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Abstract

The transition to a carbon-neutral society represents one of the most pressing global chal-
lenges of the 21st century, requiring a radical transformation in how energy is produced,
consumed, and managed. Digitalization has emerged as a pivotal driver in energy transi-
tion, offering innovative Pathways to enhance energy efficiency and penetrate renewable
energy that should lead to reduced GHG emissions. The aim of the research was to develop
a model for the evaluation of digitalization impact on GHG emissions where energy serves
as a mediating factor. The data of 27 European Union Member States was employed for the
investigation covering the period 2014–2023. Principal Component Analysis was utilized
to calculate the composite indicators of digitalization and energy. A comprehensive and
systematic analysis of the complex interactions of digitalization, energy and GHG emis-
sions was performed using a path analysis. The findings emphasized the critical role of the
rebound effect of digitalization as the advantages associated with energy efficiency and the
integration of renewable energy, facilitated by digitalization, are overweighted by increased
energy consumption. The research ultimately contributes to a deeper understanding of
how digitalization can be measured, guided, and optimized to support sustainable energy
and mitigation of climate change.
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1. Introduction
To address the urgent issue of climate change, the European Union has established

objectives aimed at creating a climate-neutral society by the year 2050. The ambitious goal
of net-zero carbon emissions aligns with the Paris Agreement on climate change and the
United Nations’ Sustainable Development Goals (SDGs). SDG 13—Climate action seeks
to actualize the commitment to the United Nations Framework Convention on Climate
Change, aiming to attain climate-neutrality by the mid-21st century, thereby constraining
the increase in global temperatures to below 2 ◦C, with an aspirational target of 1.5 ◦C [1].
Furthermore, it seeks to improve the resilience and adaptive capabilities of nations in
response to climate-induced natural hazards and the ensuing calamities.

Digitalization has presently emerged as a powerful tool with the potential to sig-
nificantly contribute to tackling climate change. Digital technologies such as artificial
intelligence, Internet of Things (IoT), blockchain, and big data analytics can help to solve
climate change issues in different ways: by improving energy efficiency, fostering renew-
able energy and optimizing energy consumption. The nexus between digitalization, energy
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and climate mitigation is in line with several SDGs, including SDG 7 “Affordable and Clean
Energy”, SDG 9 “Industry, innovation and infrastructure” and SDG 13 “Climate Action”.

Many authors emphasize the advantages of innovative digital technologies, as they
enable more complex and flexible energy management [2,3], while simultaneously reducing
energy consumption, improving data integration, operational efficiency, and automation
across various sectors. Smart energy systems utilize digital technologies to facilitate real-
time monitoring of energy usage [4]. Digitalization offers insights that boost operational
effectiveness and support the transition towards alternative energy sources, which are
critical for reducing the carbon footprint [5]. Digital technologies facilitate innovations in
production processes, intelligent design, and logistics, which optimize energy usage and
strengthen the efficiency of supply chain [6]. By increasing the proportion of renewable
energy in the energy market, digital technologies contribute to optimizing the energy
structure, which further reduces carbon emissions [7]. In this way, digitalization contributes
to climate change mitigation.

Nevertheless, the other authors emphasize substantially increased energy consump-
tion due to the needs of data centers, artificial intelligence computations, and communi-
cation infrastructures. The rebound effects are notable, as while digital technologies can
improve efficiency in some areas, they also require substantial energy and carbon-intensive
materials, leading to increased overall emissions [8,9]. The reduced costs due to energy effi-
ciency gains may encourage increased energy demand and pollution of environment [10].
Increased digitalization can also lead to higher consumption of carbon-intensive products
if not managed properly [11]. Thus, energy functions as the intermediary variable con-
necting digitalization with climate outcomes, influencing the extent to which technological
innovations can be converted into either sustainable practices or increased emissions [12].
A comprehensive understanding of these interconnections is essential for formulating poli-
cies that effectively steer the digital transition towards achieving global decarbonization
objectives. This impacts a call for new measurement approaches for European Union.

However, recent studies are more oriented to various countries such as China [13–15],
India [16], South Korea [17], Romania [18], Germany [19], and Italy [20], and use different
levels of analysis: region, city, sector, company. Other researchers investigate ASEAN
countries [21,22] or countries globally [3,23]. The European Union as a whole region was
investigated by [6,24–26].

Ref. [25] evaluates the socioeconomic and resource-efficient implications of digital
transformation within the public sector across the European region. Refs. [24,26] conduct an
empirical analysis of the interrelationship between digital transformation and, specifically,
energy security. Ref. [6] examines the investigations of digitalization on energy efficiency
within the European Union. The authors in [6] limit the measurement of digitalization by
Digital Economy and Society Index (DESI) and its subindexes, and they measure energy
efficiency using only the indicator of energy productivity. It is notable that previous studies
are lacking the complete sets of digitalization and energy indicators or are related to
specific spheres of energy and with no investigation of how digitalization can impact GHG
emissions through energy.

Our study addresses this gap in an original way by providing a model for the mea-
surement of the impact of digitalization on GHG emissions in the European Union, where
energy serves as a mediating factor. The paper also identifies a complex set of indicators
for digitalization and an energy measurement system.

To develop a robust and empirically grounded framework, Principal Component
Analysis (PCA) is employed as a research method for identifying underlying dimensions
and grouping interrelated variables of digitalization and energy. PCA is used to reduce
the number of initial indicators and to calculate the composite ones. Finally, Path Analysis
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is performed to find direct and indirect effects between digitalization, energy and GHG
emissions in EU.

Research results can be beneficial for policymakers, energy managers, and stakeholders
to monitor and assess the effectiveness of digitalization. The research ultimately contributes
to a deeper understanding of how digital transformation can be measured, guided, and
optimized to support sustainable energy and net-zero future.

This paper is combined of five sections, with the following structure: Section 1 is an
introduction; Section 2 provides a review of the state-of-the-art research on the topic and
is dedicated to the development of research hypotheses; Section 3 describes the data and
methodology employed; Section 4 provides and discusses the main results of PCA and Path
Analysis; Section 5 concludes the key findings of the study and addresses the limitations as
well as outlines the potential areas for further investigation.

2. Theoretical Background and Hypotheses Development
2.1. Literature Review

Measuring the impacts of digitalization on energy efficiency and GHG emissions
is a complex task, and, currently, there is no standardized approach to doing it. A re-
cent literature analysis revealed that the authors use different levels of analysis, such as
firm [17,18], industry [8,15,20], province or region [7,11,14], and country [13,21,22] when
investigating issues related to the topic. Also, their investigations are related to different
countries and regions of interest that lead the country-specific or region-specific data, and
different models of investigation are also selected.

Recent studies were directed at countries such as China [13–15], India [16], South
Korea [17], Romania [18], Germany [19], and Italy [20], or whole regions like ASEAN
countries [21,22] and the European Union [6,24–26], or investigated countries globally [3,23].
For instance, ref. [15] utilized Structural Path Analysis and a Two-Way Fixed Effects Model
to scrutinize the impact of industrial chain digitization on energy intensity within the
manufacturing sector. Ref. [17] explored the efficiency of South Korean energy enterprises
implementing digital technology, employing Stochastic Frontier Analysis and Regression
Analysis for this endeavor. At the country level, ref. [23] applied Structural Equation Mod-
eling to investigate the impact of robotics usage on environmental outcomes, utilizing data
from 74 countries and regions, while [13] assessed environmental sustainability in China
through the application of Dynamic Ordinary Least Squares, Fully Modified Ordinary
Least Squares, and Canonical Cointegration Regression methods and ref. [6] employed
the Generalized Method of Moments system to investigate the European Twin Transition
across EU Member States.

The conclusions drawn by various authors have revealed important interrelations
among digitalization, energy, and GHG emissions, which are elaborated upon in detail and
subsequently utilized for the formulation of hypotheses in the forthcoming subsections of
this article.

2.2. Digitalization Impact on Energy Consumption, Efficiency and Renewables

Digital technologies, such as artificial intelligence, Internet of Things (IoT), blockchain,
and big data analytics, have emerged as a pivotal driver in energy transition, offering
innovative pathways to enhance energy efficiency and penetrate renewable energy that
should lead to reduced GHG emissions.

Digitalization improves energy efficiency via automation, continuous monitoring, and
systematic optimization. Ref. [3] contend that digital industrial systems contribute to a
reduction in energy intensity. The implementation of smart grids and Internet of Things
(IoT) augments flexibility and reliability by facilitating real-time equilibrium between sup-
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ply and demand [2,27,28]. Furthermore, data analysis augmented by artificial intelligence
enables the early detection of faults and the scheduling of maintenance, thereby reducing
waste and minimizing downtime [29,30].

Moreover, digitalization propels the integration of renewable energy sources. Ref. [31]
assert that blockchain-enabled systems foster transparent peer-to-peer energy trading,
while [32] posit that digital platforms engender competitive markets for renewable energy.
Ref. [2] illustrate that digital forecasting techniques and smart grid coordination mitigate
intermittency and stabilize the contributions of renewable energy sources. In a similar
way, ref. [33] underscore that digital innovation stimulates investment in sustainable
technologies, thereby nurturing a synergistic interplay between digital advancement and
energy efficiency.

Despite these advancements, digitalization markedly amplifies electricity demand.
Ref. [34] indicate that information and communication technology (ICT) infrastructure
constitutes a rapidly escalating share of energy consumption. Ref. [35] emphasize that the
processes associated with the implementation of energy digitalization are characterized
by substantial embodied emissions. Ref. [9] highlight the complex and potentially vary-
ing impacts of digital technologies on energy efficiency in manufacturing, as while some
technologies can lead to reduced energy intensity, others may increase energy demand, un-
derscoring the importance of a refined understanding of how different digital technologies
impact energy consumption.

This study aims to evaluate the direct implications (whether beneficial or adverse) of
digitalization on energy, leading to the formulation of the subsequent hypothesis:

H1: Digitalization has direct effects (positive or negative) on energy consumption, energy efficiency
and energy structure.

2.3. Energy Consumption, Efficiency and Renewable Energy Impact on GHG Emissions

The enhancement of energy efficiency and the implementation of renewable energy
sources remain pivotal in the mitigation of GHG emissions. Ref. [2] demonstrate that
advancements in technology and digitalization contribute to improved system efficacy,
thereby attenuating emissions intensity. The incorporation of renewable energy sources
further reduces air pollutants and carbon emissions [30,36]. Additionally, structural trans-
formation serves to bolster sustainability. Ref. [12] underscore that the utilization of digital
technologies within smart cities and industrial sectors enhances climate resilience. Corre-
sponding investigations by [28] indicate that the implementation of efficient energy systems
promotes economic development with diminished carbon reliance.

Nevertheless, other researchers highlight the negative impact of energy consumption
as energy systems continue to be significant contributors to greenhouse gas emissions.
Ref. [35] assert that fossil fuels persist as the predominant source of global energy supply.
It is notable that even renewable energy systems entail lifecycle emissions, particularly
during their production and maintenance phases. Also, due to improved energy efficiency
the decreased costs of energy services, and these services’ demands tend to increase, which
can offset the efficiency gains [37]. Thus, the rebound effect can further undermine the
enduring benefits associated with enhancements in efficiency [8,11]. These discussions
culminate in the subsequent hypothesis:

H2: Energy consumption, energy efficiency and energy structure have direct effects (positive or
negative) on climate change.
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2.4. Digitalization Impact on GHG Emissions Through Energy

Digitalization plays a pivotal role in promoting the dissemination of renewable energy
resources and fostering energy democratization [31,32]. The adoption of digital technolo-
gies supports ongoing reductions at the cost of renewable energy generation. By increasing
the share of renewable energy in the energy market, digital technologies contribute to
optimizing the energy structure. This shift gradually displaces fossil fuel power generation,
thereby lowering the energy demand on both the supply and demand sides.

Conversely, digitalization possesses the potential to indirectly intensify greenhouse
gas emissions when it is integrated with fossil fuel-dependent systems. Ref. [35] highlight
that the energy consumption associated with information and communication technologies
significantly increases overall carbon dioxide emissions within economies reliant on fossil
fuels. The rebound effects are notable, as while digital technologies can improve efficiency
in some areas, they also require substantial energy and carbon-intensive materials, leading
to increased overall emissions [8]. Firms adopt more efficient technologies, and the reduced
costs may encourage greater usage; ultimately, this leads to increased energy demand
and pollution of the environment [10]. In conclusion, it can be asserted that digitalization
is anticipated to exert an indirect impact on GHG emissions through modifications in
energy efficiency, consumption and energy structure, which culminates in the subsequent
hypothesis:

H3: Digitalization has indirect effects (positive or negative) on GHG emissions as energy is a
mediating factor.

The final theoretical research model, including all the components of impact, as well
as the hypotheses developed, is presented in Figure 1:

Figure 1. Theoretical research model.

3. Materials and Methods
3.1. Variable Selection and Data Sources

For monitoring the situation in the European Union and finding the most important
linkages between digitalization, energy and GHG emissions indicators, the data of 27 EU
Member States were collected from the Eurostat database for the period 2014–2023. The
data period was selected in accordance with the data availability for most countries and
indicators under the investigation. Indicators from Eurostat tables of sustainable devel-
opment indicators (Goal 7—Affordable and clean energy; Goal 9—Industry, innovation
and infrastructure; Goal 13—Climate action) as well as Environment and Energy; Sci-
ence, Technology, Digital Society tables were collected for the investigation. The selection
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of indicators was based on the literature review and is described more in detail in the
next three subsections. The absolute values of indicators were divided by GDP or capita.
Following [38], our study uses country-level data as the data at the individual level in
the studied countries is not publicly available in a comparable form. However, the key
indicators for 2021 and 2022 were missing for all the countries; thus, this data period was
not included in analysis. The descriptive statistics of the indicators, as well as their coding
used in the research, are presented in Appendix A.

3.1.1. Dependent Variable

Domestic net greenhouse gas emissions (GHG emissions) that measure total national
emissions of greenhouse gases, including carbon dioxide (CO2), methane (CH4), nitrous
oxide (N2O), and the so-called F-gases from all sectors of the GHG emission inventories [39]
are used in this study, as this indicator is a European Union policy indicator, included
in the EU Sustainable Development Goals for monitoring progress towards SDG 13 on
climate action. This study follows [23] and uses GHG emissions measured as tons per
capita, considering the complex impacts of digitalization and energy on climate change.

3.1.2. Independent Variables

Measurement of digitalization is a very complex task. Following the previous studies,
the digitalization indicators used in this research include connectivity [37,40,41]-, human
capital [42–44]-, and digital business activity [6,24,26]-related indicators. We expand our
investigation to also include technological development indicators [15,17,45] for a more
complex view of digital economy level in a country. The final list of 18 indicators related
to different areas of digitalization is presented in Table 1. These are the theoretically
proposed grouping areas of digitalization variables, and they will be finally regrouped in
factor analysis.

Table 1. Digitalization variables.

Digitalization Area Variable Measurement

Connectivity:
Level of internet access by households Percentage of households
Mobile broadband internet traffic Within the country; gigabytes per capita

Human capital:
Employed ICT specialists Percentage of total employment
Female ICT specialists Percentage of employed ICT specialists
Employed persons with ICT education Persons per capita
Employed ICT specialists with tertiary
education Levels 5–8; persons per capita

Students enrolled in tertiary education Persons per capita
Total number of people receiving
education

Pre-primary to tertiary education,
persons per capita

Digital business:
Business enterprise R&D expenditure in
high-tech sectors/GDP All NACE activities, percentage of GDP

Enterprises with a website 10 persons employed or more,
percentage of enterprises

Social media 10 persons employed or more,
percentage of enterprises

Cloud/cloud computing utilization 10 persons employed or more,
percentage of enterprises
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Table 1. Cont.

Digitalization Area Variable Measurement

Enterprises with e-commerce trading
activities

10 persons employed or more,
percentage of enterprises

E-Commerce turnover 10 persons employed or more,
percentage of turnover

E-Commerce web sales: This indicates the
sales made specifically through websites.

10 persons employed or more,
percentage of enterprises

Technological development:

Number of patent applications Patent applications to the EPO, per
million inhabitants

Ratio of R&D expenditure in GDP All sectors, percentage of GDP
Persons employed in science and
technology

Employed HRST, from 25 to 64 years,
persons per capita

3.1.3. Mediating Variables

Energy consumption, efficiency and energy structure are the key groups of energy
indicators that serve as mediators between digitalization and GHG emissions.

Energy efficiency and consumption indicators. Energy productivity, calculated as
the ratio of GDP to total energy consumption, is chosen as an energy efficiency indica-
tor as it is included in EU Sustainable Development Goals indicators [6] and is used to
monitor progress towards SDG 7 on affordable and clean energy and SDG 12 on ensuring
sustainable consumption and production patterns [46]. This indicator is widely used in
the recent literature [6,13,25]. The other indicators in this group are related to energy
consumption [26,47,48] and energy intensity [13,49,50], which is measured as the amount
of energy consumed per unit of GDP, and it is the opposite indicator to energy productivity
as it measures the energy inefficiency of the economy.

Energy structure indicators. Share of renewable energy consumption is the most
common indicator for energy structure that represents the proportion of energy used from
renewable energy sources [21,26,48]. Energy structure indicators also include natural gas
consumption [37,51,52], as well as indicators of fossil fuels [45] in energy structure. The
full list of energy indicators is provided in Table 2.

Table 2. Energy variables.

Energy Indicators Area Variable Measurement

Energy consumption and efficiency:

Energy productivity
The ratio of GDP to total energy
consumption, Euro per kilogram of oil
equivalent (KGOE)

Energy consumption per capita Primary consumption, ton of oil
equivalent (TOE) per capita

Electricity production/GDP Gross production, kilogram of oil
equivalent/EUR

Electricity consumption/GDP Final electricity consumption,
kWh/EUR

Residential electricity consumption/GDP Final consumption, households,
kWh/EUR

Industrial electricity consumption/GDP Final consumption, industry sector,
kWh/EUR

Energy structure:

Share of renewable energy consumption Share of energy from renewable
sources, percentage
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Table 2. Cont.

Energy Indicators Area Variable Measurement

Final natural gas consumption/GDP Megajoule/EUR
Final oil and petroleum
consumption/GDP Kilogram/EUR

Final solid fossil fuels consumption/GDP Kilogram/EUR
Share of fossil fuels in gross available
energy Percentage

Share of solid fossil fuels in final energy
consumption Percentage

3.2. Research Methods
3.2.1. Principal Component Analysis

Principal Component Analysis (PCA) is a technique aimed at diminishing the dimen-
sionality of data; to achieve this objective, it systematically transforms correlated variables
into a new, smaller set called principal components [53]. According to [54], recent research
has validated the superiority of the PCA-based weighting technique for the computation of
composite indicators, due to its data-centric nature and its capacity to mitigate the arbitrary
and subjective weighting assigned to various indicators. For example, ref. [38] employed
PCA in their research to identify the latent dimensions of internet utilization, thus facil-
itating a reduction in the dimensionality of the dataset and categorizing variables into
pertinent factors. Furthermore, PCA facilitates the development of composite indices that
encapsulate the aggregate level, which can subsequently be employed to draw comparisons
among various nations and regions, thereby enabling policymakers to discern optimal
practices and identify areas that need to be improved [53].

PCA was used in our study to group digitalization and energy indicators and reduce
dimensionality, as well as to avoid further multicollinearity of indicators. It helped to
reduce the number of initial indicators and to calculate the composite ones that are required
for Path Analysis when having a limited number of observations.

3.2.2. Path Analysis

Path Analysis is a model that is based on multiple linear regression equations. It
disaggregates the correlation observed between independent and dependent variables into
both direct and indirect effects, thereby elucidating the intricate interrelationships among
the independent variables, intermediate variables, and dependent variables [55]. Thus,
it is an effective technique for modeling causal relationships among multiple variables
concurrently, as well as encompassing mediators [56]. As our investigation aims to measure
the direct and indirect effects between digitalization, energy and GHG emissions, Path
Analysis is a powerful tool for this purpose. Moreover, a comprehensively realized Path
diagram serves as a framework that can be employed to guide subsequent analysis, rather
than an algebraic model in statistics [57].

Path Analysis was chosen for our investigation because it provides a coherent and
theoretically grounded framework for examining both direct and indirect relationships
among the key constructs. This makes it well-suited to our aim of uncovering the mech-
anisms linking digitalization, energy use, and GHG emissions. In addition, refs. [58,59]
emphasize that Path Analysis is appropriate and robust for mediation research even when
sample sizes are relatively small, provided that the model remains parsimonious and
theoretically justified.

In our investigation, Path Analysis is based on the system of equations that will be
developed after the calculation of composite indicators in PCA. These equations will be
used to measure: (1) direct effects of digitalization on energy; (2) direct effects of energy on
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climate change; (3) indirect effects of digitalization on GHG emissions. The results of this
analysis will lead to the acceptance or rejection of our theoretical hypotheses.

4. Results and Discussion
4.1. PCA

Principal Component Analysis (PCA) was performed to calculate composite indica-
tors of digitalization and energy to avoid multicollinearity and to reduce the number of
parameters that will be used in Path Analysis. Before conducting PCA, several diagnostic
procedures were performed to ensure that the data met the key statistical assumptions for
multivariate analysis. First, the univariate normality of all variables was assessed using
the Shapiro–Wilk test. Because PCA is based on the covariance (or correlation) structure,
substantial departures from normality can bias the estimation of principal components. The
Shapiro–Wilk statistic was calculated for each variable to test the null hypothesis of normal
distribution. Variables with p-values below 0.05 were considered to deviate from normality.
Although PCA has generally robust-to-moderate non-normality, this step provided an
important diagnostic for identifying variables that did not meet the normality assumption
and were therefore logarithmically transformed to achieve normality. Logarithmic trans-
formation was applied to the following variables: Energy productivity (log_E13), Gross
electricity production/GDP (log_E3), Residential electricity consumption/GDP (log_E5),
Industrial electricity consumption/GDP (log_E6), Share of renewable energy consumption
(log_E7), Employed ICT specialists (log_D4), Total number of people receiving education
(log_D10), Business enterprise R&D expenditure in high-tech sectors/GDP (log_D11), and
Number of patent applications (log_D19).

After addressing issues of univariate non-normality, the dataset was further examined
for multivariate outliers, which can disproportionately affect covariance estimates and,
consequently, the orientation of principal components. For this purpose, the Minimum
Covariance Determinant (MCD) method [60] was employed. In this study, the detection
was performed using the leverage diagnostics option, which identifies influential cases
based on robust leverage values. According to the results, Ireland was identified as a
multivariate outlier for PCA, so it was removed from the dataset.

In PCA, each principal component (factor) is expressed as a linear combination of the
observed variables weighted by their respective coefficients. The general form of the i-th
component is

Factori = α1iX1 + α2iX2 + α3iX3 + . . . + αpiXp (1)

where Factori is the i-th principal component (factor score), Xj represents the original
observed variable j, αji denotes the coefficient (loading weight) of the variable Xj for
component i, and p is the total number of variables.

To select variables suitable for the Principal Component Analysis (PCA), we examined
the overall Kaiser’s Measure of Sampling Adequacy (MSA). This measure indicates whether
the analyzed data are appropriate for applying factor analysis. If the value of this measure
is below 0.6, the correlations between variable pairs cannot be explained by other variables,
and factor analysis is therefore not applicable. In our final models, the overall MSA value
exceeded 0.7 for all the years under study, which confirms that the available data are
suitable for conducting factor analysis.

In addition, we examined the individual MSA for each variable, which indicates
whether a variable should be included in the factor analysis. If the value of this measure
is below 0.5, the variable is recommended to be excluded. Therefore, only those variables
with an MSA value greater than 0.5 were included in the analysis. Based on these criteria,
separate PCAs were conducted for the energy and digitalization parts.



Energies 2025, 18, 6437 10 of 36

To determine how many factors could be retained, the eigenvalues of the correlation
matrix were evaluated. According to the Kaiser criterion, only the factors with eigenvalues
greater than 1 were retained for further analysis. For both the energy and digitalization
parts, two factors were extracted, indicating that the data structure could be effectively rep-
resented by two latent dimensions in each case. Furthermore, we examined the proportion
of total variance explained by the extracted factors and the Final Communality Estimates,
which indicate the proportion of each variable’s variance explained by the retained factors
(i.e., the common variance). The obtained results demonstrated that the extracted factors
accounted for a substantial share of the total variance (all cases more than 0.5), confirming
the adequacy and interpretability of the factor solutions.

PCA was conducted using the maximum likelihood (ML) extraction method, which
allows estimation of the underlying factor structure that best reproduces the observed
covariance matrix. This method was chosen because it provides statistical measures of
model fit and enables the evaluation of factor loadings’ significance, offering greater
inferential flexibility compared to others. To enhance the interpretability of the extracted
components, orthogonal Varimax rotation was applied. The Varimax procedure maximizes
the variance of squared loadings within each component, thereby achieving a simpler and
more interpretable factor structure where each variable tends to load highly on one factor
and minimally on others.

The rotated factor loadings represent the correlations between the observed variables
and the extracted components, showing how strongly each variable contributes to a par-
ticular factor. Loadings close to ±1 indicate a strong association, while loadings near
0 suggest little or no relationship. For interpretation purposes, rotated loadings in our case
were used. Typically, loadings with absolute values above 0.70 are considered very strong,
0.50–0.69 as moderate, and 0.30–0.49 as weak but meaningful contributions [61]. Each factor
was interpreted and named based on the variables with the highest loadings, assuming
that such variables share a common conceptual dimension.

The graphical results of PCA for digitalization (a) and energy (b) indicators for
2023 are presented in Figure 2.

4.1.1. Digitalization Indicators

A Varimax-rotated PCA was applied to identify the structure of digitalization indi-
cators. Given the scope of this paper, a detailed discussion is provided only for the PCA
results of the year 2023. The analysis revealed two distinct factors that together represent
the main dimensions of digitalization:

Factor 1:

pca1_D = 0.831 ·Househ_lev_D1 + 0.855·log _d4 + 0.213·log _d10 + 0.219
·log _d11 + 0.708·Enterpr_web_D12 + 0.677·Soc_med_D14
+0.585·Cloud_D15 + 0.227·Enterpr_e_com_D16 + 0.798
·log _d19 + 0.905·Pers_empl_D21

(2)

Factor 2:

pca2_D = 0.137 ·Househ_lev_D1 + 0.276·log _d4 + 0.775·log _d10 + 0.777
·log _d11 + 0.591·Enterpr_web_D12 + 0.479·Soc_med_D14
+0.542·Cloud_D15 + 0.739·Enterpr_e_com_D16 + 0.483
·log _d19 + 0.202·Pers_empl_D21

(3)
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(a) Digitalization indicators  (b) Energy indicators 

Figure 2. Graphical results of PCA for 2023.

The quality criteria of the final PCA model indicate its adequacy and reliability. These
criteria are presented in the tables below, including the overall and individual MSA values
(Table 3), the number of extracted factors (Table 4) and the final communality estimates
(Table 5), which show an acceptable level of variance explained. In determining the number
of factors to retain, we followed the commonly applied eigenvalue-greater-than-one rule
(Kaiser criterion), complemented by a theoretical assessment of the interpretability of the
extracted components. This approach ensured that the retained PCA factors were both
statistically sound and meaningful for subsequent Path Analysis.

Table 3. Overall and individual MSA values for digitalization.

Kaiser’s Measure of Sampling Adequacy: Overall MSA = 0.77977976

Househ_lev_D1 log_d4 log_d10 log_d11 Enterpr_web_D12 Soc_med_D14
0.86480415 0.82775107 0.79170842 0.67959937 0.80805834 0.69488831

Cloud_D15 Enterpr_e_com_D16 log_d19 Pers_empl_D21
0.83039955 0.70540887 0.73400206 0.86562785

Table 4. Number of extracted factors for digitalization.

Eigenvalues of the Correlation Matrix: Total = 10 Average = 1

Eigenvalue Difference Proportion Cumulative
1 6.22807314 5.13899338 0.6228 0.6228
2 1.08907976 0.26870895 0.1089 0.7317
3 0.82037081 0.33137278 0.0820 0.8138
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Table 5. Final communality estimates for digitalization.

Final Communality Estimates: Total = 7.317153

Househ_lev_D1 log_d4 log_d10 log_d11 Enterpr_web_D12 Soc_med_D14
0.70913474 0.80745649 0.64633221 0.65229051 0.85120497 0.68800117

Cloud_D15 Enterpr_e_com_D16 log_d19 Pers_empl_D21
0.63596734 0.59684666 0.86970796 0.86021084

PCA confirmed two factors of digitalization indicators. The developed composite
indicators (factors) of digitalization are presented in Figure 2a. In general, the goal of the
PCA used in our study was to reduce the number of initial indicators that are required for
Path Analysis when having a limited number of observations, as well as to calculate the
PCA-based weighted composite ones and mitigate the subjective weighting techniques. It
should be highlighted that some of the digitalization indicators, such as Cloud computing,
Social media or Enterprises with a website are overlapped between both factors; thus, both
factors have relatively high loadings on these indicators. However, the first factor has the
highest loadings on indicators of (1) connectivity: Internet access level by households (0.83),
(2) the human capital required for successful digital business: Employed ICT specialists
(0.86), Persons employed in science and technology (0.91) and (3) the extent to which busi-
nesses use digital tools: Enterprises with a website (0.71); Social media (0.68); Cloud/Cloud
computing utilization (0.59). According to the framework of EC Digital Economy and
Society Index (DESI) that was used in the studies of [6,24], our first factor contains the data
that are related to the three different dimensions of DESI: (1) Connectivity (Internet access
level by households), (2) Human capital (Employed ICT specialists, Persons employed
in science and technology) and (3) Digital technologies for business (Enterprises with a
website; Social media; Cloud/Cloud computing utilization). Following this framework, we
combine the name for our first factor from all the three dimensions and call it “Connectivity,
human capital and digital technologies for business” (pca1_D).

The second factor is more general, related to the education (Total number of people
receiving education (0.78)) and technological development level of a country (Business en-
terprise R&D expenditure in high-tech sectors (0.78); Enterprises with e-commerce trading
activities (0.74) and Total number of patent applications (0.48)). We follow [47] who named
education-related indicators Education level. For the second group of related indicators,
we align with the framework of [62], who referred to patent application-related indicators
as technological effect, and [15], who classified R&D expenditure-related indicators as tech-
nological progress; collectively, we refer to this assemblage of indicators as technological
development level. Furthermore, Enterprises with e-commerce trading activities are also
included into the technological development level group, as this measure pertains to the
exchange of goods or services through digital technologies. In conclusion, we call the
second factor of PCA “Education and technological development level” (pca2_D).

4.1.2. Energy Indicators

Similarly to the digitalization dimension, two factors were extracted for the energy
dimension. For brevity, only the PCA results based on the 2023 data are presented and
discussed in detail with retained factors.

Factor 1:

pca1_E = (−0.711) ·log _e13 + 0.886·log _E3 + 0.962·Final_electr_E4 + 0.904
·log _e5 + 0.764·log _e6 + 0.329·log _E7 + 0.467
·Final_oil_and_petr_E9 + 0.287·Final_solid_fosil_E10 − 0.466
·Share_foss_E11

(4)



Energies 2025, 18, 6437 13 of 36

Factor 2:

pca2_E = (−0.434) ·log _e13 − 0.026·log _E3 + 0.023·Final_electr_E4 − 0.073
·log _e5 − 0.151·log _e6 − 0.795·log _E7 + 0.564
·Final_oil_and_petr_E9 + 0.599·Final_solid_fosil_E10 + 0.789
·Share_foss_E11

(5)

The final PCA model for the energy indicators was found to be adequate and reliable,
as shown in the tables below presenting the overall and individual MSA values (Table 6), the
number of extracted factors (Table 7) and final communality estimates (Table 8). According
to the Kaiser criterion (eigenvalues > 1), two components were retained for further analysis.
The variable Final_solid_fosil_E10 was retained in the model even though its individual
MSA value was at the threshold, as the overall quality and adequacy of the PCA model
remained higher when this variable was included.

Table 6. Overall and individual MSA values for energy.

Kaiser’s Measure of Sampling Adequacy: Overall MSA = 0.69642425

log_e13 log_E3 Final_electr_E4 log_e5 log_e6 log_E7
0.79544382 0.73010168 0.78920231 0.65975973 0.69471193 0.62587033

Final_oil_and_petr_E9 Final_solid_fosil_E10 Share_foss_E11
0.65999052 0.45660366 0.65889012

Table 7. Number of extracted factors for energy.

Eigenvalues of the Correlation Matrix: Total = 9 Average = 1

Eigenvalue Difference Proportion Cumulative
1 4.24542264 2.09855330 0.4717 0.4717
2 2.14686933 1.25192797 0.2385 0.7103
3 0.89494137 0.32622903 0.0994 0.8097

Table 8. Final communality estimates for energy.

Final Communality Estimates: Total = 6.392292

log_e13 log_E3 Final_electr_E4 log_e5 log_e6 log_E7
0.69428607 0.78586411 0.92535757 0.82315864 0.60676204 0.74064292

Final_oil_and_petr_E9 Final_solid_fosil_E10 Share_foss_E11
0.53633991 0.44086745 0.83901325

PCA confirmed two groups (factors) of energy indicators that clearly separated
(Figure 2b). The first group represents energy intensity (pca1_E), and the second group is
dedicated to energy structure (pca2_E). The negative values of the indicators mean that
the factor is inversely proportional to the variable. The energy intensity group contains
an indicator of energy productivity (with the loading of −0.71)—the ratio of GDP to total
energy consumption, as well as electricity production and electricity consumption intensity
indicators. energy productivity is inverse to all other indicators of Energy intensity factor,
as the more energy is consumed, the lower the value this indicator has. In that way, the
energy intensity factor is inverse to energy efficiency. This factor has the highest loadings
on Final electricity consumption/GDP (0.96), Residential electricity consumption/GDP
(0.90), and Gross electricity production/GDP (0.90).

The factor of energy structure includes the Share of renewable energy as well as fossil
fuel-related indicators. In the same way—Share of renewable energy here is inverse to all
other indicators of the energy structure factor, as it measures the proportion of energy from
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renewable sources in total energy, while other indicators of this group measure proportions
of fossil fuel-related energy. Thus, the factor of energy structure is dedicated to measuring
the fossil fuel-based energy structure, which is opposite to renewable energy. This factor
has the highest loadings on Share of renewable energy consumption (−0.80) and Share of
fossil fuels in gross available energy (0.79).

As the analysis revealed that there are only two factors of energy indicators, the
individual indicator Primary energy consumption per capita (E2), which was not suitable
for factor analysis, is used to represent the energy consumption in this study. Primary
energy consumption per capita [24,26,47] measures energy needs and covers the energy
consumption by end users such as industry, transport, and households [63]; thus, it is a
suitable representative for energy consumption of a country.

4.2. Path Analysis

The linear equations for the Path Analysis were developed in accordance with the
theoretical hypotheses, forming the conceptual basis for the structural model. After the
theoretical framework had been defined, the structure of the equations was specified to
ensure consistency between the theoretical model and statistical identifiability. In Path
Analysis, the structure of equations is determined by the number of estimated parameters
to ensure that the model remains identified. The final model represents a case of an over-
identified model, where the number of estimated parameters is smaller than the number
of moments. The number of moments is calculated as k(k + 1)/2, where k is the number
of observed variables. The difference between the number of moments and the number
of estimated parameters represents the model’s degrees of freedom (df ). In this study, the
Path model was constructed so that df > 0, ensuring that the model is over-identified and
that its fit can be statistically evaluated. In such a case, it is possible to assess not only the
parameter estimates themselves but also the overall quality of the model by comparing
the estimated covariance matrix with the empirical covariance matrix. Although including
additional variables would be theoretically desirable, doing so would have reduced the
model’s degrees of freedom to zero, resulting in a just-identified model where fit cannot
be statistically assessed. Therefore, the current, more parsimonious model was retained to
preserve over-identification, enable empirical evaluation of model fit, and ensure stable
estimation given the small sample size.

After evaluating all quality and suitability criteria, only the equations demonstrating
the most meaningful and theoretically justified relationships were included in the Path
model. Given the structure of the available data and the small sample size, the number of
regressors had to be deliberately kept limited to ensure that the Path model would remain
identifiable and retain positive degrees of freedom. We used the adjusted coefficient of
determination (Appendix B) as a diagnostic tool to verify that each equation contributed
sufficient explanatory power, since equations with very low R2 values would undermine
model fit. For these reasons, only relations with the highest adjusted R2 values and clear
theoretical relevance were selected for inclusion in the model.

In certain cases, variables with statistically non-significant p-values were retained in
the regression equations, as their inclusion was theoretically substantiated and consistent
with the conceptual framework of the study. This approach is also justified by the small
sample size, where p-values may lack sufficient power to detect existing effects. Ref. [64]
highlights that in mediation models, the primary focus should be placed on the magnitudes
of the direct and indirect effects rather than on p-values, further supporting the suitability
of this approach for the aims of our study.

Regression analysis (Appendix B) has shown that GHG emissions (Table A2) can be
predicted using the data of energy intensity and energy structure composite indicators, as
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well as the individual indicator of energy consumption (Adj. R-Sq = 0.4517). However,
GHG emissions regression with predictors of digitalization (Table A3) had a very low value
of Adj. R-Sq (0.1521); thus, the direct effects of Digitalization on GHG emissions were
not included in the final model. Regression analysis also revealed that energy intensity
(Adj. R-Sq = 0.5132) (Table A4) and energy consumption (Adj. R-Sq = 0.2683) (Table A5)
can be predicted using the composite indicators of Connectivity, human capital and digital
technologies for business as well as Education and technological development level, while
these were not suitable predictors for the energy structure (Adj. R-Sq = 0.0510) (Table A6).

In parallel, by adjusting the regression equations of the Path Analysis model according
to the theoretical hypotheses and the requirements of model identifiability, a corresponding
regression analysis model equation was constructed and tested to verify whether it met all
regression model assumptions. This procedure was carried out to ensure the reliability of
the regression equations and to prevent poor model quality in the Path Analysis. For this
purpose, potential outliers were examined, and cases of Sweden, Finland, and Luxembourg
were identified as strong outliers and, therefore, were excluded from the analysis to ensure
the robustness and reliability of the estimated Path coefficients. All these countries had ex-
tremely high technological development levels according to their indicators, while Sweden
and Finland were also extremely good in terms of renewable energy. During the estimation
of the Path Analysis models, these countries proved to be highly influential observations
that exerted an unusually strong impact on the estimated coefficients. Influence diagnostics
(e.g., leverage and residual patterns) showed that their presence substantially distorted the
regression relationships. As is well-established, Path Analysis and OLS-based regression
models become unreliable when dominated by such influential cases, because parameter
estimates become unstable and the mediation structure is compromised.

Additionally, the multicollinearity of the independent variables in the equations was
examined using the variance factor (VIF), which quantifies how much the variance of a
regression coefficient is increased due to collinearity among predictors. All calculated VIF
values were below 4, indicating an acceptable level of multicollinearity. In addition, the
absence of autocorrelation in the regression residuals was tested using the Durbin–Watson
(D) statistic. The obtained D value was approximately 2, and the corresponding p-value was
not statistically significant, indicating that neither positive nor negative autocorrelation was
present in the residuals. In addition, the heteroscedasticity of the regression model residuals
was examined using the test of first- and second-moment specification, which indicated
adequate model properties and confirmed that the assumption of homoscedasticity was
satisfied. Moreover, the normality of residuals (Shapiro–Wilk test) and the equality of their
means to zero (t-test) were tested, confirming that the residuals met the assumptions of
normal distribution and zero-mean. The corresponding hypotheses regarding the normality
and zero-mean value of residuals were verified and not rejected, indicating that the model
satisfies the classical linear regression assumptions. The results of the regression analysis
and the assessment of its assumptions for 2023 are provided in Appendix C, supporting
the adequacy of the model specification.

This led to the following structural linear equations with standardized coefficients of
the final Path Analysis model (Table 9).

Table 9. Path Analysis model.

No. Model Equation

1 GHG_Climate_change = b1 × Primary_Energy_E2 + b2 × pca2_E + b3 × pca1_E + e1
2 pca1_E = b5 × pca1_D + b6 × pca2_D + e2
3 Primary_Energy_E2 = b4 × pca1_D + b7 × pca2_D + e3
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The codes of composite and single indicators used in the Path Analysis model are
given in Table 10.

Table 10. Path Analysis model indicators.

Code Name Single/Composite

GHG_Climate_change GHG emissions Single

pca1_D Connectivity, human capital and
digital technologies for business Composite

Pca2_D Education and technological
development level Composite

E2 Energy consumption Single
Pca1_E Energy intensity Composite
Pca2_E Energy structure (fossil fuel-based) Composite

The coefficients b1 to b7 in Table 9 represent the direct standardized effects among
variables in the Path Analysis model, where each b quantifies the direct influence of
one variable on another while controlling for all other relationships in the model. The
standardized effects generally range in magnitude from −1 to +1, representing the full
possible span of relationships from strongly negative to strongly positive.

According to the conventions proposed by [65], standardized effect sizes of around
0.10 are considered small, those of around 0.30 are moderate, and those of 0.50 or greater are
large in practical significance. Negative (inverse) coefficients indicate that as one variable
increases, the other tends to decrease, suggesting an opposing or reversing relationship
between them. The closer a negative value is to −1, the stronger the inverse association.
In contrast, positive coefficients imply that increases in one variable are associated with
increases in another, with values near +1 representing a powerful direct connection. Occa-
sionally, standardized coefficients greater than 1 can appear when variables share very high
correlations or when measurement error inflates relationships. Such coefficients do not
indicate a computational mistake, but they should be interpreted cautiously as indicators
of exceptionally strong relationships.

In this investigation, we focus exclusively on standardized effects, as they allow for
the direct comparison of the relative strength and direction of relationships across variables
measured on different scales. Standardization removes the influence of measurement
units, making it possible to evaluate which Path exert the strongest impact within the
overall model. Because all coefficients are expressed on the same standardized scale, the
direct, indirect, and total effects can be meaningfully compared to assessing the relative
contribution of each pathway to the dependent variable. This comparability enables a
clearer understanding of how much of the total influence is transmitted through mediating
variables versus direct causal links.

The formulas used to calculate the indirect standardized effects are presented
in Table 11.

Table 11. Calculation of indirect standardized effects.

Effect Type Path Formula

Indirect Effect
pca1_D → GHG_Climate_change

pca1_D → Primary_Energy_E2 → GHG_Climate_change +
pca1_D → pca1_E → GHG_Climate_change (b4 × b1) + (b5 × b3)

Indirect Effect
pca2_D → GHG_Climate_change

pca2_D → Primary_Energy_E2 → GHG_Climate_change +
pca2_D → pca1_E → GHG_Climate_change (b7 × b1) + (b6 × b3)

Furthermore, the goodness of fit of the Path Analysis model was evaluated for each
year of the study (from 2014 to 2023, excluding 2021 and 2022 due to insufficient data). The
models were estimated using the maximum likelihood (ML) method, with an identical
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structure across years, including three endogenous and six exogenous variables and a
total of nineteen parameters. The key fit indices assessed were the Chi-square (χ2) statistic
and its probability (p-value), the Goodness-of-Fit Index (GFI) and its adjusted version
(AGFI), the Root Mean Square Residual (RMR/SRMR), the Root Mean Square Error of
Approximation (RMSEA) with its 90% confidence interval, and the Comparative Fit Index
(CFI), Normed Fit Index (NFI), and Non-Normed Fit Index (NNFI).

Across all years, Chi-square test p-values were greater than 0.05, indicating that
the models did not significantly differ from the observed data and could therefore be
considered an acceptable fit. Other indices generally supported this conclusion: most GFI
values exceeded 0.90, SRMR values remained below 0.08, CFI was not less than 0.9, and
RMSEA confidence interval [0; 0.05], suggesting a satisfactory overall model fit.

However, the number of observations was relatively small, which limits the reliability
and generalizability of the fit indices. With such sample sizes, fit statistics can become
unstable, and goodness-of-fit measures may either overestimate or underestimate the true
model quality [58]. For this reason, we focused on the magnitude of effects, rather than on
p-values or fit indices. All interpretations are therefore based on the estimated direct and
indirect effects. Nevertheless, the overall fit indices across the analyzed years indicate that
the specified Path model provides a reasonably good fit to the available data (a detailed
summary of fit indices for each year is presented in Appendix D).

For each year, both the direct and indirect standardized effects were calculated to
evaluate the structure and strength of relationships among the model variables over time.
To assess the stability of the estimated coefficients, the bootstrap method was applied,
generating 1000 resamples of similar size. For each resample, both the Path model coef-
ficients and the corresponding effect estimates were recalculated, and their confidence
intervals were estimated. The summarized results of all Path Analysis effects are presented
in Appendix E, while the Path Analysis model diagram with the corresponding coefficients
is shown in Figure 3.

Figure 3. Path Analysis model with indicators and parameters.

In the following sections, we provide a more detailed discussion of the direct and
indirect effects observed throughout all investigated years.

4.2.1. Direct Effects

Both digitalization components, Connectivity, human capital and digital technologies
for business (parameter b5), as well as Education and technological development level
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(parameter b6), had direct effects on energy intensity composite indicator (Appendix E).
As parameter values are negative, this means that the higher the digitalization level is,
the lower the energy intensity we have. Thus, digitalization has positive direct effects on
energy efficiency. Digitalization improves energy efficiency via automation, continuous
monitoring, and systematic optimization. This is in line with [3], who investigated the
impact of digitalization on haze pollution and emphasized that digitalization contributes
to a reduction in energy intensity. Figure 4 illustrates the estimated sample coefficients,
shown as the bar height, along with the bootstrapped 95% confidence intervals of the mean
coefficient estimates, with the bootstrapped mean value located at the center of the interval.

Figure 4. Direct effects on Energy intensity.

The positive direct effects of Connectivity, human capital and digital technologies
for business (parameter b4) were determined on energy consumption in 2014–2023, while
the Education and technological development level (parameter b7) was not significant for
the years 2014–2020, but it became significant and even higher than Connectivity, human
capital and digital technologies for business in 2023 (Appendix E). This shift could reflect
a transition from digital expansion in data centers, devices, and networks that require
energy to smart transformation when education and sustainable technology matter more.
Nevertheless, both digitalization factors had positive direct effects on energy consumption
in 2023 (the higher the level of digitalization is, the more energy is consumed).

This can be explained by the two main effects: First, it is in line with [35], who
emphasized that the implementation of energy digitalization requires a lot of computational
power and is associated with high energy consumption; and second, it can be explained
by consumer behavior. Since improvements in energy efficiency led to a reduction in
the marginal costs of energy services, it can be anticipated that the utilization of such
services will increase, consequently offsetting some of the expected reduction in energy
consumption. This phenomenon is commonly referred to as the direct rebound effect [66].
However, even if there is no direct rebound effect, there exist numerous additional factors
that may contribute to the economy-wide reduction in energy consumption being less
pronounced. For instance, the financial savings accrued from reduced energy consumption
may be allocated towards the acquisition of alternative goods and services that similarly
necessitate energy for their provision. Depending on the context in which energy efficiency
improvement is realized, these so-called indirect rebound effects may manifest in various
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forms, including increases in the output of certain sectors, transitions towards more energy-
intensive goods and services, and increases in energy consumption attributable to decreased
energy prices and accelerated economic growth [66]. The comprehensive rebound effect
resulting from an improvement in energy efficiency encapsulates the aggregation of these
direct and indirect effects.

Figure 5 displays the estimated coefficients together with the bootstrapped 95% confi-
dence interval for parameters b4 and b7.

Figure 5. Direct effects on energy consumption.

As the regression analysis has shown that there is no linear relation between digital-
ization and energy structure (Appendix B), the direct effects of digitalization on energy
structure were not tested in Path Analysis. On the other hand, the literature review sug-
gested that digital technologies can be a powerful tool for fostering renewable energy as
digital forecasting techniques and smart grid coordination mitigate intermittency and stabi-
lize the contributions of renewable energy sources [2], blockchain-enabled systems foster
transparent peer-to-peer energy trading [31] and digital platforms engender competitive
markets for renewable energy [32]. However, the insignificant linear relationship between
digitalization and energy structure may reflect nonlinear or lagged effects as renewable
integration requires years of investment and the integration of renewable technologies to
the existing power grids requires substantial upgrades, such as smart meters, advanced
sensors, real-time data platforms, and digital control systems. These upgrades involve high
costs, complex coordination among utilities, and technical challenges; thus, grid integration
progresses slowly, limiting its immediate impact of digitalization on the overall energy
structure. Also, it could be influenced by national energy policies, pricing systems and
regulatory frameworks and require more governmental initiatives for pushing renewable
energy forward. All these obstacles can weaken any direct statistical relationship between
digitalization and changes in the national energy structure.

To summarize, the hypothesis “H1: Digitalization has direct effects (positive or nega-
tive) on energy consumption, energy efficiency and energy structure” was partially con-
firmed as digitalization had direct effects on energy intensity and energy consumption, but
there was no significant impact of digitalization on energy structure.

The Path Analysis has revealed that direct effects of energy intensity (parameter b3)
on GHG emissions were not significant (Appendix E). Thus, our research did not confirm
the conclusions of [2], who emphasized that significant improvements in the efficiency of
energy production, distribution, and consumption not only optimizes the use of resources
but also enables the reduction in greenhouse gas emissions.
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Despite this, the positive direct effects of energy consumption (parameter b1) on GHG
emissions were detected (Appendix E). This means that the higher the energy consumption
is, the more GHGs are emitted. Thus, the effects of energy efficiency on GHG emissions are
not as important as the rebound effects of energy consumption, and this is in line with [9],
who highlights the complex and potentially varying impacts of digital technologies on
energy efficiency in manufacturing, as while some technologies can lead to reduced energy
intensity, others may increase energy demand.

Energy structure (parameter b2) has significant effects on GHG emissions (Appendix E).
During most of the period of analysis, the effects are positive, meaning that the more fossil
fuel-based energy structure there is, the more GHG are emitted. Thus, a renewable energy-
based energy structure helps to reduce the amount of GHG emissions and adds its value
to climate change mitigation. It confirms the positive repercussions of renewable energy
consumption on environmental outcomes [36]; thus, structural transformation serves to
bolster sustainability. It is highlighted that in some years (2014, 2018), parameter b2 is
negative, and that generally means that even renewable energy systems entail lifecycle
emissions, particularly during their production and maintenance phases.

In conclusion, the hypothesis “H2: energy consumption, energy efficiency and energy
structure have direct effects (positive or negative) on GHG emissions” was partially con-
firmed. However, it is notable that the effects of energy consumption on GHG emissions
are much higher than those of Energy structure, as b1 > b2 in all the year models (Figure 6);
thus, the rebound effect of energy consumption undermines the benefits associated with
renewable energy.

Figure 6. Direct effects on GHG emissions.

4.2.2. Indirect Effects

The indirect impacts of digitalization on GHG emissions were also evaluated. Con-
nectivity, human capital and digital technologies for business had significant positive
indirect effects on GHG emissions, while the effects of Education and technological devel-
opment level were not significant for the period of 2014–2020 and became significant in
2023 (Appendix E). Thus, the hypothesis “H3: Digitalization has indirect effects on GHG
emissions, as energy is a mediating factor” was confirmed.

The indirect effects of digitalization on GHG emissions are illustrated in Figure 7.
The positive effects mean that the higher the level of digitalization is, the more GHGs
are emitted. These indirect effects can be explained by the mediating effect of energy
consumption: The higher the digitalization level, the more energy is consumed, and this
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leads to higher GHG emissions. These findings are in line with other authors [8,10], who
stated that while digital technologies can improve efficiency in some areas, they also
require substantial energy and carbon-intensive materials, leading to increased overall
emissions [8]; also, due to improvements in digitalization, the costs are reduced, and this
leads to increased energy demand and pollution of the environment [10]. Our study has
shown that the rebound effect plays a crucial role here, as energy efficiency and renewable
energy penetration benefits gained because of digitalization are outweighed by increased
energy consumption and this results in higher GHG emissions.

Figure 7. Indirect effects on GHG emissions.

5. Conclusions
GHG emissions can be influenced by digitalization, and energy efficiency plays a

crucial role as a mediator in this relationship. A complex measurement framework for
digitalization and energy indicators has been established, leading to the development
of composite digitalization indicators encompassing Connectivity, human capital and
digital technologies for business alongside Education and technological development level,
while energy indicators have been categorized as energy intensity, energy structure and
energy consumption.

The Path Analysis model developed for the European Union Member States has con-
firmed the direct and indirect effects between digitalization, energy and GHG emissions
components. Both digitalization components exerted direct effects on energy intensity
and energy consumption, thereby demonstrating that digitalization has the potential to
contribute positively to the improvements in energy efficiency, but at the same time, it can
lead to increased energy consumption that underscores the importance of the rebound
effect. However, no significant impact of digitalization on energy structure was detected,
indicating that more inclusion of digital strategies in the penetration of renewable energy is
required, as it remains an ongoing process within the EU Member States. The direct effects
of energy intensity on GHG emissions were not significant as energy efficiency was under-
valued in relation to energy consumption and energy structure. The positive direct effects
of energy consumption on GHG emissions have been observed, indicating that the increase
in energy consumption correlates with a rise in GHG. While the energy structure has also
significant effects on GHG emissions, the impacts associated with energy consumption
were markedly more pronounced. The positive indirect effects of digitalization on GHG
emissions were observed, highlighting that a heightened degree of digitalization correlates
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with increased GHG emissions. Our research has demonstrated that the rebound effect
is pivotal in this dynamic, as the advantages associated with energy efficiency and the
integration of renewable energy, which are facilitated by digitalization, are outweighed by
the rise in energy consumption.

Policy implications. The model for the multidimensional evaluation of relations
between digitalization, energy and GHG emissions was developed for monitoring the
situation in the European Union as a distinct geopolitical entity. The findings of this research
can be beneficial for EU policymakers, energy managers, and stakeholders to monitor
and assess the effectiveness of digitalization, while guiding its trajectory to optimize its
contributions to energy efficiency and structure.

The integration of digital technologies requires collaborative efforts among stake-
holders. Emphasizing financial incentives and regulatory frameworks can enhance the
effectiveness of energy-efficient practices. Policymakers and industry stakeholders are
encouraged to design digitalization policies that consider the direct and indirect impacts
of digitalization to achieve better environmental outcomes. The findings suggest that
policymakers should consider connectivity, human capital and digital technologies for
business, as well as high-level education and technological development progress as critical
components in their energy management strategy.

There is a need for policymakers to focus on promoting the ICT sector to enhance
energy efficiency. By investing in digital technologies, the government can facilitate better
energy management and contribute to environmental sustainability. However, there is
a tendency to focus on the positive impacts of ICTs, such as enhanced energy efficiency,
while often neglecting the negative impacts, including the energy consumption of ICTs
themselves. This gap in policy awareness suggests a need for a more integrated approach
to understanding the full spectrum of ICT impacts on energy efficiency and environmental
sustainability. Policymakers need to be cautious about the implications of increased digi-
talization. They should consider strategies to minimize the rebound effect to ensure that
improvements in energy efficiency do not lead to greater overall energy consumption.

There is also a need to ensure the continuous development of ITC professional skills,
as simply having ICT specialists does not necessarily improve energy efficiency in firms.
Professional development for ITC specialists should be initiated by governments and
included in lifelong-learning programs or provided by firms so that these specialists
can effectively participate in the digital transformation process. Digitalization will not
automatically lead to improvements in energy efficiency, as achieving these benefits requires
active management and strategic integration of digital technologies into existing processes.

Digital technologies for business can significantly improve energy efficiency; how-
ever, energy consumption associated with data centers and Cloud computing can lead
to increased overall energy use and highlights the need for careful implementation to
ensure that the gains in operational efficiency do not lead to unintended environmental
impacts. Companies need to focus on reducing their energy footprint to align better with
ESG principles. To effectively leverage digital technologies for energy efficiency, it is im-
portant to integrate energy optimization measures within companies and across supply
chains. This integration is crucial for enhancing decision-making and achieving corporate
environmental sustainability goals.

While digital technologies are effective in directly promoting energy efficiency, their
impact on GHG emissions is indirect. This indicates that the overall environmental impact
still requires additional strategies. High-level education and the ability to effectively
participate in technological progress is crucial here. Prioritizing research and development
efforts to advance low-carbon technologies in the industrial sector is crucial. There is a
need for integrated carbon management strategies that consider both sector-specific and
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supply-chain-wide measures. This approach can help identify carbon abatement potentials
and support the low-carbon transition.

Limitations and future research directions. Nevertheless, this model faces several
limitations. Firstly, it uses a relatively small dataset, as comparable information can only
be collected at the country level of EU Member States. Secondly, the model does not
include control variables such as economic development, industrial structure, income per
capita, policy environment or economic structure, which can be important influencing
factors. Thirdly, the countries having extremely high technological development levels
(Sweden, Finland, Luxembourg, Ireland) were identified as strong outliers and therefore,
were excluded from the model to ensure the robustness and reliability of the estimated
Path coefficients. Consequently, prospective research endeavors could expand the scope
of interest to incorporate additional countries globally, categorizing them according to
their levels of technological development and necessarily including the control variables to
avoid the omission of possible influencing factors. Expanded research, including a bigger
dataset and a more complete panel structure, would allow highly digitalized countries
to be included without being identified as outliers in dynamic or FE/RE models. Also,
the utilization of panel-data approaches or dynamic modeling techniques would provide
stronger causal identification, particularly with respect to temporal evolution, simultaneity,
and endogeneity.
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Appendix A

Table A1. Descriptive statistics of indicators 2014–2023.

Variable Label N Mean Std Dev Min Max

GHG_Climate_change Domestic net greenhouse gas emissions per capita
Energy_prod_E13 Energy productivity 270 7.637 3.996 2.180 27.190
Primary_Energy_E2 Primary energy consumption per capita 270 3.074 1.171 1.440 7.530
Gross_electr_E3 Gross electricity production/GDP 270 0.021 0.013 0.003 0.095
Final_electr_E4 Final electricity consumption/GDP 270 0.229 0.098 0.058 0.671
Residential_electr_E5 Residential electricity consumption/GDP 270 0.066 0.036 0.011 0.246
Industrial_electr_E6 Industrial electricity consumption/GDP 270 0.079 0.041 0.013 0.202
Share_of_renew_E7 Share of renewable energy consumption 270 22.760 12.101 4.471 66.393
Final_natural_gas_E8 Final natural gas consumption/GDP 270 0.632 0.455 0.000 2.210
Final_oil_and_petr_E9 Final oil and petroleum consumption/GDP 270 0.036 0.013 0.013 0.076
Final_solid_fosil_E10 Final solid fossil fuels consumption/GDP 270 0.004 0.007 0.000 0.047
Share_foss_E11 Share of fossil fuels in gross available energy 270 71.868 15.024 30.300 99.120

Share_solid_E12 Share of solid fossil fuels in final energy
consumption 270 1.947 2.829 0.000 18.510

Househ_lev_D1 Households—level of internet access 268 86.407 8.471 56.650 99.180
Mob_broad_D3 Mobile broadband internet traffic 254 107.783 139.613 1.836 806.828
Empl_ICT_D4 Employed ICT specialists 270 4.230 1.397 1.600 8.700
Female_ICT_D5 Female ICT specialists 270 18.667 4.578 8.500 31.800
Empl_pers_D7 Employed persons with ICT education 270 0.007 0.003 0.002 0.020

Empl_ICT_D8 Employed ICT specialists with tertiary education
(levels 5–8) 270 0.013 0.005 0.003 0.030

Stud_enrol_D9 Students enrolled in tertiary education 270 0.040 0.012 0.000 0.083
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Table A1. Cont.

Variable Label N Mean Std Dev Min Max

Total_educ_D10 Total number of people receiving education 270 0.209 0.039 0.000 0.293

Business_enter_D11 Business enterprise R&D expenditure in high-tech
sectors/GDP 270 1.047 0.679 0.109 2.704

Enterpr_web_D12 Enterprises with a website 239 75.329 12.438 42.440 98.270
Soc_med_D14 Social media 186 50.806 15.792 18.800 87.140
Cloud_D15 Cloud/Cloud Computing Utilization 197 30.731 18.158 4.860 78.290
Enterpr_e_com_D16 Enterprises with e-commerce trading activities 269 21.305 7.749 7.210 42.470
E_Comm_Trn_D17 E-Commerce turnover 256 16.750 7.770 1.710 43.950
E_Comm_Web_D18 E-Commerce web sales 269 17.691 6.537 5.790 36.970
No_of_pat_D19 Number of patent applications 270 144.575 181.043 1.410 955.310
Ratio_RD_D20 Ratio of R&D expenditure in GDP 270 1.660 0.884 0.380 3.600
Pers_empl_D21 Persons employed in science and technology 270 0.152 0.038 0.082 0.276

Appendix B

Table A2. Regression of GHG emissions with independent energy variables.

Dependent Variable: GHG_Climate_change = Primary_Energy_E2 pca2_E pca1_E

Root MSE 1.42865
R-Square 0.5264

Dependent Mean 6.43043
Adj R-Sq 0.4517
Coeff Var 22.21706

Parameter Estimates

Variable DF Parameter
Estimate Standard Error t Value Pr > |t|

Intercept 1 −0.29872 1.55644 −0.19 0.8498
Primary_Energy_E2 1 2.60104 0.59632 4.36 0.0003
pca2_E 1 0.62154 0.39656 1.57 0.1335
pca1_E 1 −0.41912 0.38315 −1.09 0.2877

Table A3. Regression of GHG emissions with independent digitalization variables.

Dependent Variable: GHG_Climate_change = pca1_D pca2_D

Root MSE 1.77658
R-Square 0.2291

Dependent Mean 6.43043
Adj R-Sq 0.1521
Coeff Var 27.62772

Parameter Estimates

Variable DF Parameter
Estimate Standard Error t Value Pr > |t|

Intercept 1 6.62442 0.38438 17.23 <0.0001
pca1_D 1 0.80848 0.50091 1.61 0.1222
pca2_D 1 0.65858 0.50485 1.3 0.2069

Table A4. Regression of energy intensity.

Dependent Variable: pca1_E = pca2_D pca1_D

Root MSE 0.60182
R-Square 0.5575

Dependent Mean −0.01686
Adj R-Sq 0.5132
Coeff Var −3569.80214
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Table A4. Cont.

Parameter Estimates

Variable DF Parameter
Estimate Standard Error t Value Pr > |t|

Intercept 1 −0.16707 0.13021 −1.28 0.2141
pca2_D 1 −0.34575 0.17102 −2.02 0.0568
pca1_D 1 −0.6529 0.16968 −3.85 0.0010

Table A5. Regression of energy consumption.

Dependent Variable: Primary_Energy_E2 = pca2_D pca1_D

Root MSE 0.44399
R-Square 0.3348

Dependent Mean 2.54565
Adj R-Sq 0.2683
Coeff Var 17.44117

Parameter Estimates

Variable DF Parameter
Estimate Standard Error t Value Pr > |t|

Intercept 1 2.59687 0.09606 27.03 <0.0001
pca2_D 1 0.27899 0.12617 2.21 0.0388
pca1_D 1 0.19627 0.12518 1.57 0.1326

Table A6. Regression of energy structure.

Dependent Variable: pca2_E = pca2_D pca1_D

Root MSE 0.81783
R-Square 0.1372

Dependent Mean 0.16208
Adj R-Sq 0.051
Coeff Var 504.59292

Parameter Estimates

Variable DF Parameter
Estimate Standard Error t Value Pr > |t|

Intercept 1 0.11658 0.17694 0.66 0.5175
pca2_D 1 −0.31993 0.2324 −1.38 0.1838
pca1_D 1 −0.16256 0.23059 −0.7 0.4890

Appendix C
This appendix presents the results of all three regression model equations of Path

Analysis with quality diagnostics for the year 2023. For each model, Durbin–Watson statis-
tics (for autocorrelation), first–second moments specification (for variance homogeneity),
residual normality and mean-zero checks (residuals graphs, t-test, and Shapiro–Wilk test),
as well as outlier detection (Cook‘s distance), are reported.

Table A7. Regression results for GHG emissions.

GHG_Climate_change = b1 × Primary_Energy_E2 + b2 × pca2_E + b3 × pca1_E + e1

Root MSE 1.42865 R-Square 0.5264
Dependent Mean 6.43043 Adj R-Sq 0.4517

Coeff Var 22.21706

Parameter Estimates

Variable Label DF Parameter
Estimate

Standard
Error t Value Pr > |t| Standardized

Estimate
Variance
Inflation
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Table A7. Cont.

Intercept Intercept 1 −0.29872 1.55644 −0.19 0.8498 0 0
Primary_Energy_E2 Primary_Energy_E2 1 2.60104 0.59632 4.36 0.0003 0.69976 1.03261
pca2_E 1 0.62154 0.39656 1.57 0.1335 0.27045 1.19464
pca1_E 1 −0.41912 0.38315 −1.09 0.2877 −0.18739 1.17742

Test of First- and Second-Moment Specification
DF Chi-Square Pr > ChiSq
9 6.02 0.7378

Durbin–Watson D 2.061
Pr < DW 0.5262
Pr > DW 0.4738

Number of Observations 23
1st Order Autocorrelation −0.054

Note: Pr < DW is the p-value for testing positive autocorrelation, and Pr > DW is the p-value for testing
negative autocorrelation.

Table A8. T-test of residuals for the GHG emissions model.

Tests for Location: Mu0 = 0

Test Statistic p Value
Student’s t t 0 Pr > |t| 1.0000
Sign M −1.5 Pr ≥ |M| 0.6776
Signed Rank S −2 Pr ≥ |S| 0.9531

Table A9. Normality test of residuals for the GHG emissions model.

Tests for Normality

Test Statistic p Value
Shapiro–Wilk W 0.973195 Pr < W 0.7649
Kolmogorov–Smirnov D 0.10881 Pr > D >0.1500
Cramer–von Mises W-Sq 0.033407 Pr > W-Sq >0.2500
Anderson–Darling A-Sq 0.216937 Pr > A-Sq >0.2500

Table A10. Regression for energy consumption.

Primary_Energy_E2 = b4 × pca1_D + b7 × pca2_D + e3

Root MSE 0.44399 R-Square 0.3348
Dependent Mean 2.54565 Adj R-Sq 0.2683

Coeff Var 17.44117

Parameter Estimates

Variable Label DF Parameter
Estimate

Standard
Error t Value Pr > |t| Heteroscedasticity Consistent Standardized

Estimate
Variance
InflationStandard

Error t Value Pr > |t|
Intercept Intercept 1 2.59687 0.09606 27.03 <0.0001 0.09246 28.09 <0.0001 0 0
pca1_D 1 0.19627 0.12518 1.57 0.1326 0.13020 1.51 0.1473 0.29776 1.08446
pca2_D 1 0.27899 0.12617 2.21 0.0388 0.14001 1.99 0.0601 0.41995 1.08446

Test of First- and Second-Moment Specification
DF Chi-Square Pr > ChiSq
5 5.86 0.3201

Durbin–Watson D 1.704
Pr < DW 0.2303
Pr > DW 0.7697

Number of Observations 23
1st Order Autocorrelation 0.112

Note: Pr < DW is the p-value for testing positive autocorrelation, and Pr > DW is the p-value for testing
negative autocorrelation.
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Table A11. T-test of residuals for the energy consumption model.

Tests for Location: Mu0 = 0

Test Statistic p Value
Student’s t t 0 Pr > |t| 1.0000
Sign M −0.5 Pr ≥ |M| 1.0000
Signed Rank S 5 Pr ≥ |S| 0.8831

Table A12. Normality test of residuals for the energy consumption model.

Tests for Normality

Test Statistic p Value
Shapiro–Wilk W 0.97008 Pr < W 0.6909
Kolmogorov–Smirnov D 0.094943 Pr > D >0.1500
Cramer–von Mises W-Sq 0.03064 Pr > W-Sq >0.2500
Anderson–Darling A-Sq 0.240651 Pr > A-Sq >0.2500

Figure A1. Fit diagnostics for GHG emissions.
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Figure A2. Fit diagnostics for energy intensity.

Table A13. Regression for energy intensity.

pca1_E = b5 × pca1_D + b6 × pca2_D + e2

Root MSE 0.60182 R-Square 0.5575
Dependent Mean −0.01686 Adj R-Sq 0.5132

Coeff Var −3569.80214

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error

t Value Pr > |t|
Heteroscedasticity Consistent Standardized

Estimate
Variance
InflationStandard

Error t Value Pr > |t|

Intercept 1 −0.16707 0.13021 −1.28 0.2141 0.10147 −1.65 0.1153 0 0
pca1_D 1 −0.65290 0.16968 −3.85 0.0010 0.13968 −4.67 0.0001 −0.59602 1.08446
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Table A13. Cont.

pca2_D 1 −0.34575 0.17102 −2.02 0.0568 0.19313 −1.79 0.0886 −0.31316 1.08446

Test of First- and Second-Moment Specification
DF Chi-Square Pr > ChiSq
5 3.28 0.6571

Durbin–Watson D 2.064
Pr < DW 0.5576
Pr > DW 0.4424

Number of Observations 23
1st Order Autocorrelation −0.039

Note: Pr < DW is the p-value for testing positive autocorrelation, and Pr > DW is the p-value for testing
negative autocorrelation.

Figure A3. Fit diagnostics for energy consumption.
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Table A14. T-test of residuals for the energy intensity model.

Tests for Location: Mu0 = 0

Test Statistic p Value
Student’s t t 0 Pr > |t| 1.0000
Sign M −1.5 Pr ≥ |M| 0.6776
Signed Rank S −2 Pr ≥ |S| 0.9531

Table A15. Normality test of residuals for the energy intensity model.

Tests for Normality

Test Statistic p Value
Shapiro–Wilk W 0.975332 Pr < W 0.8135
Kolmogorov–Smirnov D 0.116878 Pr > D >0.1500
Cramer–von Mises W-Sq 0.048047 Pr > W-Sq >0.2500
Anderson–Darling A-Sq 0.300501 Pr > A-Sq >0.2500

Appendix D

Table A16. Path Analysis model fit indices for all years of analysis.

Year DF χ2 p (χ2) GFI AGFI SRMR RMSEA RMSEA 90% CI CFI NFI NNFI

2014 2 1.275 0.5285 0.9765 0.7530 0.0536 0.0000 (0.0000; 0.4212) 1.0000 0.9819 1.0981
2015 2 4.114 0.1278 0.9462 0.4352 0.0644 0.2192 (0.0000; 0.5250) 0.9704 0.9524 0.7779
2016 2 3.389 0.1837 0.9546 0.5231 0.0604 0.1776 (0.0000; 0.4942) 0.9800 0.9599 0.8500
2017 2 5.395 0.0674 0.9129 0.0855 0.1074 0.3257 (0.0000; 0.6713) 0.9292 0.9143 0.4690
2018 2 3.339 0.1884 0.9552 0.5293 0.0460 0.1744 (0.0000; 0.4920) 0.9739 0.9496 0.8040
2019 2 4.012 0.1346 0.9474 0.4473 0.0539 0.2138 (0.0000; 0.5208) 0.9651 0.9448 0.7383
2020 2 2.335 0.5059 0.9637 0.7461 0.0605 0.0000 (0.0000; 0.3431) 1.0000 0.9657 1.0627
2023 2 1.223 0.5426 0.9823 0.8141 0.0330 0.0000 (0.0000; 0.3658) 1.0000 0.9786 1.1382

Appendix E

Table A17. Standardized total effects for 2014.

Dependent
Variable Statistic pca1_E Primary_Energy_E2 pca1_D pca2_D pca2_E

GHG_Climate_change Coefficient 0.4131 1.2355 0.7052 −0.0913 −0.4098
Mean of

coefficients 0.4407 1.3782 0.7021 −0.0928 −0.4034

95% CI (0.4221; 0.4594) (1.3618; 1.3947) (0.6951; 0.7090) (−0.0997;
−0.0859)

(−0.4080;
−0.3988)

p-value 0.2259 <0.0001 <0.0001 0.6195 0.001741

pca1_E Coefficient −0.5592 −0.4535
Mean of

coefficients −0.5852 −0.4931

95% CI (−0.5936;
−0.5768)

(−0.5017;
−0.4845)

p-value 0.000829 0.0107

Primary_Energy_E2 Coefficient 0.7577 0.0777
Mean of

coefficients 0.6948 0.071

95% CI (0.6871; 0.7025) (0.0650; 0.0771)
p-value <0.0001 0.6354
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Table A18. Standardized total effects for 2015.

Dependent
Variable Statistic pca1_E Primary_Energy_E2 pca1_D pca2_D pca2_E

GHG_Climate_change Coefficient 0.007224 0.7997 0.6185 0.0943 0.2428
Mean of

coefficients −0.0167 0.7551 0.6095 0.0942 0.2374

95% CI (−0.0257;
−0.0077) (0.7470; 0.7633) (0.6030; 0.6161) (0.0872; 0.1013) (0.2330; 0.2418)

p-value 0.9729 <0.0001 <0.0001 0.5826 0.0347

pca1_E Coefficient −0.4553 −0.6065
Mean of

coefficients −0.4476 −0.6151

95% CI (−0.4533;
−0.4419)

(−0.6220;
−0.6082)

p-value 0.001909 <0.0001

Primary_Energy_E2 Coefficient 0.7776 0.1234
Mean of

coefficients 0.7892 0.1222

95% CI (0.7830; 0.7955) (0.1153; 0.1290)
p-value <0.0001 0.3677

Table A19. Standardized total effects for 2016.

Dependent
Variable Statistic pca1_E Primary_Energy_E2 pca1_D pca2_D pca2_E

GHG_Climate_change Coefficient 0.000779 0.7926 0.6145 0.1003 0.2442
Mean of

coefficients −0.0133 0.7554 0.6041 0.1007 0.2427

95% CI (−0.0228;
−0.0038) (0.7475; 0.7634) (0.5981; 0.6101) (0.0939; 0.1075) (0.2381; 0.2473)

p-value 0.9971 <0.0001 <0.0001 0.5604 0.0307

pca1_E Coefficient −0.4789 −0.6078
Mean of

coefficients −0.4745 −0.6117

95% CI (−0.4803;
−0.4687)

(−0.6181;
−0.6052)

p-value 0.001139 <0.0001

Primary_Energy_E2 Coefficient 0.7757 0.1271
Mean of

coefficients 0.7859 0.1296

95% CI (0.7800; 0.7917) (0.1227; 0.1366)
p-value <0.0001 0.3617

Table A20. Standardized total effects for 2017.

Dependent
Variable Statistic pca1_E Primary_Energy_E2 pca1_D pca2_D pca2_E

GHG_Climate_change Coefficient −0.0835 0.8222 0.6529 0.2762 0.4551
Mean of

coefficients −0.0515 0.6503 0.4712 0.1862 0.3459

95% CI (−0.0588;
−0.0442) (0.6416; 0.6590) (0.4655; 0.4769) (0.1812; 0.1912) (0.3417; 0.3501)

p-value 0.7432 0.001095 <0.0001 0.1108 0.003313
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Table A20. Cont.

pca1_E Coefficient - - −0.4134 −0.7555 -
Mean of

coefficients - - −0.4078 −0.767 -

95% CI - - (−0.4146;
−0.4010)

(−0.7743;
−0.7597) -

p-value - - 0.008414 <0.0001 -

Primary_Energy_E2 Coefficient - - 0.7521 0.2591 -
Mean of

coefficients - - 0.6864 0.2322 -

95% CI - - (0.6792; 0.6937) (0.2234; 0.2411) -
p-value - - <0.0001 0.1193 -

Table A21. Standardized total effects for 2018.

Dependent
Variable Statistic pca1_E Primary_Energy_E2 pca1_D pca2_D pca2_E

GHG_Climate_change Coefficient −0.2599 0.5032 0.4709 0.25 0.174
Mean of

coefficients −0.1868 0.543 0.4754 0.2555 0.1837

95% CI (−0.4280;
0.0544) (0.3486; 0.7374) (0.4711; 0.4797) (0.2491; 0.2619) (0.1791; 0.1883)

p-value 0.7728 0.5534 0.0029 0.1481 0.1286

pca1_E Coefficient - - −0.5396 −0.4084 -
Mean of

coefficients - - −0.5334 −0.4082 -

95% CI - - (−0.5398;
−0.5270)

(−0.4159;
−0.4004) -

p-value - - 0.000183 0.008433 -

Primary_Energy_E2 Coefficient - - 0.657 0.2859 -
Mean of

coefficients - - 0.661 0.2916 -

95% CI - - (0.6564; 0.6655) (0.2849; 0.2984) -
p-value - - <0.0001 0.0602 -

Table A22. Standardized total effects for 2019.

Dependent
Variable Statistic pca1_E Primary_Energy_E2 pca1_D pca2_D pca2_E

GHG_Climate_change Coefficient 0.1282 0.89 0.623 0.0838 −0.2587
Mean of

coefficients 0.1759 0.9045 0.6254 0.0845 −0.2619

95% CI (0.1523; 0.1994) (0.8927; 0.9162) (0.6192; 0.6315) (0.0782; 0.0907) (−0.2681;
−0.2558)

p-value 0.6534 0.000112 <0.0001 0.6118 0.0473

pca1_E Coefficient - - −0.4532 −0.5594 -
Mean of

coefficients - - −0.4496 −0.558 -

95% CI - - (−0.4554;
−0.4439)

(−0.5653;
−0.5506) -

p-value - - 0.001956 <0.0001 -

Primary_Energy_E2 Coefficient - - 0.7653 0.1748 -
Mean of

coefficients - - 0.7701 0.1786 -

95% CI - - (0.7649; 0.7752) (0.1713; 0.1860) -
p-value - - <0.0001 0.1982 -
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Table A23. Standardized total effects for 2020.

Dependent
Variable Statistic pca1_E Primary_Energy_E2 pca1_D pca2_D pca2_E

GHG_Climate_change

Coefficient 0.1734 1.1608 0.609 0.1246 0.2668
Mean of

coefficients 0.3945 1.0569 0.6409 0.1416 0.2732

95% CI (−0.8999;
1.6890) (0.1949; 1.9189) (0.6362; 0.6456) (0.1349; 0.1484) (0.2672; 0.2793)

p-value 0.8469 0.2533 <0.0001 0.453 0.021

pca1_E

Coefficient - - −0.6582 −0.33 -
Mean of

coefficients - −0.6756 −0.327 -

95% CI - (−0.6832;
−0.6680)

(−0.3345;
−0.3195) -

p-value - <0.0001 0.0349 -

Primary_Energy_E2

Coefficient - - 0.623 0.1566 -
Mean of

coefficients - 0.6254 0.1738 -

95% CI - (0.6195; 0.6314) (0.1662; 0.1814) -
p-value - <0.0001 0.3667 -

Table A24. Standardized total effects for 2023.

Dependent
Variable Statistic pca1_E Primary_Energy_E2 pca1_D pca2_D pca2_E

GHG_Climate_change Coefficient −0.3367 0.5771 0.3725 0.3478 0.2677
Mean of

coefficients −0.4808 0.3931 0.3907 0.3389 0.2632

95% CI (−0.6970;
−0.2646) (0.1096; 0.6765) (0.3819; 0.3995) (0.3312; 0.3466) (0.2558; 0.2707)

p-value 0.5629 0.4511 0.0373 0.0613 0.0899

pca1_E Coefficient — — −0.596 −0.3132 —
Mean of

coefficients — — −0.6091 −0.3064 —

95% CI — — (−0.6150;
−0.6032)

(−0.3143;
−0.2986) —

p-value — — <0.0001 0.0319 —

Primary_Energy_E2 Coefficient — — 0.2978 0.4199 —
Mean of

coefficients — — 0.2877 0.4247 —

95% CI — — (0.2783; 0.2970) (0.4156; 0.4339) —
p-value — — 0.0896 0.0123 —
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