use of vibrational transport for granular materials has significantly increased in the technological industry due to its reliability, operational efficiency, cost-effectiveness, and relatively uncomplicated technological setup. These transportation methods typically utilize various forms of asymmetry, such as kinematic, temporal (time), wave, and power asymmetry, to induce controlled motion on oscillating surfaces. This study analyses the motion of the granular materials on an inclined plane, where the central innovation lies in the creation of an additional system asymmetry of frictional conditions that enables the granular materials to move upward. This asymmetry is created by introducing dry friction dynamic manipulations. A mathematical model has been developed to describe the motion of particles under these conditions. The modelling results proved that in an inclined transportation system, the asymmetry of frictional conditions during the oscillation cycle—created through dynamic dry friction manipulations—generates a net frictional force exceeding the gravitational force, thereby enabling the upward movement of granular particles. Additionally, the findings highlighted the key control parameters governing the motion of granular particles. λ, which represents the segment of the sinusoidal period over which the friction is dynamically louvered, serves as a parameter that controls the velocity of a moving particle on an inclined surface. The phase shift ϕ serves as a parameter that controls the direction of the particle’s motion at various inclination angles. Experimental investigations were conducted to assess the practicality of this method. The experimental results confirmed that the granular particles can be transported upward along the inclined surface with an inclination angle of up to 6 degrees, as well as provided both qualitative and quantitative validation of the model by illustrating that motion parameters exhibit comparable responses to the control parameters, and strongly agree with the theoretical findings. The primary advantage of the proposed vibrational transport method is the capacity for precise control of both the direction and velocity of granular particle transport using relatively simple mechanical setups. This method offers mechanical simplicity, low cost, and high reliability. It is well-suited to assembly line and manufacturing environments, as well as to industries involved in the processing and handling of granular materials, where controlled transport, repositioning, or recirculation of granular materials or small discrete components is required. |