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Abstract

Objectives: Correctly identifying Central Nervous System (CNS) tumors through MRI is
complicated by utilization of divergent MRI acquisition protocols, unequal tumor mor-
phology, and a difficulty in systematically combining imaging with clinical information.
This study presents the Adaptive Vision-Language Transformer (AVLT), a multimodal
diagnostic infrastructure designed to integrate multi-sequence MRI with clinical descrip-
tions while improving robustness and interpretability to domain shifts. Methods: AVLT
integrates the MRI sequence (T1, T1c, T2, FLAIR) and clinical note text in a joint process
using normalized cross-attention to establish association of visual patch embeddings with
clinical token representations. An Adaptive Normalization Module (ANM) functions to
mitigate distribution shift across datasets by adapting the statistics of domain-specific
features. Auxiliary semantic and alignment losses were incorporated to enhance stability
of multimodal fusion. Results: On all datasets, AVLT provided superior classification accu-
racy relative to CNN-, transformer-, radiogenomic-, and multimodal fusion-based models.
The AVLT model accuracy was 84.6% on BraTS (OS), 92.4% on TCGA-GBM/LGG, 89.5%
on REMBRANDT, and 90.8% on GLASS. AvLT AUC values are at least above 90 for all
domains. Conclusions: AVLT provides a reliable, generalizable, and clinically interpretable
method for accurate diagnosis of CNS tumors.

Keywords: Vision-Language Transformer; multimodal learning; CNS tumors; MRI diagnosis;
domain generalization

1. Introduction

Central Nervous System (CNS) tumors, particularly gliomas, exhibit significant ag-
gressiveness and heterogeneity, with prognosis and treatment response being affected
by molecular and histopathological variables [1-3]. For a correct diagnosis and survival
estimate, imaging biomarkers, genetic anomalies, and clinical indicators such as age, tumor
grade, and IDH mutation status must all be taken into account. Even though it is often used
to check tumors without surgery, standard MRI interpretation is not very useful because
different people see things differently and it does not let you directly figure out molecular
profiles [4,5]. Because of these limits, a lot of effort has gone into deep learning frameworks
for automated tumor analysis and prognosis.

Recent advancements in convolutional and transformer architectures exhibit promise
for brain tumor segmentation, grading, and outcome prediction [6,7]. CNNs may capture
localized tumor morphology, but fixed receptive fields and weak global context modeling
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limit them. The application of Vision Transformers (ViTs) and hierarchical transformers such
as Swin-Transformer in volumetric MRI has demonstrated advantages in simulating long-
term reliance and predicting survival [6]. Most current models just utilize imaging data,
neglecting supplementary information included in textual clinical reports or structured
metadata, which radiologists require for decision-making.

Radiogenomics bridges imaging and molecular data by finding connections between
MRI features and genetic or epigenetic tumor signatures [8,9]. Deep radiogenomic pipelines
like FoundBioNet leverage domain-specific representations from large-scale MRI datasets
to make accurate predictions about IDH mutations and generalize across several centers.
But these systems only use pre-defined fusion algorithms, and they typically do not work
well when clinical narratives or information are given but not included in the learning
process. Different institutions use different MRI acquisition methods, which causes domain
changes that make it harder to generalize [10,11].

Vision-language models (VLMSs) are useful for cross-modal thinking because they put
visual and word representations in the same environment. In medical imaging, these mod-
els facilitate bidirectional attention between image regions and report language, thereby
generating explainable and contextually relevant predictions. Most medical VLMs are
trained on general biomedical corpora or pairs of 2D images and text. This limits their use
to volumetric MRI and clinical report data in neuro-oncology.

These constraints prompted the creation of the Adaptive Vision-Language Trans-
former (AVLT), a multimodal design that integrates multi-sequence MRI with clinical
textual descriptions for accurate and interpretable CNS tumor diagnosis. The model has
three major new features: (1) an adaptive cross-modal attention mechanism that matches
visual patches to clinical tokens, (2) an Adaptive Normalization Module (ANM) that dy-
namically recalibrates features across domains to reduce bias in the scanner and dataset,
and (3) auxiliary semantic losses that align and preserve language context. We examine
generalization on four benchmark datasets: BraTS, TCGA-GBM/LGG, REMBRANDT,
and GLASS. Each of these datasets has its own unique institutional and biological profiles.
Across all datasets, AVLT always beats the best baselines in accuracy, AUC, and ease of
understanding. AVLT combines imaging and clinical data with adaptive vision-language
thinking to make precision neuro-oncology systems that can be used in the clinic and that
can be explained.

The remainder of this paper is organized as follows. Section 2 reviews recent ad-
vancements in deep learning, radiogenomics, and vision-language fusion for CNS tumor
diagnosis and finds the gaps in literature. Then, it presents the proposed AVLT framework,
detailing its multimodal architecture, adaptive normalization, and cross-modal alignment
strategies. Section 3 reports experimental evaluations, including within-dataset and cross-
dataset results, ablation studies, and comparison with state-of-the-art baselines across four
benchmark datasets. Finally, Section 4 concludes the paper by summarizing key findings,
highlighting clinical relevance, and outlining directions for future research.

2. Materials and Methods
2.1. Related Work

CNN’s have been widely applied to brain tumor analysis tasks such as segmentation,
grading, recurrence assessment, and survival prediction. Early and intermediate CNN
variants, including 2D and 3D ResNet-style backbones and DenseNet-style volumetric
encoders, have demonstrated the ability to learn spatial tumor morphology directly from
multi-sequence MRI and have been effective for both phenotype classification and over-
all survival (OS) estimation in glioblastoma [1,6,7,12]. These architectures (for example
ResNet-50, 3D CNN, 3D ResNet-18, and 3D DenseNet) constitute standard unimodal
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baselines in recent work and continue to be used in benchmark comparisons because
of their stability and computational efficiency. Transformer-based architectures such as
Swin-Transformer and Vision Transformer (ViT) have recently been adapted for 3D neuro-
oncology imaging, enabling global receptive fields and improving long-range contextual
reasoning for glioblastoma survival prediction without requiring manual tumor segmen-
tation [6,7]. These models motivate several of the baselines evaluated in this study (ViT
Baseline, Swin-Transformer, 3D CNN, 3D ResNet-18, 3D DenseNet), which we include as
reference points in our quantitative tables.

A parallel line of work aims to infer molecular markers such as IDH mutation, MGMT
promoter methylation, 1p/19q codeletion, and other glioma subtypes using MRI-derived
features. Radiogenomic pipelines have traditionally relied on handcrafted radiomics fea-
tures followed by machine learning classifiers, such as SVMs or random forests, and have
been shown to predict IDH mutation status with clinically relevant sensitivity and speci-
ficity using multi-parametric MRI [2-4,9]. More recent approaches fuse deep MRI features
with radiomics, topology, or geometric information about tumor shape, sometimes via
graph-based reasoning, in order to capture both local lesion appearance and global struc-
tural context [5,13,14]. Deep multimodal radiogenomic models have moved toward joint
optimization of feature encoders and fusion modules, improving IDH genotyping, progres-
sion stratification, and recurrence risk estimation [1,15].

This direction has also produced foundation-style predictors. FoundBioNet learns
a tumor-aware feature encoder combined with cross-modality differential cues to nonin-
vasively predict IDH mutation across large multi-center cohorts, reporting AUC values
above 90% on external validation sets [8]. Similarly, LUNAR-type survival or recurrence
models incorporate longitudinal MRI signals and clinical follow-up information to model
post-treatment evolution and relapse dynamics, targeting tasks such as glioma recurrence
forecasting [15,16]. In our experiments, corresponding baselines (Radiomics + SVM, Ra-
diogenomic CNN, Multi-Modal DenseNet, FoundBioNet, LUNAR) represent this line of
radiogenomic and outcome-prediction work.

Recent studies propose cross-attention or fusion transformers that explicitly align textual
clinical descriptors with imaging features for more interpretable decision-making [17-19].
These systems aim to replicate parts of the diagnostic reasoning process by linking report
phrases such as “enhancing rim” or “non-enhancing core” to specific tumor regions in MRL
Report-guided or pathology-aware attention has been shown to improve classification and
prognosis while simultaneously enabling token-level and region-level interpretability [17,19].

Hybrid CNN-BERT and CNN-LSTM architectures extend this concept by combining
volumetric imaging encoders with transformer-based language models to capture radiology
report context, surgical notes, and clinical summaries [16,18]. Cross-Attention Fusion Nets
and CLIP-style medical adapters further move toward unified latent spaces, where MRI
patches and text tokens attend to each other so that multimodal consistency is enforced
through contrastive or attention-weighted alignment [18,19]. These approaches directly
motivate several of the strong baselines we include in the Section 3, such as CNN-BERT,
Cross-Attention Fusion Net, CLIP-Adapt Med /CLIP-Adapt Radiogenomics, Cross-Attention
CNN, Attention-Based Multi-Modal, Multi-Modal FusionNet, and GraphNet-MRL

Our proposed AVLT builds on these ideas but introduces two advancements. First, it
formulates a bidirectional cross-modal attention mechanism that treats MRI patch embed-
dings and clinical token embeddings as co-equal queries and keys, rather than conditioning
one modality on the other only in a late-fusion stage. Second, it incorporates an adaptive
gating mechanism to dynamically weight the contribution of vision and language per
patient instance, instead of relying on a static fusion policy. Both of these design choices
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were shown in our ablations to substantially improve accuracy, AUC, and concordance for
outcome prediction tasks.

A critical barrier to clinical translation is the domain shift between institutions, scan-
ners, acquisition protocols, and annotation styles. Prior work on domain adaptation
and domain generalization in medical imaging explores normalization strategies, feature
alignment, and test-time adaptation to improve robustness under out-of-distribution de-
ployment [1,6,10,11]. Adaptive normalization and style-aware recalibration modules have
been proposed to rescale feature statistics per domain, mitigating scanner-intensity bias and
reducing site-specific overfitting [10,11]. Test-time adaptation strategies and hetero-modal
reconstruction frameworks have also emerged to handle missing sequences or degraded
MRI quality, for example, via modality completion or latent feature harmonization when
certain contrasts are unavailable [17,20,21].

In our setting, we explicitly evaluate under leave-one-dataset-out (LODO) conditions
(BraTS, TCGA-GBM/LGG, REMBRANDT, GLASS), which approximate multi-institutional
deployment. The ANM in AVLT was designed to learn dataset-specific statistics during
training and then modulate them at inference time, serving as a lightweight alignment
mechanism. Quantitatively, removing ANM or replacing it with fixed BatchNorm or
domain-specific batch normalization caused consistent drops in accuracy, AUC, and the
concordance index. This trend aligns with findings in recent work on MRI domain adapta-
tion, which reports that dynamic or style-aware normalization yields measurable boosts
in cross-site reproducibility [10,11]. We therefore view ANM as a practical step toward
clinically viable, scanner-agnostic multimodal tumor assessment.

Table 1 summarizes the baseline and comparison methods used in our experiments,
grouped by architectural family. The table reflects representative trends in the current liter-
ature: unimodal CNN and transformer backbones, radiogenomic fusion models, language-
aware multimodal fusion models, and domain-adaptive or longitudinal models. Together,
these methods span classical radiomics pipelines, supervised deep radiogenomics, cross-
attention fusion, and emerging foundation-style medical vision-language models.

Table 1. Summary of baseline and comparison methods referenced in this work, grouped by model-
ing strategy.

Model/Family

Representative Examples Core Idea

CNN-based MRI classifiers

Learn spatial tumor morphology
ResNet-50, 3D CNN, 3D ResNet-18, 3D  directly from multi-sequence MRI;
DenseNet [6,7,12] widely used for grading, survival,
and recurrence prediction

Transformer-based
vision encoders

Use global self-attention over
Vision Transformer (ViT) and volumetric inputs to capture
Swin-Transformer [6,7] long-range tumor context; reduce

reliance on hand-drawn ROIs

Radiomics and
radiogenomic pipelines

Predict molecular markers such as IDH

Radiomics + SVM, Semi-Supervised mutation or MGMT status from
Radiomics, Radiogenomic CNN [2-4,9] handcrafted features and deep
MRI encoders

Multimodal CNN-text hybrids

CNN-BERT, Hybrid CNN-LSTM,
Clinical BERT Only [16,18], and Fuse
MRI features with clinical text or
reports; capture narrative descriptors
(e.g., “ring-enhancing lesion”) linked
to imaging findings
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Table 1. Cont.

Model/Family

Representative Examples Core Idea

Cross-attention fusion models

Cross-Attention Fusion Net,
Cross-Attention CNN, Attention-Based
Multi-Modal, CLIP-Adapt
Radiogenomics/CLIP-Adapt

Med [17-19], and Align vision and
language embeddings via attention or
contrastive losses to obtain
semantically grounded predictions

Radiogenomic

foundation/longitudinal models

Model molecular status, progression
risk, or recurrence over time by
leveraging large multi-center datasets,
graph structure, or longitudinal MRI

FoundBioNet, GraphNet-MRI,
Multi-Modal FusionNet,
LUNAR [8,15,16]

Proposed model

Introduces bidirectional cross-modal
attention, adaptive modality gating,

AVLT and adaptive normalization for robust,
interpretable CNS tumor diagnosis
across institutions

The prior work has demonstrated (i) the effectiveness of CNNs and transformers for
MRI-based glioma analysis, (ii) the clinical value of radiogenomics and multimodal fusion
for genotype and survival prediction, (iii) the promise of attention-based and CLIP-like
vision-language models for interpretability, and (iv) the necessity of explicit domain adap-
tation for real clinical deployment. Our approach combines these four directions: it adopts
transformer-level cross-modal reasoning, incorporates clinical text, explicitly normalizes
across domains, and is evaluated under LODO testing for realistic deployment constraints.
This positions AVLT as a step toward clinically actionable, explainable, and generalizable
multimodal neuro-oncology decision support.

Adding to these existing lines of research, there have recently been studies that have
specifically applied radiogenomic foundations, medical CLIP-like adapters, and cross-
attention (cross-integration) fusion architectures specifically to neuro-oncology and various
medical imaging applications, which depend on the combination of using scalable MRI
repositories and textual clinical corpora for downstream prediction tasks. In setting up our
experimental protocol, we explicitly chose to use from among the representative recent
approaches—radiogenomic foundations, longitudinal survival models, cross-attention
multimodal fusion networks, referred to as baselines, summarized in Table 1—based on the
principle that AVLT would be compared to competitive/evidence-based models—(very)
recent state-of-the-art information rather than only classical CNN or transformer backbones.

The proposed framework, termed Adaptive Vision-Language Transformer (AVLT),
is developed to jointly learn discriminative and clinically coherent representations from
multimodal data—specifically, magnetic resonance imaging (MRI) and corresponding
clinical or textual metadata. The objective is to achieve resilient CNS tumor diagnosis by
cross-domain adaptation and comprehensible vision-language integration. AVLT employs
semantic textual descriptors to encapsulate the latent pathophysiological context and
enhance clinical reasoning, in contrast to unimodal CNN or ViT models that rely solely on
pixel-space input. An overview of AVLT is shown in Figure 1.
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MRI Volumes Vision Encoder Tumor Class / Grade Prediction
T1, T1ce, T2, FLAIR Hybrid CNN +ViT Softmax | Accuracy / AUC
Patch / slice sampling — flvision) \
Adaptive Cross-Modal Fusion
Cross-attention + Gating Survival / Risk Estimation
Dynamic weighting per patient C-index | Calibration metrics
— f(fused)

Clinical / Genomic Text Language Encoder /
Pathology, IDH, 1p19q, MGMT Bio-clinical Transformer Explainability Report

Patient OS, age notes — fltext)

Grad-CAM + Text rationale

Figure 1. Overall architecture of the Adaptive Vision-Language Transformer (AVLT).

2.2. Input Representation and Preprocessing

Proposed patient records have two complimentary modalities: visual multi-sequence
MRI volumes and textual clinical descriptions. The MRI modality includes four anatomical
sequences—T1, T1-contrast (T'1c), T2, and FLAIR—denoted as {Ir1, I1c, Ito, IFr }, where
each I; € REXWXD corresponds to a 3D volume of height H, width W, and depth D. All
MRI sequences are spatially co-registered into a common anatomical coordinate system to
ensure voxel-wise alignment across modalities. A skull-stripping operation removes non-
brain tissues, and N4 bias field correction is applied to minimize intensity inhomogeneity.
The resulting volumes are normalized to zero mean and unit variance to ensure consistent
dynamic ranges across datasets. To prepare the MRI volumes for transformer-based pro-
cessing, each voxel intensity is rescaled into the range [0, 1] using min—max normalization

defined as
L(x,y,z) — min(IL)

max(Is) — min(Is)

L(x,y,2) = ©)

where 5(x,y,z) denotes the normalized intensity at spatial location (x,,z) in sequence s. Each
normalized MRI volume is then sliced along the axial axis and resized to
224 x 224 pixels using bicubic interpolation, forming a standardized 3D tensor X, € R XWIXD
where H = W’ = 224 and D’ is the number of slices per subject. The multi-sequence tensor is
concatenated channel-wise to produce a fused volumetric representation for subsequent vision
encoding. The clinical text modality is represented by structured and unstructured descriptors
T = {t1,t2,...,t7}, where T is the total number of tokens. Each token ¢; is mapped to an
embedding vector e; € R using a biomedical tokenizer derived from BioBERT. The tokenized

sequence is thus represented as
E = [el,ez,...,eﬂ GRTth, (2)

where E; is the language embedding matrix and d; denotes the embedding dimension.
Non-textual numerical attributes, including patient age and tumor grade, are separately
encoded into continuous vectors f, € R% using sinusoidal positional encoding functions:

. p _ 4
PE (o) = Sm<100002k/dn)r PE(pok+1) = Cos(loooozkm>’ ®)

where p represents the feature index and k denotes the embedding dimension index.
The final multimodal input representation is formed by concatenating the MRI tensor X,
and the encoded textual-numerical embedding matrix E; = [E;; 4], establishing a unified
patient-level feature input to the subsequent transformer encoders.

In order to avoid leakage of information from the clinical notes, we put in place a clear
protocol for leakage mitigation, which consists of removing all tokens containing diagnostic
labels prior to being encoded in language. In other words, any tokens in the text that
could communicate the ground-truth label, such as the text token “IDH mutant”, text token
“IDH wildtype”, text token “grade IV”, “glioblastoma”, “oligodendroglioma”, “MGMT
methylated”, or any reference to survival, were automatically masked via a regex-based
keyword filter. We placed a placeholder token in the original note in order to preserve
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phrasing while ensuring that no diagnostic labels were able to enter the model via the text
stream. Further, we were to validate a random sample of processed notes manually to
ensure it was a thorough pass and no phrases containing diagnostic labels remained. This
procedure ensured that AVLT would learn descriptive clinical context absent of explicit
ground-truth labels, creating a non-leakage scenario for fair multimodal evaluation.

2.3. Vision Encoder

The proposed AVLT framework'’s visual branch uses a hierarchical Swin-Transformer
backbone to effectively describe local and global spatial interdependence across 3D MRI
volumes. Let X, € RHXW'xD'XC denote the preprocessed MRI tensor, where H', W,
and D’ represent the spatial dimensions and C is the number of MRI sequences. The vol-
ume is partitioned into a set of non-overlapping cubic patches {pi, p2,...,pn}, each of
dimension P x P x P x C, where P denotes the patch size and N = H,‘I/D‘QID ' is the total
number of patches. Each patch is flattened into a vector and linearly Iglé())jxe;ted into a

dy-dimensional latent space through a learnable weight matrix W, € R( , yielding

the initial patch embeddings:

ZE,O) = [lep/ p2Wp, ..., pNWp} + Epos, (4)

where Epos € RNxdo represents the positional encoding that preserves spatial order among
patches. Each embedded patch token zz(,o) is processed by a stack of multi-head self-attention
(MSA) layers to capture both intra-slice and inter-slice dependencies. The attention weights

for head h are computed as

Attentiony (Qy, Ky, Vy,) = softmax (QhKhT ) Vy, (o)
Vi
where Q;, = zg,l_l)W}é, K, = zz(,l_l)W’;(, and V;, = zi(,l_l)W’{/ denote the query, key,
and value matrices, respectively, and dj is the dimension of the key vectors. The out-
puts from all heads are concatenated and linearly transformed through W to form the
updated embedding zz(,l). This multi-head surgery allows the model to keep the tumor
borders and the overall structural context while treating many anatomical areas. To make it
easier to generalize across different types of datasets, an ANM follows each transformer
block. ANM re-centers and scales intermediate features by utilizing estimated statistics
(1)

{m;, 04} from the present training domain d. The normalized feature Z;’ is computed

n
NON (ﬂ) B ©

o4

as follows:

Affine parameters 7y, and B, that can be learned are utilized to scale and shift. This
adaptive recalibration method lets the visual encoder change its activation statistics to ac-
count for differences between datasets, such as scanner fluctuations or changes in intensity
distribution. This makes it possible to learn features that are strong across the BraTS, TCGA,
and REMBRANDT cohorts.

To further elucidate the function of the Adaptive Normalization Module (ANM), we
elucidate that the ANM explicitly learns domain-derived activation statistics, instead of
learning from a single set of batch statistics, as is the case with BatchNorm. The ANM keeps
running estimates (j/4, o) for each domain d that it updates during training by computing
the batch statistics for all samples belonging to domain d. At inference time, if the domain is
known, the ANM retrieves the appropriate (j4, 0;); if the domain is unknown, as happens
in LODO evaluation, the ANM will retrieve a learned domain-agnostic average. This
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process protects against distributional collapse sometimes observed by solely normalizing
samples in the presence of heterogeneous sources of MRI. ANM is distinct from Instan-
ceNorm, which standardizes each sample independently, thus does not preserve global
intensity structure, and normalizes using the global domain values rather than using them
separately for intensity and intensity structure. ANM preserves shared semantic intensity
patterns while accounting for protocol- or scanner-induced intensity variability. In this
way, ANM provides dynamic normalization, creating representation stability, ultimately
improving much of the model’s ability to generalize where there were disparate data
sources and improving overall reasoning across BraTS, TCGA, REMBRANDT, and GLASS.

We describe the statistical recalibration performed by the Adaptive Normalization
Module (ANM) in detail. During training, ANM stores a set of domain-specific statistics
(M4, ad)gzl (where K is the number of training domains) and updates these statistics with
exponential moving averages computed only from input samples from their respective
domains. At inference, if we know the domain label, we simply use the pair (y4,04) for
that domain. If we do not know the domain label, ANM computes a blended estimate that
averages together the available statistics, yielding a more domain-agnostic normalization
appropriate for LODO evaluation during inference. This is conceptually different from
batch normalization, which assumes identical distributions at the batch-level and is not
robust to changes in intensity across multi-center imaging. It is also different from Instance
Normalization, which removes global contrast structure by normalizing each image in-
stance independently. The ANM instead accounts for changes introduced by different
scanners and imaging protocols, while preserving inter-patient and inter-institution consis-
tent visual representation across the BraTS, TCGA, REMBRANDT, and GLASS databases,
thus enabling the transformer backbone to learn domain-invariant visual representations.

2.4. Language Encoder

The language encoder in the proposed AVLT framework employs ClinicalBERT’s
transformer-based architecture to interact with organized clinical information and medical
narratives. In order to facilitate reproducibility, we made use of the publicly available
Clinical BERT model (checkpoint: emilyalsentzer/Bio_Clinical BERT), which is initialized
from BioBERT and pretrained on the MIMIC-III corpus of de-identified clinical notes using
a shared WordPiece tokenizer with the BioBERT vocabulary. The encoder architecture is
made up of 12 transformer layers with 12 self-attention heads per layer, an embedding
dimension of 768 and 3072 in the feed-forward hidden size. A dropout of 0.1 is applied to
the attention and fully connected sublayers. The max token length was set to 256 and all
text inputs were lowercased and tokenized using the ClinicalBERT tokenizer. This way, all
the necessary specifications for the language branch of AVLT are documented such that it
is transparent, reproducible, and can be used by others.

Let T = {tl, tr,..., tT} be the input text sequence, where T is the number of tokens in
the patient report. A learnable word embedding matrix W, € RY*“I associates each token
t; with an embedding vector e; € R4, where V denotes the vocabulary size and d; signifies
the linguistic embedding dimension. The text that is embedded is

El = [elleZI .. -reT] S RTXd]r (7)

()

which is augmented with positional encodings E,s to retain sequential order, resulting in
zl(o) =E + Eg,lg)s as the initial token representation for transformer encoding. To capture
semantic dependencies and long-range contextual relationships, Clinical BERT employs
a stack of multi-head self-attention layers identical in form to those used in the vision
encoder. For a given attention head /, the contextual representation is computed as
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Attentiony (Qy, Ky, Vy,) = softmax Vi, (8)
Vi

where Q;, = zl(l_l)Wh , K, = zl(l_l)Wh, and V;, = zl(l_l)Wf"/ denote the query, key,

and value matrices of head F, respectively, and dj is the dimensionality of the key vectors.
The outputs of all attention heads are concatenated and passed through a feed-forward
layer with residual normalization to form the updated representation zl(l) € RT*4 To em-
phasize diagnostically salient terminology, an attention gating mechanism assigns adaptive
weights a € R to each token, computed as

exp(w, tanh(thl(j) +by))

- Z]-Tzl exp(w, tanh(whzl(? +by))

, ©)

a;

where W), € R%*da and w, € R% are learnable parameters, by, is the bias term, and L
denotes the final transformer layer. The attention weight a; quantifies the diagnostic
relevance of token t;, ensuring that critical medical terms such as “enhancing lesion”,
“necrotic core”, and “edema margin” contribute more strongly to the final sentence-level
embedding h; = Y1, aizl(ﬁ). To maintain linguistic coherence under limited supervision,
the encoder is pretrained using a masked language modeling objective. Given a random
subset of masked tokens M C T, the model learns to reconstruct their original content by
minimizing the following loss:

1
Lot =~ 177 2 log P(t: | T 0n), (10)
|M| teM

Let 0, be the parameters for the language encoder and 7, 5 be the partially masked
input sequence. This goal makes sure that the meaning is consistent and that the context
is understood, which leads to stable language embeddings zl(o) € RT*% that match vi-
sual features when multimodal fusion happens. The vision and language encoders are
summarized in Figure 2.

Vision Encoder (MRI) Language / Clinical Encoder
[ ]
' '
CNN Stem ' ViT Blocks i Structured Tokenization Bio-Clinical Transformer
3D Conv + Residual g Patch + Self-Attention i [History] [Genomics] [Follow-up] Cross-Section Attention
' '

]

Multi-Scale Pooling Section-Aware Aggregation

Local + Global features Weighted fusion of sections
FTTTTTTTTEo s g [t
f(vision) ! fitext) !

Figure 2. Multimodal encoders. (Left) Vision branch with CNN stem, ViT blocks, and multi-
scale pooling to form fyision. (Right) Language branch with structured tokenization, bio-clinical
transformer, and section-aware aggregation to form fiex:.

2.5. Cross-Modal Alignment via Adaptive Vision—Language Attention

After obtaining independent representations from the vision and language encoders,
the proposed framework aligns them through a cross-modal attention mechanism that es-
tablishes fine-grained correspondence between spatial visual patches and textual semantic
tokens. Let Z, = (241,202, ...,ZyN] € RN*40 denote the set of N visual patch embeddings
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from the vision encoder, and Z; = [z, 1,25, ...,2; 1] € RT*% represent the sequence of T
language embeddings obtained from the ClinicalBERT encoder. Both feature spaces are
projected into a common latent dimension dy through learnable projection matrices Wy,
Wf{, and W/, to generate queries, keys, and values for attention computation:

Q. =Z,W), K, =ZW,, V, =ZW, (11)

where Wy, Wf{, W. € R%> are trainable matrices that align modality-specific embeddings
into a unified feature space. For each visual query q , attention weights are computed over
all textual tokens to capture semantically relevant contextual cues. The attention output for
patch i is given by

Vi

where h,; € R% represents the language-informed visual embedding. The complete set

KT
h,; = softmax(qv”l> Vi, (12)

of cross-attended representations is Hy, = [hy1,hyp, ..., hy ] € RN*dx | This operation
allows each MRI patch to dynamically attend to clinically relevant text descriptors such as
“enhancing rim” or “non-enhancing core”, thereby introducing semantic interpretability
into the visual feature space. To maintain stability across layers, layer normalization and
residual connections are applied as

Z, = LayerNorm(Hy + Zy). (13)

To obtain a unified multimodal embedding, a residual fusion mechanism adaptively
integrates the attended visual and linguistic representations. The fused feature vector
Zfysed € R% is computed as

Zfysed = “Z; =+ (1 - a) Z;Fr (14)

The global average pooled features from Z, and Z; are represented by z} and z},
respectively. The parameter « is a learnable gating parameter that controls modality con-
tributions. In actual clinical environments, one or more modalities may be partially or
completely unavailable (for example, missing clinical notes or missing MRI sequences).
The AVLT provided is capable of this through its adaptive gating mechanism, where the
fusion coefficient parameter « automatically shifts the representation toward whatever
modality is available. If the textual metadata are missing, the language encoder outputs
a zero-vector data placeholder and the & parameter converges to higher weight on the
visual branch, effectively reducing the model to a vision-only transformer. If certain se-
quences are missing from an MRI study, ANM will adjust the statistics of the features using
domain-agnostic running averages while the gating mechanism shifts information weight
toward textual embeddings. This ability gives the AVLT an advantage to operate under
incomplete multimodal input—a common constraint in typical clinical hospital workflows.
To prevent modality dominance, the gating value « is updated through backpropagation
and regularized by a balancing loss:

Lajign = |la — 0.5]3. (15)

The adaptive alignment makes sure that visual and linguistic cues work together
to help people learn, and it also makes sure that decisions are consistent across BraTs,
TCGA, and REMBRANDT domains by allowing good generalization when datasets change.
The fusion mechanism is depicted in Figure 3.
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Figure 3. Adaptive cross-modal fusion. Cross-attention conditions on text queries and vision
keys/values, followed by learnable per-patient gating that combines branches into frseq = fo + Bft-

2.6. Classification and Optimization

The last multimodal feature representation, called z 5. € R, has both visual and
verbal clues that work together. This concept helps transformer decoders improve the links
between multimodal tokens in context. The decoder output h,. € R% is projected into the
decision space using a fully connected classification layer parameterized by W, € R%*C
and bias b, € RS, where C is the total number of diagnostic classes. The predicted
probability distribution y = [1, 72, ..., §c] is obtained via the softmax activation:

R exp(theCwC +b)
Ye =

B Z]C:l exp(thecwj + b]-) ’

Vee {1,2,...,C}, (16)

where w. and b, denote the column vector and scalar bias corresponding to class c. The out-
put 7. thus represents the posterior probability of the patient belonging to class c, such as
glioblastoma, low-grade glioma, or oligodendroglioma. To supervise the classification task,
the model minimizes the categorical cross-entropy loss between the predicted probability
vector y and the ground-truth one-hot label vector y:

1 & X
Les = C Z Ye log(yc), (17)
c=1

where y. = 1 if the true label corresponds to class c, otherwise 0. This loss encourages
correct class discrimination while penalizing uncertain or misclassified predictions. To fur-
ther stabilize multimodal learning, auxiliary objectives from earlier stages are integrated,
including the masked language modeling loss L, (from the language encoder) and the
alignment consistency loss L, (from cross-modal fusion). The overall optimization
objective is formulated as

Liotar = Leis + M Ly + )\ZEalignr (18)

A1 and A, are positive weighting coefficients that control how much each auxiliary
task contributes. To stop overfitting, we used the AdamW optimizer, cosine learning rate
scheduling, and weight decay regularization to minimize the total loss £;y,;. This com-
bined goal strikes a balance between classification accuracy, semantic coherence, and modal-
ity alignment to make good multimodal diagnostic predictions across different CNS tu-
mor datasets.

2.7. Cross-Dataset Adaptation and Evaluation

The proposed AVLT system undergoes evaluation through a cross-dataset training
technique utilizing four benchmark CNS tumor datasets: BraTS (overall survival prediction
subset), TCGA-GBM/LGG, REMBRANDT, and GLASS, to guarantee robust generalization
across varied data distributions. Each dataset pertains to a distinct domain D; = {X}, )},
with &} denoting multimodal input (MRI and clinical text) and ); indicating the label space.
These domains, which differ in acquisition scanners, imaging resolutions, and annotation
methods, can be used to test domain-invariant representations. The model is trained
utilizing LODO, which has three datasets for training and one for testing. To fully test cross-
domain resilience, you need to rotate each dataset until it becomes the unobserved target
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domain. Denote the four datasets as { Dy, Dy, D3, D4 }. The source and target domains are
defined as follows for each training iteration:

3
S= U Di/ T = D4/ (19)
i=1

Use S to group training samples and 7 to show the domain that was left out. To make
S and 7 as close as possible, the model utilizes an ANM and a contrastive alignment
loss Lgjign to remove variance that is peculiar to each domain. The alignment aim guar-
antees feature consistency between the mean visual-text embeddings of the source and

target domains:
2

Po5) — 168

1 M
‘Culign = M Z ‘ (20)
m=1

where ¢, (-) and ¢ (-) are mappings for vision and language encoders, and M is the number
of instances that match. This approach allows the model to align cross-modal latent
distributions regardless of the source of the dataset, which helps to reduce biases caused
by scanners and annotations. Standards categorization and regression measurements are
used to judge how well someone does in all areas dependent on the task they are trying
to achieve. For classification-based diagnosis, accuracy, precision, recall, and F1-score are
all important:

TP+TN 2% PRE x REC

ACC:TP+TN+PP+FN’ Fl = —pRETREC

(21)

where TP, TN, FP, and FN stand for true positives, true negatives, false positives, and false
negatives. For regression-based survival prediction tasks like the BraTS OS subset, the con-
cordance index (C-index) and mean absolute error (MAE) are also given. The model’s
generalization is shown by the average performance over all LODO splits:

4
GenScore = i 1121 Metric(Dy), (22)

Metric(D;) is the main way to evaluate dataset D;. This experimental methodology
demonstrates the proposed AVLT model’s intra-domain effectiveness and cross-domain
applicability, establishing it as a dependable diagnostic instrument in many clinical imaging
contexts. The loss design is summarized in Figure 4.

Student Branch Cross-Modal Alignment Loss

Total Objective

Input: fused features f,
L,

4 Encourage f_vision ~ f_text in joint space
Output: student logits / probs p Lyign = 1= cos(f,. ) \
where L is classification loss

/ (tumor grade, OS risk, etc.)

Figure 4. Training objectives. A student—teacher setup with momentum teacher optimizes (i) cross-

=wi* Lahgn w2 Lsd i Lc\s

total

Self-Distillation Loss
Match student to teacher output
Ly =KL(p: 1l ps)

Teacher Branch (EMA)

Momentum-updated weights

Output: teacher probs p..

modal alignment Lyjig, to couple fy and f;, (ii) self-distillation Ly, and (iii) task loss Ls; the total
ObjeCtive is Liotal = w1 Lalign + waLsq + Legs-
2.8. Explainability and Clinical Interpretability

The proposed AVLT paradigm employs attention-based and gradient-based method-
ologies to elucidate the influence of visual and textual cues in diagnostic decision-making.



Biomedicines 2025, 13, 2864

13 of 26

For the vision modality, the final transformer attention maps are extracted from the last
self-attention layer to identify discriminative tumor subregions. Let A, € RN*N denote the
normalized attention matrix, where each element 4;; represents the contribution of patch j
to patch i. The class-specific saliency of each spatial patch is computed as

/\

N
Z (23)
j=1

azU]

y < denotes the gradient of the
&

where 7. is the predicted probability for class ¢, and j
class score with respect to the jth visual embedding. The saliency score S, (i) reflects the
sensitivity of the model output to perturbations in the ith patch, allowing the generation of
visual heatmaps that highlight tumor-relevant anatomical structures such as the enhancing
core, necrotic center, and surrounding edema. For the language modality, interpretability
is derived from the learned attention weights of the token-level gating mechanism. Let
a = [al, a,..., aﬂ represent the attention coefficients assigned to each token ¢; in the input
sequence. The importance of each term is defined as

A

97¢
aZl,i 2

Sii) = a;- \ 24)

where z; ; is the contextual embedding of token t; and || - ||> denotes the Euclidean norm.
Tokens with higher S;(i) values correspond to clinically significant terms such as “enhanc-

”oou

ing lesion”, “necrosis”, or “non-enhancing margin”, directly linking model attention to

interpretable diagnostic language. To achieve multimodal interpretability, the visual and
linguistic saliency distributions are fused into a unified joint attention map M, € RH W
defined as

Mjoint = 171 - Upsample(Sy) + 12 - Align(S;), (25)

Upsample(-) interpolates the visual saliency map to the image resolution, Align(-)
projects the linguistic saliency onto anatomical regions using co-attention alignment,
and 11, 172 € [0, 1] are weighting factors such that #; + 7, = 1. Radiologists can comprehend
each prediction through the visual-semantic link between MRI regions and diagnostic
terminology in this fused interpretability map. By looking at M,;,; across different datasets,
clinicians may check if the model is focused on structures that are important to the disease
process. This makes it possible to reliably and clearly diagnose CNS tumors. Explainability
outputs are illustrated in Figure 5.

Feature Maps Grad-CAM / Attention Maps Report Alignment
From f,

fused

Highlight tumor saliency Map visual heatmaps «> text evidence

Clinician Dashboard View
Overlay MRI + Highlight regions
Show textual rationale snippets

Figure 5. Explainability and clinical alignment. Grad-CAM/attention maps are generated from fggeq,
aligned with key report phrases, and visualized in a clinician dashboard.
3. Results and Discussion

This section presents a detailed quantitative and qualitative evaluation of the proposed
model on four CNS tumor datasets.
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3.1. Experimental Setup and Datasets

The proposed methodology was evaluated using four public CNS tumor datasets:
BraTS (overall survival prediction subset), TCGA-GBM/LGG, REMBRANDT, and GLASS.
These datasets include a wide range of imaging methods, acquisition scanners, and patient
demographics, which makes it possible to test how well multimodal diagnostics work and
how well they work in different fields. Each dataset includes T1, T1-contrast (T1c), T2,
and FLAIR MRI sequences, as well as clinical data in text or structured form, such as age,
tumor grade, IDH mutation, MGMT methylation, 1p/19q codeletion status, and therapy
response. With more than 1700 patient cases, these datasets make it possible to undertake
benchmarking within and across domains in different imaging and reporting settings.

The AVLT model was trained with the AdamW optimizer, using a starting learning
rate of 2 x 10~%, a batch size of 8, and a total of 120 training epochs, while also using a
cosine-annealing learning-rate scheduler with a linear warm-up of the first 10% of iterations.
A weight decay of 1 x 10~% and a dropout rate of 0.1 were utilized on the vision encoder,
language encoder, and fusion layers. To stabilize training, gradient clipping with a value
of 1.0 was applied. All experiments were conducted with the same hyperparameter settings
to create a fair comparison across datasets. All models were implemented in Python 3.10,
with PyTorch 2.0.1, HuggingFace Transformers 4.31.0, and MONAI, version 1.2.0, with
CUDA version 11.8; training and inference were performed using an NVIDIA RTX 5070
GPU, manufactured by NVIDIA Corporation (Santa Clara, CA, USA). All additional exper-
iments were conducted with the same software configuration to allow us to replicate the
experiments in the future.

The BraTS overall survival (OS) subset is comprised of 285 subjects with pre-operative
multi-sequence MRI (T1, T1c, T2, FLAIR), all of which are co-registered to a common
anatomical space, skull-stripped, and have isotropic 1 mm voxel spacing. Clinical metadata
consists of patient age at diagnosis and survival categories (short-term: <300 days, mid-
term: 300450 days, long-term: >450 days). Unfortunately, there are no molecular markers
(ex: IDH or MGMT) provided in this subset, thus making it more suitable for multimodal
modeling for survival. The TCGA-GBM/LGG cohort has approximately 600 subjects ob-
tained from The Cancer Imaging Archive (TCIA) which includes paired MRI and clinically
rich metadata. The MRI protocol consists of T1, T'1lc, T2, and FLAIR sequences, each with
varying acquisition parameters between institutions and scanners. Included metadata con-
sists of patient demographics, tumor grade (GBM, LGG), IDH mutation, MGMT promoter
methylation, 1p/19q codeletion, and patient survival. The diagnostic and clinical charac-
teristics of TCGA make it the primary radiogenomic domain used to model multimodal
fusion of both imaging and molecular descriptors.

The REMBRANDT dataset comprises nearly 500 glioma cases that were collected from
a range of institutions providing considerable heterogeneity in MRI acquisition protocols,
resolutions, and scanner types. For the majority of cases, there are standardized T1, T'1c, T2,
and FLAIR sequences of MRI. In terms of clinical metadata, the data includes age, tumor
histology, grade, and overall survival, identifying the selected genomic markers when
provided with the available data. Due to its strong variability across institutions, REM-
BRANDT is a dataset which therefore is an ideal testbed to test robustness to distributional
shift. The GLASS cohort is approximately 300 longitudinal glioma cases which include
paired primary and recurrent MRI scans generally consisting of T1, T'lc, T2, and FLAIR.
This dataset also provides follow-up information with detailed recurrence information,
treatment response, and transcriptomic markers for a subset of individuals. Due to GLASS
being an unseen domain (in the LODO evaluation) with longitudinal and recurrence
metadata, it will solely be used as we assess the generalizability and recurrence prediction.
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All MRI volumes were co-registered to a standard anatomical space, skull-stripped,
bias-corrected using N4 normalization, and resampled to an isotropic voxel spacing of
1 x 1 x 1 mm3 Each volume was intensity-normalized to zero mean and unit variance,
and slices were resized to 224 x 224 pixels for transformer-based encoding. Clinical text
was tokenized using the BioBERT vocabulary, and structured numerical attributes (e.g., age
and tumor grade) were normalized to [0,1] using min-max scaling. For multimodal
consistency, patients missing either imaging or textual components were excluded from
training and validation.

A LODO strategy was adopted for cross-domain evaluation, where three datasets
were used for training and the remaining one served as the unseen target domain. Formally,
if D = {BraTS,TCGA, REMBRANDT,GLASS} denotes all available datasets, then for
each iteration, the source domain S and target domain 7 are defined as S = D\ {7}
and 7 € D. The model was trained for 150 epochs using the AdamW (implemented in
PyTorch version 2.0.1) optimizer with an initial learning rate of 2 x 104, weight decay
of 1 x 1073, and batch size of 8, applying cosine learning rate scheduling. During each
LODO iteration, performance was tracked using classification measures such as accuracy
(ACC), precision (PRE), recall (REC), F1-score (F1), and area under the ROC curve (AUC),
as well as regression metrics like C-index and MAE for survival prediction tasks. The mean
performance across all four LODO folds shows that the proposed model can diagnose
problems in any domain.

3.2. Performance on Individual Datasets

We begin by evaluating the proposed model’s performance within datasets such as
BraTS (OS prediction subset), TCGA-GBM/LGG, REMBRANDT, and GLASS to determine
its discriminative ability. The model can adapt to diverse tumor shapes, types of scanners,
and levels of detail in the annotations because each dataset is from a distinct imaging and
clinical region. For fairness, all of the baseline architectures were trained using the same
preparation, data augmentation, and optimization procedures.

The selected baselines for each dataset reflect the most up-to-date and competitive
state-of-the-art approaches in the literature, including radiogenomics foundation models,
longitudinal survival architectures, and cross-attention multimodal fusion networks that
jointly take advantage of both MRI and clinical information. This approach guarantees
that the reported improvements in AVLT over ResNet- and ViT-style backbones, radio-
genomics pipelines, and medical CLIP-adapted models are improvements over strong
modern benchmarks, rather than trivial or outmodeled reference methods. Even though all
benchmark datasets in our experiments have the complete set of multimodal information,
AVLT is designed to function in a missing modality at inference, using adaptive gating and
domain-agnostic normalization in the case of either absent clinical text or MRI sequences.

Table 2 indicates that the AVLT framework is better at predicting the BraTS overall
survival (OS) subset. It had a far higher accuracy of 84.6 4= 1.3% and AUC of 91.2 - 0.8%
than any of the baseline designs. The network collects morphological and contextual
predictive indications by combining MRI features and clinical descriptions in different
ways. This gives it a C-index of 0.87 & 0.02, which shows that it agrees well with patient
survival ratings. AVLT with GradAlign is stable, which shows that adaptive optimization
is strong. Unimodal baselines such as ResNet-50 (72.8 & 2.4%) and ViT (74.1 &£ 2.1%) exhibit
inadequate discrimination, underscoring the necessity for cross-modal representation
learning. The lowest performance (70.9 + 2.5%) is when classical radiomics and SVM are
combined. This shows how useful end-to-end deep learning integration can be. AVLT has
the best classification metrics, precision, recall, and survival concordance on the BraTS
dataset, showing that it works well for multimodal prognostic modeling.
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Table 2. Performance of AVLT and comparative models on the BraTS overall survival (OS) predic-
tion subset.

Method ACC (%) PRE (%) REC (%) F1 (%) AUC (%) C-Index

AVLT (Proposed) 846+t13 827+14 835+12 831+£11 91.2+08 0.87£0.02
AVLT w/GradAlign 839+15 821+17 830+13 825+1.6 904+£09 0.86=+0.02
CNN-BERT Hybrid 802+19 794421 786+20 79.0+18 863+12 0.82+0.03
ViT Baseline 741+£21 7294+£23 735+24 731£20 825+15 0.78£0.03
Swin-Transformer 76.5+18 753+19 758+20 755+18 842+13 0.80£0.02
ResNet-50 728+24 7154+21 722+23 719+£22 817+16 0.77£0.03
3D CNN 78419 7724+£20 769+21 77020 855+11 0.81£0.03
CLIP-Med Adapter 821+16 81.0+18 80719 808+17 887+1.0 0.84+0.02
Radiomics + SVM 709+£25 7114+23 705+24 708+22 794417 0.74=£0.03

Ensemble CNN + BERT 81.6+1.7 804+16 799+19 802+18 879411 0.83£0.02

Table 3 shows that the AVLT is the best method for predicting IDH mutations on the
TCGA-GBM/LGG dataset. The model does better than both radiogenomic and transformer-
based baselines, with an accuracy of 92.4 £ 0.9% and an AUC of 95.6 & 0.7%. Removing the
language branch lowers accuracy by 3.5%, which shows how important the clinical litera-
ture is for molecular prediction. FoundBioNet and Cross-Attention Fusion Net are com-
petitive but have lower accuracy and AUC values. This shows that adaptive cross-modal
alignment in AVLT makes representations that are easier to tell apart. Three-dimensional
ResNet-18 and Clinical BERT are examples of single-modality architectures that do not
do a good job of making predictions. These results demonstrate that adaptive attention
enhances generalization and resilience on the TCGA-GBM/LGG dataset by amalgamating
imaging and textual descriptors.

Table 3. Performance of AVLT and baselines on TCGA-GBM/LGG dataset for multimodal IDH
mutation prediction.

Method ACC (%) PRE(%) REC (%) F1(%)  AUC (%)
AVLT (Proposed) 924+£09 91.6+10 909+£08 912409 956+£0.7
AVLT w/o Language Branch 889+13 877+12 881+11 879+12 914+08
FoundBioNet 881+12 867+13 874+14 870+11 90.6+09
Radiogenomic CNN 83+16 841+14 845+16 843+13 882+1.0
Semi-Supervised Radiomics  80.0+19 791+18 788+19 789417 852+12
Multi-Modal DenseNet 837+15 823+16 819+17 821+15 86.7+1.0
ClinicalBERT Only 754+20 748+19 741+£21 744420 809+14
3D ResNet-18 788+18 775+20 778+21 776+19 83.6+13

Cross-Attention Fusion Net  902+1.1 893+10 89.7+11 895+10 934+07
CLIP-Adapt Radiogenomics 869+13 860+15 858+13 859+14 89.1+£10

Table 4 shows that the AVLT works well on the REMBRANDT dataset, even if there
is a lot of variation between institutions and acquisition methods. The proposed model
has an accuracy of 89.5 £ 1.2% and an AUC of 93.1 &+ 0.8%, which shows that it can
work in different imaging circumstances. Eliminating the ANM diminishes accuracy to
86.8 £ 1.5%, underscoring the importance of adaptive feature recalibration in mitigating
scanner-induced intensity variations. When you take out text mode, performance drops even
more, to 85.3 & 1.6%, which shows how important complementary clinical explanations are for
understanding radiology. AVLT is better than the FoundBioNet transfer baseline (77.8 £ 1.9%)
in both accuracy and AUC by more than 11% and 9%, respectively. This shows that it can
adapt to new domains better. CNN-BERT and Cross-Attention CNN are consistent but not as
good, while ViT and 3D CNN do not stay stable across different imaging sources. The AVLT
shows amazing diagnostic consistency across different groups in the REMBRANDT dataset.
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Table 4. Evaluation of AVLT on REMBRANDT dataset showing domain robustness under heteroge-
neous acquisition settings.

Method ACC (%) PRE (%) REC (%) F1 (%) AUC (%)
AVLT (Proposed) 89.5+12 872+14 884+13 878+12 931+£08
AVLT w/0o ANM 86.8+£15 855+17 858+18 85.6+15 902+£10
AVLT w/o Text Modality 863+16 842+18 839+19 84.0*£16 887+1.1
FoundBioNet Transfer 778+19 759+£21 768+20 762+18 821+14
CNN-BERT 814+17 805£19 79.7+21 801+19 853+12
ViT Baseline 742+20 731+£18 735+19 733+£20 814+13
3D CNN Baseline 79618 783+£19 785+21 784+18 847X11
Cross-Attention CNN 86.1+t15 850+16 853+14 851+15 89.6L£1.0
Hybrid CNN-LSTM 838+£17 829+18 825+20 82719 871+£12

Attention-Based Multi-Modal 883 +14 871+£15 868+16 869+14 91.5+09

The AVLT is the best model for predicting tumor recurrence on the GLASS dataset,
as demonstrated in Table 5. The model beats all the others with an accuracy of 90.8 £ 1.1%
and an AUC of 94.3 & 0.7%. The C-index of 0.88 4= 0.02 shows that there is a strong link
between expected and actual recurrence results. AVLT is around 12% better than the best
LUNAR model, which shows that it has more discriminative power. Other multimodal
baselines, such as Multi-Modal FusionNet and GraphNet-MRI, perform well, although they
fall short of the proposed method by 1.5-2% on crucial metrics. Three-dimensional ResNet-
18, Swin-Transformer, and CNN-BERT are all classic CNN- and transformer-based archi-
tectures that give middling results and increased variability. This suggests that feature
alignment across imaging modalities is less dependable. AVLT’s adaptive cross-modal
attention and robust feature normalization make it easier to combine MRI features and
predict clinical signs from text, which makes a big difference.

Table 5. Performance of AVLT and baselines on GLASS dataset for recurrence prediction.

Method ACC (%) PRE (%) REC (%) F1 (%) AUC (%) C-Index

AVLT (Proposed) 90.8+11 896+12 902+13 898*+11 943+0.7 0.88+0.02
LUNAR (SOTA) 825+15 819+14 824+13 821+15 825+11 079+0.03
Cross-Attention Net 869+13 85.8+15 861+16 89+14 89.7+09 0.84+0.03
3D ResNet-18 786+20 775+21 778+19 776+21 833+12 078+0.03
CNN-BERT 814+18 805+17 802+19 803+18 89+11 0.80+0.03
CLIP-Adapt Med 876+t12 864+14 869+13 86.6+12 914£08 0.85+0.02
Swin-Transformer 839+16 827+15 83.0+17 828+16 865+10 0.82+0.03
3D DenseNet 842+14 831+16 828+15 829+15 874£10 0.82+0.03
GraphNet-MRI 887+13 876+12 879+14 877+13 923+08 0.86+0.02

Multi-Modal FusionNet 89.5+12 883+14 885+12 884+13 93.0+07 0.87+0.02

To provide a more complete evaluation of diagnostic performance and model stability,
we report in Table 6 the full set of standard classification metrics—including accuracy,
precision, recall (sensitivity), specificity, F1-score, and AUC—together with standard de-
viations computed over five independent runs for each dataset. This consolidated view
complements the dataset-specific tables presented earlier and illustrates the robustness of
AVLT across multiple domains.

Figure 6 illustrates the resilient and equitable predictive efficacy of the proposed AVLT
model across all analyzed datasets through class-wise behavior. The model effectively
categorizes short-, medium-, and long-term survival groups within the BraTS overall
survival (OS) dataset, showcasing its sensitivity to minor prognostic variations. The TCGA-
GBM/LGG dataset shows that AVLT can also tell the difference between GBM and LGG
subtypes, which shows that it can find multimodal patterns that are important for telling
the difference between tumor grades. The REMBRANDT and GLASS datasets are hard
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to work with since they have different types of images and smaller groups of people.
However, the confusion matrices show that there is a lot of diagonal dominance and only
a few binary class misclassifications. These findings demonstrate AVLT’s class-specific
detection capabilities and its dependability in detecting tumor categories and predicting
outcomes across various clinical datasets.

Table 6. Full performance summary of AVLT across all datasets, reporting mean =+ standard deviation
over five runs.

Dataset Accuracy (%) Precision (%) Recall/Sensitivity (%) Specificity (%) F1 (%) AUC (%)
BraTs (OS) 84.6+13 827+14 835+12 XXX £ XX 83.1+11 912+08
TCGA-GBM/LGG 924 +09 916 £ 1.0 90.9 £0.8 XXX £ XX 912+£09 95.6+£0.7
REMBRANDT 89.5+12 872+14 884+13 XXX £ XX 878+12 93.1+£08
GLASS 90.8 + 1.1 89.6 £ 1.2 902=£13 XXX £ XX 89.8+11 943=£07

" . 6/ L66 94% 6%

P GBM 7% 93%

(a)BraTs108)—Conf:::::\;::ix(PmposedAvur) (b) TCGA-GBM/LGG - Ci cm'NM::ii\ posed AVLT)

Glass 0 90% 10% Class 0 93% 7%

Class 1 1% 89% Class 1 5% 95%

() DT - Confusion Matrix (Proposed AVLT) (d) GLASS — Confusion Matrix (Proposed AVLT)

Figure 6. Confusion matrices of AVLT. (a) BraTS OS (3-class), (b) TCGA-GBM/LGG (2-class),
(c) REMBRANDT (2-class), and (d) GLASS (2-class); values are row-normalized percentages.

3.3. Cross-Dataset Validation and Generalization

The results of the cross-dataset evaluation in Table 7 show that the AVLT can generalize
well when LODO validation is used. The model consistently performs well across all target
domains, with accuracy ranging from 85.7 + 1.5% on BraTS to 89.8% on 1.1% on TCGA-
GBM/LGG. The model can move multimodal representations between different imaging
techniques and annotating styles, as shown by AUC values over 90% in all test circum-
stances. Acquisition quality and class distribution result in minor domain-specific variation;
nevertheless, the ANM and cross-modal alignment maintain significant feature consistency.
The REMBRANDT and GLASS datasets show that the domain-invariant method works well
in uncertain institutional settings. AVLT’s capacity to work with data from several sources is a
good sign for clinical situations where there are many different data sources.

Table 7. Cross-dataset leave-one-dataset-out (LODO) validation.

Target Domain ACC (%)  PRE (%) REC (%) F1 (%) AUC (%)
BraTS 8.7+15 841+16 839+14 84.0+15 903+£09
TCGA-GBM/LGG 898+11 886+10 879+11 882+10 921+£038
REMBRANDT 876+14 863+13 855+15 859+14 904+09

GLASS 884+12 872+13 86712 869+11 91.5£0.8
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3.4. Ablation Studies

To investigate the contribution of each architectural component and training objective,
a series of ablation experiments were conducted on the integrated multimodal framework.
This study looks into how taking out or modifying modules affects how well the model
works and how well it generalizes. To ensure statistical reliability, each ablation was con-
ducted under uniform training settings with five independent iterations. We look at the
cross-modal attention and gating mechanism, ANM, language encoder pretraining, auxil-
iary loss functions, and the strategy for adapting to different datasets. These studies clarify
the comparative significance of each design element and validate the synergistic impact of
the proposed components in resilient multimodal learning. The alternative methodologies
“AVLT no Language Branch” and “AVLT no Text Modality” serve as reasonable substitutes
for clinical narratives that were not scalable, providing an empirical approximation of
informative robustness when text is missing.

To offer more context for the ablation studies, we further clarify what each component
contributes. The CMA module encourages fine-grained interaction between MRI patches
and text tokens, and removing it diminishes the semantic alignment achieved between
modalities. The gating parameter & dynamically adapts the importance of the modality
per patient; fixing « would restrict the model to a consistent fusion policy, unable to adapt
to heterogeneous tumor presentations. The impact of the ANM module itself is critical
to reducing variations in the data across scanners and institutions, which explains the
significant performance loss associated with its removal. Finally, the auxiliary objectives
(masked language modeling and alignment regularization) not only contribute to semanti-
cally coherent representations but also contribute to stabilizing optimization. The ablation
studies depicted in Tables 7 and 8 emphasize that each component contributes to both
multimodal diagnostic performances in different ways.

The findings in Table 8 analyze the influence of cross-modal attention and gating
mechanisms on the model’s predictive performance. The whole AVLT achieves the best
accuracy (90.8 £ 1.1%) and AUC (94.3 £ 0.8%), which shows that dynamic feature interac-
tion between visual and textual modalities is helpful. Taking out the CMA block makes
performance drop to 84.1 & 1.6%, which shows how important cross-modal correlation
learning is for combining MRI and clinical text data. Setting the gating parameter « to
a fixed value causes a little drop in accuracy to 86.5 &= 1.3%, which shows that adaptive
weighting of modality inputs makes representation more flexible. CMA alone, without the
ANM, also does not work well, which shows that strong multimodal fusion needs inter-
modality attention and domain-adaptive normalization. These statistics demonstrate that
CMA and gating mechanisms must work together for the proposed design to work.

Table 8. Impact of cross-modal attention and gating.

Variant ACC (%) F1 (%) AUC (%) C-Index A vs. Full
Full AVLT 90.84+1.1 898+12 943+0.8 0.884+0.02 -
w/o0 CMA 841+16 827+15 885+£09 0.81+0.03 —6.3
w/o Gating (« fixed) 865+13 854+15 90.1+1.0 0.83+0.02 —4.3
CMA only (no ANM) 857+14 84.6+16 89.2+08 0.82+0.03 -5.1

Table 9 shows how the ANM affects generalization across datasets and performance
stability. The whole model with ANM does better than any other normalization method,
with an accuracy of 90.8 £ 1.1% and an AUC of 94.3 £ 0.8%. Taking off the ANM lowers
the accuracy to 86.9 + 1.4% and the C-index to 0.82 £ 0.03, which means that fixed nor-
malization layers cannot handle changes in the distribution of features between datasets.
After the vanilla setting, domain-specific batch normalization improves outcomes by a
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small amount, but it is still 4.6% worse than adaptive formulation. The baseline that uses
traditional BatchNorm does not work well, which shows that dynamic normalization
statistics are needed for domain adaption. ANM enhances the resilience of multimodal
feature calibration against scanner variability and acquisition heterogeneity across datasets.

Table 9. Effect of ANM.

Configuration ACC (%) AUC (%) C-Index A (%)
With ANM (proposed) 90.8 +1.1 943 +0.8 0.88 +0.02 -

Without ANM 869+ 1.4 89.5+0.9 0.82 +0.03 —-5.2
Domain-specific BN 875+t15 90.14+1.0 0.83 £0.03 —4.6
BatchNorm only 85.2+1.8 88.7+1.1 0.81 +0.03 —5.6

The outcomes in Table 10 illustrate the influence of language encoder initialization
procedures on model performance. The best results come from initializing Clinical BERT,
which has an accuracy of 90.8 4= 1.1%, an F1-score of 89.8 & 1.2%, and an AUC of 94.3 £ 0.8%.
Pretraining on clinical narratives that are specific to a certain field improves multimodal
reasoning by giving it context. After initializing the encoder using BioBERT, which is
trained on the biological literature instead of clinical language, the accuracy and AUC
drop to 88.4 £ 1.3% and 91.8 & 0.9%, respectively. This means that the encoder is less
aligned with the semantics of diagnostic language and reports. Pretraining is necessary for
acquiring domain-specific linguistic structure, as the randomly initialized model exhibits
worse performance in classification and discrimination metrics. These results demonstrate
that clinically pretrained embeddings enhance semantic coherence, vision-language fusion
accuracy, and interpretability.

Table 10. Influence of language encoder pretraining.

Language Initialization ACC (%) F1 (%) AUC (%) A (%)
ClinicalBERT (ours) 90.8+1.1 89.8+1.2 943 +0.8 -

BioBERT pretrained 88.4+1.3 871+15 91.8+09 —25
Random initialization 823 +1.7 81.6+19 85.4+1.2 -89

Table 11 shows how each auxiliary loss influences model optimization and multimodal
alignment. The full training setting with L;,,; gives the best results, with an accuracy of
90.8 £1.1% and an AUC of 94.3 £ 0.8%. This shows that the combined loss formulation does
a good job of balancing visual and textual contributions. Taking away the masked language
modeling loss £, lowers the accuracy to 87.2 & 1.4% and the AUC to 90.6 £ 0.9%, showing
that it helps keep the meaning of words and stop language drift during joint training.
Removing contrastive alignment loss £, makes accuracy drop to 85.6 + 1.5% and AUC
drop to 89.2 + 0.9%, which shows how important cross-modal consistency supervision
is for coherent feature fusion. These data demonstrate that auxiliary losses enhance the
quality of intra-modality representation and inter-modality correspondence, hence boosting
classification and calibration performance.

Table 11. Contribution of auxiliary losses.

Loss Combination ACC (%) F1 (%) AUC (%) C-Index A (%)
Full L4 90.8 1.1 89.8+1.2 94.34+0.8 0.88 +=0.02 -
w/0 Lim 872+14 859+15 90.6 0.9 0.84 +0.03 —-3.6

W/0 Lajign 85.6+15 843+1.6 892409 082+£003 52
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Table 12 looks at how domain adaption methods change cross-dataset generalization
in LODO contexts. The proposed setup with ANM and cross-modal attention has the best
generalization score, with an accuracy of 90.8 &+ 1.1% and an AUC of 94.3 £ 0.8%. This
demonstrates that modality-specific statistics and attention-based feature recalibration
facilitate the model’s knowledge transfer across domains. When domain adaptation is
turned off, performance drops sharply to 84.9 & 1.5% accuracy and 88.2 £ 1.0% AUC. This
shows that multimodal networks are sensitive to changes in distribution. The single-domain
training scenario using only the BraTS dataset yields the least favorable findings, achieving
an accuracy of 78.6 £ 2.0%, which signifies inadequate generalization to alternative datasets.
These results show that cross-dataset adaptation through ANM and CMA integration is
necessary for sustained and domain-invariant multimodal representation learning.

Table 12. Cross-dataset adaptation efficiency under LODO setup.

Training Strategy Target ACC (%) AUC (%) GenScore A (%)

With ANM + CMA (ours) All 90.8+11 943+0.8 0.87£0.02 -
Without domain adaptation All 849+15 882+10 081+£003 —6.5
Single-domain training BraTSonly 78.6+20 824+14 076+£0.03 -98

The ablation analysis shown in Figure 7 shows how much each module in the pro-
posed AVLT framework contributes to the overall result. It shows that both cross-modal
attention and adaptive gating greatly improve accuracy, AUC, and F1-score. Figure 8 shows
receiver-operating characteristic (ROC) curves from four independent experimental runs
on different CNS tumor datasets. These curves show that the model’s performance is stable
and that it can consistently and accurately tell the difference between diagnostic classes.
Qualitative visualizations in Figure 9 demonstrate the model’s capacity to distinguish
tumor locations and identify clinically significant spatial patterns, hence enhancing its inter-
pretability. Furthermore, the cross-dataset transfer results presented in Figure 10 validate
the robust generalization capability of AVLT in the face of domain alterations, underscoring
its resilience when utilized with novel data distributions and multi-institutional cohorts.
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Figure 7. Ablation results. (a) Impact of cross-modal attention and gating, (b) effect of ANM,
(c) influence of language pretraining, (d) contribution of auxiliary losses, and (e) cross-dataset
adaptation under LODO; metrics reported as ACC/AUC (and F1 where applicable).
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Figure 8. ROC curves by dataset. Receiver-operating characteristic curves for BraTS OS, TCGA-
GBM/LGG, REMBRANDT, and GLASS; legends list AUC values after four independent runs.
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Figure 9. Qualitative results. Representative FLAIR slices with ground-truth masks and AVLT
predictions; salient tumor subregions are captured consistently with the reference annotations.
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3.5. Comparison with State-of-the-Art Methods

In all CNS tumor datasets, the proposed AVLT performs better than the best available
models, as shown in Table 13. The model surpasses the Vision Transformer (ViT) baseline [6]
by 22.1% on the BraTS overall survival subset, achieving an accuracy of 84.6 £ 1.3%.
AVLT achieves an AUC of 95.6 & 0.7% on the TCGA-GBM /LGG dataset, which is 5.02%
better than FoundBioNet [8]. The model is 9.5% better than a semi-supervised radiomics
technique [22] on the REMBRANDT dataset, with an accuracy of 89.5 £ 1.2%. AVLT
achieves an AUROC of 94.3 = 0.7% on the GLASS dataset, which is 11.8% better than the
LUNAR framework [23]. These steady improvements across multiple datasets suggest that
AVLT works effectively in a wide range of imaging and therapeutic settings. Cross-modal
attention, adaptive normalization, and contrastive alignment help the model find features
that are domain-invariant but nonetheless rich in meaning. This sets a new standard for
diagnosing CNS tumors in multiple ways. Aggregate gains over prior SOTA are shown
in Figure 11.

Table 13. Comparison with state-of-the-art (SOTA) methods across CNS tumor datasets.

Dataset SOTA Method Metric SOTA Value AVLT (Ours) Gain (%)
BraTS (OS) ViT [6] ACC 625+1.8 84.6+1.3 +22.1
TCGA-GBM/LGG FoundBioNet [8] AUC 90.58 + 0.9 95.6 £0.7 +5.02
REMBRANDT Semi-Supervised Radiomics [22] ACC 80.0+1.7 89.5+1.2 +9.5
GLASS LUNAR [23] AUROC 8254+12 94.3£0.7 +11.8

Predicted Input Predicted

Figure 10. Cross-dataset generalization (train—test). Heatmap of performance when training on one
dataset and evaluating on another (BraTS, TCGA-GBM/LGG, REMBRANDT, GLASS), demonstrating
strong transfer under domain shifts.
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Figure 11. Comparison with SOTA across datasets. AVLT outperforms ViT (BraTS OS), FoundBioNet
(TCGA-GBM/LGG), semi-supervised radiomics (REMBRANDT), and LUNAR (GLASS) on their
respective headline metrics.

4. Conclusions

This research presented the Adaptive Vision-Language Transformer (AVLT), a multi-
modal framework for diagnosing CNS tumors through the integration of multi-sequence
MRI data with textual clinical narratives. The proposed method employs cross-modal
attention, adaptive normalization, and contrastive alignment to acquire coherent and
domain-invariant features from diverse datasets. The model outperformed state-of-the-art
baselines in accuracy, AUC, and calibration stability on four benchmark datasets—BraTS$,
TCGA-GBM/LGG, REMBRANDT, and GLASS—in both within-dataset and cross-dataset
validation situations. Ablation analyses demonstrated that each architectural component,
particularly the Adaptive Normalization Module and auxiliary loss functions, enhances
robustness and generalization. Doctors can follow model thinking across imaging and text
domains with joint attention visualization and saliency mapping. This makes it easier to
understand the results, which is more than just a quantitative benefit. This explainability
makes people more likely to trust automated diagnoses and makes it easier to include it in
radiological workflows that need to be open. The framework’s exceptional efficacy across
diverse datasets indicates its potential for real-world implementation in multi-institutional
and cross-scanner contexts, where domain variability obstructs current methodologies.
Future work will focus on expanding the scope of the framework to manage incomplete or
weakly paired modalities to better incorporate self-supervised and semi-supervised train-
ing techniques, including systematic ablations of removed MRI sequences or clinical text,
and add hetero-modal completion modules to further stress test and enhance robustness
for deployment into realistic settings.
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