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Abstract

Damage assessment in engineering materials is essential for structural reliability and
safety. While traditional imaging techniques and Digital Image Correlation (DIC) provide
valuable insights into deformation and crack evolution, they often require significant
manual effort and suffer from accuracy limitations under complex loading conditions.
Recent advances in Artificial Intelligence (AI), particularly Machine Learning (ML) and
Deep Learning (DL), have enabled the development of automated, high-resolution, and
near real-time damage assessment techniques. This paper reviews methods that integrate
ML with DIC to assess damage in composites, metals, and other engineering materials. We
compare conventional ML models with modern DL architectures, discuss key challenges,
and propose future research directions. The findings demonstrate that coupling DIC with
ML significantly improves the accuracy, speed, and reliability of damage identification in
engineering materials.

Keywords: machine learning; digital image correlation; damage identification

1. Introduction
Recently, Artificial Intelligence (AI) has become widely recognized as a powerful

technology that can change many industries around the world. Its various applications
demonstrate a significant impact across scientific and engineering fields [1,2]. The term
“AI” was first introduced by John McCarthy in 1955 [3]. AI is defined as a domain within
computer science that aims to simulate human cognitive functions (such as learning, rea-
soning, and adapting) through computational systems [4]. It enables machines to perform
complex tasks by copying human problem-solving processes. AI uses different methods,
including Machine Learning (ML), Deep Learning (DL), and rule-based programming.
These approaches allow systems to operate with a degree of autonomy and intelligence.
ML involves training models on extensive datasets to detect patterns and make predictions
or decisions without being explicitly programmed. DL is a part of ML that uses layered
neural networks to process complicated and unorganized data. In contrast, rule-based
systems function through predefined logic and structured rules that guide decision-making
processes. By combining these different methods, AI systems can effectively address com-
plex, multi-dimensional problems. ML enables systems to learn from historical data and
build predictive models without explicit programming [5–7].

Crack identification using image processing is generally divided into conventional
methods and ML-based techniques. In traditional image processing, the procedure usually
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starts with acquiring the image and applying preprocessing operations such as filtering or
morphological adjustments. After that, feature information is extracted through approaches
such as edge detection and threshold segmentation, where the accuracy of this step plays
an important role in the final identification results. The process is then followed by post-
processing to determine the location, shape, orientation, and size of the cracks.

Recently, Digital Image Correlation (DIC) has been widely used to analyze how
materials deform under stress [8,9]. It does this by comparing images taken before and after
a load is applied, giving full-field quantitative insight than traditional image processing
methods. The technique works by evaluating the degree of similarity between images,
often through the application of random speckle patterns spread across the surface of
the specimen. The method uses images to calculate the displacement field of sample
points, which helps in detecting deformation and cracks [10]. Tong [11] examined the
robustness, reliability, and computational efficiency of four correlation criteria by employing
three distinct image sets that varied in brightness, contrast, local illumination, and blur.
Similarly, Gehri et al. [12] presented an automated DIC-based study for crack detection
and quantification in structural materials. Their approach successfully identified and
measured cracks through displacement field analysis. This capability significantly reduced
the amount of manual work needed. In a related study, Panwitt et al. [13] introduced an
automated approach to calculate crack lengths in mixed-mode fatigue tests through DIC.
Their method proved to be highly accurate in tracing crack growth even under complex
loading conditions. The use of DIC has since extended to many areas of solid mechanics [14],
ranging from experimental mechanics [10], fracture mechanics [15], and fatigue studies [16]
to mechanical testing [17]. It has also been applied to a wide variety of materials, including
metals [18], concrete [19], and composites [20].

Nevertheless, conventional image-based approaches, including DIC, still struggle with
issues of accuracy and the continuous monitoring of crack development. In particular, DIC
measurements are affected by speckle quality, lighting variations, out-of-plane motion, and
noise amplification during strain differentiation, which limit their independent reliability
for automated damage detection. To address these shortcomings, ML methods have gained
considerable attention in recent years for crack detection tasks [21–24]. Different convo-
lutional neural network (CNN) architectures such as U-Net, LinkNet, Feature Pyramid
Network, and DeepLabv3 have been applied, often in combination with traditional image
processing strategies such as the Otsu thresholding technique, to improve the identification
of cracks. Pham et al. [25] presented a method that combines DL with image processing to
automatically detect and measure the growth of surface cracks. Also, Hongwei Hu et al. [26]
developed an enhanced approach for road crack detection by adapting the YOLOv5 model
to analyze images captured from vehicle-mounted cameras.

In addition, a recent study introduced a comprehensive approach that combines an
improved YOLOv7 model, a crack growth assessment technique, the enhanced DeepLabv3+
model, and image processing tools to track the full progression of cracks. This work enables
both near real-time under controlled experimental conditions and continuous monitoring
of crack growth dynamics [27].

ML techniques are typically grouped into four major categories: supervised learn-
ing, unsupervised learning, semi-supervised learning, and reinforcement learning [28].
Supervised learning involves training an algorithm on labeled data, enabling it to make
predictions for new, unseen examples. This approach is widely used for both classification
and regression tasks, especially in the prediction of material properties. In contrast, unsu-
pervised learning focuses on uncovering hidden patterns or structures in data that lack
labeled outputs. Semi-supervised learning serves as a hybrid approach, combining small
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amounts of labeled data with larger volumes of unlabeled data, with a stronger emphasis
on the latter during training [29,30].

Reinforcement learning, on the other hand, is a distinct form of ML in which algorithms
interact with and learn from dynamic environments by trial and error, refining their actions
based on feedback to improve future outcomes [31].

DL is one type of ML that utilizes artificial neural networks (ANNs) with more than
two hidden layers. These multilayered architectures allow DL models to automatically find
useful features in raw data, which removes the need for manual feature selection. With
layer-by-layer learning, these models can discover complex patterns and abstract ideas
from data, which makes them very useful for tasks such as speech recognition, natural
language processing, and others [32–35]. Several DL techniques have proven effective in
predicting material properties, including CNNs, deep belief networks (DBNs), recurrent
neural networks (RNNs), and generative adversarial networks (GANs).

In AI applications for predicting material properties, raw data is commonly split into
three distinct subsets: the training set, the validation set, and the test set. The training set is
used to train the AI model by enabling it to identify underlying patterns and correlations
within the data. As the model trains, its performance is monitored using the validation set,
which helps to detect overfitting (an issue where the model fits the training data too closely
and struggles to make accurate predictions on new data). This validation process also helps
adjust the model’s settings that control how it learns. Once the model is both trained and
optimized, its ability to make accurate predictions is evaluated using the test set, a separate
dataset that provides an unbiased measure of the model’s generalization performance on
new, unseen data. This stage is necessary for evaluating how well the model generalizes
to new data and offers an estimate of its effectiveness in practical, real-world applications.
Figure 1 illustrates the standard workflow of AI-driven prediction approaches.

Figure 1. General procedure used in AI-driven prediction approaches.

Despite significant advances in both DIC and ML-based damage detection, current
studies still suffer from several critical limitations, including the lack of standardized bench-
mark datasets, limited generalization under varying experimental conditions, insufficient
integration of physical constraints into learning models, and the absence of uncertainty
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quantification in DIC-driven ML predictions. Furthermore, most existing reviews focus
either on ML algorithms or on experimental DIC techniques separately. This review ex-
plicitly addresses these gaps by providing a physics-informed comparative analysis of
DIC-integrated ML and DL frameworks for automated damage assessment.

2. Literature Review ML-Based Structural Damage Assessment
Damage analysis is one of the most important aspects of engineering science, as it

plays a critical role in ensuring the safety, reliability, and service life of materials and
structures. An accurate understanding of damage initiation, evolution, and failure mech-
anisms is essential for the design of durable engineering systems and for the prevention
of catastrophic structural failures [36–40]. In recent years, the rapid growth of ML has
transformed the field of damage analysis, providing accurate, robust, and scalable methods
for detecting, localizing, and predicting the severity of damage in various structural and
material systems. By using frequency analysis, vibration data, acoustic emission, imaging,
and hybrid physics-based approaches, ML overcomes many of the limitations of traditional
physics-based and experimental techniques under data-rich and well-controlled condi-
tions, which are often costly, time-consuming, or unreliable under complex loading and
environmental conditions [41–43].

Frequency- and vibration-based studies have played a significant role in ML-based
damage assessment. Vu et al. [44,45], Seo and Han [46], Dugalam and Prakash [47],
Lee et al. [48], Hakim et al. [49], and Khatir et al. [50] utilized natural frequencies,
frequency response functions, and finite element data combined with ANN, CNN,
LSTM, and hybrid ensembles for crack detection and parameter estimation. Simi-
larly, Bokaeian et al. [51], Hassaine et al. [52], Shafighfard et al. [53], Khiem et al. [54],
Khalkar et al. [55], Zhan et al. [56], Siow et al. [57], Le et al. [58], Rodrigues de Sousa et al. [59],
Avarzamani et al. [60], Nguyen et al. [61], Katı et al. [62], and Pithalis et al. [63] proposed
regression, ensemble, and graph neural network-based models for modal analysis, crack
depth estimation, and damage quantification.

Acoustic emission signal analysis has also been widely investigated. Barbosh et al. [64,65],
Deepak et al. [66], and Huynh et al. [67] used wavelet transforms, empirical decomposition,
and CNN models to process acoustic emission or electromechanical admittance signals,
achieving over 90% accuracy in laboratory-scale studies, while large-scale field validation
remains limited. Complementary works such as Khan and Kim [68], Kashyap et al. [69],
and Nguyen [70] introduced unsupervised, Bayesian, and TinyML-enabled approaches
to improve acoustic emission and guided-wave diagnostics under temperature and noise
variations. However, acoustic emission-based ML models remain highly sensitive to sensor
placement, signal loss, and background noise, which significantly limit their robustness in
large-scale and long-term monitoring applications.

Vision-based and image-assisted methods have further advanced SHM capabilities.
Tabatabaeian et al. [71], Yamada et al. [72], Moreh et al. [73], Meruane et al. [74], Diaz-
Escobar et al. [75], Ye et al. [76], Manujesh and Prajna [77], Shableya et al. [78], and
Hake et al. [79] applied CNNs, GANs, DNNs, and segmentation models to detect de-
lamination, impact damage, and cracks from C-scan, UAV, microscopy, and 3D point cloud
data. These studies confirmed high robustness, with accuracies exceeding 95% in many
cases, mainly under controlled imaging and laboratory conditions. Most reported ML
accuracies are obtained within narrow training domains, and the generalization capabil-
ity of these models under varying material systems, loading modes, and environmental
conditions remains an open research challenge.

Recently, novel optimization, hybridization, and scalability strategies have been intro-
duced. Some authors, such as Nguyen [70], Khatir et al. [50] and Pithalis et al. [63] used
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advanced optimization methods to enhance learning and generalization. Others, including
Wang and Cha [80] and Rodrigues de Sousa et al. [59], explored unsupervised or semi-
supervised novelty detection to address the lack of labeled data in real-world structures.

Several studies have combined ML with finite element modeling (FEM) for damage-
sensitive responses. Gomes and Silva [81] analyzed surface imperfections in composite
shells using FEM and ML, while Zhai et al. [82] applied ML to calibrate damage models
in mega castings. Gunst et al. [83] coupled FE-CZM with LSTM surrogates to efficiently
model porosity effects in ceramic composites, and Freed [84] developed surrogate regres-
sion models for fatigue crack growth in aluminum alloys. Zhou et al. [85] extended this
approach to cracked rotary blades, verifying improvements in stability through a hybrid
deep neural network.

Signal-based approaches have also been widely studied. Feng et al. [86] used gen-
eralized energy indices with CNN, MLP, and LSTM for beam damage detection, while
Du et al. [87] and Zhang and Wang [88] employed acoustic emission data with DL for
composite damage and interface crack identification. Zuo et al. [89] proposed a feature-
informed CNN for leak detection in aluminum pipes. Lee et al. [90] developed CNN-FCN
models for diagnosing compression-induced cracks with over 96% accuracy. Mi et al. [91]
combined infrared thermography with U-Net and LSTM to track fatigue crack growth in
titanium alloys.

Fatigue and fracture prediction are important areas of research. Sanchez and Wass [92]
modeled laminate fatigue life using neural networks for computational efficiency, while
Dong et al. [93] proposed a physic-guided semi-supervised method for fatigue classification.
Santos et al. [94] predicted fatigue crack paths under mixed-mode loading using ANN and
kNN, reducing computational cost by over 90%. Xu et al. [95] (Crack-Net) and Zhu et al. [96]
(physics-informed ML) improved fracture predictions in composites, and Yan et al. [97]
showed that U-Net-LSTM models could forecast crack propagation more accurately than
conventional methods.

Recent studies have also applied ML to special conditions. Phan et al. [98]
used Taguchi-optimized Random Forests to predict post-cracking strength in FRCCs.
Raftar et al. [99] applied bagged trees to assess hydrogen embrittlement in pipeline steels.
Rathore et al. [100] used deep neural networks to capture fatigue crack growth across
stress ratios in brittle steels. Chen et al. [101] developed a hybrid EA model for predicting
recurring crack self-healing. Wang et al. [102] built a corrosion fatigue model for aluminum
alloys optimized with PSO. Hu et al. [103] applied Gradient Boosting for hydrogen-assisted
fatigue crack growth. Also, Ye et al. [104] proposed incremental learning to improve fatigue
crack growth predictions near the threshold region. Hooshyar et al. [105] proposed an
ML-based methodology for damage detection in steel beams, using dynamic response sig-
nals processed through advanced time-frequency functions. Using XGBOOST and MTEN
algorithms, they demonstrated superior detection accuracy of XGBOOST in identifying
both the location and severity of damage, emphasizing the effectiveness of ensemble ML
methods in SHM. Yang et al. [106] introduced a multi-level structural damage identification
method based on time-domain response reconstruction and deep reinforcement learning,
showing improved localization and quantification of damage in large-scale structures
with limited sensor data. Finally, comprehensive reviews such as Zhuang et al. [107] and
Wu et al. [108] reviewed DL applications in crack detection.

Mirzaei [109] presented an ML-based framework for predicting mixed-mode fracture
load and crack initiation angle using stress, strain or displacement field data. The study
aimed to enhance prediction accuracy without relying on complex analytical models. Using
numerical simulations of cracked specimens, regression models were trained on localized
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field data. Strain fields provided the most accurate results. The study was computational
but relied on DIC principles, which show potential for future experimental use.

ML and DIC have also been applied in non-damage-related analyses. For example,
Zhang et al. [110] utilized DIC and ANNs to investigate the strain hardening behavior of
316L stainless steel under tensile loading, demonstrating that these tools can effectively
model material behavior beyond failure or fatigue analysis. Zhao and his colleagues [111]
developed a strain-guided Kolmogorov Arnold Network DIC method to improve the
accuracy of full-field deformation measurements under small and complex displacements.

Rishad et al. [112] conducted a study to analyze the stress distribution in carbon
fiber-reinforced polymer (CFRP) bonded joints, aiming to better understand the mechanical
performance of these joints under various configurations and loading conditions. Their
results revealed that joint configuration significantly affects stress distribution and failure
risk, and that the combination of ML and DIC enables more reliable evaluation and design
of CFRP bonded structures.

Despite the large number of published studies, no widely accepted standardized
DIC-based damage benchmark yet exists for quantitatively comparing different ML and
DL architectures under identical DIC-based damage scenarios.

In summary, ML has emerged as a powerful tool for damage assessment, enhanc-
ing predictive accuracy and reducing computational costs, while its robustness strongly
depends on dataset quality, physical consistency, and uncertainty control. Although
challenges such as noise sensitivity, data scarcity, and model explainability remain, ML-
driven approaches have demonstrated great potential for real-time, automated, and scal-
able damage detection that contributes to safer and more reliable engineering systems
and infrastructures.

3. DIC for Analyzing Damage
Imaging-based techniques have become essential tools in mechanical and materials

engineering for identifying/detecting damage, assessing structural integrity, and ensur-
ing reliability. These methods enable non-destructive evaluation across a wide range of
materials and scales, supporting both research and industrial applications. Among the
imaging-based methods are those summarized in Table 1.

Table 1. Imaging-based damage assessment-related methods in mechanical/material engineering.

Category Techniques Primary Application Notes References

Radiographic

X-ray Radiography,
Computed
Tomography (CT),
Neutron Imaging

Internal defect
detection (cracks,
porosity, inclusions)

Direct damage detection,
widely used for metals,
ceramics, composites

[113–115]

Ultrasonic
Pulse-Echo, C-Scan,
B-Scan, Acoustic
Microscopy

Subsurface damages,
delamination, bonding
evaluation

Direct damage detection,
requires coupling medium
and signal processing

[116,117]

Infrared
(Thermography)

Active Thermography
(pulse, lock-in)

Surface and subsurface
damages
(delamination, voids,
disbonds)

Direct damage detection,
well-suited for composites
and coatings

[118]

Optical/
Interferometric

DIC, Digital Volume
Correlation (DVC),
Speckle, Shearography,
Holography

Deformation and
strain field
measurement, early
damage indicators

DIC/DVC mainly for strain
analysis (indirect damage
detection), Shearography
directly for damage
localization

[119]
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DIC provides unique advantages compared to radiographic, ultrasonic, and thermo-
graphic techniques. Unlike radiography or ultrasonics, which directly visualize internal
flaws such as cracks, pores, or delaminations, DIC does not detect damage explicitly. In-
stead, it measures full-field displacement and strain distributions on the specimen surface,
which act as indirect indicators (proxies) of damage evolution rather than direct mea-
surements of material failure. Consequently, subsurface damage mechanisms such as
micro-void nucleation, early-stage fatigue microcracking, and internal delamination cannot
be directly resolved by surface-based DIC measurements. This capability allows for the
identification of early indicators of damage, since local strain concentrations often precede
the formation or propagation of cracks. Moreover, DIC is a completely non-contact optical
method, requiring no coupling medium and avoiding exposure to ionizing radiation, which
makes it safer and easier to deploy in laboratory and in situ structural testing. It can be
applied to complex geometries and a wide range of materials, provided that an adequate
speckle pattern is available.

There are two primary configurations of DIC: 2D-DIC and 3D-DIC. The former uses
a single camera and is suitable for flat specimens with in-plane deformation, while the
latter employs two synchronized cameras in a stereo setup to capture both in-plane and
out-of-plane deformations, making it more versatile for complex geometries [120]. The
choice between these methods depends on the nature of the test, the dimensionality of
deformation, and the geometry of the specimen. To successfully conduct a DIC experiment,
a series of specialized components are required. These include high-resolution digital
cameras, an illumination system to ensure consistent lighting, speckle patterning tools for
surface preparation, a stable mounting system, and software capable of both acquiring and
analyzing images. Accurate camera calibration is particularly crucial in 3D-DIC to establish
the relationship between image coordinates and physical space [121]. The process of using
DIC typically involves surface preparation (speckle pattern application), image capture
during mechanical loading, image registration and correlation, and finally the computation
and visualization of displacement and strain fields. Recent developments have also led to
the use of high-speed DIC systems capable of capturing dynamic events and deformation at
high strain rates [122]. The principal advantage of DIC lies in its ability to provide full-field
displacement and strain data with high spatial resolution, allowing researchers to assess
local variations in material response, identify strain concentrations, and validate computa-
tional models such as FEM. It is widely used in applications ranging from composite failure
analysis and fatigue crack propagation to material characterization and SHM [42,123,124].
Furthermore, DIC can be coupled with other measurement techniques, including infrared
thermography and acoustic emission, to provide a more comprehensive picture of material
behavior under complex loading conditions. Despite its advantages, the accuracy of DIC is
fundamentally limited by several physical and numerical factors, including speckle decor-
relation under large strains, sensitivity to rigid-body and out-of-plane motions in 2D-DIC,
the subset size-bias trade-off, and systematic errors introduced during numerical strain
differentiation. These limitations impose intrinsic bounds on the reliability of DIC-based
damage measurements [125].

To provide a clearer overview of how DIC has been employed for damage identification
and characterization in engineering materials and structures, a selection of representative
studies is summarized in Table 2. These works are categorized according to the adopted
definition of damage, the specific purpose of applying DIC, and the main findings reported.
The review highlights that DIC has been successfully applied not only for crack initia-
tion and propagation analysis but also for monitoring localized deformations, validating
numerical models, and improving damage identification under complex loading and envi-
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ronmental conditions. Overall, the summarized studies emphasize both the versatility and
the current challenges of DIC in advancing experimental mechanics and SHM.

Table 2. Summary of selected studies on the use of DIC for damage assessment in engineering
materials and structures.

Category Focus/Definition Purpose of DIC Use References Key Findings

Crack Initiation,
Propagation,
and Fracture

Detection and
tracking of crack
initiation, growth,
and mixed mode
fracture behavior in
various materials

To visualize crack
development,
quantify fracture
parameters and
validate
fracture models

[123,126–133],

DIC effectively captured
crack evolution, crack-tip
fields, and fatigue behavior,
enabled quantitative
analysis and model
calibration for mixed-mode
and inter/
intralaminar fractures

General Damage,
Strain Irregularity,
and Composite
Failure

Evaluation of global
damage or
displacement/strain
irregularities in
composites and
other materials

To measure full-field
strain/displacement
and identify
damaged zones, to
improve DIC
accuracy under
complex conditions

[131,134–138]

Enhanced damage
visualization and FE model
validation,
convolution-based and
regularized DIC improved
accuracy, DIC successfully
combined with hybrid NDT
methods

Localized
Deformation, Strain
Concentration, and
Plasticity

Characterization of
local strain, large
deformation, or yield
behavior at macro- to
nano-scale

To analyze localized
deformation fields,
assess strain
hardening, and
identify interphase
or weld zone
behavior

[139–151]

DIC captured large strain
and interphase
deformation, supported
inverse material parameter
identification, validated
micro- and nano-scale
mechanical models

Reviews and
Methodological
Developments

Review or
improvement of DIC
algorithms for
discontinuities,
extreme conditions,
or new measurement
systems

To summarize DIC
applications, identify
challenges, and
propose
methodological or
hardware
advancements

[20,127,131,
138,152]

Provided systematic
overviews of DIC
capabilities and limitations,
proposed algorithmic
improvements and optical
solutions (e.g., UV/blue
DIC for high-temperature
use)

Application-Specific
Investigations

DIC applied to
specific engineering
structures or natural
materials

To assess structural
integrity, thermal
deformation, creep,
or bio/geological
damage mechanisms

[152–155]

DIC successfully monitored
cracking and deformation
in civil, thermal, and
bio-geological materials,
demonstrated potential for
SHM and environmental
load analysis

DIC is fundamentally a full-field optical measurement technique for displacement and
strain estimation rather than a direct crack detection tool. Unlike conventional vision-based
inspection methods that rely solely on grayscale contrast for visual crack identification,
DIC quantifies the mechanical response of materials by tracking surface deformation and
computing displacement and strain fields. From an industrial perspective, this capability is
crucial because most structural damages are governed by localized strain concentration,
stiffness degradation, and deformation incompatibility rather than by visually detectable
cracks alone [156,157].
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In practical engineering applications, DIC is widely used for strain measurement,
fracture mechanics characterization, fatigue crack growth analysis, and validation of nu-
merical models. Parameters such as displacement continuity, strain localization, crack
opening displacement, and stress intensity factors are directly derived from DIC measure-
ments and constitute the primary data sources for quantitative damage assessment. The
suitability of DIC for damage assessment strongly depends on both the material system
and the dominant damage mechanism. DIC is particularly effective for crack-driven and
strain-localization-dominated failure in metals, composites, and concrete, while subsurface-
dominated damages or deeply embedded delamination require complementary NDT
techniques for reliable detection [20,157].

Despite its advantages, the industrial deployment of DIC is limited by sensitivity
to lighting and speckle quality, noise amplification during strain differentiation, out-of-
plane motion errors in 2D-DIC, and high data processing demands. In particular, strain
fields computed as spatial derivatives of measured displacements are highly sensitive
to high-frequency noise, which may obscure early damage signatures. Therefore, DIC
should be regarded as a physics-based experimental technique whose combination with
ML enables automated, robust, and physically meaningful interpretation of full-field strain
and deformation data [157].

The characteristic properties of DIC strain fields naturally align with specific ML
architectures. The strong spatial correlation and localized strain gradients around damage
zones motivate the use of CNNs for spatial feature extraction. Temporal continuity of
strain evolution under cyclic or dynamic loading provides a physical basis for RNNs and
LSTM-based models. Furthermore, strain concentration factors, strain energy density, and
gradient-based descriptors serve as physically meaningful engineered features for classical
ML algorithms such as SVM and Random Forest. This direct correspondence establishes a
physics-guided bridge between DIC measurements and data-driven damage modeling.

4. Conventional ML Approaches for Damage Identification in
Engineering Materials
4.1. Support Vector Machine (SVM)

SVM, introduced by Cortes and Vapnik in 1995, is a widely adopted supervised learn-
ing algorithm designed for classification, regression, and outlier detection. A key principle
of SVM is the construction of an optimal decision boundary, known as a hyperplane, which
separates data points in the feature space. As illustrated in Figure 2, this hyperplane is
determined in such a way that it maximizes the margin (the distance between the hy-
perplane and the nearest data points from each class, known as support vectors). These
support vectors are critical, as they define the position and orientation of the hyperplane.
In regression tasks, a variant called Support Vector Regression (SVR) is employed. SVR
offers notable advantages, such as computational efficiency that does not scale with the
dimensionality of the input space, good generalization performance for low-dimensional,
well-engineered DIC features under appropriate kernel selection and regularization, and
also high predictive accuracy.

In practical damage identification applications, SVM is particularly effective for small-
to medium-sized DIC or vibration datasets with high-dimensional features, where it pro-
vides high prediction accuracy and strong generalization. However, its performance
strongly depends on proper kernel selection (for example, polynomial kernels) and careful
tuning of hyperparameters such as the penalty factor C and kernel width. For large-scale
experimental datasets, the computational cost and memory requirements of SVM increase
significantly, limiting its applicability for real-time damage monitoring. Moreover, SVM
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is sensitive to noise in experimental measurements, which may degrade classification
accuracy if proper feature filtering and normalization are not applied [158].

Figure 2. Basic illustration of the SVM approach [158].

SVMs have been widely applied for damage identification and durability evaluation
in engineering materials, particularly composites. For instance, multi-support vector ma-
chines have been employed to classify damage in composite-reinforced natural fibers using
image-based features after anisotropic filtering, demonstrating superior accuracy compared
to conventional models [159]. In fiber-reinforced composites, nonlinear SVMs with kernel
functions have been used to detect damage more effectively by mapping small frequency
variations into higher dimensions, improving separation between undamaged and dam-
aged states [160]. Image-based SVM approaches further combine anisotropic diffusion
filtering, Fuzzy C-Means clustering, and Zernike moments to extract discriminative features,
achieving high accuracy in both global and local damage classification [161]. Moreover,
SVM has been applied to composite rotor blades, where vibratory hub loads derived from
aeroelastic simulations were used to classify damage stages and predict blade life, showing
robustness and practical applicability for prognostics in aerospace structures [162].

4.2. k-Nearest Neighbor (k-NN)

The k-NN algorithm is a non-parametric, instance-based ML method used for both
classification and regression tasks. Instead of building an explicit model, k-NN stores
training data and predicts outcomes based on the distance between a new data point and its
k-nearest neighbors in an n-dimensional space. Due to its simplicity, ease of implementation,
and minimal need for parameter tuning, k-NN has been widely applied in predicting the
mechanical properties of composite materials. However, k-NN also has limitations: its
performance degrades with high-dimensional data, it struggles to capture complex feature
relationships, and it can be computationally expensive on large datasets. Additionally,
selecting an optimal value for k remains a critical challenge that affects prediction accuracy.

Sharma et al. [163], used k-NN to predict the dynamic fracture toughness of glass-filled
polymer composites, reducing the need for complex and time-consuming experiments. The
model uses geometrical features (such as particle aspect ratio), along with time, dynamic
elastic modulus, and volume fraction as inputs. The k-NN algorithm achieved very good
accuracy in predicting fracture behavior (by estimating the dynamic fracture toughness and
its variation with material design and loading parameters), enabling efficient and accurate
toughness estimation.

From an optimization and real-world implementation perspective, the performance of
k-NN is highly sensitive to the selection of the neighborhood size (k) and the distance metric.
Small values of k may lead to overfitting, while large values may reduce sensitivity to local
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damage features [164,165]. In large DIC-based datasets, k-NN becomes computationally
expensive during the prediction stage since all training samples must be scanned, making
it unsuitable for real-time damage identification. In addition, its prediction accuracy
significantly degrades in the presence of noisy strain features unless proper dimensionality
reduction and feature scaling are applied.

4.3. Decision Tree

Decision tree models are widely used for classification and regression due to their
simplicity and interpretability. However, they are prone to overfitting, which can negatively
impact their predictive performance. To address this, ensemble learning techniques such as
Random Forest were introduced. Random forest regression combines multiple randomly
generated decision trees to improve accuracy and robustness. In addition to random
forest, boosting algorithms such as AdaBoost and XGBoost have been employed to further
enhance prediction accuracy. XGBoost, which uses gradient-boosting optimization, has also
proven highly effective, outperforming neural networks and other methods in predicting
the strength and ductility of advanced cementitious composites. Overall, decision tree-
based models are valued for their interpretability, scalability to large datasets, and relatively
low computational cost, though ensemble techniques are often necessary to overcome their
inherent limitations [42].

For real-world damage detection, Random Forest and XGBoost models offer im-
proved robustness against experimental noise and feature uncertainty compared to single
decision trees. Their optimization typically involves tuning the number of trees, tree
depth, and learning rate. While these ensemble methods provide high prediction ac-
curacy and are well-suited for large DIC-based feature sets, their computational cost
increases with model complexity, which can limit real-time implementation in high-speed
monitoring systems [20,165].

4.4. ANNs

In this section, conventional ML refers to algorithms that rely on manually engineered
features extracted from DIC displacement or strain fields (in contrast to DL models that
perform automatic feature extraction using multi-layer neural networks). Accordingly,
conventional ANNs with limited hidden layers and feature-based inputs are considered
conventional ML models in this review. ANNs represent one of the most widely used
supervised ML techniques, inspired by the structure and function of biological neural
networks. A typical ANN architecture is composed of three main layers: an input layer, one
or more hidden layers, and an output layer. The neurons in the input layer process input
features, while the neurons in the output layer generate predictions. Within the hidden
layers, each neuron collects input from the neurons in the preceding layer, integrates this
information, and performs a simple computation to produce its output [42].

ANNs are increasingly employed for predicting mechanical properties and damage
identification in composites due to their ability to capture complex nonlinear behavior.
Studies show their superior performance in estimating stress–strain relations, fracture
behavior, and damage evolution compared to conventional ML models. Applications in-
clude delamination prediction using FEM data [166], SHM of carbon fiber/epoxy laminates
through strain correlations [167], crack detection with laser ultrasonic signals achieving
over 99% accuracy [168], and optimized ANN architectures for vibration-based SHM of
glass fiber composites, reaching about 100% classification accuracy on limited laboratory
datasets. Despite their effectiveness, ANNs require large datasets and careful tuning to
avoid overfitting, which is commonly controlled through k-fold cross-validation, regular-

https://doi.org/10.3390/ma19010077

https://doi.org/10.3390/ma19010077


Materials 2026, 19, 77 12 of 45

ization strategies, and early stopping, as well as higher computational effort than methods
such as SVM or k-NN [169].

In addition to the widely adopted ML techniques discussed earlier, various other
methods have been utilized to predict damage in engineering materials, each offering dis-
tinct features and advantages. These include linear regression [170], logistic regression [78],
fuzzy logic approaches [171], neuro-fuzzy inference systems [172], extreme learning ma-
chines [173], and graph neural networks [174,175].

ANN performance depends strongly on the selection of network depth, number of
neurons, learning rate, and regularization strategies such as dropout and early stopping.
While ANNs can achieve high prediction accuracy for nonlinear damage behavior, their
training process is computationally more expensive than that of SVM and k-NN. In real-
time damage monitoring, lightweight ANN architectures are preferred to balance accuracy
and efficiency. Also, SVM exhibits strong generalization in low-dimensional feature spaces
but is highly sensitive to kernel selection and outliers in noisy DIC data. Random Forest
provides higher robustness to noise and nonlinear feature interactions but suffers from
reduced interpretability and bias under class imbalance. kNN offers conceptual simplicity
and fast training but shows poor scalability and strong sensitivity to feature normalization
and noise. Conventional ANN models enable nonlinear regression and classification but
require careful tuning to avoid overfitting on limited DIC datasets [16,20,164,165].

In classical ML-based DIC damage identification, severe class imbalance between
healthy and damaged samples represents a major source of biased learning, since undam-
aged states typically dominate experimental datasets. This imbalance directly affects SVM
decision boundaries, Random Forest voting behavior, and k-NN distance-based classifica-
tion and often requires cost-sensitive learning, class weighting, or resampling strategies to
ensure physically meaningful damage classification.

5. DL Methods for Damage Assessment
This section provides a brief overview of the most extensively studied and commonly

applied DL techniques for damage assessment in engineering materials.

5.1. CNNs

CNNs are widely used in DIC-based damage identification due to their strong ability
to extract spatial features directly from full-field strain and displacement data. In damage
assessment, CNNs are commonly applied to DIC-derived strain maps, displacement fields,
or stress distributions to perform crack detection, damage localization, and pixel-level
segmentation. CNNs, originally developed for tasks such as facial recognition and image
classification [176], have found broad applications in materials science with the rise in large-
scale databases. They are now widely used to predict the mechanical properties and damage
behavior of composites. For example, Yang et al. [177] combined principal component anal-
ysis with CNNs to predict stress–strain curves beyond elasticity, while other studies applied
CNNs to estimate stiffness, strength, toughness, and modulus [178,179]. CNNs have also
been integrated with optimization algorithms to improve microstructural design [179].

Applications extend to damage prediction, such as impact-induced delamination in
fiber-reinforced polymers (FRPs) [180], automated porosity segmentation in laminates
using X-ray micrographs with U-Net and FCDenseNet [181], and surface crack detection
in cementitious composites using CNNs [182]. Advanced models, like ECARNet, further
improved composite damage detection accuracy above 98% [183]. CNNs have also been
applied in steel-concrete composites for damage localization and severity assessment,
showing strong reliability [184]. Overall, CNNs provide accurate, efficient, and automated
tools for damage evaluation and material characterization. These studies demonstrate
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that CNN-based models can achieve high accuracy primarily under controlled laboratory
conditions with well-defined loading paths, stable illumination, and high-quality imaging
setups. CNN-based models trained on DIC strain fields primarily learn the nonlinear spatial
coupling between strain localization patterns, gradient intensification near crack tips, and
evolving damage fronts, rather than directly detecting physical material failure. Li and
Zhao [185] proposed a method for detecting cracks on concrete surfaces using CNN. Instead
of relying on traditional image processing techniques that require hand-crafted feature
extraction, the CNN automatically learns crack features from a large database of labeled
images. The authors trained and validated their model on 60,000 cropped images and
then tested it on high-resolution photos of real concrete structures. Their results confirmed
the strong practical applicability of CNNs for large-scale, real-world crack detection with
high robustness to surface texture variation and illumination conditions. As can be seen
in Figure 3, the authors illustrated the overall workflow of their crack detection method.
First, raw images of concrete surfaces are collected and cropped into smaller patches, which
are then manually classified as containing cracks or not. These labeled patches form the
training and validation datasets. The CNN is trained on this data to learn distinguishing
features of cracks and becomes a classifier capable of identifying them automatically. For
testing, a new large raw image is scanned using a sliding window, and each patch is
classified by the trained CNN. The results of these classifications are combined to generate
the final crack detection outcome on the full image.

Figure 3. CNN-based procedure for crack detection [185].

Ref. [186] introduced a supervised DL framework called StrainNet-LD, specifically
designed to estimate large displacement fields from image pairs. The model consists
of a CNN with a displacement-field decomposition module that separates rigid-body
motion and deformation. It is trained on synthetic datasets containing large and complex
deformations to improve robustness. StrainNet-LD takes reference and deformed speckle
images as input and directly outputs dense displacement fields, allowing subpixel accuracy
even under large strain conditions.

This method significantly improves the reliability of DIC for damage assessment under
large deformation and provides high-quality full-field deformation data for subsequent
ML-based damage analysis. From a computational efficiency standpoint, CNN-based
damage detection models require significant training time and GPU resources, especially
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for high-resolution DIC strain fields. However, once trained, their inference speed is typi-
cally fast enough for near real-time damage monitoring. Prediction accuracy is generally
superior to classical ML algorithms for image-based damage identification, often exceeding
95% in experimental studies under controlled laboratory conditions. The main advantages
of CNN-based damage identification include automatic feature extraction from complex
strain fields and high spatial resolution for crack localization. Nevertheless, CNN per-
formance is strongly dependent on the availability of large labeled datasets, high-quality
DIC measurements, and careful control of overfitting. In addition, limited generalization
to new loading conditions and the high computational cost of training remain important
challenges for practical engineering applications [187–189].

5.2. RNNs

RNNs and their advanced forms, such as long short-term memory (LSTM) and gated
recurrent units, are well-suited for time-dependent problems and path-dependent material
behavior. They have been applied to study anisotropic hardening and nonlinear plasticity
in composites [190,191]. In damage detection, Sahoo and Jena [192] used RNNs to identify
crack location and depth in graphene fiber-reinforced polymer (GFRP) beams from vibra-
tion data, achieving high accuracy. They used the first three natural frequencies obtained
from FEM simulations of 20 cracked beams. The model achieved high accuracy with less
than 2% error, but it was effective only for cracks large enough to noticeably reduce the
beam’s stiffness. Zhi et al. [193] developed an RNN optimized with an extreme learning
machine (ELM) to predict fatigue crack growth in aluminum alloys under variable load-
ing, demonstrating the capability to model dynamic crack behavior. The model used the
maximum and minimum cyclic stresses as inputs and the crack length as output. Feedback
loops in the RNN helped it remember previous crack lengths and capture how the crack
developed over time. From a physical viewpoint, RNN/LSTM architectures approximate
nonlinear, history-dependent crack growth and damage accumulation laws rather than
explicitly enforcing fracture mechanics-based models such as Paris-type relations (However,
long-sequence prediction using RNNs is prone to error accumulation and drift, particularly
when DIC or sensor-based time-series data are short, sparse, or noisy). The ELM method
made the training fast and accurate by efficiently adjusting the model weights. Using
experimental data from 2024-T351 aluminum alloy, the model accurately followed the
real crack growth, proving its ability to predict time-dependent crack behavior effectively.
Stocker et al. [194] integrated RNN-based constitutive models into FEM, improving soft-
ening and localization predictions for inelastic materials. Moreh et al. [195] proposed a
hybrid RNN-CNN model for crack detection in large structures, achieving ~79% accuracy
and demonstrating the potential of RNNs for SHM.

5.3. Autoencoder (AE)

AEs are feedforward neural networks that learn compressed data representations in
an unsupervised manner, offering computational efficiency compared to nonlinear kernel
principal component analysis. Recent studies have demonstrated their versatility in materi-
als engineering and SHM. Jung et al. [196] applied a 3D convolutional AE with Bayesian
optimization to design optimal microstructures, while Barile et al. [197] employed a deep
AE for automated damage classification in CFRP composites. Moustakidis et al. [198] used
an AE-based approach to compress acoustic emission signals, enabling accurate clustering
of damage states in FRP composites. Li et al. [199] proposed a mechanics-informed AE
for real-time SHM in civil infrastructure, and Shen et al. [200] integrated stacked denois-
ing AE and convolutional denoising AE for multidimensional feature fusion in turbine
blade crack detection. These works highlight the effectiveness of AEs in material design,
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automated damage detection, and SHM applications. However, excessive latent-space
compression in AEs may suppress fine-scale strain localization and crack-tip singularity
features, potentially leading to partial loss of mechanically critical damage information.

5.4. DBNs

DBNs are advanced neural architectures that use unsupervised learning across multi-
ple stacked layers. Each layer typically consists of smaller neural networks that are often
restricted Boltzmann machines. Also, while interlayer connections are present, nodes
within a single layer are not interconnected. This hierarchical structure enables DBNs to
effectively model complex data patterns and dependencies, making them suitable for fea-
ture learning, dimensionality reduction, and generative modeling. DBNs can be effectively
applied to damage identification by learning hierarchical and abstract representations of
sensor or image data. Through layer-wise unsupervised training (using Restricted Boltz-
mann Machines), DBNs automatically extract features that describe the normal behavior
of a structure or material. Once trained, the network can differentiate between normal
and defective states using supervised fine-tuning or by analyzing reconstruction errors
when inputs deviate from learned patterns. This approach allows DBNs to handle complex,
nonlinear, and high-dimensional data, such as vibration signals, ultrasonic waveforms,
thermographic images, or DIC strain fields. By capturing the statistical distribution of
“healthy” samples, DBNs can detect defects or anomalies like cracks, delaminations, or
voids even under noisy conditions. Their generative ability also makes them suitable for
anomaly detection, where defects are identified as samples that cannot be accurately re-
constructed by the model. It should be noted that, despite their hierarchical representation
capability, DBNs are currently less competitive than modern CNN and transformer-based
architectures for high-resolution DIC strain-field analysis due to training instability and
limited scalability [201–203].

5.5. GANs

GANs are a class of AI models designed to generate new data that closely resembles
existing datasets, based on the interaction of two competing neural networks (a generator
and a discriminator). Due to their ability to capture complex, high-dimensional distribu-
tions, GANs have gained increasing importance in materials science and SHM [204–206].
Jiang et al. [207] demonstrated their utility in inverse materials discovery, including compo-
sition design, processing optimization, crystal structure search, microstructure characteriza-
tion, and damage identification. Similarly, Buehler [208] introduced a cycle-consistent GAN
model capable of predicting atomistic stress fields from microstructures, thereby enabling
physics-guided structural analysis.

GANs have also been applied to fracture and fatigue analysis. For example, in geolog-
ical fracture networks, GANs have successfully reproduced realistic fracture geometries
beyond the capacity of traditional models [209], while in hydraulic fracturing, GAN-based
data augmentation addressed small-sample challenges, improving prediction accuracy
of reservoir performance [210]. Physics-informed GANs have been developed to expand
fatigue datasets, enhancing fatigue life prediction of 316L stainless steel by up to 91% [211].
In polymer composites, Helwing et al. [212] applied cycle-consistent GANs to generate
synthetic fatigue damage states in computed tomography (CT) scans of fiber-reinforced
polymers, enabling virtual damage augmentation and robust damage characterization.

More recent work has demonstrated GANs’ potential in NDT and damage identifi-
cation. Tian et al. [213] enhanced GAN loss functions for crack detection in electromag-
netic NDT, improving contrast and segmentation accuracy. Chen et al. [214] combined
GAN-based crack image generation with CNNs and DeepLabv3+, significantly boosting
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detection performance when real datasets were limited. Similarly, GAN-based frame
interpolation improved temporal resolution in laser welding, achieving near real-time
(GPU-accelerated, laboratory-scale) defect tracking with >99% accuracy [215]. Modified
GANs have also improved thermal image segmentation for crack detection in eddy current
pulsed thermography [216].

Beyond fracture and defect monitoring, GANs are used for advanced material design.
Yang et al. [217] integrated GANs with Bayesian optimization to improve microstructural
design efficiency, while Hsu et al. [218] generated realistic 3D microstructures of fuel cell
electrodes without requiring 3D imaging. Together, these studies illustrate how GANs
enable not only defect detection and monitoring but also data augmentation, microstructure
synthesis, and physics-informed material modeling, making them a powerful tool for next-
generation materials research.

5.6. Deep Transfer Learning (DTL)

Deep neural networks typically require large datasets and significant computational
resources for effective training. However, in many scientific domains, limited data avail-
ability presents a challenge. Deep Transfer Learning (DTL) addresses this issue by using
pre-trained models on large, generic datasets to extract transferable features, enabling
effective learning on smaller target datasets [201,219–223].

Recent studies of DTL in materials science demonstrate its importance. Dong et al. [224]
combined DTL with a deep ANN, genetic algorithm, and Bayesian optimization for design-
ing composite metal oxides, using the Magpie [225] descriptor. Li et al. [226], applied DTL
achieving high accuracy with five labeled images, while Jia et al. [227] further advanced
phase identification in superalloys.

Che et al. [228] developed a neural augmentation DTL model to improve fatigue
damage evaluation in aircraft structures with limited data, enabling robust crack length
prediction. Xiao et al. [229] used transfer learning with CNN and BP networks to predict
the low-cycle fatigue life of corroded bimetallic steel bars. Liu et al. [230] integrated
DTL with domain adaptation to transfer knowledge from simulations to experiments in
CFRP composites, reducing experimental effort while maintaining high detection accuracy.
Xu et al. [231] proposed a DTL-based model for CFRP health monitoring, mapping limited
signal data to damage categories with high accuracy. Li et al. [232] applied DTL to construct
allowable load spaces for notched laminates, improving generalization across design
variations. Zhao et al. [233] used DTL for real-time localization of damage in composites
from acoustic emission data, reaching 96.38% accuracy with reduced training time. Finally,
Yazdani et al. [234] introduced a hybrid DTL model that combines EfficientNet and ResNet
architectures to improve delamination detection in composite laminates using limited
vibration-based SHM data. In their method, vibration signals from piezoelectric sensors
were first converted into time-frequency scalogram images using the continuous wavelet
transform. These images captured both temporal and spectral features of the vibrations.
The hybrid model used EfficientNet to extract multi-scale spatial features efficiently, while
ResNet captured deeper hierarchical patterns through residual learning. The combined
model was fine-tuned on experimental data from composites with three health conditions
(healthy, D1, and D2 delamination). Results showed that the hybrid model achieved
higher accuracy and robustness than using either network alone, effectively identifying
delamination even with a small dataset.

DL models offer computationally powerful but conditionally reliable tools for defect
and anomaly identification across a variety of engineering and industrial applications.
CNNs and DBNs are mainly used for supervised classification of defect features, while
RNNs are effective for analyzing temporal data and identifying developing faults. AEs and
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GANs function primarily in an unsupervised manner, learning the normal system response
and detecting anomalies through deviations in reconstruction or discriminator outputs.
These models enable automatic feature learning and enhanced defect localization, while
their operational reliability remains strongly conditioned by data quality, domain shift,
physical consistency, and uncertainty-aware validation. Table 3 presents a summary of DL
methods for damage assessment in engineering materials.

Table 3. DL methods for damage assessment in engineering materials.

Method How Damage Is Assessed Key Advantages References

CNNs

CNNs automatically learn spatial
hierarchies of visual features directly
from image data. Networks trained on
labeled defect and non-defect images
can classify, segment, or localize defects
such as cracks, voids, and delamination.
Abnormal activation maps or probability
outputs highlight defect regions.

Excellent for spatial and texture
analysis, requires minimal
manual feature extraction,
achieves high accuracy for visual
inspection tasks.

[235]

RNNs

RNNs capture sequential and temporal
dependencies in time-series data. The
model learns normal sensor signal
patterns and identifies anomalies when
observed sequences deviate
from predictions.

Effective for real-time monitoring
and early fault detection, models
dynamic behavior and
degradation trends over time.

[236]

AEs

AEs are trained on healthy data to
reconstruct inputs. When presented with
defective data, the reconstruction error
increases and the residual map reveals
defect locations. Variational AEs also
provide probabilistic anomaly scores.

Fully unsupervised, sensitive to
subtle deviations, reconstruction
residuals visually indicate
defect regions.

[237]

DBNs

DBNs stack Restricted Boltzmann
Machines for hierarchical feature
learning. After unsupervised
pretraining on normal data, the network
is fine-tuned to classify defective versus
non-defective states based on extracted
deep features.

Learns deep nonlinear
representations, performs both
feature extraction and
classification, works effectively
with limited labeled data.

[238]

GANs

GANs are composed of a generator and
discriminator trained adversarially on
normal data. During testing, defective
samples yield higher reconstruction
errors or low discriminator confidence.
GANs are also used for data
augmentation by synthesizing realistic
defect images.

Highly effective in unsupervised
anomaly detection, can generate
synthetic defect samples to
balance datasets, detects subtle
texture irregularities.

[239]

DTL

DTL uses deep networks pre-trained on
large image datasets (such as ImageNet)
to transfer learned visual features such
as edges and textures. These models
(VGG, ResNet, EfficientNet) are
fine-tuned on small defect datasets,
enabling accurate defect classification or
segmentation with limited labeled data.

Reduces need for large labeled
data, accelerates training,
improves generalization to
unseen defect types and
imaging conditions.

[240]
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Overall, the selection of an appropriate ML/DL algorithm for damage identification
depends on the size and nature of the dataset, real-time requirements, and available
computational resources. SVM and k-NN are suitable for small datasets with engineered
features, offering low training cost but limited scalability. Decision Tree and ensemble
methods provide good interpretability and robustness for medium-sized datasets. In
contrast, CNNs and deep architectures achieve the highest accuracy for DIC-based image
and strain field analysis but require extensive optimization, large labeled datasets, and
high computational power. Therefore, real-world monitoring requires a careful balance
between accuracy, speed, and practical use [187,241].

Unlike conventional computer vision problems, DIC-based learning relies on physics-
driven displacement and strain fields that exhibit strong spatial continuity, scale depen-
dency, and sensitivity to experimental noise. These characteristics fundamentally dis-
tinguish DIC-ML integration from generic image-based damage detection and necessi-
tate dedicated data preprocessing, strain-aware network design, and physics-consistent
validation [20,157].

Despite the high predictive accuracy reported for many DL architectures, uncertainty
quantification is rarely addressed in current DIC-driven DL frameworks. Bayesian neu-
ral networks, Monte Carlo dropout, and ensemble-based uncertainty estimation provide
practical tools to quantify pixel-wise segmentation uncertainty in crack detection and confi-
dence bounds in damage-state classification from DIC strain maps, which is essential for
safety-critical SHM applications [16,242–244]. In future DIC-ML frameworks, uncertainty-
aware damage indices that combine pixel-wise segmentation probability with strain-field
confidence bounds are expected to play a key role in defining reliable decision thresholds
for safety-critical structures.

6. Use of DIC and ML for Damage Assessment
Wang et al. [245] developed an ML-assisted DIC framework for automated damage

detection in CFRP laminates. In their methodology, DIC was first employed to obtain
full-field surface strain distributions of specimens subjected to quasi-static tensile loading.
Since the performance of supervised semantic segmentation strongly depends on the
availability of large labeled datasets, finite element analysis (FEA) was utilized to generate
a sufficient number of strain field images with known damage states for the training and
validation phases (as shown in Figure 4). The use of FEA allowed efficient generation of
diverse damage scenarios with accurate ground-truth labels while significantly reducing
experimental cost and time, although this may introduce a simulation-to-experiment
domain shift when transferring trained models to real DIC measurements. The strain field
images obtained from FEA were normalized, resized, and labeled at the pixel level into three
semantic classes, namely background (healthy region), open-hole damage, and damage
initiation. These labeled images were then augmented through translation and reflection to
further increase dataset diversity and avoid overfitting. The augmented strain images were
subsequently used to train a DeepLabv3+ semantic segmentation model. The DeepLabv3+
architecture was composed of an encoder and a decoder. The encoder, based on a pre-
trained ResNet-50 backbone combined with an atrous spatial pyramid pooling (ASPP)
module, was used to extract high-level multiscale features from the strain field images. The
ASPP enabled the network to capture damage-related features at different spatial scales.
The decoder was then used to upsample the encoded feature maps and fuse them with
low-level spatial features in order to accurately recover the boundaries of damage regions at
the pixel level. The network was trained using the stochastic gradient descent optimization
algorithm by minimizing the prediction error between the segmented output and the
ground truth labels. After training, the experimental DIC strain field images, which had
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not been used in the training process, were fed into the trained network during the testing
phase. The trained model then produced pixel-level segmentation results that automatically
identified and localized damaged regions with high accuracy under controlled experimental
conditions and dataset-dependent robustness in the CFRP specimens.

Figure 4. Overview of the proposed ML-assisted DIC workflow for damage assessment used
in Ref. [245].

However, the uncertainty associated with DIC measurements (including speckle noise,
subset size dependency, and strain differentiation error) is implicitly transferred into the
ML prediction stage, yet most existing studies do not explicitly quantify or propagate this
uncertainty into the final damage decision.

ML for damage assessment using DIC focuses on recognizing, classifying, and predict-
ing the presence and evolution of damage within materials based on the spatial distribution
of strain and displacement fields. DIC provides full-field measurements of deformation,
which contain subtle indicators of material degradation long before visible cracks appear. By
applying ML, these complex patterns can be automatically analyzed to identify damaged re-
gions with accuracy that strongly depends on data quality, noise level, and training domain.
The general idea is to train an algorithm to distinguish between undamaged and damaged
states from DIC data. During experiments, DIC captures surface deformation maps of
specimens under different load levels. These strain fields are transformed into structured
data that serve as inputs to a learning model. Each map or subregion is labeled according
to whether damage exists (based on ground-truth observations from microscopy, X-ray,
or human inspection). The goal of the ML model is to learn the underlying patterns that
separate intact areas from damaged ones. Preprocessing the DIC data is a vital step. Noise
filtering and normalization ensure that variations due to lighting, speckle pattern density,
or camera noise do not mislead the model. Often, the DIC strain field is divided into smaller
subregions (patches) so that the model can analyze local deformation behavior. In each
subregion, features are extracted to represent the mechanical condition [20,165,245,246].
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Traditional feature-based methods compute descriptive statistics such as the mean,
standard deviation, and maximum strain, as well as spatial gradients, strain energy density,
or localized strain concentration factors. These engineered features transform complex
strain maps into lower-dimensional numerical representations suitable for classical ML
models. For damage identification using these feature-based approaches, algorithms such
as Support Vector Machines (SVM), Random Forests, Decision Trees, and Gradient Boosting
(XGBoost) are commonly employed. Compared with feature-based ML models such as
SVM, Random Forest, and XGBoost, CNN-based architectures operate directly on full-field
DIC strain maps without manual feature engineering, enabling pixel-level damage local-
ization. However, classical ML models remain computationally more efficient and better
suited for small DIC datasets with engineered strain descriptors. The SVM, for instance, can
effectively find nonlinear boundaries between damaged and undamaged states by using
kernel functions. Random Forests and XGBoost can handle large feature sets, manage noise,
and provide feature importance analysis, revealing which strain components are most
sensitive to damage initiation. These models are trained using labeled DIC datasets, where
the input features are strain-related descriptors and the output label is the damage class (for
example, healthy, minor damage, or severe damage). DL can become especially effective for
DIC-based damage identification. Instead of manually designing features, CNNs automati-
cally learn discriminative spatial patterns directly from DIC strain or displacement maps.
CNNs apply convolutional filters to extract hierarchical features that represent texture,
orientation, and concentration patterns linked to cracks or local stiffness loss. When the task
requires locating damage precisely, fully convolutional models such as U-Net or SegNet are
applied to produce pixel-level segmentation maps, indicating the exact regions of damage.
In DIC-based segmentation, severe class imbalance between damaged and undamaged
pixels represents a major learning challenge, often requiring weighted loss functions, focal
loss, or data resampling strategies to avoid biased predictions [20,165,245–248].

These networks can detect even microscopic cracks by recognizing the strain concen-
tration signatures characteristic of material failure. Training the model involves dividing
the DIC dataset into training, validation, and test subsets. The model parameters are
optimized to minimize a loss function (cross-entropy for classification or Dice/IoU loss
for segmentation) using algorithms such as Adam or stochastic gradient descent. Proper
regularization, dropout, and data augmentation (rotations, scaling, and brightness changes)
are used to improve generalization. Evaluation metrics such as accuracy, precision, recall,
the F1-score, and the area under the ROC curve are calculated to assess how well the trained
model identifies damage [20,247].

Interpretability remains important in damage identification. Feature-based models
allow examination of which strain features contribute most to predictions, helping engineers
link the model’s output to physical mechanisms of damage. DL models can be interpreted
using visualization tools such as Grad-CAM or saliency maps, which highlight the regions
of the strain field that influenced the model’s decision. This ensures that the model’s
reasoning aligns with mechanical understanding (for example, focusing on areas with
strain concentration or shear localization rather than irrelevant regions). ML enables near
real-time damage identification during DIC experiments depending on camera resolution,
strain computation speed, and network inference cost. Instead of manually inspecting strain
maps, the trained model can instantly flag regions of potential damage as the test progresses.
It should be noted that DIC-ML frameworks exhibit higher reliability for crack-driven and
strain-localization-dominated damage, whereas diffuse damage mechanisms such as micro-
void coalescence or subsurface delamination remain more challenging for surface-based
DIC sensing [16,242,247]. This capability enhances structural health monitoring, early
failure prediction, and quality control in materials testing. Ultimately, using DIC with ML
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transforms raw deformation measurements into intelligent diagnostic information, making
the process of damage identification faster, more objective, and more predictive.

DIC provides dense full-field displacement and strain measurements that fundamen-
tally differ from conventional grayscale images or low-dimensional sensor signals typically
used in structural health monitoring. These data exhibit strong spatial correlation, scale
dependency, and physics-driven continuity, which directly influence the learning behavior
of ML and DL models. Unlike natural images, DIC strain maps often contain noise induced
by speckle quality, lighting variation, and subset correlation errors, requiring dedicated
preprocessing such as spatial filtering, multiscale decomposition, or strain-window nor-
malization. Failure modes of DIC-ML systems include loss of strain continuity due to
poor speckle quality, over-smoothing of strain gradients during filtering, misclassification
under changing lighting conditions, and performance degradation under unseen loading
paths [20,157,249]. These limitations highlight the need for physics-informed constraints
and uncertainty-aware learning strategies.

From a learning perspective, DIC data enable pixel-level damage segmentation, strain-
gradient-based feature extraction, and crack-tip localization with subpixel resolution. CNN-
based architectures are particularly effective for capturing localized strain concentrations
and discontinuities associated with crack initiation and delamination. However, the physics-
driven nature of DIC fields also poses challenges, including strong class imbalance between
damaged and undamaged regions, sensitivity to experimental noise, and limited availability
of large labeled strain datasets. These DIC-specific constraints distinguish ML-based
damage identification from conventional vision-based object detection and necessitate
tailored network architectures and training strategies [157,187,250].

Furthermore, the temporal continuity of DIC measurements enables time-series learn-
ing for damage evolution and fatigue crack growth analysis. Recurrent models and tempo-
ral CNNs can exploit sequential strain-field information to predict damage progression,
offering a pathway toward physics-informed and prognostics-oriented DIC-ML integration.

To quantitatively evaluate the predictive capability and generalization performance
of DL-based DIC, Yang et al. [157] assessed their proposed Deep DIC framework using
synthetic speckle images with known ground-truth displacement and strain fields. Syn-
thetic datasets are commonly adopted in DL-based DIC studies because they provide fully
controlled deformation fields, allowing precise error quantification and systematic perfor-
mance assessment under different deformation levels. After training, the DisplacementNet
and StrainNet models were evaluated on an independent test set of 150 synthetic image
pairs that had not been used during either the training or validation stages, providing
an unbiased measure of the model’s predictive ability on unseen data. In addition to the
final evaluation on unseen samples, the study also examined the model’s accuracy on
the validation data used during training to better characterize its behavior across familiar
and unfamiliar deformation patterns. For the validation set, the displacement errors were
low—0.047 (maximum) and 0.024 pixels (average). The strain errors were similarly small,
with maximum and average values of 0.064% and 0.031%. When applied to the unseen
test data, the error levels increased moderately, as expected for entirely new deformation
fields. The maximum and average displacement errors rose to 0.083 and 0.038 pixels,
representing increases of about 76% and 58%. The strain errors increased to 0.085% and
0.041%, corresponding to increases of approximately 33% and 32% (absolute percent strain).
These results, visualized in Figure 5 through a bar-chart comparison, show that although
the test errors are slightly higher, all values remain low—within sub-pixel accuracy for
displacement and below 0.1% for strain. The close match between validation and test
performance indicates strong generalization and stable predictive accuracy of the Deep
DIC framework.
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To further examine the practical reliability of the method, Yang et al. [157] selected
two representative test cases corresponding to relatively small and large deformation lev-
els and compared the predicted displacement and strain fields with both the ground
truth and the results obtained from the commercial DIC software VIC-2D (v6, 2021,
Correlated Solutions, Inc., USA) (Test 1 represented a small but complex deformation case
with localized strain gradients and noticeable shear, while Test 2 corresponded to a large
and smooth tensile deformation with negligible shear.). For a fair comparison, both exam-
ples were processed in VIC-2D using a subset size of 7 pixels and a step size of 2 pixels.
Since the output resolution of VIC-2D is smaller than that of the original input images, the
VIC-2D results were interpolated to a resolution of 128 × 128 using MATLAB interpolation
functions interp2 to ensure consistency with the Deep DIC and ground-truth data. The
average prediction errors of the two displacement components and three strain components
were then computed for both Deep DIC and VIC-2D. The quantitative comparison of these
two approaches is presented in Table 4. The results show that the Deep DIC framework
achieves prediction accuracy comparable to, and in some components even better than, the
commercial VIC-2D software, particularly under large-deformation conditions. This superi-
ority is also quantified in Table 4, which reports the relative improvement (%) of Deep DIC
over VIC-2D. Specifically, Deep DIC reduces the displacement error by 76.9% and 86.1% for
the two displacement components in Test 1, and achieves 68.8%, 93.0%, and 48.7% improve-
ment for the three strain components. In the large-deformation Test 2, the improvements
are even more significant, with 85.5% and 81.9% reduction in the displacement-component
errors and 68.8%, 82.1%, and 58.4% enhancement in the strain-component accuracy. These
numerical results further confirm the advantage of Deep DIC in both small-complex and
large-simple deformation fields. It should be noted that Test 1 and Test 2 are not physi-
cal mechanical tests, but rather two synthetic deformation cases extracted from the test
dataset and used solely to evaluate the accuracy of Deep DIC under small-complex and
large-simple deformation patterns.
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Figure 5. Evaluation results of Deep DIC on both the validation and test datasets [157].
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Table 4. Relative improvement (%) of Deep DIC over VIC-2D in displacement and strain measure-
ments for two test cases (values calculated based on the data reported in Ref. [157].).

Average Displacement Average Strain

u v εxx εyy εxy

Test 1 76.9% 86.1% 68.8% 93.0% 48.7%

Test 2 85.5% 81.9% 68.8% 82.1% 58.4%

Although this section is organized based on material categories, it should be empha-
sized that this classification is not driven by differences in DIC data acquisition, since
surface morphology images and strain fields of both material systems are obtained using
identical optical principles. Rather, this categorization is mainly motivated by the distinct
failure mechanisms associated with different materials. Composite materials are commonly
characterized by matrix cracking, fiber breakage, and interlaminar delamination, whereas
metallic materials are dominated by crack initiation and propagation, fatigue damage,
and plastic strain localization. These different failure mechanisms give rise to character-
istic strain-field patterns in DIC measurements, which in turn affect the suitability and
performance of specific ML and DL models [245,246].

6.1. The Use of DIC and ML for Damage Assessment in Composites

For composite materials, DL models are mainly trained to recognize DIC-based strain
features associated with delamination, matrix cracking, fiber fracture, and barely visi-
ble impact damage, which typically produce discontinuous and highly heterogeneous
strain patterns. These materials, such as CFRPs and woven laminates, are widely used in
aerospace and structural systems for their high specific strength and designed anisotropy.
However, their complex damage mechanisms (fiber fracture, matrix cracking, delami-
nation, and barely visible impact damage) make traditional non-destructive methods
inadequate [71,251]. The use of DIC with ML emerges as an effective strategy for auto-
mated, high-resolution detection and interpretation of damage in these materials.

Several studies have highlighted the power of combining DIC-generated strain fields
with DL. Wang et al. [245] applied DeepLabv3+ for semantic segmentation of barely
visible impact damage in CFRPs. Chi et al. [186] introduced StrainNet-LD, a CNN-
based method that achieved subpixel accuracy and real-time large displacement analysis.
Cidade et al. [252] integrated ML with DIC to compute mode I fracture toughness in com-
posites. Ma et al. [253] and Niu et al. [254] improved DIC reliability under poor speckle
conditions using super-resolution CNNs and denoising models. Zhou et al. [255] demon-
strated that transformer-based models outperform CNNs in capturing anisotropic strain
fields, while Akgun et al. [256] combined stereo-DIC and CNNs to localize shear bands
and delamination in CFRP cylinders under compression-torsion. In Ref. [246], the trained
YOLOv5x model was deployed for online crack segmentation during tensile testing. As
the DIC system continuously generated Sigma maps during loading, these images were
fed into the neural network in real time. The model automatically segmented transverse
and longitudinal cracks, assigning bounding boxes and class labels with high accuracy
throughout the loading process. At the initial loading stage, when cracks were few and
clearly separated, the crack recognition and segmentation accuracy reached nearly 100%.
As loading progressed, the number and density of cracks increased and complex crack
intersections developed, which slightly reduced the prediction accuracy, however, the seg-
mentation performance consistently remained above 95%. After full training, the YOLOv5x
model achieved a mean average precision of 98.7%, with a transverse crack detection accu-
racy of about 99% and longitudinal crack accuracy of about 95%. These results confirmed
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that the DIC-YOLOv5x system functioned effectively as a real-time, non-contact structural
health monitoring tool. Using the ML-based crack segmentation results, the researchers per-
formed quantitative damage analysis by statistically tracking the crack number throughout
loading. The crack evolution curves were directly correlated with the mechanical response
of the composites. It was observed that the tangent modulus progressively decreased with
increasing surface crack density, confirming that surface crack accumulation governed
stiffness degradation. Furthermore, at final failure, specimens subjected to different aging
durations exhibited a similar total number of surface cracks, indicating that the damage
threshold was governed mainly by the periodic woven architecture rather than aging
time alone. Thus, DIC provides accurate full-field strain and damage data, while ML
enables automated crack identification, classification, and statistical quantification. Their
integration established a direct quantitative relationship between mechanical degradation
and real-time surface damage evolution, enabling true online failure monitoring of 3D
woven composites.

Table 5 summarizes recent studies on composites using ML with DIC for damage
assessment in composite materials.

Table 5. Overview of recent studies about composites using ML with DIC for damage identifica-
tion/detection in composite materials.

Ref. Type of
Anomaly Type of ML Specific ML

Algorithm Input to ML Output from
ML

Purpose of
Using ML

Purpose of
Using DIC

[245]

Damage in CFRP
laminates
(matrix crack,
fiber break,
delamination)

Supervised
Learning

Semantic Seg-
mentation
using
DeepLabV3+

DIC-based
strain field
images

Pixel-wise
damage
classification

Automate
detection and
localization
of different
types of
damage in
composites

Provide full-field
strain images for
model input and
damage
visualization

[186]

Not directly
damage-related
(supports
damage
assessment via
deformation)

Supervised
Learning

StrainNet-
LD (CNN
with
displacement
field decom-
position)

Image pairs:
reference and
deformed
speckle
patterns

Full-field
displacement
maps

To accurately
estimate
large dis-
placements
beyond
traditional
DIC limits

Provide
high-resolution
displacement
input under
large
deformation
conditions

[252]

Dynamic Mode I
fracture
(kink-band
propagation)

Supervised
Learning

Multilayer
Perceptron
(MLP) ANN

Strain
window,
domain
height/width
(DIC
parameters)

Relative
importance
(RI%) of
input
parameters

To evaluate
sensitivity of
fracture
toughness to
DIC setup
parameters

To obtain
full-field
displacement
and strain for
J-integral
calculation

[256]
Matrix cracking,
fiber breakage,
delamination

Supervised
Learning SVM

Acoustic
Emission
(AE) signal
features
(such as
frequency)

Predicted
damage type

To classify
and monitor
damage
progression
in real-time

To track onset
and evolution of
damage using
AE techniques

[246]
Transverse and
longitudinal
cracks

Supervised
Learning

YOLOv5x
(deep object
detection)

Sigma
distribution
maps from
DIC

Crack type,
segmenta-
tion, and
location

To perform
real-time
crack
classification
and segmen-
tation

To generate
strain and Sigma
fields sensitive to
crack formation
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Mechanics-informed neural networks trained on DIC strain fields [257] reproduced
anisotropic elastic responses with errors on the order of 10−4, showing how ML can
complement DIC for constitutive modeling. Beyond polymer composites, recent work
has extended DIC-ML combinations to hybrid and repaired systems. Gao and Deng [258]
studied mixed-mode fatigue in steel plates repaired with CFRP overlays, using DIC for full-
field strain tracking and ML for interpreting crack growth patterns. Their results showed
that CFRP reinforcement significantly delayed crack propagation and enhanced fatigue
life. Tian et al. [259] investigated steel-UHPC composite beams under flexural loading,
combining DIC with ML-enhanced acoustic emission analysis to detect interface cracking
and track progressive damage in real time. Song et al. [260] focused on pre-corroded
Al-Li alloys, for which ML models trained on DIC-derived features improved fatigue life
predictions compared to traditional empirical methods, while DIC provided insight into
crack initiation and localized deformation.

Together, these studies demonstrate that integrating DIC with ML not only enhances
the precision and robustness of damage detection in CFRPs and woven composites but also
extends to repaired metallic-composite systems and corroded alloys. This approach offers
powerful, data-driven tools for monitoring, predicting, and interpreting complex anomaly
processes across advanced composite structures.

These studies clearly demonstrate the value of combining DIC and ML for accurate,
automated, and early-stage damage identification in composite materials under diverse
mechanical loading conditions.

6.2. Using DIC and ML for Identification of Damage in Metallic Materials

For metallic materials, ML and DL techniques are primarily applied to detect crack
initiation, crack propagation, fatigue damage, and plastic strain localization, which gener-
ate relatively continuous and concentrated strain features in DIC fields. Metallic materials
such as aluminum alloys, steels, and stainless steels are essential to structural and trans-
portation systems but are highly susceptible to fatigue, plastic deformation, and residual
stress. The combination of DIC with ML has emerged as a powerful strategy for automated
damage identification, crack monitoring, and life prediction. Early work demonstrated
that DL models such as ParallelNets [261], ResNet [262], and U-Net [247,261] could achieve
sub-millimeter accuracy in crack tip localization and path segmentation. CNNs have also
been applied to extract stress–strain curves in stainless steels [263], detect bolt loosen-
ing in steel joints [264], and identify additive manufacturing damages in real-time with
>95% accuracy [265]. Expanding these applications, CNNs have been used for structural
health state classification with 99% accuracy [266], von Mises stress reconstruction under
biaxial loading [157], mixed-mode SIF extraction using brittle metal analogs [267], and
uncertainty-aware strain prediction [268]. Other advances include unsupervised CNNs for
direct displacement mapping [269], hybrid FEM-DIC models for internal stress prediction
in adhesives [270], and CNN-LSTM control systems for improving thermomechanical
forming processes [271].

In addition, generative and adaptive ML approaches have further expanded the use of
DIC. A physics-guided GAN was introduced to synthesize displacement fields constrained
by von Mises strain, improving data generation for crack models [272]. Self-supervised
learning models have enabled crack detection from 3D-DIC velocity data under heat distor-
tion and large deformations [273]. Gaussian Process Regression-based methods, such as
the Inflection Point Method (IPM), have been combined with line-based DIC to provide
smooth, automated crack length tracking in steels and aluminum alloys [274]. Regres-
sion models trained on normalized deformation profiles have been employed to predict
surface-breaking crack depth robustly across different geometries and load cases [275].
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DL models such as CrackNet have been used to localize crack tips in large-scale steel
plates under fatigue loading with high accuracy and minimal manual input [276]. Finally,
studies on thermo-mechanical fatigue in steels showed that combining DIC with ML im-
proves the characterization of short crack growth sensitivity to varying temperature-load
phase angles [277].

Overall, the combination of DIC with ML (from supervised and unsupervised CNNs
to generative and regression-based models) has significantly advanced the identification of
damage in metallic materials. These approaches not only improve accuracy and automation
in crack monitoring but also extend to stress reconstruction, structural health classification,
process optimization, and lifetime prediction, underscoring their growing importance in
next-generation SHM systems. Strohmann et al. [247] proposed an automated method
for detecting fatigue crack paths and crack tip positions by combining DIC with a CNN.
Fatigue crack propagation experiments were conducted on AA2024-T3 aluminum alloy
specimens, and full-field displacement data obtained from DIC were used as direct inputs
to a U-Net-type CNN for segmenting the crack path and crack tip. The network was trained
using manually labeled experimental data and additional displacement fields generated
by finite element simulations. The trained model accurately reproduced crack growth
(a-N) curves and reliably detected crack evolution for specimens with different geometries.
The mean crack-tip position error remained below 0.5 mm for the main specimen and
about 3-4 mm for a different specimen. They concluded that ML enabled fully automated,
objective crack tracking directly from displacement fields, significantly reducing manual
post-processing and improving robustness against optical noise.

These studies collectively highlight the growing potential of DIC-ML systems in
monitoring, diagnosing, and predicting failure in metallic structures under a wide range
of loading and environmental conditions. In the following, a summary of some studies
reviewed in this section is presented in Table 6:

Table 6. Overview of recent studies using ML with DIC for damage assessment in metallic materials.

Purpose ML Approach Typical Inputs from DIC ML Output/Purpose References

Crack detection and
localization

Supervised (CNN, U-Net,
FNN)

Full-field strain or
displacement maps

Crack position,
segmentation mask,
bounding box

[261,264,266,267,276,278]

Crack propagation and
monitoring

Sequential/time-based
(RNN, regression)

Strain evolution over
cycles, crack length history

Crack growth trend,
initiation point prediction [247,266,273,277]

Anomaly detection Unsupervised (K-means,
clustering)

Maximum shear strain,
correlation maps

Crack path segmentation,
damage clustering [247,269,273]

Stress or material property
estimation

Supervised/Unsupervised
(ANN, Physics-informed
CNN)

2D/3D displacement
fields

Internal stress field,
material inhomogeneity
mapping

[269,270,274]

Physics-informed
ML/Synthetic data
generation

PG-cGAN, PG-GAN,
mechanics-informed CNN

Displacement or strain
with physics constraints

Realistic or
physics-consistent
strain/displacement fields

[272,279]

Support for numerical
modeling/inverse analysis Physics-based ML + DIC Boundary input

displacement fields

Data generation for model
calibration or FEM
updates

[272,279]

6.3. Other Engineering Materials

Beyond composites, metals, and graded structures, the dominant damage characteris-
tics (such as tensile crack initiation, mixed-mode crack propagation, porosity formation,
and distributed microcracking) govern the feature patterns observed in DIC strain fields
and therefore determine the suitability of specific ML architectures, particularly DL models,
rather than the material class itself. In these materials, the combination of DIC with ML has
been extended to a wide range of engineering materials, including sandstone, asphalt, con-
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crete, cement-based systems, and even biological tissues, where heterogeneous deformation
and complex crack evolution pose major challenges for traditional inspection methods. In
additive manufacturing, Gaussian Process Regression has been used to optimize Laser Pow-
der Bed Fusion parameters for metal matrix composites, improving strength and reducing
damages with limited experimental datasets [280]. DL approaches, such as U-Net, YOLO,
and Mask R-CNN, have been trained on thermal, X-ray, or infrared data to detect porosity,
spatter, and melt pool irregularities in real-time [281], while YOLOv5x achieved >92%
accuracy in detecting powder bed anomalies [282].

Zhang et al. [267] studied a novel method for the automatic identification of cracks
and crack tips in sandstone by combining a DL model (U-Net) with the DIC technique.
According to the authors, the overall workflow of the ML procedure used for crack segmen-
tation and detection can be seen in Figure 6. The process begins with building a databank
of images collected from three-point bending experiments. These images were captured
continuously by a CCD camera during the loading of semi-circular sandstone specimens,
showing the gradual propagation of cracks. The databank was then divided into two parts:
a training set and a validation and testing set. Before training, the images in the training
set were preprocessed to enhance their quality and diversity. The preprocessing included
random clipping, where large original images were cropped into smaller regions to increase
the number of training samples and allow the model to learn local crack features. Random
rotation was also applied to the images so that the model could become robust to cracks
of different orientations. In addition, histogram equalization was used to improve con-
trast and make cracks more distinguishable from the background. Each input image was
paired with a manually labeled ground-truth image, in which the cracks were marked in
white and the background in black. These paired datasets formed the input-label structure
required for supervised training. The prepared dataset was then provided as input to a
convolutional neural network, specifically a U-Net architecture. The CNN received the
preprocessed image as input and produced a predicted segmentation map as output. The
predicted output was compared with the labeled ground truth, and the difference between
the two generated a loss value. This loss function guided the backpropagation process to
iteratively adjust the model’s weights, gradually improving the network’s ability to identify
cracks accurately. Through repeated training cycles, the model learned to distinguish crack
pixels from background noise and achieved high segmentation accuracy. After training, the
model was validated and tested using the separate validation set. During this stage, unseen
images were input into the trained CNN model to evaluate its performance. The output
was a binary segmentation image showing the detected crack as a white region against a
black background. The comparison between the predicted and actual crack shapes verified
the model’s effectiveness.

In three-point bending experiments, semi-circular specimens with different crack incli-
nation angles (0◦, 15◦, 30◦, 45◦, and 60◦) were tested. The surfaces of the specimens were
coated with a random speckle pattern, and during loading, a CCD camera continuously
captured sequential images of the specimen surface. The DIC method compared the de-
formation of these speckles in images taken before and after loading, thereby extracting
the surface displacement and strain fields. To detect cracks automatically, a U-Net convo-
lutional neural network was trained to recognize cracks in the DIC images. The training
dataset consisted of preprocessed images enhanced by histogram equalization and manu-
ally labeled cracks. After training, the U-Net achieved an accuracy of approximately 99%,
successfully distinguishing crack pixels from the background and automatically identifying
the crack tip position in each frame. The coordinates of these crack tips were then used
to analyze crack growth behavior over time and to calculate the stress intensity factors
(SIFs) for Modes I and II. The U-Net output data were used together with the DIC results to
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perform stress analysis. The automatically identified crack tip coordinates were substituted
into the stress field equations based on the Williams expansion to obtain the corresponding
SIF values for each crack angle and loading stage. The results showed that for smaller
crack angles (0◦ and 15◦), the crack propagated primarily under tensile Mode I. At medium
angles (30◦ and 45◦), the propagation exhibited mixed-mode (I-II) behavior, and at 60◦,
the crack growth was dominated by shear Mode II. Figure 7 presents the variations in
the critical load for different crack inclination angles. In this figure, the curves derived
from the U-Net model are compared with experimental data. The strong overlap between
the two curves demonstrates that the model’s predictions closely match the experimental
results, indirectly confirming the high accuracy of the U-Net in identifying crack tips and
determining the critical load.

 

Figure 6. ML based damage segmentation workflow [267].

Figure 7. Comparison of ML and experimental results for critical loads versus crack dip angles [267].

Similarly, ML models trained on temporal DIC strain sequences detected early asphalt
crack initiation up to 25% faster than visual inspection [283]. Comparative studies [284]
confirmed the advantage of DL-based crack segmentation, with pretrained TransNet mod-
els significantly improving precision compared to thresholding. In concrete structures,
Gharehbaghi et al. [189] achieved 92.6% detection accuracy using R-CNNs on 2D-DIC
strain fields of reinforced beams under heavy loads, while Zhu et al. [285] introduced a
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panoramic multi-camera DIC system combined with ML-based classification to monitor
large-scale concrete beams, achieving accurate crack localization across wide fields of view.

Extending beyond conventional engineering materials, Tragoudas et al. [286] applied
DIC and a DL model (attention residual U-Net with Monte Carlo dropout) to vascular tissue
fracture analysis. Using porcine aorta specimens under compact tension loading, their
method replicated high-resolution DIC displacement fields and enabled automated crack
evolution tracking, even under noisy and limited data conditions. Notably, the approach
supported inverse identification of fracture parameters for FEM simulations, highlighting
the potential of DIC-ML combinations for biomedical fracture mechanics.

These studies show that coupling DIC with ML enables accurate, automated, and scal-
able crack identification across diverse materials (from AM alloys and asphalt pavements
to reinforced concrete and vascular tissues) and highlight its growing importance in SHM
and other applications.

Considering the previous studies reviewed in this paper, the proportion of papers that
investigated damage using ML and DIC in metallic, composite, and other materials can be
compared and depicted in Figure 8. From this figure, it can be noticed that metallic materi-
als represent the largest portion (≈58.6%) of studies combining ML and DIC because metals
are the most extensively used materials in engineering structures, and their fatigue, crack
initiation, and fracture behaviors have been studied for decades. The large amount of exper-
imental data available and the relatively straightforward surface preparation make it easier
to apply DIC and train ML models accurately. Metals also play an important role in SHM,
which motivates researchers to adopt ML-DIC systems for automated crack identification,
stress reconstruction, and fatigue life prediction. In addition, other engineering materials,
such as concrete, rock, asphalt, and biological tissues, account for about 24.1%. Their share
is growing because DIC is particularly useful for brittle or heterogeneous materials, where
conventional sensors fail to capture full-field deformation. However, these materials often
exhibit complex and irregular fracture patterns, and collecting consistent data is more
difficult, which limits the number of available studies. Finally, composite materials make
up the smallest proportion (≈17.2%) due to the complexity of their microstructures and
anisotropic behavior. Applying DIC on composites requires high-quality speckle patterns
and careful experimental setups, and their heterogeneous strain fields generate noisy data
that are challenging for ML algorithms to interpret. Using ML-DIC for composites is a
rapidly advancing field, especially with the rise in DL and semantic segmentation models
for identifying delamination and fiber breakage.

Figure 8. Proportion of materials used in this review paper employing ML with DIC for
damage assessment.

ML techniques have recently been widely integrated with full-field experimental
measurement methods to enable automated and quantitative damage analysis in materials
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and structures. Among these techniques, DIC has emerged as a key experimental tool for
providing physically meaningful displacement and strain data for data-driven damage
detection. The reviewed studies clearly indicate that the success, accuracy, and physical
reliability of ML-based damage analysis are fundamentally dependent on the availability of
high-quality DIC measurements. In ref. [246] without the use of DIC, real-time monitoring
of crack initiation and progressive damage evolution would not have been possible, and
the damage-sensitive Sigma parameter used as the primary input to the YOLO model
would not have been available. Consequently, early microcrack detection, the quantitative
correlation between stiffness degradation and crack accumulation, and the high prediction
accuracy of the DL model would have been severely compromised. This dependence on
DIC is consistent with ref. [245], where the deep-learning-based semantic segmentation
framework relied entirely on DIC-derived full-field strain maps. Without these data,
damage initiation based on strain singularities and the detection of barely visible damage
would not have been feasible, and the analysis would have been limited to post-damage
visual inspection rather than true, online structural health monitoring.

A similar level of dependence on DIC was observed in ref. [157], in which both
displacement and strain fields were learned directly from speckle image pairs acquired
during deformation. All key capabilities of the framework, including end-to-end full-field
prediction, direct strain estimation without numerical differentiation, and adaptive region-
of-interest tracking, were fundamentally rooted in DIC imaging. Without DIC, the physical
validity of the deformation predictions and their verification against commercial systems
would not have been possible. Beyond damage localization, DIC also played a decisive
role in fracture mechanics-based ML applications. In ref. [252], full-field displacement
and strain data obtained by DIC were essential for the experimental evaluation of the
dynamic J-Integral and for the direct determination of dynamic fracture toughness under
high strain-rate loading. Without DIC, both the validation of the inertia-sensitive J-Integral
formulation and the ML-based sensitivity analysis of DIC parameters would have been
infeasible, reducing the study to indirect or simulation-based estimations.

In ref. [247], the CNN for automatic crack path and crack tip detection relied exclu-
sively on DIC-measured displacement fields rather than surface appearance. This allowed
automated construction of crack growth (a-N) curves and validation against fracture me-
chanics parameters. Without DIC, the approach would have reverted to noise-sensitive,
purely visual crack detection, and quantitative fatigue crack monitoring would not have
been achievable. Finally, in ref. [284], DIC-derived maximum principal strain maps formed
the basis of both threshold-based and deep-learning-based crack segmentation. Without
DIC, strain-based crack detection, the comparison between conventional thresholding and
DL, and the physics-based evaluation of crack maps for structural damage assessment
would not have been possible, restricting the analysis to purely visual crack identification.
Overall, these studies consistently demonstrate that DIC is not merely an auxiliary imaging
technique but a core experimental enabler that supplies physically grounded inputs for
ML. The integration of ML with DIC transforms damage assessment from a subjective,
visual procedure into a quantitative, full-field, and physics-based analysis framework.
Without DIC, most ML approaches reviewed here would lose their physical relevance and
be reduced to qualitative inspection tools with limited reliability.

On the other hand, not all ML-based damage analysis studies have relied on DIC
measurements because the research objectives did not require full-field experimental dis-
placement or strain measurements. For instance, in ref. [287], crack detection was performed
using only statistical texture features extracted from surface images, and the goal was to
achieve fast and robust visual crack onset classification without dealing with correlation-
related uncertainties of DIC. Therefore, the methodology was purposely designed as a
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purely image-based framework. Likewise, in ref. [97], the entire analysis was conducted in
a purely numerical context using phase-field fracture simulations, and ML was applied as
a surrogate model to accelerate computationally expensive crack propagation predictions.
Since all data were generated numerically and no experimental measurements were in-
volved, the use of DIC was not required for the intended analysis. However, the absence of
DIC in both studies also limited the physical interpretation of their results. If DIC had been
employed, ref. [287] could have enabled early crack detection based on strain localization
rather than surface appearance alone and allowed quantitative crack growth tracking.
In ref. [97], the incorporation of DIC would have provided experimental validation of the
ML-based crack propagation predictions under real loading conditions. Thus, although
DIC was not necessary for the original objectives of these works, its integration could have
significantly enhanced the physical relevance and experimental validation of their ML-
based damage analyses. Also, in [71], DIC was not employed because the primary objective
was limited to the detection and geometric characterization of visible surface cracks using
conventional optical images and DL. The methodology was intentionally designed as a
purely image-based framework, in which crack features were extracted directly from RGB
or grayscale images without the need for full-field displacement or strain measurements.
Since no continuous loading history, displacement tracking, or strain-based damage in-
dicators were required for the proposed analysis, the use of DIC was not necessary for
achieving the intended objectives of the study.

It should be noted that the apparent separation between composite, metallic, and other
materials in this section is essentially driven by their dominant failure characteristics rather
than by differences in DIC imaging itself. From a data-driven perspective, ML architectures,
particularly DL models, are therefore selected according to the specific damage features
to be identified (for example delamination versus crack growth), independent of the
material category.

7. Observation, Challenges, and Future Research Directions
AI-based approaches have demonstrated promising results, offering valuable insights

in modeling the mechanical behavior of composites. Traditional ML methods, such as SVM
and ANNs, have shown strong predictive accuracy, often aligning well with experimental
data and simulations. These models can effectively learn from limited data and capture
complex, nonlinear relationships without prior assumptions. Table 7 summarizes the
strengths and limitations of common traditional ML techniques used in this domain.
Although traditional ML methods have achieved promising results, they still face some
drawbacks when applied to composite materials. They depend heavily on manual feature
design, have limited ability to capture complex material behavior, and their multi-step
process often lowers overall accuracy and efficiency.

Table 7. Traditional ML techniques versus their advantages and disadvantages.

ML Technique Advantage Disadvantage

SVM
Provides high accuracy and speed for smaller
datasets, handles high-dimensional data
effectively, memory usage is relatively efficient.

Not efficient for very large datasets, struggles
with noisy data.

K-NN
Simple structure, easy to implement, robust to
noisy data, supported by a well-established
theoretical foundation.

Slow when dealing with large datasets,
computationally demanding, poor results with
high-dimensional data, requires considerable
storage, sensitive to the choice of k.
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Table 7. Cont.

ML Technique Advantage Disadvantage

Decision Tree Easy to interpret and explain, results can be
visualized clearly.

Easily prone to overfitting, training can take
longer, may require additional domain
knowledge.

Random Forest
Simple to understand, computationally
inexpensive, performs well on
high-dimensional datasets.

Can still be prone to overfitting.

ANN

Capable of parallel data processing, high
prediction accuracy and fast performance,
effective at modeling complex nonlinear
relationships, works well with larger datasets.

Requires heavy computation, risk of overfitting
on small datasets, often criticized for being a
‘black box’ with low transparency.

DL methods, a specialized branch of ML, have attracted significant interest for their
ability to automatically extract features from nonlinear, multi-dimensional material data.
These methods have been successfully applied to predict the mechanical properties of com-
posite materials. Table 8 outlines the key advantages and limitations of DL techniques in
this context, helping researchers select appropriate methods for their specific applications.

Table 8. Advantages and disadvantages of DL and traditional ML methods.

DL Method Advantages Disadvantages

CNN

Well suited for analyzing multi-dimensional
data, especially images. Very effective at
feature extraction and strong in local feature
detection.

Complex design that requires long training
time. Needs large training datasets and is
prone to overfitting.

RNN
Good for sequential and time-series data. Can
effectively capture temporal changes and
patterns.

Training and implementation are challenging
due to their complex structure.

AE
Simple to implement and computationally
efficient. Capable of learning rich and
compressed representations.

Needs large datasets for training. Performance
decreases when noise dominates or when
errors appear in the early layers.

DBN

Effective with complex data, even without
extensive preprocessing. Can extract high-level
features and reduce dependency on labeled
data.

Training is slow and computationally heavy
due to complex initialization. Inference with
multiple hidden layers can be difficult.

GAN Powerful for generating synthetic data from
limited training samples.

Difficult to optimize. Data generation is limited
when training data are scarce.

Despite the rapid progress of DIC-ML integration, most existing studies still rely
on case-specific training with limited generalization capability. It has been widely re-
ported that supervised ML and DL models trained with inherently limited experimental
damage datasets often suffer from poor robustness and weak transferability to unseen
conditions [187,288]. Moreover, the majority of reported DIC-based damage identifica-
tion models are developed and validated under controlled laboratory loading, speckle,
and imaging conditions, which significantly restricts their applicability to real-world field
environments [289]. In addition, only a limited number of studies explicitly incorporate
physical constraints such as strain compatibility, energy balance, or fracture mechanics
into the learning process. As highlighted by recent physics-informed ML research, purely
data-driven models tend to overfit and show inferior generalization compared to hybrid
physics-ML frameworks [288]. These findings reveal a critical gap between current data-
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driven DIC-ML studies and truly physics-informed damage diagnostics, emphasizing the
urgent need for hybrid experimental-mechanics-based DL models.

Overall, AI-based approaches including both ML and DL play an essential role in
damage identification for engineering materials. ML methods are effective when working
with smaller datasets and offer greater interpretability, while DL excels with large, complex
datasets by automating feature extraction and capturing intricate relationships.

Traditional ML methods are generally well suited for smaller datasets, offering reliable
accuracy with reduced training times and efficient CPU utilization. However, they often
face limitations when dealing with high dimensional data, as careful preprocessing and
feature engineering are usually required to achieve satisfactory performance. In contrast,
DL techniques demonstrate strong performance with large scale datasets by automatically
extracting relevant features without the need for extensive preprocessing. Despite these
advantages, DL approaches demand significant computational resources, typically requir-
ing Graphics Processing Unit (GPU) acceleration, and rely on highly complex architectures
that can be difficult to interpret.

Although ML and DL techniques show great potential for predicting composite ma-
terial properties, several key challenges remain in this evolving interdisciplinary field.
First, data availability and quality are major concerns. High-quality and different datasets
are essential for training accurate AI models. However, their availability is often limited
by proprietary restrictions, high costs, or inconsistencies in experimental methodologies.
Variations in data formats, measurement techniques, and reporting standards can introduce
noise and reduce model reliability. Second, model development and optimization present
technical challenges. Designing DL architectures involves complex hyperparameter tuning,
with no standard guidelines available. Moreover, many DL models lack interpretability,
making it difficult to understand the features driving predictions. Third, generalizability is
an ongoing issue. Models trained on specific datasets often struggle to perform well across
different material systems, fabrication methods, and environmental conditions. Further-
more, experimental validation remains essential to ensure model reliability, adding time
and resource requirements.

To address these challenges, several research opportunities are proposed: Data aug-
mentation using physics-based simulations, GANs, and domain knowledge to enrich
training datasets; Hybrid modeling that integrates AI with physic-based approaches to
improve accuracy and interpretability; Multi-scale modeling to capture material behavior
across micro to macro scales; Explainable AI techniques to increase model transparency
and trust; Collaboration with experimentalists for validation and model refinement.

Additionally, the combination of DIC with FEM and the incorporation of ML demon-
strate the future direction of fully automated and data-driven DIC systems [290].

Future research on DIC-based ML for damage assessment should focus on three key
directions: (i) the development of physics-informed DL models that explicitly incorpo-
rate strain compatibility, fracture criteria, and energy-based damage indicators; (ii) the
creation of open benchmark DIC datasets with standardized loading conditions to improve
model generalization and reproducibility; and (iii) the integration of real-time DIC with
lightweight DL architectures for in situ structural health monitoring. These developments
are essential to move DIC-ML approaches from laboratory demonstrations toward robust
engineering deployment.

8. Conclusions
This review examines the integration of DIC with ML techniques for damage identifica-

tion in engineering materials, highlighting the role of full-field displacement and strain data
as physically meaningful indicators of damage initiation and evolution. Compared with
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conventional vision-based inspection methods that rely primarily on surface appearance,
DIC-based approaches provide mechanics-driven information (such as strain localization,
displacement discontinuities, and gradient intensification) enabling physics-informed and
quantitative damage assessment.

The reviewed literature indicates that conventional ML methods (including SVM,
k-NN, Random Forest, and feature-based ANNs) remain effective for small- to medium-
sized DIC datasets. Several studies report classification accuracies in the range of 85–95%
when physically motivated strain descriptors are carefully designed and evaluated under
controlled experimental conditions. These methods offer advantages in interpretability,
computational efficiency, and robustness under limited data availability, making them
suitable for laboratory-scale studies. However, their performance is strongly dependent
on feature selection and preprocessing, and their scalability is limited when applied to
high-resolution, full-field DIC strain data.

In contrast, DL-based approaches, particularly CNN-based and fully convolutional
architectures (for example, U-Net and DeepLabv3+), demonstrate superior capability in
learning complex spatial damage patterns directly from DIC strain fields. Under controlled
experimental conditions, these models frequently report damage detection and segmenta-
tion accuracies exceeding 95%, with pixel-level crack localization accuracies approaching
98%. Several studies further indicate that DL models can identify damage initiation sig-
nificantly earlier than visual inspection, by detecting strain localization patterns prior to
visible crack formation, while temporal models (for example, RNNs and LSTMs) enable
fatigue crack growth prediction with crack-length estimation errors typically below 2–5%
in controlled datasets.

Overall, this review highlights that the reliability of ML-assisted DIC is fundamen-
tally governed by DIC data quality, with noise amplification during strain differentiation,
sensitivity to speckle quality and lighting conditions, and class imbalance remaining key
challenges. Although high accuracies are commonly reported, noticeable performance
degradation has been observed under unseen loading conditions or increased noise levels,
and uncertainty quantification is still rarely addressed. Nevertheless, the numerical evi-
dence confirms that ML-DIC integration enables earlier, more accurate, and more spatially
resolved damage assessment than traditional approaches.
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264. Ziaja, D.; Turoń, B.; Miller, B. Detection of Anomaly in a Pretensioned Bolted Beam-to-Column Connection Node Using Digital
Image Correlation and Neural Networks. Appl. Sci. 2020, 10, 2400. [CrossRef]

265. Zhao, J.; Zihan, Y.; Qingpeng, C.; Chen, Z.; Jianhui, Z.; Guoqing, Z.; Fang, D.; Liu, S. Real-time detection of powder bed defects in
laser powder bed fusion using deep learning on 3D point clouds. Virtual Phys. Prototyp. 2025, 20, e2449171. [CrossRef]

266. Teng, S.; Chen, G.; Wang, S.; Zhang, J.; Sun, X. Digital image correlation-based structural state detection through deep learning.
Front. Struct. Civ. Eng. 2022, 16, 45–56. [CrossRef]

https://doi.org/10.3390/ma19010077

https://doi.org/10.3390/app122110754
https://doi.org/10.1016/j.rineng.2022.100657
https://doi.org/10.1016/j.ress.2023.109547
https://doi.org/10.1016/j.ress.2024.110386
https://doi.org/10.1016/j.ijmecsci.2022.107529
https://doi.org/10.1016/j.engfailanal.2025.109484
https://doi.org/10.1111/ffe.13433
https://doi.org/10.3390/s23177445
https://www.ncbi.nlm.nih.gov/pubmed/37687901
https://doi.org/10.1016/j.optlastec.2025.113138
https://doi.org/10.3390/pr13010215
https://doi.org/10.3390/jcs7110468
https://doi.org/10.1016/j.compstruct.2018.11.089
https://doi.org/10.1016/j.optlastec.2024.111746
https://doi.org/10.1016/j.optlaseng.2024.108568
https://doi.org/10.1016/j.compstruct.2024.118829
https://doi.org/10.1016/j.jmps.2025.106051
https://doi.org/10.1016/j.tws.2025.113630
https://doi.org/10.1016/j.jcsr.2024.109163
https://doi.org/10.1016/j.engfailanal.2025.109881
https://doi.org/10.1038/s41598-022-13275-1
https://doi.org/10.3390/pr10081599
https://doi.org/10.1088/1361-6501/ab29d5
https://doi.org/10.3390/app10072400
https://doi.org/10.1080/17452759.2024.2449171
https://doi.org/10.1007/s11709-021-0777-x
https://doi.org/10.3390/ma19010077


Materials 2026, 19, 77 45 of 45

267. Li, Y.; Ni, T.; Zhang, F.; Li, Y.; Zuo, J.; Zhao, S. U-Net learning for the automatic identification of the sandstone crack tip position
to determine mixed-mode stress intensity factors utilizing digital image correlation method. Theor. Appl. Fract. Mech. 2023,
127, 104028. [CrossRef]

268. Gulgec, N.S.; Martin, T.; Pakzad, S.N. Uncertainty quantification in digital image correlation for experimental evaluation of deep
learning based damage diagnostic. Struct. Infrastruct. Eng. 2021, 17, 1459–1473. [CrossRef]

269. Cheng, X.; Ma, Q.; Zhou, S.; Guo, L.; Ma, S. Using unsupervised learning based convolutional neural networks to solve Digital
Image Correlation. Opt. Laser Technol. 2025, 180, 111414. [CrossRef]

270. Yang, H.; Gao, F.; Zhang, L.; Xia, H.; Liu, J.; Ao, X.; Li, D.; Wang, Y. Stress field identification using deep learning and
three-dimensional digital image correlation. Measurement 2025, 244, 116517. [CrossRef]

271. Dear, J.; Zhang, R.; Shi, Z.; Lin, J. A novel data-driven machine learning approach for improved strain rate control in thermome-
chanical testing of sheet metals. Eng. Appl. Artif. Intell. 2025, 151, 110746. [CrossRef]

272. Melching, D.; Schultheis, E.; Breitbarth, E. Generating artificial displacement data of cracked specimen using physics-guided
adversarial networks. Mach. Learn. Sci. Technol. 2023, 4, 045063. [CrossRef]

273. Holzmond, O.; Roache, D.C.; Price, M.C.; Walters, J.L.; Maier, B.R.; Li, X. Enhancing Crack Detection in Critical Structures Using
Machine Learning and 3D Digital Image Correlation. Exp. Mech. 2024, 64, 1369–1380. [CrossRef]

274. Ščerba, B.; Adamec, T.; Pokorný, P.; Návrat, T.; Vajdák, M.; Náhlík, L. Inflection point principle combined with digital image
correlation and machine learning for crack length measurement in fatigue tests. Theor. Appl. Fract. Mech. 2025, 139, 105052.
[CrossRef]

275. Chen, C.; Qian, X.; Liu, T. Measuring crack depth via normalized deformation profiles from digital image correlation based on
optimum correlation. Theor. Appl. Fract. Mech. 2024, 132, 104461. [CrossRef]

276. Sun, X.; Huang, L.; Li, J.; Xia, Z.; Ding, Y.; Fang, Q.; Liu, B.; He, W.; Xie, H. Intelligent localization method of fatigue crack tips in
enormous high-temperature DIC images. Opt. Laser Technol. 2025, 186, 112666. [CrossRef]

277. Leost, N.; Missoum-Benziane, D.; Rambaudon, M.; Cameriano, L.; Comte, F.; Le Pannerer, B.; Maurel, V. Short fatigue crack
growth sensitivity to thermo-mechanical fatigue loading. Int. J. Fatigue 2025, 191, 108651. [CrossRef]
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