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SYMBOLS AND ABBREVIATIONS 

 

A – absorption 

AAS – atomic absorption spectroscopy 

a.u. – arbitrary units 

B – constant associated with absorption 

d – layer thickness 

EDS – energy dispersive X-ray spectroscopy 

Eg – band gap energy 

hν – photon energy 

kt – rate constant 

SEM – scanning electron microscopy 

UV/VIS – ultraviolet–visible spectroscopy 

XPS – X-ray photoelectron spectroscopy 

XRD – X-ray powder diffraction 

α – absorption coefficient 

λ – wavelength 
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INTRODUCTION 

Global climate change and greenhouse gas emissions are widely recognized 

problems. Developed countries are looking for ways to deliver electricity which 

would be carbon neutral, environmentally friendly and renewable. Another reason 

why the development of renewable energy resources in Lithuania is important is a 

need to reduce the country’s dependency on imported fuel. The development of 

renewable energy sources has been growing in recent years. At the moment, the 

leading options of renewable energy sources are: wind, geothermal, marine and solar. 

Solar cells are one of the most prominent and promising energy technologies 

today. It is sustainable, renewable, clean, completely noise-free, scalable, requires 

minimal amount of maintenance and produces zero emissions. Moreover, energy 

obtained using solar cells is easy to distribute and allows to skip expensive grid 

infrastructure. The sun is considered as the most abundant source of energy in 

existence. 

The formation of semi-conductive chalcogenide layers on different substrates 

has been intensively studied over the last years. The development of new materials 

and optimization properties of the known selenide precursors, including 

selenopolythionates, are of great importance to obtaining layers with the optimal 

properties. 

The ternary compound (I–III–VI2) semi-conductor CuInSe2 is one of the leading 

materials for large-scale solar applications. It has a direct band gap, a high absorption 

coefficient, stability against photodegradation and good thermal stability. Copper 

selenide is a semi-conducting material, which exhibits electrical and optical properties 

suitable for photovoltaic application. 

This thesis is related to the search of new effective methods to obtain copper 

and indium selenide layers. Copper and indium selenide layers were obtained on glass 

using a low cost, simple successive ionic layer adsorption and reaction (SILAR) 

method. This method produces homogeneous layers and allows for easy scalability 

for large surface area coatings. 
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Aim of the work 

The aim of this work is to study the H2SenS2O6 type selenopolythionate acids as 

a selenization agent and obtain copper and indium selenide layers on glass. 

To achieve our task, the following objectives were formed: 

1. To synthesize and study the H2SenS2O6 type selenopolythionate acids. 

2. To obtain selenium, copper selenide, copper and indium selenide layers on 

glass using selenopolythionate acids. 

3. Using various analysis methods, to study the physical and chemical 

composition, morphology and optical properties of the obtained layers. 

4. To study and determine the formation mechanisms of copper and indium 

selenide layers. 

Scientific novelty 

This research has shown for the first time that it is possible to obtain selenium 

layers on glass using the H2SenS2O6 type selenopolythionate acids. Using 

selenopolythionate acids as a selenization agent and a simple SILAR method, copper 

and indium selenide layers were obtained. Layers were described using XRD, XPS, 

SEM/EDS and AAS methods. The optical properties of the aforementioned layers 

were determined. 

Approval and publication of research results 

Results of the research were presented in 6 publications: 2 of them were 

presented in journals listed in the Thomson Reuters™ Web of Science publication 

database; 4 articles were reported in the proceedings of conferences. 

Structure and content of the dissertation 

The dissertation consists of an introduction, a literature review, the experimental 

part, results and discussion, conclusions, a list of references, a list of publications and 

proceedings on the topic of the dissertation. The list of references includes 161 

bibliographic sources. The results are discussed in 81 pages, illustrated in 11 tables 

and 23 figures. 

Statements presented for the defence: 

1. H2SenS2O6 type selenopolythionate acids can be synthesized directly. 

2. This type of selenopolythionate acids can be used as a precursor for selenium 

layer deposition on glass. 

3. Copper and indium selenide layers can be obtained using a three-step method. 

4. The successive ionic layer adsorption and reaction (SILAR) method is 

suitable for the formation of metal selenide layers. 
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1. LITERATURE REVIEW 

1.1. Copper selenide 

1.1.1. Copper selenide properties 

Copper selenide is a binary metal chalcogenide consisting of copper and 

selenium. Its formula is typically described as CuSe or Cu2Se, but it is non-

stoichiometric. The known stoichiometries are: Cu2Se, Cu3Se2, Cu5Se4, CuSe, CuSe2 

and the intermediate Cu2–xSe and Cu4–xSe2 [1]. 

Cu2Se forms a cubic C1-type lattice with the 4 copper atoms located on the 

cube’s corners and the centres of the cube’s sides; selenium atoms lay on diagonals of 

all directions at ¼ of the distance from the cube’s edges [2]. Cu2Se, just as all other 

compounds with same cubic C1 lattice, have a fixed melting temperature and a defined 

chemical formula. Selenium atoms form a rigid framework of the crystal lattice, while 

Cu ions are distributed on different interstitial sites [3]. 

Heated or electrochemically polarized orthorhombic copper(I) selenide changes 

its phase to cubic [4]. The thermal stability of CuSe depends on their stoichiometry. 

It is also know that high temperature Cu2–xSe (x = 0.18–0.25) cubic and low 

temperature monoclinic/orthorhombic modifications exist [5]. The high temperature 

cubic modification is more stable at 75C and above [6]. Cu2–xSe is diamagnetic at 

93C and above [7, 8]. Cu2–xSe is less stable in normal conditions than Cu2Se3 [8]. 

The structure of cubic copper selenide Cu2–xSe is matched by stoichiometric 

compound Cu1.96Se. 

Cu2−xSe is reported to possess a direct band gap of 2.2 eV and an indirect band 

gap of 1.4 eV, when x = 0.2 [9]. The direct band gap is preferred over the indirect one, 

due to its fast response and reasons of momentum conservation. The optical and 

electrical properties of these films depend on the fabrication method chosen after 

considering the variety of compositional complexity of copper selenides. Moreover, 

the possible phase transitions greatly depend on the x value [10]. In vacuum 

evaporated thin films of Cu2−xSe, the hole mobility is of the order of 10 cm2 V−1 s−1 

and carrier concentrations are in the range of 1018–1021 cm−3, when the x values are 

between 0.1 and 0.3 [9]. 

1.1.2. Copper selenide application 

Copper chalcogenide thin films have a number of applications in various 

devices, such as solar cells, photodetectors, superionic conductors, photoconductors, 

sensors, photothermal conversion, electro-conductive electrodes, narrow band filters, 

microwave shielding coating, flexible thermoelectric units, etc. [11–14]. Copper 

selenide is a semiconducting material which has electrical and optical properties 

suitable for photovoltaic application. All copper selenides are p-type semi-conductors, 
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and their holes originate from the Cu deficiency [15]. This property is useful for solar 

cell production. 

Copper selenide is produced directly on iron or steel parts to form a protective 

black coating in some cold-bluing processes for protection against rust. Bluing 

solutions which operate in this manner are typically labelled as containing selenous 

acid or selenium dioxide [16]. 

CuSe2 nanoneedles are grown on copper foil as a binder-free electrodes to be used as 

supercapacitors or electrochemical capacitors [17]. It has also been investigated for 

treating colon cancer [18] 

1.1.3. Copper selenide formation methods 

Copper selenide is frequently grown as nanoparticles or other nanostructures. It 

can be obtained by using various chemical and physical methods: 

1) Direct elemental reaction is conducted without air at 200–400C. Cu2–xSe, 

Cu3Se2, CuSe, and CuSe2 are obtained by melting equivalent  amounts of 

elemental copper and selenium in slightly higher than melting temperature 

[19]. 

2) Hydrogen selenide reaction with simple copper compounds. Copper (II) 

oxides and salts react with a gaseous or H2Se water solution: 

𝐶𝑢𝑆𝑂4 +𝐻2𝑆𝑒 ↔ 𝐶𝑢𝑆𝑒 + 𝐻2𝑆𝑂4 (1) 

𝐶𝑢𝐶𝑙2 + 𝐻2𝑆𝑒 ↔ 𝐶𝑢𝑆𝑒 + 2𝐻𝐶𝑙 (2) 

Nonstoichiometric copper selenide compounds are formed in CuCl2 and 

H2Se solutions in different pressures and temperatures. Berzelianite Cu2–xSe 

is formed in high pressure, while umangite Cu3Se2 is formed in lower 

pressure [20]. 

3) Selenium vapour reaction with simple compounds. Crystalline Cu2Se is 

formed by elemental copper and selenium vapour reaction [21]: 

2𝐶𝑢 + 𝑆𝑒 → 𝐶𝑢2𝑆𝑒 (3) 

4) Various copper salts reduction using hydrogen, ammonia, carbon, or 

hydrazine [20, 21]: 

𝐶𝑢𝑆𝑒𝑂4 + 4𝐻2 → 𝐶𝑢𝑆𝑒 + 4𝐻2𝑂 (4) 

2𝐶𝑢𝑆𝑒𝑂3 + 3𝑁2𝐻4 → 2𝐶𝑢𝑆𝑒 + 3𝑁2 + 6𝐻2𝑂 (5) 

5) Higher selenide thermal decomposition [20]: 

2𝑀𝑆𝑒2 → 𝑀2𝑆𝑒3 + 𝑆𝑒 (6) 

6) Treating elemental selenium with copper (I) salt solutions. CuSe is formed 

by treating CuCl2∙2H2O with elemental selenium in a diluted ammonia 

solution [22], while Cu2–xSe is obtained by treating copper (I) chloride with 

sodium oxalate [23]. 

7) Electrodeposition method is based on the electrolysis of certain solutions, 

i.e. sodium thiosulfate, when elemental selenium is the cathode and copper 
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is the anode. Using acidic CuSO4 and SeO2 solutions, layers of Cu2Se can 

be deposited [24]. Cu2Se, Cu3Se2, CuSe and their mixtures can be deposited 

using Cu(II) and Se(IV) solutions in citric acid [25]. 

8) Chemical deposition. N,N-Dimethylselenourea [26] or selenosulfate [27, 

28] can be used as a source of selenium to obtain CuSe or Cu2–xSe [29–31]. 

9) Using the sonochemical method. Phases of Cu3Se2, Cu2–xSe, and CuSe can 

be obtained using this method. Different phases can be obtained by 

changing the Cu2+ / SeSO3
2– ion concentration in the precursor solution and 

by changing the irradiation time [32–35]. 

10) Nonstoichiometric Cu2–xSe compounds can be formed at room temperature 

using gamma rays [36], visible light [37] or microwave radiation [38].  

11) CuSe can be reduced into Cu2Se, and vice versa, Cu2Se can be oxidized to 

CuSe [39]. 

Copper selenides can be oxidized using nitric acid and aqua regia [12]. 

3𝐶𝑢2𝑆𝑒 + 22𝐻𝑁𝑂3 → 6𝐶𝑢(𝑁𝑂3)2 + 3𝐻2𝑆𝑒𝑂4 + 10𝑁𝑂 + 8𝐻2𝑂 (7) 

Cu2Se oxidizes in two stages in a base medium. The reaction is rapid only at 

200°C [2]: 

𝐶𝑢2𝑆𝑒 + 2𝑂2 + 2𝐻𝑂
− → 2𝐶𝑢𝑂 + 𝑆𝑒𝑂3

2− +𝐻2𝑂 (8) 

2𝑆𝑒𝑂3
2− + 𝑂2 → 2𝑆𝑒𝑂4

2− (8) 

Similarly, Cu2Se oxidizes in two stages in an acidic medium [2]: 

2𝐶𝑢2𝑆𝑒 + 𝑂2 + 2𝐻2𝑆𝑂4 → 2𝐶𝑢𝑆𝑒 + 2𝐶𝑢𝑆𝑂4 + 2𝐻2𝑂 (9) 

2𝐶𝑢𝑆𝑒 + 𝑂2 + 2𝐻2𝑆𝑂4 → 2𝑆𝑒 + 2𝐶𝑢𝑆𝑂4 + 2𝐻2𝑂 (10) 

1.1.4. Copper selenide minerals 

Copper selenide is found in nature in various stoichiometries as various 

minerals. 

Berzelianite is a rare mineral with the formula Cu2–xSe. It occurs as thin dendritic 

crusts or as fine-grained inclusions. Berzelianite crystallizes in the isometric system, 

unlike its dimorph, bellidoite, which crystallizes in the tetragonal system. The crystals 

of berzelianite are opaque and slightly malleable. 

Bellidoite is a tetragonal-dipyramidal silver grey mineral with the stoichiometric 

formula of Cu2Se. It is of creamy white, greyish colour. Bellidoite is formed at 

medium to low temperatures with other hydrothermal selenides and sulphides. 

CuSe can be found as a mineral klockmannite. Klockmannite displays low 

temperature modification at less than 50C, and high temperature modification at 

50C and above. It decomposes into Cu2–xSe and Se at 379C [40, 41]. It was 

determined that in low temperature CuSe has the same structure as CuS mineral 
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covellite. In a high pressure of 52 GPa, the S–S bond becomes shorter, while the Se–

Se does not [42]. 

Cu3Se2 is found in nature as a mineral umangite. It was determined that Cu3Se2 

decomposes to Cu2–xSe and CuSe below 170C [8]. Cu3Se2 occurs only in small grains 

or fine granular aggregates with other copper minerals of the sulphide group. Its colour 

ranges from blue-black to red-violet with a black streak. 

Krut’aite is a rare mineral with the formula of CuSe2. It crystallizes in the cubic 

system. The mineral is often found as a dark grey aggregate, consisting of smaller 

than one millimetre size crystals. 

Copper selenide Cu5Se4 is found in the form of athabascaite mineral, which 

forms with other copper selenides. There is little known about the atomic structure of 

athabascaite because sufficiently large single crystals are unavailable. The symmetry 

of the crystal appears to be orthorhombic. It has a calculated density identical to that 

of umangite, therefore it is thought to have a similar structure [43]. The colour of 

athabascaite is typically light grey; however it can also be white, blue-grey or white-

grey. Athabascaite displays a range of colours varying from creamy white to dark blue 

when exposed to polarized light. Its reflectivity along with these distinct colours, 

allows athabascaite to be easily distinguished from other copper selenide minerals 

[44]. 

All minerals which can be found in nature and contain copper selenide are 

shown in the Table 1. 
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Table 1. Minerals containing copper selenide 

Name Athabascaite 

[45] 

Bellidoite [46] Berzelianite [47] Klockmannite 

[48] 

Krut’aite [49] Umangite [50] 

Formula Cu5Se4 Cu2Se Cu2–xSe (Cu2Se) CuSe CuSe2 Cu3Se2 

Molecular 

weight, 

g/mol 

633.57 206.05 206.05 142.51 221.47 348.56 

Composition Cu 50.15 % 

Se 49.85 % 

Cu 61.68 % 

Se 38.32 % 

Cu 61.68 % 

Se 38.32 % 

Cu 44.59 % 

Se 55.41 % 

Cu 28.69 % 

Se 71.31 % 

Cu 54.69 % 

Se 45.31 % 

Synonym IMA1969-022 ICSD 30230, 

PDF 46-1129 

ICSD 238, 

PDF 6-680 

ICSD 82331, 

PDF 34-171 

ICSD 243, 

PDF 26-1115 

ICSD 239 

PDF 47-1745 

System Orthorhombic Tetragonal - 

Dipyramidal 

Isometric - 

Hexoctahedral 

Hexagonal - 

Dihexagonal 

Dipyramidal 

Isometric - 

Diploidal 

Orthorhombic - 

Disphenoidal 

Environment As inclusions 

and 

replacements 

of umangite. 

Formed at 

moderate to low 

temperature with 

other 

hydrothermal 

selenides and 

sulphides. 

Forms with 

other selenides 

in hydrotherma 

veinlets in 

dolomite. 

Of 

hydrothermal 

origin. 

Of 

hydrothermal 

origin included 

in clausthalite. 

Found with 

other selenides 

in hydrothermal 

veins. 

Growth 

habits 

Anhedral 

Grains, 

Microscopic 

Crystals 

- Dendritic, 

Disseminated, 

Massive 

Aggregates, 

Granular 

Inclusions Uneven, 

Massive, 

Granular 

Hardness 2.5–3 1.5-2 2 2-2.5 4 3 

Colour Blue grey, 

Grey white 

Silver grey Bluish grey, 

Grey, Black 

Blue black, 

Greyish black, 

Dark grey 

Grey Blue black, 

Brownish 

black, Red 

violet 

Luster Metallic Metallic Metallic Metallic, Dull Metallic Metallic 

Diaphaneity Opaque Opaque Opaque Opaque Opaque Opaque 

Density 6.63 7.03 6.7 5.99 6.62 6.2 

Space group - P 41/m F m3m P 63/mmc P a3 P 21212 

a 8.227 11.52 5.739 3.938 6.056 6.4 

b 11.982 - - - - 12.46 

c 6.441 - - 17.25 - 4.28 

Z 4 32 4 - 4 4 

V 634.93 1558.02 189.02 - 222.10 341.30 
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1.2. Indium selenide 

1.2.1. Indium selenide properties 

Indium selenide has a number complicated stoichiometries, including the forms 

of InSe, In2Se3, In4Se3, and In6Se7 [51]. Like most of the III–VI compounds, In2Se3 

has a tetrahedral bonding structure [51]. Indium selenide (In3Se2) is a III–VI semi-

conductor with a direct optical band gap of a value in the range of 1.4–1.7 eV [52, 

53]. It is capable of absorbing most of the visible light spectrum of the solar radiation 

in its nano particle form [54]. In layered compounds like In2Se3 or InSe a primitive 

layer is formed, which consists of four atomic planes, Se–In–In–Se. The selenium 

atoms form two-dimensional hexagonally close-packed sheets, while giving these 

crystals their hexagonal structure. The atoms are aligned along the c axis in every 

other trigonal prismatic structure [52]. The cation vacancies form a plane, which 

results in weak Se–Se bonding and anisotropic electronic properties. In2Se3 and InSe 

also tend to have high resistivity [55]. In4Se3, on the other hand, is a highly conductive 

smaller-band gap orthorhombic semi-conductor [56]. The higher conductivity of 

In4Se3 is attributed to the presence of In–In bonds, while in the other In–Se compounds 

indium bonds only to selenium [57]. 

1.2.2. The application of indium selenide 

Out of the many available semiconductors, metal chalcogenides in the III–VI 

group of layered semi-conductors are assumed to have applications of great 

importance, in various optoelectronic devices, including photovoltaic. This is due to 

their narrow and tunable optical band gaps. Due to its optical properties, In2Se3 has 

emerged as a potential candidate, mostly in solar cell applications, nanoscale optical, 

electrical, and optoelectronic devices. The In2Se3 films have also been studied as a 

precursor to CuInSe2 for solar cell application [58]. 

1.2.3. Indium selenide deposition methods 

There are many methods reported in literature which are available for the 

synthesis of In2Se3 using various techniques showing three different phases α, β and 

γ [59, 60] with a range of morphologies [61, 62] including thin films [63] and nano-

materials [64]. Amongst various deposition methods, the sol–gel technique is the least 

expensive and simplest method that could be used to produce thin films in large areas. 

There are two main challenges regarding the formation of indium selenide films. First, 

the hydrolyzation of In (III) cations is in an aqueous solution due to their deficient 

electron properties, which effects the formation of indium selenide [65]. Second, 

indium selenide has a lot of complicated stoichiometries [51]. 
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1.3. Copper indium selenide 

1.3.1. Copper indium selenide properties 

CuInSe2 belongs to the group of ternary chalcopyrite compounds which derive 

from group IV of tetrahedrally bonded semi-conductors. There must be an average of 

4 valence atoms per atomic site. In these structures, each atom has four neighbouring 

ones arranged at the corners of a regular tetrahedron bonded with sp3 bonds. The 

tetrahedral structure of a chalcopyrite has a diamond-like structure consisting of two 

inter-penetrating face-centred cubic lattices [66]. 

In a ternary chalcopyrite, the cations are replaced by one cation of higher 

valency (In) and 13 cations of lower valency (Cu) which occupy the cation sub-lattice 

in an ordered manner, as shown in Fig. 1. 

 
Fig. 1. The structure of copper indium selenide molecule [67] 

Copper indium selenide can be obtained under n or p-type conductivity [68]. 

The direct band gap energy is at the red edge of the solar spectrum, which corresponds 

with the high optical absorption coefficient (>105 cm–1) [69]. 1 μm thick layer of 

CuInSe2 absorbs 90% of solar irradiation that has higher energy than its corresponding 

band gap (1.04 eV) [70]. CuInSe2 has high thermal stability [71] which does not 

degrade its performance under intense, high-energy solar irradiation [72]. It also has 

a large calculated exciton Bohr radius of ~10.6 nm. The bulk copper indium selenide 

material shows excellent photovoltaic performance [73]. 

Some copper indium selenide properties are shown in Table 2. 
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Table 2. The physical properties of CuInSe2 [74] 

Property Value Unit 

Formula CuInSe2  

Molecular mass 336.28 g mol–1 

Density 5.77 g cm–3 

Colour Grey  

Transition to sphalerite structure 810 °C 

Melting temperature 986 °C 

Symmetry Chalcopyrite  

Space group I42d–D12
2d  

Lattice parameters   

  a0 0.5789 nm 

  c0 1.162 nm 

Thermal expansion coefficient (at 273 K)   

  a axis 8.32·10–6 K–1 

  c axis 7.88·10–6 K–1 

Thermal conductivity 0.086 W cm–2 K–1 

Specific heat   

  c1 –7.67·10–4 K–1 

  c2 4.06·10–6 K–2 

  c3 4.3·10–9 K–3 

Debye temperature 221.9 K 

Micro hardness 3.2·10–9 N m–2 

Compressibility 1.4·10–11 m–2 N 

Dielectric constant   

  Low frequency 13.6±2.4  

  High frequency 8.1±1.4  

Sound velocity 2.2·102 m s–1 

Electrical resistivity (polycrystalline thin films)   

  Cu-rich 0.001 Ω 

  In-rich >100 Ω 

Mobility (300 K)   

  Electrons 100–1000 cm2 V–1 s–1 

  Holes 50–180 cm2 V–1 s–1 

Effective mass   

  Electrons 8.20·10–32 kg 

  Holes 8.38–64.68 ·10–32 kg 

Band gap 1.04 eV 

Temperature dependence of gap 

dEg/dT (77–300 K) 

–2±10–4 eV K–1 

Pressure dependence of gap 

dEg/dP  

–2.8±10–11 eV Pa–1 
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1.3.2. The application of copper indium selenide 

Copper indium selenide is widely investigated as an absorber layer material in 

thin film solar cell applications and has attracted considerable attention due to its 

desirable physical properties. It is best known as the material for thin-film technology 

used in the photovoltaic industry. It has the advantage of being formed on various 

substrate materials, producing highly flexible and lightweight solar panels. Constant 

improvements in efficiency have made CuInSe2 an established technology among 

other alternative cell materials. Copper indium selenide and other chalcopyrite family 

of materials is relevant in many fields, including nonlinear optics, optoelectronic, and 

photovoltaic devices [66]. 

1.3.3. Copper indium selenide deposition methods 

Thin copper indium selenide layers can be obtained either through chemical or 

through physical deposition. Chemical deposition methods offer low cost production 

of homogeneous layers and easy scalability for large surface area coatings. However, 

annealing is required to obtain crystalline CuInSe2 layers.  

Physical deposition, on the other hand, offers layers with better properties, while 

often requiring high cost low-pressure, high-temperature equipment. Furthermore, it 

does not offer good scalability for large-area coating. Also, physical deposition 

techniques often require annealing in Se or H2Se atmosphere, which results in reagent 

wastage, toxic work environment and even lower cost efficiency. Both chemical and 

physical deposition methods can be divided further. 

Chemical deposition methods: 

Chemical bath deposition method is using substrate submerged into a precursor 

solution. This method is also known as the sol-gel method because the precursor 

solution gradually evolves towards a two-phase gel-like system. It offers several 

advantages, such as the possibility to cover both large and small areas, reliability, and 

easily replicable results. This method uses very simple and cheap equipment and 

creates a non-toxic work environment. Usually two baths are used as precursors 

CuSO4, In2(SO4)3 and Na2SeSO3 [75–77]. 

Electrodeposition is when a metal film is deposited from an ionic solution using 

an electric current. CuInSe2 layers are obtained from aqueous solutions using an 

electric current. This system consists of one or more electrolytes, a cathode and an 

anode. The obtained properties depend on the solution’s temperature and 

concentration [78], pH [79], deposition duration as well as the used electrolyte 

additives, such as complexing agents [71]. Similarly, to CBD and other non-vacuum 

processes, electrodeposition offers a number of advantages, for instance, simple 

equipment, low cost, low temperature operation, the ability to deposit large areas with 
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ease, fast deposition rates, easily controlled layer thickness, no need for very pure 

reagents. Another advantage of electro deposition is that this method is “green” and 

does not require the use of toxic reagents, such as H2Se gas or Se vapour. One of the 

disadvantages of this deposition method is that the deposited layers are often 

amorphous and require annealing at 500–600°C to obtain high quality crystalline 

layers and increase grain size [80]. The annealing must be performed in Se atmosphere 

to prevent loss from the layer [81]. In addition, completely aqueous solutions 

introduce the formation of insoluble and non-conductive metal hydroxides at the 

cathode. Organic, non-aqueous, usually toxic solutions can be used to overcome this. 

Using organic solvents, more negative voltages can be applied and higher operating 

temperature can be obtained [80]. Also, it is important that Cu0 deposits faster than 

In0 due to different Cu2+/Cu and In3+/In redox potentials. This tends to form undesired 

Cu2–xSe that worsens the properties of the layer. The electrodeposition method has 

been successfully used for the deposition of elemental, binary, ternary and quaternary 

compounds [82]. Various additives can be used to minimize the formation of Cu2–xSe 

[75, 83, 84]. Electrodeposition can consist of one or two steps. One-step electro 

deposition is performed when all required components are deposited directly on a 

substrate from a single solution. This produces the best quality large-area layers of 

CuInSe2 [71, 85]. Two-step deposition involves obtaining the Cu–In layer first, then 

In–Se, or Cu–Se, and finally, In–Se [86]. 

Physical deposition methods: 

Chemical vapor deposition (CVD). This process involves a wafer (substrate) 

which is exposed to more volatile precursors which react and decompose on the 

surface of the substrate. The biggest challenge of using this method is finding volatile 

Cu and In precursors. Metal-organic compounds can be used to increase precursor 

volatility; metals with organic ligands are dissolved in organic compounds. This 

deposition method is called metal organic chemical vapor deposition (MOCVD). It 

offers several advantages; it is rather easy to obtain high quality layers with less 

impurities and uniform thickness [87]. Also, the stoichiometric ratio of used elements 

is relatively easily controlled [88]. The success of the MOCVD process depends on 

highly volatile and thermally stable precursors. These thermal properties are important 

to achieve uniform thickness and reproducible layers [89]. The drawbacks of this 

method include high temperatures of the process, high cost, and low pressure. 

Chemical spray pyrolysis (CSP) is a thin-film deposition technique which 

involves spraying a metal-salt solution onto a heated substrate. Droplets which impact 

on the surface of the substrate undergo thermal decomposition and form a thin layer. 

Among the various deposition techniques, spray pyrolysis is the most convenient 

method for water-soluble salts. It is a very simple and relatively cost-effective method, 
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especially regarding the equipment cost; it also does not require high quality 

substrates or chemicals. Even multi-layered films can be easily prepared using this 

technique. This simple and inexpensive experimental arrangement provides the ease 

of adding doping materials, a high growth rate and the ability to mass-produce uniform 

large-area coatings [90, 91]. 

Spin coating uses liquid or sol-gel precursors, often Cu2Se and In2Se3 dissolved 

in organic compounds, to deposit onto a smooth, flat substrate which is spun at a high 

velocity to spread the solution over the glass substrate. The factors that determine the 

thickness of the deposited film are speed at which the solution is spun and the viscosity 

of the solution [92]. Repeated depositions can be carried out to increase the thickness 

of the layer. Often, thermal treatment is carried out at 350°C in inert N2 or Ar 

atmosphere in order to crystallize the amorphous coated layer [92]. Such crystalline 

layers can exhibit certain preferred orientations after crystallization on single crystal 

substrates [93]. Depending on weather the used precursors contain Se, a post-process 

selenization may be needed [94] or not [92]. Spin coating is not a vacuum process, 

thus, similarly to other non-vacuum processes, it does not require complicated, costly, 

low pressure equipment. 

Physical vapor deposition (PVD) involves evaporating the precursor material 

and escaping particles towards cooler substrate, which draws energy from them to 

form a thin film. The whole system is kept in a vacuum deposition chamber, allowing 

particles to travel freely. This reduces the incorporation of impurities from the residual 

gas in the vacuum chamber. While the PVD method produces high quality layers, it 

requires expensive, complex, low-pressure equipment to ensure sterile deposition 

environment. Hence, the used precursor materials must be really pure in order to get 

pure layers. Also, this method is hard to scale for large-area layer deposition. Another 

big drawback is that this method includes a post-selenization process at 450–600°C 

under H2Se or Se vapor atmosphere [95]. This introduces a toxic work environment, 

high reagent wastage and pollution. All these drawbacks make PVD a very expensive 

deposition procedure, depending on the technique used to evaporate the substrate. 

Thermal evaporator uses an electric resistance heater to melt the substrate 

material and raise its vapor pressure. Only materials with higher vapor pressure than 

the heating element can be deposited without contamination. For economic reasons 

and simplicity, low-cost deposition methods are actively studied. Thermal evaporation 

of the synthesized CuInSe2 powder is the simplest method. However, the dissociation 

of the ternary compound into binary ones as the source temperature is increased may 

result in selenium-deficient and non-stoichiometric films [96]. To overcome these 

drawbacks, flash evaporation (a.k.a. rapid thermal processing) method can be 

employed. This method includes a fine wire of the source material fed continuously 

onto a hot ceramic bar and being evaporated on contact. Flash-evaporated CuInSe2 
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thin films under selenium environment result in single-phase, stoichiometric CuInSe2 

thin films at substrate temperature as low as 350°C [97]. Co-evaporation is a complex 

processing technique which includes two material sources being evaporated at the 

same time or sequentially. It requires accurate temperature control over the individual 

precursors to ensure and uniform fluxes as well as a high degree of stoichiometric 

uniformity [98]. 

Sputtering. Noble inert gases, usually argon, are used to knock out a few atoms 

at a time from Cu2Se and In3Se2 targets. Because the process does not include 

evaporation, the target can be kept at a low temperature, making this the most versatile 

deposition method. One of the advantages of this method is fast layer formation and 

relatively easy thickness control. It is also very useful for compounds of mixtures with 

different compounds that evaporate at different rates. Radio frequency (RF) sputtering 

process has the advantages of admirable stoichiometry transfer of the target material 

and large-area uniformity. Disadvantages include poor adhesion at back contact and 

poor reproducibility [95, 99]. 

Molecular beam epitaxy uses guns, called effusion cells, to fire relatively precise 

beams of molecules (heated in gas form) at the substrate. This is one of the most 

expensive and slow processes, which also requires ultra-high vacuum. Multiple 

“guns” are needed for each beam of molecules. The molecules land on the surface of 

the substrate, condense, and build up ultra-thin layers, therefore, the single crystal 

grows one atomic layer at a time [100–102]. 
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1.4. Selenium precursor properties 

1.4.1. Methods of selenopolythionates synthesis 

Anions of selenopolythionates can be considered as the substituted 

polythionates in which sulphur is partially replaced by selenium. As a result, more 

different forms of anions appear: the following homologous ranges are known now 

SenS2O6
2-(n = 1 – 6), SenS3O6

2-(n = 1 – 3), and SeSnO6
2-(n = 2 – 4). 

Comparative studies of the homologous range SenS2O6
2-(n = 1 – 6) when the 

composition of anion is variable and an investigation of the properties of individual 

members are mutually complementary. 

The first representative of this group is selenotrithionate acid H2SeS2O6, that 

was discovered and obtained as potassium salt K2Se(SO3)2 by Rathke in 1865 [103]. 

He treated selenous acid with concentrated disulphite. Foerster and co-authors 

suggested this reaction mechanism [104]: 

𝑆𝑒𝑂2 + 4𝐻
+ + 4𝑆𝑒𝑆𝑂3

2− → 𝑆𝑒2𝑆2𝑂6
2− + 𝑆𝑒(𝑆𝑒𝑆𝑂3)2

2− + 2𝐻2𝑂 (11) 

𝑆𝑒(𝑆𝑒𝑆𝑂3)2
2− + 𝑆𝑂3

2− → 𝑆𝑒2𝑆2𝑂6
2− + 𝑆𝑒𝑆𝑂3

2− (12) 

𝑆𝑒2𝑆2𝑂6
2− + 𝑆𝑂3

2− → 𝑆𝑒𝑆2𝑂6
2− + 𝑆𝑒𝑆𝑂3

2− (13) 

The summing equation is: 

𝑆𝑒𝑂2 + 4𝐻
+ + 𝑆𝑒𝑆𝑂3

2− + 3𝑆𝑂3
2− → 2𝑆𝑒𝑆2𝑂6

2− + 2𝐻2𝑂 (14) 

This meant that in case of disulphite excess, selenotrithionate is the only reaction 

product. The yields of this synthesis method is about 80%. 

Other synthesis methods were also discovered. Most of them, similarly to 

Rathke’s method, were based on the oxidation of selenosulfate ions, i.e. iodine, 

hydrogen peroxide [105], or using electrolysis [106]: 

2𝑆𝑒𝑆𝑂3
2− + 2𝑒− → 𝑆𝑒2𝑆2𝑂6

2− (15) 

Later, selenosulfate was obtained by degrading the intermediate product, 

diselenotetrathionate using sulphite. 

Selenous acid reduction using sulphurous acid is also rather well-known [107]: 

𝐻2𝑆𝑒𝑂3 + 2𝐻2𝑆𝑂3 → 2H2𝑆𝑂4 + 𝑆𝑒 + 𝐻2𝑂 (16) 

It is widely used for making elemental selenium. This reaction is complicated 

and intermediate products SenS2O6
2– are formed. Schulze noticed that selenous acid in 

excess of sulphurous acid form selenotrithionate acid [108]: 

𝐻2𝑆𝑒𝑂3 + 3𝐻2𝑆𝑂3 → 𝐻2𝑆𝑂4 +𝐻2𝑆𝑒𝑆2𝑂6 + 2𝐻2𝑂 (17) 

Quantitatively, this reaction was studied in [109]. It was discovered that while 

pouring sulphurous acid to an excess of selenous acid, diselenotetrathionate acid is 

formed: 
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2𝐻2𝑆𝑒𝑂3 + 5𝐻2𝑆𝑂3 → 𝐻2𝑆𝑒2𝑆2𝑂6 + 3𝐻2𝑆𝑂4 + 3𝐻2𝑂 (18) 

Free acid substitution with potassium hydrosulphite enables the use of higher 

concentration solutions and allows obtaining of crystalline K2Se2S2O6·H2O [110]. 

Moreover, lithium, sodium, potassium, rubidium, cesium and other metal 

selenotrithionates were obtained in crystal form [111]. J. Janickis and V. Zelionkaite 

isolated the first salt of diselenotetrathionate acid, the monohydrate K2Se2(SO3)2 H2O 

[105]. 

However, unsolved acids had not been prepared until quite recently: Zelionkaite 

and Šukytė in 1970–1972 synthesized the solvent-free selenotrithionate H2SeS2O6, 

and diselenotetrathionate H2Se2S2O6 acids [112]. These acids were isolated from their 

potassium salts. Potassium selenotrithionate and diselenotetrathionate were 

synthesized according to the published procedures [111, 113]. Anions of ranges 

SenS2O6
2-(n = 1 – 6) and SenS3O6

2-(n = 1 – 3) were isolated only in the form of nitrone 

salts and some complex cobalt cations [105]. 

Austad discovered that elemental selenium reacts with acetonitrile and forms 

diselenotetrathionate, unlike in a water solution [114]: 

(𝑥 + 2)𝑆𝑒 + 2𝑆𝑂3
2− → 𝑆𝑒2𝑆2𝑂6

2− + 𝑆𝑒𝑥
2− (19) 

Using this reaction, tetraphenylarsonium diselenotetrathionate 

[(C6H5)4As]2Se2S2O6 was synthesized with about 60% yield. 

Norris and Fay discovered that selenous acid oxidizes thiosulfate in acidic 

medium [115]: 

𝑆𝑒𝑂2 + 4𝑁𝑎2𝑆2𝑂3 + 4𝐻𝐶𝑙 → 𝑁𝑎2𝑆𝑒𝑆4𝑂6 + 𝑁𝑎2𝑆4𝑂6 + 4𝑁𝑎𝐶𝑙 + 2𝐻2𝑂 (20) 

This reaction can be used to quantitatively measure selenous acid and selenites. 

Heuer confirmed this reaction and extracted crystalline potassium 

diselenotetrathionate from a mixture of products [116]. 

In 1949 Foss synthesized crystalline sodium and potassium selenopentathionate, 

and later rubidium, cesium, ammonia [117] and barium salts [118]. 

Firstly, asymmetric selenopolythionate – monoselenotetrathyonate –O3S–Se–

S2O3
– salts were obtained using a complex cobalt (III) cation. Selenotrithionate was 

treated with thiosulphate 1:1 molar ratio [119, 120]: 

𝑆𝑒𝑆2𝑂6
2− + 𝑆2𝑂3

2− → 𝑆𝑒𝑆3𝑂6
2− + 𝑆𝑂3

2− (21) 

Soon monoselenotetrathionate was synthesized by treating selenotrithionate 

with selenopentathionate [121, 122]: 

𝑆𝑒𝑆2𝑂6
2− + 𝑆𝑒𝑆4𝑂6

2− → 2𝑆𝑒𝑆3𝑂6
2− (22) 

The reaction results in potassium monoselenotetrathionate salt K2SeS3O6H2O, 

that is well soluble in water. 
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1.4.2. The properties of selenopolythionates 

Selenopolythionates have similar properties to regular polythionates, but are 

less stable. The more there are Se atoms in the molecule, the less stable they are. 

Additionally, the type and speed of decomposition depends on the pH of the aqueous 

solution, its concentration, temperature and exposure to solar irradiation [123]. 

Decomposition in acidic solution can be represented as: 

𝑆𝑒𝑆2𝑂6
2− + 𝐻𝑂𝐻 → 𝑆𝑒 + 𝑆𝑂4

2− + 𝐻2𝑆𝑂3 (23) 

This reaction mechanism is explained through selenotrithionate hydrolysis: 

𝑆𝑒(𝑆𝑂3)2
2−  +   𝐻𝑂H → 𝐻𝑆𝑒𝑆𝑂3

− + 𝐻𝑆𝑂4
− (24) 

Then, selenosulfate reacts with selenotrithionate that did not decompose: 

𝑆𝑒(𝑆𝑂3)2
2−   +   𝐻𝑆𝑒𝑆𝑂3

− → 𝑆𝑒2(𝑆𝑂3)2
2−  +  𝐻𝑆𝑂3

− (25) 

And after most of SeS2O6
2– decomposes, selenosulfate which is not stable in an 

acidic medium decomposes: 

𝑆𝑒𝑆𝑂3
2− + 𝐻+ →  𝑆𝑒 + 𝐻𝑆𝑂3

− (26) 

Then, diselenotetrathionate degrades under the influence of newly formed 

sulphite: 

𝑆𝑒2𝑆2𝑂6
2− + 𝑆𝑂3

2− → 𝑆𝑒𝑆2𝑂6
2− + 𝑆𝑒𝑆𝑂3

2− (27) 

Diselenotetrathionate is stable in a mildly acidic solution, but decomposes 

promptly in highly acidic solutions [109]: 

𝑆𝑒2𝑆2𝑂6
2− + 𝐻2𝑂 → 2𝑆𝑒 + 𝑆𝑂4

2− +𝐻2𝑆𝑂3 (28) 

Further selenotrithionate and diselenotetrathionate acid studies show that most 

of selenium is deposited only when the majority of selenotrithionate acid converts to 

diselenotetrathionate acid [112]: 

2𝐻2𝑆𝑒𝑆2𝑂6 +𝐻2𝑂 → 𝐻2𝑆𝑒2𝑆2𝑂6 +𝐻2𝑆𝑂3 + 𝐻2𝑆𝑂4 (29) 

The decomposition proceeds analogously to diselenotetrathionate acid 

decomposition. The reactions show that both selenotrithionate and 

diselenotetrathionate converts to each other while undergoing decomposition. 

The higher selenopolythionates SenS2O6
2– (n = 3–6) decompose in water or an 

acidic solution according to this general equation [124]: 

𝑆𝑒𝑛𝑆2𝑂6
2− → 𝑥𝑆𝑒 + 𝑆𝑒𝑛−𝑥𝑆2𝑂6

2− (30) 

It is analogous to the decomposition of higher polythionate acid SnS2O6
2– (n = 

2–4) [125]: 

𝑆𝑛𝑆2𝑂6
2− → 𝑥𝑆 + 𝑆𝑛−𝑥𝑆2𝑂6

2− (31) 
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Selenopolythionates SenS2O6
2– (n = 2–4) decompose rapidly in base solutions 

[124]: 

2𝑆𝑒𝑛𝑆2𝑂6
2− + 6𝑂𝐻− → 2𝑆𝑒𝑆𝑂3

2− + (2𝑛 − 3)𝑆𝑒 + 𝑆𝑒𝑂3
2− + 2𝑆𝑂3

2− + 3𝐻2𝑂 (32) 

Selenotrithionate decomposition is different in these conditions because no 

elemental selenium is formed; one-mole selenosulfate forms instead of one mole of 

sulphite [124]: 

2𝑆𝑒𝑛𝑆2𝑂6
2− + 6𝑂𝐻− → 𝑆𝑒𝑆𝑂3

2− + 𝑆𝑒𝑂3
2− + 3𝑆𝑂3

2− + 3𝐻2𝑂 (33) 

In a dicarbonate medium, selenopolythionates can be oxidized with iodine to 

selenite and sulphate ions [124, 125]: 

𝑆𝑒𝑛𝑆2𝑂6
2− + (1 + 2𝑛)𝐼2 + (4 + 6𝑛)𝑂𝐻

− →

→ 𝑛𝑆𝑒𝑂3
2− + 2𝑆𝑂4

2− + (2 + 4𝑛)𝐼− + (2 + 3𝑛)𝐻2𝑂 

(34) 

In an acidic medium, elemental selenium is formed: 

𝑆𝑒𝑛𝑆2𝑂6
2− + 𝐼2 + 2𝐻2𝑂 → 𝑛𝑆𝑒 + 2𝐻𝑆𝑂4

− + 2𝐻𝐼 (35) 

Selenopentathionate, unlike other polythionates, is rather stable in an acidic 

medium. Its slow decomposition can be shown using a general equation [126]: 

𝑆𝑒𝑆4𝑂6
2−

   𝐻+ 
→  𝑆𝑒 + 𝑆4𝑂6

2− 
(36) 

A detailed study shows that the decomposition speed increases with the 

increasing pH value [127]. This dependency changes when pH > 8. This indicates that 

the decomposition mechanism in an acidic solution is different from the one in a base 

solution. When pH is higher (pH=11.0) selenopentathionate decomposes almost 

instantly: 

2𝑆𝑒𝑆4𝑂6
2− + 6𝑂𝐻− → 𝑆𝑒 + 4𝑆2𝑂3

2− + 𝑆𝑒𝑂3
2− + 3𝐻2𝑂 (37) 

Selenopentathionate decomposes even faster under sunlight. 

Zelionkaitė and Šukytė studied free selenopolythionate acids and synthesized a 

concentrated 75% selenopentathionate acid by decomposing barium salt using 

sulphuric acid [127]. They extracted crystalline, yellow, needle-shaped hydrate 

H2SeS4O6∙6H2O. They also determined that in the case of concentrated 

selenopentathionate acid decomposition, sulphuric, sulphurous acids, elemental 

selenium and sulphur are formed: 

𝐻2𝑆𝑒𝑆4𝑂6 → 𝑆𝑒 + 2𝑆 + 𝑆𝑂2 + 𝐻2𝑆𝑂4 (38) 

Monoselenotetrathionate is rather stable in a neutral and mildly acidic medium, 

however, it less stable than selenotrithionate [128, 129]. 

Asymmetric SenS3O6
2– type selenopolythionates decompose fast in a strong 

acidic medium with elemental selenium deposition. Part of the selenium remains in 
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the solution. It can be removed by adding alkaline to the solution. This is why 

SenS3O6
2– type selenopolythionates are more resistant to acids than SenS2O6

2– type 

selenopolythionates which decompose promptly and completely [130] and less 

resistant than SenS4O6
2– type selenopolythionates which are rather stable in a very 

acidic medium [124]. 

Selenopolythionates, just as regular polythionates, degrade under the influence 

of silver ions, forming black Ag2Se precipitate. According to Heuer, selenotrithionate 

decompose under the influence of silver oxide ammonia solution [116]: 

𝐾2𝑆𝑒𝑆2𝑂6 + 𝐴𝑔2𝑂 ∙ 2𝑁𝐻3 + 𝐻2𝑂 → 𝐾2𝑆𝑂4 + 𝐴𝑔2𝑆𝑒 + (𝑁𝐻4)2𝑆𝑂4 (39) 

Diselenotetrathionate forms Ag2Se as well; however, only a small amount, about 

5–10% and the remaining selenium is released as elemental selenium [124]. It is also 

claimed that if the SenS2O6
2– solution is treated with neutral silver nitrate, all selenium 

is deposited in the form of silver selenide, while the sulphuric acid remains in the 

solution [128]. 

𝑆𝑒2𝑆2𝑂6
2− + 2𝐴𝑔+ + 2𝐻2𝑂 → 𝐴𝑔2𝑆𝑒 + 𝑆𝑒 + 2𝐻2𝑆𝑂4 (40) 
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1.4.3. The structure of selenopolythionates 

The structures of selenotrithionate, diselenotetrathionate, 

monoselenotetrathionate and monoselenopentathionate ions have been studied 

extensively. 

 
Fig. 2. The structure of selenotrithionate, viewing angle is perpendicular to SeS2 plain [107] 

The analysis of potassium selenotrithionate SeS2O6
2– showed that the selenium 

atom is coordinated between two SO3
2– groups (Fig. 2) with a distance of 2,257 Å and 

an angle of 97.9° [131]. 

 
Fig. 3. The structure of diselenotetrathionate ion in crystalline P21/n 

[Co(en)2Cl2]Se2S2O6·H2O [107] 

The structure of diselenotetrathionate ion is studied in [Co(en)2Cl2]Se2S2O6·H2O 

modification (Fig. 3) [132]. As we can see, the Se2S2O6
2– ion is made of an unbranched 

and not flat S-Se-Se-S branch. 
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2. EXPERIMENTAL SETUP 

2.1. Selenium precursor analysis 

2.1.1. The synthesis of H2SenS2O6 from selenous acid with the addition of 

CaCO3 

With the aim to precipitate sulphuric acid, an amount of CaCO3 calculated 

according the following reaction was added: 

2𝐻2𝑆𝑒𝑂3 + 5𝐻2𝑆𝑂3 + 3𝐶𝑎𝐶𝑂3 → 𝐻2𝑆𝑒2𝑆2𝑂6 + 3𝐶𝑎𝑆𝑂4 + 6𝐻2𝑂 + 3𝐶𝑂2 (41) 

12 g of CaCO3 was added to 10.4 g of selenous acid dissolved in 10 ml of 

distilled water,. The mixture was stirred before almost completely removing the CO2 

and forming a suspension of calcium selenite. Then, 150 ml 1.4 mol/l H2SO3 was 

added to the suspension with mixing and cooling it in glass water. At the beginning 

of the reaction, H2SeS2O6 was formed, which further continuously converts to 

H2Se2S2O6 at room temperature. In order to monitor the reaction, aliquots of solution 

were taken from the reaction vessel, diluted with distilled water to 100 ml and 

analysed according to methods described below. 

2.1.2. The synthesis of H2SenS2O6 from selenous acid with the addition of 

KHSO3  

Further, we study the reaction of selenous acid with potassium hydrogen 

sulphite in more detail: 

2𝐻2𝑆𝑒𝑂3 + 5𝐾𝐻𝑆𝑂3 → 𝐻2𝑆𝑒2𝑆2𝑂6 + 2𝐾2𝑆𝑂4 + 𝐾𝐻𝑆𝑂4 + 3𝐻2𝑂 (42) 

H2SenS2O6 was prepared using two different preparations with the same mixing 

molar ratio 2H2SeO3:5KHSO3 by varying only the order of reagent addition to the 

reaction mixture and the reaction temperature. Both reactions were performed using 

an excess of one of the reagents, either H2SeO3 or KHSO3. In order to monitor the 

reaction, aliquots of solution were taken from the reaction vessel, diluted with distilled 

water to 100 ml and analysed according to methods described below.  

50 ml of 1 mol/l KHSO3 solution were slowly poured while stirring into the 

same amount of 0.4 mol/l H2SeO3 solution. During reaction, the solution heats up, 

thus it is cooled down using ice or the solutions must be cooled down beforehand. The 

solution is greenish-yellowish in colour which indicates the formation of SenS2O6
2– 

ions. Further, the solution changes colour to orange, then to red with the formation of 

colloidal amorphous selenium. This solution can be stable for weeks, if refrigerated. 

2.1.3. The synthesis of H2SenS2O6 from KHSO3 with the addition of selenous 

acid 

For the second preparation, the freshly prepared and cooled (1–4°C) 50 ml of 

0.4 mol/l H2SeO3 was slowly added to the cooled (1–4°C) 50 ml of 1 mol/l KHSO3 
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with constant stirring. The reaction started spontaneously and was completed within 

10 min. The reaction solution is pale green at the beginning, and remains without 

significant changes for about one month when kept in the refrigerator at 4°C. Further, 

reaction kinetics was investigated at 25°C using thermostatic arrangement. 

2.1.4. Analysis 

The complete analysis of the mixture of selenous acid reaction with sulphurous 

acid with the addition of CaCO3, or selenous acid with potassium hydrogen sulphite 

includes a determination of the total number of moles of selenopolythionates, the 

concentration of monoselenotrithionic and diselenotetrathionic acids, the average 

number of atoms of selenium in a molecule of selenopolythionic acid n, the residue 

of non-reacted selenous acid H2SeO3 and also the possible admixtures of the products 

of its decomposition, namely, elemental Se, sulphurous and sulphuric acids. 

Monoselenotrithionic acid oxidizes with iodine in a bicarbonate medium 

according to the equation: 

𝑆𝑒𝑆2𝑂6
2− + 3𝐼2 + 10𝑂𝐻

– → 𝑆𝑒𝑂3
2− + 2𝑆𝑂4

2− + 6𝐼– + 5𝐻2𝑂 (43) 

In a bicarbonate medium, sulphurous ion SO3
2- also oxidizes using two mole-

equivalents of iodine. The titration by iodine in a bicarbonate medium with 

preliminary blocking SO3
2– with formalin gives an amount of selenotrithionic acid. 

Diselenotetrathionic acid by action of bicarbonate decomposes to 

monoselenotrithionic acid with the release of one mole of Se: 

𝑆𝑒2𝑆2𝑂6
2− → 𝑆𝑒 + 𝑆𝑒𝑆2𝑂6

2− (44) 

Determining the released Se and monoselenotrithionic acid in the mother 

solution allows to find the concentration of H2SeS2O6 and H2Se2S2O6 in their mixture. 

Selenous acid was analysed by oxidizing the mixture with I2 and further titration with 

sodium thiosulphate: 

𝐻2𝑆𝑒𝑂3 + 4𝐼
– + 4𝐻+ → 2𝑆𝑒 + 2𝐼2 + 3𝐻2𝑂 (45) 

According to this procedure, the released red elemental selenium was oxidized 

with elemental Br2 to H2SeO3 and was analysed by the procedure above. The 

concentration of sulphuric acid was determined turbidimetrically or calculated 

according to the balance of sulphur in the reaction mixture. 

2.2. Glass substrate preparation 

The research used Thomas® Environmental Slides glass substrates with one 

side sandblasted and cut to 10×10×1 mm and 20×20×1 mm. All substrates were 

washed using liquid soap and distilled water, and dried. Then they were cleaned 

ultrasonically in an acetone bath by using the Sonoswiss SW 3 H cleaner for 10 min 
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at 40°C in the sweep mode. All samples were dried in air and then used for layer 

deposition. 

2.3. Copper and indium selenide layer deposition 

The copper and indium selenide layers were obtained in three steps plus 

annealing. Firstly, a selenium layer was formed by submerging a glass substrate into 

0.4 mol/l H2SeO3 and 1 mol/l KHSO3 1:1 mixture for 2 h and 3 h at 60°C. Then, the 

sample was rinsed in distilled water and placed for 10 min in a solution of 0.4 mol/l 

CuSO4 with the addition of 1% hydroquinone for 10 min and 20 min at 40°C, and 5 

min and 10 min at 60°C. It is a mixture of univalent and divalent copper salts which 

consists of 0.34 mol/l Cu(II) and 0.06 mol/l Cu(I) salt. Later the substrates were rinsed 

with distilled water and submerged in 0.1 mol/l InCl3 solution for 10 min and 20 min 

at 40°C; the samples were rinsed in distilled water again and dried over CaCl2. Finally, 

the samples were annealed for 12 h in an inert nitrogen atmosphere at 100°C. 

2.4. Materials 

All reagents used in the experiments were chemically and analytically pure 

commercial reagents. Potassium hydrosulphite (KHSO3) (≥98.0% from Sigma–

Aldrich), selenous acid (H2SeO3) (99.999% trace metals basis from Sigma–Aldrich), 

crystalline copper sulphate pentahydrate (CuSO4·5H2O) (crystals and lumps, 99.999% 

trace metals basis, from Sigma–Aldrich), hydroquinone (C6H4(OH)2) (flakes, ≥99% 

ReagentPlus® from Sigma–Aldrich) and indium(III) chloride (InCl3) (reagent grade, 

98%, powder from Sigma–Aldrich) were used for the experiments.  

2.5. XRD characterization 

X-ray diffraction analysis of the layers deposited on the surface of the glass 

substrate after each step was performed using a D8 Advance diffractometer (Bruker 

AXS, Karlsruhe, Germany) operating at the tube voltage of 40 kV and tube current of 

40 mA. Diffraction patterns were recorded in a Bragg-Brentano geometry, using a fast 

counting 1-dimensional detector Bruker LynxEye based on silicon strip technology. 

The X-ray beam was filtered with a Ni 0.02 mm filter to suppress Cu-k alpha -

radiation and the specimens were scanned over the range of 2θ = 3–70° at a scanning 

speed of 6° 1/min using a coupled two theta/theta scan type. The diffractometer is 

supplied together with a software package DIFFRAC.SUITE. X-ray diffractograms 

of the deposited layers were processed using software packages Search Match, 

ConvX, Xfit and Microsoft Office Excel. 

2.6. XPS characterization 

XPS measurements were carried out using the upgraded Vacuum Generator 

(VG) ESCALAB MKII spectrometer fitted with a new XR4 twin anode to obtain 
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information about the elemental chemical states and surface composition of the layers 

deposited on the surface of the glass substrate on. The non-monochromatised MgKα 

X-ray source was operated at hν = 1253.6 eV with a 300 W power (20 mA/15 kV) 

and the pressure in the analysis chamber was lower than 5×10–7 Pa during spectral 

acquisition. The spectra were acquired with an electron analyser pass energy of 20eV 

for narrow scans and the resolution of 0.05 eV and with a pass energy of 100 eV for 

survey spectra. All spectra were recorded at a 90° take-off angle and calibrated from 

the hydrocarbon contamination using the C 1s peak at 284.6 eV. The spectra 

calibration, processing and fitting routines were done using the Avantage software 

(5.918) provided by Thermo VG Scientific. Core level peaks of Se3d, Cu2p, In3d, 

O1s, Cl2p and C1s were analysed using a non-linear Shirley-type background and the 

calculation of the elemental composition was performed on the basis of Scofield’s 

relative sensitivity factors. 

2.7. SEM/EDS characterization 

The morphological analysis of the Cu-In-Se layer on a glass substrate was 

executed by applying the Scanning Electron Microscope (SEM) Quanta 200 FEG 

(FEI, Netherlands). Energy dispersive X-Ray spectroscopy (EDS) was performed 

using a Bruker XFlash 4030 detector. The standard-less ZAF method was used to 

quantify elements detected with EDS. 

2.8. Band gap characterization 

The optical absorption spectra were studied at room temperature using the 

PerkinElmer Lambda 35 UV/VIS Spectrometer with The Labsphere RSA-PE-20 

Diffuse Reflectance Sphere in the range of 400–900 nm. The band gap Eg was 

calculated using this formula [133]: 

𝛼ℎ𝜈 = 𝐵(ℎ𝜈 − 𝐸𝑔)
𝑛

 (46) 

α – absorption coefficient; 

hν – photon energy; 

B – constant associated with absorption; 

𝛼 =
ln 10 ∙ 𝐴

𝑑
 

(47) 

A – absorption; 

d – layer thickness; 

Layer thickness was not measured and A is proportional to α, so the measured A 

value was used for calculation. Eg was determined from a modified variation of 

formula (αhν)n against photon energy hν. The value of the exponent n denotes the 

nature of the transition: 
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n = 2 for direct allowed transitions; 

n = 2/3 for direct forbidden transitions; 

n = 1/2 for indirect allowed transitions; 

n = 1/3 for indirect forbidden transitions. 

The linear nature of the plot indicates transition (n = 2). The band gap was 

calculated by extrapolating the linear part of the plot until it intersects the photon 

energy axis (A = 0). So, Eg = hν, when A = 0. 

2.9. AAS characterization 

The concentration of selenium, copper and indium in copper and indium 

selenide layers formed on a glass substrate were determined using the atomic 

absorption spectrophotometry method. The layers were dissolved in 1:1 concentrated 

nitric acid and distilled water solution. 

Selenium, copper and indium present in the resulting solution were determined 

by using the atomic absorption spectrometer Shimadzu AA-7000. The used 

wavelength was λ = 196.0 nm, slit width 1.3 nm, lamp current 23 mA for selenium; 

wavelength λ = 324.8 nm, slit width 0.7 nm, lamp current 6 mA for copper; and 

wavelength λ = 303.9 nm, slit width 0.7 nm, lamp current 6 mA for indium. An 

electrodeless discharge lamp and air-acetylene gas mixture was used for flame. The 

sensitivity is about 0.5 μg/ml for selenium, 0.09 μg/ml for copper and 0.7 μg/ml for 

indium for 1 % absorption. 

The obtained concentrations were used to calculate the deposited elemental 

mass for selenium, copper, indium in mg on an area unit of one cm2. Areas were 

calculated by weighting each sample and comparing its weight to a weight of 1 m2 

substrate. 
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3. RESULTS AND DISCUSION 

3.1. H2SenS2O6 synthesis and analysis 

Several studies of various cases of above described reactions exist [112, 134]. 

In study [112], an amount of CaCO3 calculated according the below reaction was 

added with the aim to precipitate sulphuric acid and the reaction is shown in equation 

(41). H2SeS2O6 was formed at the beginning of the reaction, which further 

continuously converts to H2Se2S2O6 at room temperature (Fig. 4). 

 

Fig. 4. The kinetics of reaction of H2SeO3 and H2SO3 at 25°C. 1.4 mol/l H2SO3 addition to 

suspension of CaCO3 in 8 mol/l H2SeO3. (a): 1 – H2SeS2O6 + H2Se2S2O6, 2 – H2SeS2O6, 3 – 

Seel, 4 – H2SO3, 5 – H2SeO3, 6 – H2SO4. (b): n – the number of Se atoms in H2SenS2O6. 

A Small amount of triselenopentathionate acid H2Se3S2O6 also forms, but 

quickly decomposes. 0.2–0.3 mol/l diselenotetrathionate acid with H2Se3S2O6 (n = 1.9 

– 2.1) were found in the reaction solution at 3.5 to 8.5 h from the beginning of the 

reaction. Decomposition of the formed H2Se2S2O6 to H2SeS2O6 with the release of 

elemental Se begins after 10 h from the beginning of reaction shown in equation (30). 

A more detailed study of the reaction of selenous acid with potassium hydrogen 

sulphite [134] (Fig. 4) was conducted and the reaction is show in equation (42). 

H2SeS2O6 is formed in the first preparation at the beginning of the reaction, with a 

significant amount (0.03–0.05 mol/l) of H2Se2S2O6. The number of selenium atoms n 

in molecule of H2SenS2O6 increases continuously from 1.0 to 1.43 with the release of 

elemental selenium (Fig. 5) during the initial fast stage of reaction. 
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Fig. 5. The kinetics of reaction of H2SeO3 and H2SO3 at 25°C. 1 mol/l KHSO3 addition to 0.4 

mol/l H2SeO3. (a): 1 – H2SeS2O6 + H2Se2S2O6, 2 – H2SeS2O6, 3 – Seel, 4 – H2SO3, 5 – 

H2SeO3, 6 – H2SO4. (b): n – the number of Se atoms in H2SenS2O6. 

Further, the solution changes colour to orange, then to red with the formation of 

colloidal amorphous selenium. The solution can be stable for weeks, if refrigerated. 

H2SeS2O6 is formed in the second preparation at the beginning of the reaction, 

together with a small amount (0.00125–0.031 mol/l) of H2Se2S2O6. The average 

number of atoms of selenium n in a molecule of H2SenS2O6 during the initial fast stage 

(one hour from the mixing of reagents) of reaction remains ~ 1.0 (1.00–1.17). The 

second preparation allow us to prepare almost 99.3% of H2SeS2O6 (Fig. 6) only with 

insignificant release of elemental selenium. 
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Fig. 6. The kinetics of reaction of H2SeO3 and H2SO3 at 0°C. 0.4 mol/l H2SeO3 addition to 1 

mol/l KHSO3. (a): 1 – H2SeS2O6 + H2Se2S2O6, 2 – H2SeS2O6, 3 – Seel, 4 – H2SO3, 5 – 

H2SeO3, 6 – H2Se2S2O6. (b): n – the number of Se atoms in H2SenS2O6. 

Further, the reaction kinetics was investigated at 25°C using thermostatic 

arrangement. Monoselenotrithionate acid H2SeS2O6 starts to decompose to H2Se2S2O6 

(n = 1.04 – 1.40) with a release of elemental selenium only after 20 h (Fig. 7).  

 
Fig. 7. The kinetics of reaction of H2SeO3 and H2SO3 at 25°C. 0.4 mol/l H2SeO3 addition to 

1 mol/l KHSO3. (a): 1 – H2SeS2O6 + H2Se2S2O6, 2 – H2SeS2O6, 3 – H2Se2S2O6, 4 – H2SO3. 

(b): n – the number of Se atoms in H2SenS2O6. 

Several studies of various cases describing the reaction and interpretation of its 

mechanism exist [105, 135, 136]. However, the reaction suffers from a serious 

limitation, because of the inability to exactly determine its mechanism because of its 
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complexity. The reaction may have two stages. Firstly, during the fast initial stage 

H2SeS2O6 and H2Se2S2O6 acids form (reactions (17) and (18)). The second stage is 

slower decomposition of both H2SeS2O6 and H2Se2S2O6 through a number of reactions 

((23)–(29)) with the formation of elemental selenium, H2SO3 and H2SO4. The formed 

H2SO3 then may react with the excess H2SeO3 to form more elemental selenium 

(equation (16)). Furthermore, selenium and H2SO3 can react and regenerate 

H2Se2S2O6 (equation (19)), which then again decomposes back to elemental selenium, 

H2SO3 and H2SO4. These processes may explain various concentration fluctuations 

during the reaction. 

The reaction rate depends on temperature and the concentration of the initial 

solution. According to the kinetics curves, some characteristics of three types of 

reaction were calculated (Table 3). 

Table 3. Kinetic characteristics for H2SenS2O6 (n = 1–2) formation at 0 and 25°C 

Reaction type Ratio of 

concentrations, 

mol/l 

H2SeO3:H2SO3 

Tempe-

rature, 

°C 

Rate law Average rate 

constant 

k 103,  s–1 

Addition of H2SO3 to the 

suspension of CaSeO3 

0.08:0.2 0 v = kt [H2SeO3] 4.6 10-2 

Addition of KHSO3, to 

an excess of H2SeO3 

0.02:0.05 25 v = kt [H2SeO3] 1.85 

Addition of H2SeO3 to 

an excess of KHSO3 

0.02:0.05 0 v = kt [H2SeO3] 5.09 

As the reaction is very complicated, the isolation method was applied in 

conjunction with the method of initial rates [137]. The method of initial rates might 

not reveal the entire rate law because in a complex reaction the products themselves 

might affect the rate. That is in the case of the formation of monoselenotrithionate 

H2SeS2O6 and diselenotetrathionate H2Se2S2O6 acids the decomposition of which 

through unstable intermediate product H2SeSO3 or known [135] sulphurous 

decomposition of diselenotetrathionate acid leads to the regeneration of initial 

reagents, such as H2SO3: 

𝐻2𝑆𝑒𝑛𝑆2𝑂6 + 𝐻2𝑂 → 𝑛𝑆𝑒 + 𝐻2𝑆𝑂4 + 𝐻2𝑆𝑂3 (48) 

The kinetics of three types of H2SenS2O6 formation process were studied and 

analysed. The first-order rate expression was tested by plotting ln cH2SeO3 against time, 

a plot of 1/cH2SeO3 against time, based on the assumption of a second-order mechanism, 

and a plot of 1/c2
H2SeO3. All three mechanisms were tested for all three types of reaction. 

Calculations show that the correlation coefficient values, R2 for the first-order rate law 

(0.9724–0.9984) are greater than the correlation coefficients of other two plots, 

(respectively, 0.9133–0.9603 and 0.8238–0.9164) for all three types of studied 
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reactions. The data of the reaction with the addition of KHSO3 to an excess of H2SeO3 

show the best agreement with the first-order mechanism. The regression coefficients 

for the linear plots were highest (R2 = 0.9984) among all type of reactions in this study. 

It suggests that the preferred mechanism of the first stage of reaction is first-order 

rather than second-order. Also, the data for the first-order rate law were only analysed 

for the 10–20 minutes of H2SenS2O6 formation reactions. After this initial reaction 

part, the deviation from the linear curve increased rapidly. Kinetic calculations allow 

us to assume that the reaction with the rate law of the form v = kt [H2SeO3] corresponds 

to the first-order reaction. The integrated rate law of a reaction may be expressed as: 

[𝐻2𝑆𝑒𝑛𝑆2𝑂6] = [𝐻2𝑆𝑒𝑂3]0(1 − 𝑒
−𝑘𝑡) (49) 

 [H2SenS2O6] – the concentration of formed selenopolythionic acid at time t; 

[H2SeO3]0 – the initial concentration of selenous acid; kt – rate constant. 

The mechanism and kinetic characteristics of this reaction were compared with 

the already investigated and known properties of stability of monoselenotrithionate 

H2SeS2O6 and diselenotetrathionate H2Se2S2O6 isolated from their potassium salts 

[112, 138] (Fig. 8, Fig. 9). 
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Fig. 8. The kinetics of decomposition of H2SeS2O6 1.02 mol/l at 25°C. (a): 1 – H2SeS2O6, 2 – 

H2Se2S2O6, 3 – H2SeS2O6 + H2Se2S2O6, 4 – Seel, 5 – H2SO4. (b): n – the number of Se atoms 

in H2SenS2O6 

 
Fig. 9. The kinetics of decomposition of H2Se2S2O6 0.97 mol/l at 25°C. (a): 1 – H2SeS2O6, 2 

– H2Se2S2O6, 3 – H2SeS2O6 + H2Se2S2O6, 4 – Seel, 5 – H2SO4. (b): n – the number of Se 

atoms in H2SenS2O6 

Table 4 summarizes the known kinetic characteristics of selenopolythionate 

acids and its potassium salts. The stability of selenopolythionate acid decreases with 

the increasing number of selenium atoms in an acid molecule. Table 4 shows the 

values of the first-order rate constant, k, were found to increase four-fold for 

H2Se2S2O6 in comparison to H2SeS2O6 from 2.98 10–6 s–1 to 10.6 10–6 s–1, 

approximately for the same initial concentration, respectively, 0.190 mol/l and 0.247 

mol/l. 
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Table 4. Rates of decomposition for H2SenS2O6 (n = 1–2) at 25°C, K2SeS2O6 at 20°C and 30°C  

Selenopolythionate compound Concentration, 

mol/l 

Half – life, 

½, h 

Average rate constant 

k 106, s–1 

H2SeS2O6 1.02 2.6 63.5 

 0.375  6.38 

 0.190 42 2.98 

H2Se2S2O6 0.972 3 76.6 

 0.603  25.7 

 0.247 16 10.6 

K2SeS2O6
* [138] 0.0488 112 1.64 

K2SeS2O6
** [138] 0.0452 22 7.88 

K2SeS2O6
*** [138] 0.0396 75 2.70 

* in distilled water at 30°C; 
** in 0.1 mol/l HCl at 30°C; 
*** in 0.1 mol/l HCl at 20°C 

 

The comparison of data for potassium selenotrithionate decomposition (Table 

4) shows that the decomposition rate and isolation of elemental Se depends on the 

acidity of the solution. In acidified solutions (pH = 1.1), the isolation of Se starts after 

45 h from the beginning of decomposition at 30°C, in distilled water (pH = 7.0), 

respectively, after 120 h. First-order decomposition rate constants calculated for the 

first stage of decomposition show that K2SeS2O6 decomposes approximately five 

times faster in an acidic solution than in distilled water at 30°C. The data also [136] 

show an increase of decomposition rate of K2SeS2O6 in acidified solutions with 

temperature. Table 4 indicates that the values of the first-order rate constant, k, were 

found to increase from 2.70 10-6 s-1 to 7.88 10-6 s-1, with an increase of the solution 

temperature from 20°C to 30°C. Again, the average value of temperature coefficients 

of K2SeS2O6 decomposition is 2.90 to 3.06, which corresponds to first-order reactions 

[136]. 

Quantitative data on the decomposition kinetics of potassium 

diselenotetrathionate are not available. K2Se2S2O6 is more stable in slightly acidified 

solutions, but completely decomposes to elemental selenium and sulfuric acid in 

acidic solutions, as shown in equation (28). 

Some difficulties occur in comparing the kinetic data for decomposition of 

selenopolythionate acids and its potassium salts due to the differences in 

concentrations and temperature. However, it might be stated that the stability of 

selenopolythionate acids is significantly higher than the stability of its potassium salts 

even at higher concentrations (Table 4). This feature shows that selenopolythionate 

acids are more convenient in longer selenization processes even though both, acids 

and salts, possess almost the same purity and decomposition products. Nevertheless, 
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the elemental composition of acids (32.75–49.36% of Se in acids against 24.73–

39.66% of Se in its potassium salts) helps to increase the amount of Se in selenized 

surface layer of the substrate.  

Direct reactions of isolation of selenopolythionate compounds showed a 

strong dependence upon the conditions of reactions: temperature, admixtures and 

duration. An addition of CaCO3 allows increasing the concentration of 

diselenotetrathionate acid ten-fold. The use of KHSO3 instead of H2SO3 allows 

increasing the concentration of the resulting solution of selenotrithionate and of 

diselenotetrathionate acids to ~ 0.2 mol/l and its stability as H2SO4 was eliminated. 

The amount of elemental Se is, respectively, 33.64, 40.54 and 49.65% in 

synthesized precursors H2SenS2O6 (n = 1.04, 1.40 and 2.1) using three types of direct 

reactions, which shows similar enrichment with Se compared to selenotrithionate and 

diselenotetrathionate acids (a 10% increase compared to potassium salts). 

An estimation of direct experimental reaction rates and the calculation of 

reactions rate constants showed us that the most suitable process for selenization, 

especially for the CBD procedure on glass substrates, is fast reaction of selenous acid 

and KHSO3. The superiority of easy selenopolythionate anion SenS2O6
2- production in 

direct experiments compared to its preparation in the form of potassium salts, or even 

longer isolation from potassium salts in the form of selenopolythionate acids, makes 

this type of selenopolythionate precursor preparation especially attractive for 

selenization. 
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3.2. Selenium layer on glass 

3.2.1. XRD analysis 

Fig. 10 shows the XRD patterns of elemental selenium layers on the glass 

substrate obtained during the first step of their formation process. The glass substrate 

was submerged into a mixture of solutions H2SeO3 and KHSO3 at 60°C for two 

(pattern (a)) and three (pattern (b)) hours. Only one peak (+) at 2θ = 23.5° phase of 

monoclinic selenium (JCPDS: 24-714) appears (Table 6). The three-hour deposition 

pattern (b) shows a slightly more intense peak than the two-hour deposition pattern 

(a), indicating that more elemental selenium was deposited on the glass substrate. 

Only a single selenium peak indicates that the majority of selenium is in the 

amorphous phase, which is red in colour. It is known that red amorphous selenium is 

more active than black crystalline selenium [139]. This is why amorphous selenium 

should react more actively with copper ions. This pattern confirms that elemental 

selenium is formed and these reactions take place in the precursor solution, as shown 

in equations (42) and (44). 

 
Fig. 10. XRD patterns of selenium layers on a glass substrate for 2 (a) and 3 (b) hours. The 

peak was identified as (+) – Se (24-714) monoclinic selenium. 
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3.2.2. XPS analysis 

To get more information about the formation of the selenium layer on the glass 

substrate, it was analysed by using X-ray photoelectron spectroscopy (XPS). The 

surface layer was obtained during the first step, when the glass substrate was 

submerged into a mixture of solutions H2SeO3 and KHSO3. The surface layer and its 

deeper areas were studied as well after etching. 

 

Fig. 11. High resolution XPS spectra in Se3d5/2 region of the etched elemental selenium layer 

on a glass substrate. Sample selenized for 3 hours. 

The signal of the etched selenium layer on glass can be seen in Fig. 11. It 

exhibits a signal at 55.7 eV (Table 7) which corresponds to selenium in elemental state 

(Se0) [140]. 

  

3000

3500

4000

4500

5000

5500

6000

6500

50 52 54 56 58 60

In
te

n
s
it

y
, a

.u
.

Binding energy, eV



 

43 

3.3. Copper selenide layer on glass 

3.3.1. XRD analysis 

During the second stage, the glass substrate with a layer of elemental selenium 

was submerged into CuSO4 and hydroquinone solution. Peaks corresponding to the 

phase of monoclinic selenium shown in Fig. 10 (pattern (a) and (b)) disappear. This 

indicates that selenium has reacted with Cu(I) ions and formed a copper selenide layer. 

Samples which were selenized for two hours show four new peaks (◊) at 2θ = 

26.6, 28.1, 31.1 and 50.0° of copper selenide phase – hexagonal klockmannite Cu0.87Se 

(JCPDS: 83-1814) (Table 6) in Fig. 12 (a) (pattern (1), (2) and (3)). However, 

considering another copper selenide phase – cubic berzelianite Cu2–xSe (JCPDS: 6-680) 

(Table 6) peaks appear at 2θ = 26.75, 44.6, 52.9° (pattern (4)). 

 
Fig. 12. XRD patterns of copper selenide layers on a glass substrate. The peaks were 

identified as (◊) – Cu0.87Se (83-1814) hexagonal klockmannite and (♦) – Cu2–xSe (6-680) 

cubic berzelianite. Samples were selenized: (a) – 2 hours and (b) – 3 hours. The temperature 

and duration of copper(I/II) salt solution treatment: 1, 5 – 10 min at 40°C; 2, 6 – 20 min at 

40°C; 3, 7 – 5 min at 60°C; 4, 8 – 10 min at 60°C. 
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Similar results for samples that were selenized for three hours can be seen in 

Fig. 12 (b): the monoclinic selenium peak also disappears and hexagonal 

klockmannite Cu0.87Se peaks appear as mentioned above, but in all four patterns ((1), 

(2), (3) and (4)). Also, no cubic berzelianite Cu2–xSe peaks have been found to form 

when selenization lasts 3 hours (Fig. 12 (b)). All graphs indicate (Fig. 12) that higher 

treatment temperature (60°C vs. 40°C) and longer durations (20 min vs. 10 min and 

10 min vs. 5 min) seem to yield layers with more intense peaks, thus indicating more 

copper selenide formed. 

The disappearance phase of monoclinic selenium and the appearance of new 

copper selenide phases indicate that the reaction of the formation of copper selenides 

CuxSe (Cu2–xSe and Cu0.87Se) has taken place which is described in equation: 

𝑆𝑒 + 2𝑥𝐶𝑢+ → 𝐶𝑢𝑥𝑆𝑒 + 𝑥𝐶𝑢
2+ (50) 
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3.3.2. AAS analysis 

Atomic absorption spectroscopy analysis method was used to determine amount 

of selenium and copper and shown in Table 5. 

Samples submerged into mixture of solutions H2SeO3 and KHSO3 at 60 °C for 

2 hours have less selenium (1.201–1.230 μmol/cm2) compared to the 3 hour 

selenization samples (2.861–2.924 μmol/cm2). Data here coincide with XRD data 

(Fig. 10), 3 hours selenized sample has more intense elemental selenium peak. 

Copper(I/II) salt solution treatment with temperature and durations seems to 

have impact on the amount of copper in the layers. The longer the copper(I/II) salt 

solution treatment duration and the higher treatment temperature, the more copper 

react with deposited selenium layers. Samples that were treated for 10 min (0.787 and 

0.861 μmol/cm2) have less copper than the 20 min ones at 40 °C (0.868 and 0.933 

μmol/cm2). Also, 5 min samples (0.903 and 0.950 μmol/cm2) have less copper 

compared to 10 min samples (0.922 and 1.028 μmol/cm2) at 60 °C. Furthermore, 40 

°C samples (0.787 and 0.861 μmol/cm2) have less copper than 60 °C samples (0.922 

and 1.028 μmol/cm2) with the same 10 min treatment duration. The discussed results 

line up with XRD data (Fig. 12) as well, higher temperature and longer copper(I/II) 

salt solution treatment durations seems to produce more intense copper selenide 

(hexagonal klockmannite Cu0.87Se and cubic berzelianite Cu2–xSe) peaks. 

Table 5. Calculated amounts of selenium and copper in copper selenide layers 

Conditions of treatments 

Amount of elements, 

μmol/cm2 

Se Cu 

S
el

en
iz

at
io

n
 2
 h

 

co
p
p
er

(I
/I

I)
 s
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so
lu

ti
o
n

 

tr
ea

tm
en

t 

40 °C 
10 min 1.209 0.787 

20 min 1.201 0.868 

60 °C 
5 min 1.230 0.903 

10 min 1.227 0.922 

3
 h

 

40 °C 
10 min 2.924 0.861 

20 min 2.899 0.933 

60 °C 
5 min 2.886 0.950 

10 min 2.861 1.028 
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3.4. Copper and indium selenide layer on glass 

3.4.1. XRD analysis 

All obtained copper selenide layers were submerged into an indium(III) salt 

solution for 10 min (Fig. 13) and 20 min (Fig. 14) at 40°C. In neither of the samples 

(except Fig. 13, pattern 4) new peaks disappeared; however, one new cubic indium 

selenide In2Se3 (JCPDS: 20-492) peak (●) at 2θ = 46.0° appeared on all samples (Fig. 

13 and Fig. 14, except Fig. 13 pattern 4). This indicates the formation of a new phase 

of indium selenide according equations: 

3𝐶𝑢𝑆𝑒 + 2𝐼𝑛3+ → 𝐼𝑛2𝑆𝑒3 + 3𝐶𝑢
2+ (51) 

3𝐶𝑢2𝑆𝑒 + 2𝐼𝑛
3+ → 𝐼𝑛2𝑆𝑒3 + 6𝐶𝑢

+ (52) 

 

Fig. 13. XRD patterns of copper and indium selenide layers on a glass substrate. The peaks 

were identified as (◊) – Cu0.87Se (83-1814) hexagonal klockmannite; (□) – Cu3Se2 (71-45) 

tetragonal umangite; (■) – Cu7Se4 (26-557) cubic copper selenide; (●) – In2Se3 (20-492) 

cubic indium selenide. Samples selenized: (a) – 2 hours and (b) – 3 hours. The temperature 

and duration of Copper(I/II) salt solution treatment: 1, 5 – 10 min at 40°C; 2, 6 – 20 min at 

40°C; 3, 7 – 5 min at 60°C; 4, 8 – 10 min at 60°C. 10 min indium(III) salt solution treatment. 

In this sample (Fig. 13, pattern 4), all three Cu2–xSe cubic berzelianite peaks 

disappeared (this was present before in Fig. 12, pattern 4) and two new phases were 
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formed. The first one is tetragonal umangite Cu3Se2 (JCPDS: 71-45) (Table 6) which 

has seven peaks (□) at 2θ = 25.0, 27.8, 28.7, 39.8, 42.2, 49.8, 51.3°. The other phase 

is cubic copper selenide Cu7Se4 (JCPDS: 26-557) (Table 6) which has two peaks (■) 

at 2θ = 27.1, 44.9° (Fig. 13, pattern 4). This sample has no indium containing phases 

or the phase is amorphous. 

 
Fig. 14. XRD patterns of copper and indium selenide layers on a glass substrate. The peaks 

were identified as (◊) – Cu0.87Se (83-1814) hexagonal klockmannite; (●) – In2Se3 (20-492) 

cubic indium selenide. Samples were selenized: (a) – 2 hours and (b) – 3 hours. The 

temperature and duration of copper(I/II) salt solution treatment: 1, 5 – 10 min at 40°C; 2, 6 – 

20 min at 40°C; 3, 7 – 5 min at 60°C; 4, 8 – 10 min at 60°C. 20 min indium(III) salt solution 

treatment 

All other samples (Fig. 13 patterns 1–3, 5–8 and Fig. 14) show intensive and 

clear characteristic peaks of the Cu0.87Se which indicate that the layer formed after the 

third step consists mostly of Cu0.87Se phase and small amounts of In2Se3 phase. Higher 

peaks show that these phases tend to form better when the copper(I/II) salt solution 

treatment is done at 60°C (Fig. 13 patterns 3, 7, 8 and Fig. 14, patterns 3, 4, 7, 8) than 

at 40°C. The results of this research show that annealing is needed to obtain the 

CuInSe2 phase. 
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Fig. 15. XRD patterns of copper and indium selenide layers on a glass substrate. The peaks 

were identified as (*) – Se (73-465) hexagonal selenium; (◊) – Cu0.87Se (83-1814) hexagonal 

klockmannite; (●) – In2Se3 (20-492) cubic indium selenide; (○) – In2Se3 (17-356) indium 

selenide; (▲) – CuInSe2 (23-207) cubic copper indium selenide. Samples were selenized: (a) 

– 2 hours and (b) – 3 hours. The temperature and duration of copper(I/II) salt solution 

treatment: 1, 5 – 10 min at 40°C; 2, 6 – 20 min at 40°C; 3, 7 – 5 min at 60°C; 4, 8 – 10 min 

at 60°C. 10 min indium(III) salt solution treatment and annealing 

Finally, all samples were annealed for 12 h in an inert (nitrogen) atmosphere at 

100°C. The process promotes the appearance of a lot of new phases. Three new peaks 

(*) at 2θ = 23.5, 29.7 and 56.3° of hexagonal selenium (JCPDS: 73-465) (Table 6) are 

found across all samples. This indicates that amorphous elemental selenium has 

changed to crystal phase. Naturally, samples that have been submerged into a mixture 

of solutions H2SeO3 and KHSO3 for two hours (Fig. 15 (a) and Fig. 16 (a)) have lower 

peaks compared to the ones that were selenized for three hours. (Fig. 15 (b) and Fig. 

16 (b)). Also, hexagonal selenium patters are almost non-existent in samples that were 

treated with copper (II/I) salt solution for 10 min at 60°C (Fig. 15 pattern 4 and Fig. 

16 pattern 4) same two-hour selenization, which shows that almost all selenium 

reacted with other phases. The same two samples (Fig. 15 pattern (8) and Fig. 16 

pattern (8)) have much lower peaks than the remaining samples (Fig. 15 pattern (5), 
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(6), (7) and Fig. 16 pattern (5) , (6), (7)) indicating that much of the selenium reacted 

with other phases as well. 

It appears that in most samples (except Fig. 15 pattern (4)), hexagonal 

klockmannite Cu0.87Se peaks (◊) are lower (Fig. 15 pattern (1), (2), (3), (8); Fig. 16 

pattern (3), (4), (7), (8)) or disappear completely (Fig. 15 pattern (5), (6), (7); Fig. 16 

pattern (1), (2), (5), (6)). This shows that copper selenide phase – hexagonal 

klockmannite Cu0.87Se reacted with other phases. 

Similarly to klockmannite after annealing, indium selenide (JCPDS: 20-492) in 

most cases (except Fig. 15 pattern (4)) shows lower peaks (Fig. 15 pattern (1), (2), 

(3), (5), (6), (7) (8); Fig. 16 pattern (3), (4), (7), (8)) or peaks disappear completely 

(Fig. 16 pattern (1), (2), (5), (6)). This also indicates that the indium selenide phase 

reacted with other phases. 
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Fig. 16. XRD patterns of copper and indium selenide layers on a glass substrate. The peaks 

were identified as (*) – Se (73-465) hexagonal selenium; (◊) – Cu0.87Se (83-1814) hexagonal 

klockmannite; (●) – In2Se3 (20-492) cubic indium selenide; (○) – In2Se3 (17-356) indium 

selenide; (▲) – CuInSe2 (23-207) cubic copper indium selenide. Samples were selenized: (a) 

– 2 hours and (b) – 3 hours. The temperature and duration of copper(I/II) salt solution 

treatment: 1, 5 – 10 min at 40°C; 2, 6 – 20 min at 40°C; 3, 7 – 5 min at 60°C; 4, 8 – 10 min 

at 60°C. 20 min indium(III) salt solution treatment and annealing 

Meanwhile, after annealing, two diffraction peaks (▲) at 2θ = 43.6, 51.8° of 

cubic copper indium selenide phase CuInSe2 (JCPDS: 23-207) (Table 6) and two 

diffraction peaks (○) at 2θ = 41.3, 45.3° of the new phase of indium selenide In2Se3 

(JCPDS: 17-356) (Table 6) appear. Very similarly to elemental selenium phase, 

samples that have been selenized for two hours (Fig. 15 (a) and Fig. 16 (a)) have lower 

or no peaks compared to the ones that were selenized for three hours (Fig. 15 (b) and 

Fig. 16 (b)). Both phases show lower or no peaks when selenization lasted two hours: 

no copper indium selenide can be found on two-hour selenization samples that were 

treated with copper(I/II) salt solution for 10 min at 60°C (Fig. 15 pattern (4) and Fig. 

16 pattern (4)) and minimal amounts are found on the same three-hour selenization 

samples (Fig. 15 pattern (8) and Fig. 16 pattern (8)). 
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Similarly, no indium selenide (JCPDS: 17-356) peaks are found in Fig. 15 

pattern (1), (2), (3), (4), (5) and Fig. 16 pattern (3), (4), minimal peaks are in Fig. 16 

pattern (1), (2), (8). 

The highest peaks of both copper indium selenide and indium selenide are found 

when the samples were selenized in a selenium precursor for three hours and 

copper(I/II) salt treatment was both 10 min and 20 min at 40°C and 5 min at 60°C 

(Fig. 15 pattern (5), (6), (7) and Fig. 16 pattern (5), (6), (7)). 

These results can be illustrated by solid-state reactions which are described by 

the following equations: 

2𝐶𝑢𝑆𝑒 + 𝐼𝑛2𝑆𝑒3 → 2𝐶𝑢𝐼𝑛𝑆𝑒2 + 𝑆𝑒 (53) 

𝐶𝑢2𝑆𝑒 + 𝐼𝑛2𝑆𝑒3 → 2𝐶𝑢𝐼𝑛𝑆𝑒2 (54) 

This is how phases of hexagonal selenium (JCPDS: 73-465) and copper indium 

selenide (JCPDS: 23-207) are formed. Also, as a result of these reactions, the amount 

of phase of copper selenide Cu0.87Se (JCPDS: 83-1814) decreases significantly. 

It is possible that selenium and the cation of univalent copper had formed during 

equations (52), (53), and this reaction: 

2𝐶𝑢2𝑆𝑒 + 𝐼𝑛
3+ → 𝐶𝑢𝐼𝑛𝑆𝑒2 + 3𝐶𝑢

+ (56) 

They react according to equation (50), and copper selenide is formed. Then 

copper selenide reacts with In3+ cations, as shown in equations (51) and (52). 

An exchange of ions is possible because the solubility product for In2Se3 is 

5.6·10–92 mol5·dm–15, while the solubility products for CuSe and Cu2Se are 1.4·10–36 

mol2·dm–6 and 1.1·10–51 mol3·dm–9, respectively [141]. Thus, indium selenide 

(JCPDS: 17-356) phase is formed. 

It appears that the optimal conditions for obtaining copper indium selenide 

phase are: three-hour selenization followed by copper(I/II) salt treatment, both 10 min 

and 20 min at 40°C and 5 min at 60°C, followed by indium chloride 10 min and 20 

min treatment at 40°C and finally annealing at 100°C in an inert nitrogen atmosphere. 

A two-hour selenization may not be optimal due to the lack of elemental 

selenium deposited. Also, copper selenide treated at 60°C tends to form unwanted 

Cu0.87Se hexagonal klockmannite phase. While a 5 min treatment results in high 

copper indium selenide and indium selenide peaks, small amounts of klockmannite 

peaks can be found as well. 

To improve the small amounts of desired copper indium selenide phase, further 

optimisations and corrections of layer formation process is needed. 
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Table 6. XRD 2Ѳ peaks and their assignment to the formed layers on a glass substrate using 

the SILAR method 

 Name Formula System JCPDS 2-Theta Literature 

+ Se selenium monoclinic 24-714 23.523 [142] 

◊ Cu0.87Se klockmannite hexagonal 83-1814 26.615, 

28.107, 

31.082, 

50,000 

[143] 

♦ Cu2–xSe berzelianite cubic 6-680 26.750, 

44.600, 

52.913 

[144] 

□ Cu3Se2 umangite tetragonal 71-45 25.011, 

27.847, 

28.685, 

39.790, 

42.209, 

49.784, 

51.325 

[145] 

■ Cu7Se4 copper selenide cubic 26-557 27.081, 

44.903 

[146] 

● In2Se3 indium selenide cubic 20-492 46.048 [147] 

* Se selenium hexagonal 73-465 23.520, 

29.700, 

56.252, 

[148] 

▲ CuInSe2 copper indium selenide cubic 23-207 43.752 [5] 

○ In2Se3 indium selenide unknown 17-356 28.569, 

41.321, 

45.302 

[147] 
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3.4.2. XPS analysis 

The high-resolution XPS spectra of Se3d, Cu2p and In3d regions of unetched 

copper and indium selenide layers are shown in Fig. 17 and the etched ones are shown 

in Fig. 18. 

 
Fig. 17. High-resolution XPS spectra in Se3d3/2 and Se3d5/2, Cu2p3/2 and Cu2p1/2, In3d5/2 and 

In3d3/2 regions of copper and indium selenide layers on a glass substrate. Selenization 2 

hours (a) and 3 hours (b). The temperature and duration of copper(I/II) salt solution 

treatment: 1, 5 – 10 min at 40°C; 2, 6 – 20 min at 40°C; 3, 7 – 5 min at 60°C; 4, 8 – 10 min 

at 60°C. 10 min indium(III) salt solution treatment. Layers unetched.  
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Samples that have been selenized for two hours (Fig. 17 (a) and Fig. 18 (a)) have 

significantly lower Se3d peaks, showing that selenium concentration is lower than on 

the samples that were selenized for three hours (Fig. 17 (b) and Fig. 18 (b)). Also, 

layers that have not been etched (Fig. 17) have lower peaks than their etched 

counterparts (Fig. 18). This is probably due to the fact that during copper(II/I) salt 

solution treatment and indium(III) salt solution treatment, the top layers are formed 

have less selenium. This is why the deeper (etched) layer contains more selenium. 

All etched two-hour samples (Fig. 18 (a)) in Se3d spectra region have peaks at 

similar binding energy 54.6–54.8 eV (Table 7). This corresponds with the In2Se3 

binding energy 54.8 eV [149]. The two-hour selenization samples’ peak values (Fig. 

18 (a) are shifted to lower binding energy compared to the three-hour ones (Fig. 18 

(b)). This indicates that peaks may have shifted due to more deposited elemental 

selenium with higher binding energy of 55.7 eV [140]. Also, CuInSe2 fits all Se3d 

spectra peak values with the three-hour selenization samples (Fig. 18 (b)) with the 

binding energy of 55.0–55.18 eV [150, 151]. The results correspond with the XRD 

data. 

The high resolution XPS spectra in Cu2p3/2 and Cu2p1/2 regions are shown in 

Fig. 17 and Fig. 18 for not etched and for etched layers in Cu2p graphs, respectively. 

In case of an unetched sample, layers that were selenized for two hours (Fig. 17 (a)) 

and three hours (Fig. 17 (b)) have similar and rather low peaks. The same etched layers 

(Fig. 18) show much higher peaks compared to the unetched samples. This can be 

explained by the third layer formation step: more indium-containing compounds (like 

In2Se3) can be found on the top layer, more copper-containing compounds can be 

found deeper in the layer (like Cu0.87Se). The top layer may be contaminated more by 

impurities, such as oxides and salt residues from the solutions. 

All etched samples (Fig. 18) of Cu2p3/2 spectra region have similar binding 

energy peaks at 932.3–932.5 eV (Table 7). This peak corresponds with a number of 

compounds: CuInSe2 (BE=931.8–932.49 eV) [151], Cu2Se (BE=931.9–932.5 eV) 

[152] and Cu2O (BE=932.3–932.5 eV) [153, 154]. The Cu2p1/2 spectra have peak 

values at 952.2–952.4 eV and it corresponds with CuInSe2 (BE=932.31 eV) [151] and 

Cu2O (BE=932.5 eV) [154]. Not etched samples (Fig. 17) have similar binding energy 

peak values 932.2–932.4 eV. This means that layers have similar composition both 

on the surface and in the deeper layers. 
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Fig. 18. High-resolution XPS spectra in Se3d3/2 and Se3d5/2, Cu2p3/2 and Cu2p1/2, In3d5/2 and 

In3d3/2 regions of obtained copper and indium selenide layers on a glass substrate. 

Selenization 2 hours (a) and 3 hours (b). The temperature and duration of copper(I/II) salt 

solution treatment: 1, 5 – 10 min at 40°C; 2, 6 – 20 min at 40°C; 3, 7 – 5 min at 60°C; 4, 8 – 

10 min at 60°C. 10 min indium(III) salt solution treatment. All layers are etched.  
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In3d graphs in Fig. 17 show high-resolution XPS spectra in In3d5/2 and In3d3/2 

regions of copper and indium selenide unetched layers, while Fig. 18 shows the same 

spectra in etched layers. Samples selenized for two hours (Fig. 17 (a) and Fig. 18 (a)) 

show much lower peaks than the ones that were selenized for three hours (Fig. 17 (b) 

and Fig. 18 (b)). Both unetched and etched layers of the two-hour selenization samples 

show similar peak height values, while three-hour selenization samples show slightly 

higher peaks in the etched layers. This indicates that indium compounds are spread 

rather evenly across the top and in the deeper layers. Also, the top layer may have 

some impurities, such as oxide or residual salts from solutions. 

All etched samples (Fig. 18) in the In3d5/2 spectra region have similar binding 

energy peaks at 445.1–445.5 eV (Table 7). These spectra values correspond with 

In2Se3 (BE=445.1 eV) [155]. However, samples with an unetched layer (Fig. 18) have 

shifted peaks to higher binding energy to 445.8–446.0 (except pattern (8)); these 

values correspond with In(OH)3 (BE=445.0–445.2 eV) [156] and InCl3 

(BE=445.9 eV) [157]. This shows that there is residual indium chloride on the surface 

of the layers and it is not present in deeper layers. 

In3d3/2 spectra region have peaks of binding energy in the range of 452.8–453.7 

eV. The closest match is InCl3 (BE=454.1 eV) [155]). Similarly to In3d5/2, spectra 

region, In3d5/2 region peaks are higher on the etched samples, once again indicating 

there are more InCl3 on the top layer compared to the deeper layers. The NIST XPS 

database has very few entries in the In3d3/2 spectra region, thus the results are 

inconclusive. 

Some impurity elements, such as O, Cl and C were also detected by XPS analysis. 

The impurity of O is due to the exposure to atmosphere, and hydrolysis results in Cu2O 

and In2O3 formation, Cl is a residual element from the precursor InCl3 solution, C 1s 

of adventitious carbon is used as reference. 
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Table 7. XPS spectra peak values of copper and indium selenide layers on a glass substrate. 

Samples were treated for 10 min in an indium(III) salt solution. 

Conditions of treatment 
Binding energy, eV 

Se3d5/2 Cu2p3/2 Cu2p1/2 In3d5/2 In3d3/2 

Not etched 

S
el

en
iz

at
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n
 2
 h
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o
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er
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/I
I)
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al
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so
lu
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o
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 t
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at
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t 
40°C 

10 min 55.0 932.1 952.2 445.8 453.5 

20 min 55.6 932.5 952.4 445.8 453.5 

60°C 
5 min 55.6 932.4 952.3 445.8 453.5 

10 min 55.2 932.4 952.4 445.9 453.5 

3
 h

 

40°C 
10 min 55.8 932.4 952.4 445.9 452.9 

20 min 55.8 932.3 952.3 446.0 453.5 

60°C 
5 min 55.6 932.2 952.3 445.9 453.5 

10 min 55.4 932.3 952.3 445.4 453.6 

Etched 

S
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 h
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/I
I)

 s
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t 

40°C 
10 min 54.7 932.4 952.2 445.1 453.7 

20 min 54.8 932.4 952.3 445.4 453.0 

60°C 
5 min 54.8 932.3 952.3 445.4 453.0 

10 min 54.6 932.3 952.2 445.4 453.1 

3
 h

 

40°C 
10 min 55.3 932.4 952.3 445.5 453.1 

20 min 55.5 932.5 952.4 445.4 452.6 

60°C 
5 min 55.0 932.4 952.3 445.4 453.3 

10 min 55.2 932.4 952.3 445.3 452.8 

Selenization 3 h 55.6 – – – – 

 

Table 8. Atomic content of elements on the surface of copper and indium selenide layer 

evaluated from XPS. All layers are etched. 

Conditions of treatment 
Atomic content, % 

Se Cu In 
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40°C 10 min 35.27 47.56 17.17 

3
 h

 40°C 
10 min 56.69 15.92 27.40 

20 min 41.63 17.55 40.82 

60°C 10 min 37.66 21.74 40.61 

2
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in
 

3
 h

 

40°C 10 min 24.92 31.01 44.07 
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The atomic content of elements on the surface layers are shown in Table 8. The 

results show concentration changes in the atomic percentage with the differing 

conditions during each layer formation step. The compared sample (5) was formed 

using these conditions: 3-hour selenization, 10 min at 40°C copper solution treatment 

and 10 min indium(III) salt solution treatment. Sample (1) was contained in exactly 

the same conditions, except selenization took 2 hours. It has a much lower selenium 

content (35.27%) compared to sample (5) (56.69%). Next, the copper content is 

compared. Sample (5) was treated in a copper solution at 40°C for 10 min and has 

15.92% copper content. As expected, samples that have been treated for a longer 

duration (6–20 min at 40°C) and higher temperature (8–10 min at 60°C) have a higher 

copper content of 17.55% and 21.74%, accordingly. Finally, a 10 min (5) and 20 min 

(9) indium(III) salt solution treatment conditions are compared. The latter shows 

much higher indium content 44.07% against 27.40% 

The research tried to determine the reaction pathways using XRD and XPS 

analysis data of copper and indium selenide layers deposited using the SILAR method. 

It can be seen that during the first layer formation step, red, elemental, amorphous 

selenium Se0 is deposited. Next, the layer is treated with a solution containing 

copper(I) ions, obtaining the Cu0.87Se phase. When this layer was exposed to a solution 

containing indium(III) ions, the XRD analysis shows that Cu0.87Se and In2Se3 

compounds coexist in the layer before annealing. After annealing, both XRD and XPS 

confirm that the following phases are present Se0, Cu0.87Se, In2Se3, CuInSe2. 
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3.4.3. SEM/EDS analysis 

Scanning electron microscopy is a convenient technique for analysing the 

surface microstructure of thin films. Fig. 19 shows scanning electron micrographs of 

copper and indium selenide layers formed on a glass substrate. Elemental maps are 

shown in Fig. 21 and energy-dispersive X-ray spectroscopy spectra are presented in 

Fig. 22. 

A scanning electron microscope was used for studying the surface morphology 

and the micro structural features of copper and indium selenide layers on glass. SEM 

micrographs are shown at 1000 and 4000 magnifications, respectively. Looking at 

SEM micrographs we can see that the sample that was selenized for 2 hours (Fig. 19 

(a)) looks more uniform compared to 3-hour samples (Fig. 19 (b), (c), (d)). Also, the 

micrograph of the 2-hour selenization sample (Fig. 19 (a)) shows a compact structure 

composed of single type grains. Though the grains are small they are densely packed 

in clusters. The individual grains are well-defined, spherical and similar in size, about 

0.5–1.0 μm. In all 3-hour selenization samples (Fig. 19 (b), (c), (d)) gains exist in an 

agglomerated, dendritic structures and individual the grains are undefined. 

SEM top and side images of copper and indium selenide layers were acquired 

to assess the thickness of the layer (shown in Fig. 20). The thickness of an obtained 

layer mostly depends on the initial selenium deposition duration. The inset reveals the 

layer size to be around 26 μm for 2-hour selenized samples and around 90 μm for 

3-hour selenized samples. Different copper(I/II) and indium(I/II) salt solution 

treatment conditions do not seem to have any significant impact on the thickness of 

the formed layers. 

Energy dispersive X-ray spectroscopy (EDS) analysis was performed on the 

obtained layers (Fig. 22). Besides the main elements of Se, Cu and In, several other 

elements were found: O, Mg, Si, S, Cl, Na, Ca, S. O can be attributed to the adsorbed 

oxygen from atmosphere in the dendritic layer structure. Si and Mg could be found in 

the glass substrate. Remaining Na, S and Cl may be adsorbed residue from different 

solutions during layer formation steps. 

Peaks correspond with the atomic mass ratios on the layer. The sample in Fig. 

22 (d) was selenized for 3 hours, treated with copper solution for 10 min at 60°C, 

treated with indium solution for 20 min. The sample in Fig. 22 (a) was obtained using 

the same conditions, except selenization took 2 hours. As expected, the 3-hour 

selenization sample has a much higher Se peak. The elemental map also confirms 

these results: the 2-hour selenization sample (Fig. 21 (a)) has very little red area that 

corresponds to selenium compared to the 3-hour selenization sample (Fig. 21 (d)). 

Next, the previous layer (Fig. 22 (d)) is compared to the layer that has a lower 

copper solution treatment temperature (40°C) (Fig. 22 (b)). It has a much lower Cu 

peak, indicating that copper-rich layers obtained using a higher (60°C) temperature. 
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The elemental map (Fig. 21 (b)) shows almost no light-green areas that correspond to 

copper as compared to Fig. 21 (d). 

Finally, energy dispersive X-ray analysis results look very similar for both 10 

min (Fig. 22 (c)) and 20 min (Fig. 22 (d)) indium treatment layers. Similar results can 

be seen on elemental maps (Fig. 21 (c) and Fig. 21 (d)); small areas contain dark-

green colour that corresponds with indium. This data correlates with XDS and XPS 

analyses. 
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Fig. 19. SEM images of copper and indium selenide layer on a glass substrate. Samples were 

selenized: (a) – 2 hours and (b), (c), (d) – 3 hours. The temperature and duration of 

copper(I/II) salt solution treatment: (b) – 10 min at 40°C; (a), (c), (d) – 10 min at 60°C. 

Indium(III) salt solution treatment: (c) – 10 min; (a), (b), (d) – 20 min. All samples were 

annealed.  

a 

b 

c 

d 
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Fig. 20. SEM side images of copper and indium selenide layer on a glass substrate. Samples 

were selenized: (a) – 2 hours and (b) – 3 hours. The temperature and duration of copper(I/II) 

salt solution treatment: 10 min at 60°C. Indium(III) salt solution treatment: 20 min. All 

samples were annealed. 

  

  

Fig. 21. Elemental map images of copper and indium selenide layer on a glass substrate. 

Samples were selenized: (a) – 2 hours and (b), (c), (d) – 3 hours. The temperature and 

duration of copper(I/II) salt solution treatment: (b) – 10 min at 40°C; (a), (c), (d) – 10 min at 

60°C. Indium(III) salt solution treatment: (c) – 10 min; (a), (b), (d) – 20 min. All samples 

were annealed.  

a b 

c d 

a b 
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Fig. 22. EDS images of copper and indium selenide layer on a glass substrate. Samples were 

selenized: (a) – 2 hours and (b), (c), (d) – 3 hours. The temperature and duration of 

copper(I/II) salt solution treatment: (b) – 10 min at 40°C; (a), (c), (d) – 10 min at 60°C. 

Indium(III) salt solution treatment: (c) – 10 min at 40°C; (a), (b), (d) – 20 min at 40°C. All 

samples were annealed. 
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3.4.4. AAS analysis 

Atomic absorption spectroscopy analysis method was used to determine the 

amount of selenium, copper and indium which are shown in Table 9. Data here mostly 

coincide with the data obtained by using other analysis methods. 

Samples which are submerged into a mixture of solutions H2SeO3 and KHSO3 

for longer durations deposit more selenium. The same can be said about copper(I/II) 

salt solution treatment: higher temperatures and longer durations result in copper-rich 

layers. Selenium and copper data is discussed in the discussions of copper selenide 

layers AAS analysis on p.45. 

The durations of indium(III) salt solution treatment seem to have the same effect 

as depositing selenium layer from a mixture of solutions H2SeO3 and KHSO3 

durations, as well as copper(I/II) salt solution treatment durations. Longer treatment 

in indium(III) salt solution will provide indium-rich layer samples. Layers that have 

been treated for 10 min have 0.218–0.244 μmol/cm2, and 20 min samples have 0.233–

0.366 μmol/cm2 of indium. 

One more observation that can be made from AAS analysis data is that the 

amount of copper is lower (0.368–0.808 μmol/cm2) on samples after indium(III) salt 

solution treatment compared to before the treatment (0.787–1.028 μmol/cm2). This 

may be due to the reaction between copper selenide and indium(III) ions, as noted in 

XRD discussions and in equations (51) and (52): 
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Table 9. Calculated elemental amount to area units for selenium, copper, indium in copper 

and indium selenide layers on glass 

Conditions of treatment 
Amount of elements, μmol/cm2 

Se Cu In 
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40°C 
10 min 1.165 0.368 0.218 

20 min 1.203 0.520 0.229 

60°C 
5 min 1.197 0.537 0.231 

10 min 1.199 0.720 0.244 

3
 h

 

40°C 
10 min 2.835 0.530 0.227 

20 min 2.949 0.615 0.237 

60°C 
5 min 2.797 0.723 0.238 

10 min 2.886 0.808 0.241 

2
0

 m
in

 

2
 h

 

40°C 
10 min 1.218 0.348 0.233 

20 min 1.196 0.487 0.244 

60°C 
5 min 1.208 0.503 0.273 

10 min 1.228 0.687 0.278 

3
 h

 

40°C 
10 min 2.861 0.502 0.237 

20 min 2.848 0.587 0.273 

60°C 
5 min 2.949 0.690 0.294 

10 min 2.886 0.775 0.366 
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3.4.5. Optical properties 

Tauc plot was used to calculate the optical band gap of formed layers. The plot 

shows the energy of the light hν on the abscissa axis and the absorption quantity (αhν)n 

on the ordinate axis, where α is the absorption coefficient of the studied layer 

materials. The resulting plot has a distinct linear regime, when n = 2, indicating a 

direct band gap transition. It denotes the onset of absorption. Extrapolating the linear 

region to the abscissa yields the energy of the optical band gap of the material. 

 
Fig. 23. A plot of (Ahν)2 versus hν of multiphase copper and indium selenide layer. 

Selenization 2 hours (a), (c) and 3 hours (b), (d). Copper(I/II) salt solution treatment at 40°C 

for 20 min (a), (b), (c), (d). Indium(III) salt solution treatment 10 min (a), (b) and 20 min (c), 

(d). 

Calculated (Ahν)2 versus hν graphs have a linear part. Band gap Eg values were 

calculated (Table 11). Band gap values of the semi-conductors of the formed layers 
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found in literature are provided in Table 10. The measured band gap values are 

between 1.60–1.87 eV. This equates to the absorption start at 663–775 nm. These 

values fall under the most of compounds’ band gap values that were identified using 

XRD (Table 6) and XPS. Direct band gap values found in literature are shown in Table 

10. 

Samples that have been selenized for 2 hours and treated in an indium solution 

for 10 minutes (1–4, Table 11) have a higher band gap value (1.78–1.87 eV) compared 

to the samples that have been selenized for 3 hours (5–8, Table 11) (1.62–1.76 eV). 

The lower band gap values for 3-hour selenization samples indicate that they may 

contain more elemental selenium phase because they are shifted towards elemental 

selenium band gap of 1.60 eV which is found in literature [158]. Two-hour samples 

have band gaps shifted, higher values that correspond to Cu0.87Se (1.67–1.81 eV) and 

In2Se3 (1.70 eV) bandgaps [159, 160]. Similar results can be seen for samples that 

have been treated for 20 minutes in indium solution, two-hour samples (9–12, Table 

11) have higher band gaps compared to three-hour ones (13–16, Table 11), also, 

indicating more elemental selenium in the latter ones. The results coincide with XRD 

data in Fig. 15 and Fig. 16. Selenization time has the biggest impact on the band gap 

values of the formed layers. 

Also, according to the XRD data, two-hour selenization samples (Fig. 15, 1–4) 

have more Cu0.87Se phase compared to two-hour selenization samples (Fig. 15, 5–8), 

thus they have higher band gap values. 

Different temperatures and treatment durations of copper(I/II) salt solution 

treatment do not seem to have significant impact on the band gap. 

Similar can be said about indium(III) salt solution treatment. Although the layers 

that have been treated for 10 min in indium(III) salt solution (1–8, Table 11) tend to 

have slightly higher band gap (1.62–1.87 eV) compared to 20 min ones (9–16, Table 

11) (1.60–1.74 eV). This means that more In2Se3 were formed due to longer 

indium(III) salt solution treatment. This also coincides with the XRD data in Fig. 15 

and Fig. 16. With longer indium(III) salt solution treatment times, slightly more In2Se3 

is obtained (and less Cu0.87Se), thus it has slightly higher band gap values. 

Table 10. Semiconductor values 

Semiconductor Band gap Eg, eV Literature 

Se 1.60 [158] 

Cu0.87Se 1.67–1.81 [160] 

In2Se3 1.70 [159] 

CuInSe2 1.04 [70] 
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Table 11. Calculated band gap Eg values for the obtained samples. Samples were selenized: 

1–4, 9–12 – 2 hours and 5–8, 13–16 – 3 hours. The temperature and duration of copper(I/II) 

salt solution treatment: 1, 5, 9, 13 – 10 min at 40°C; 2, 6, 10, 14 – 20 min at 40°C; 3, 7, 11, 15 

– 5 min at 60°C; 4, 8, 12, 16 – 10 min at 60°C. Indium(III) salt solution treatment: 1–8 – 10 

min at 40°C; 9–16 – 20 min at 40°C. All samples were annealed. 
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In
d

iu
m

(I
II

) 
sa

lt
 s

o
lu

ti
o
n

 t
re

at
m

en
t 

1
0

 m
in

 

S
el

en
iz

at
io

n
 

2
 h

 

C
o

p
p

er
(I

/I
I)

 s
al

t 
so

lu
ti

o
n

 t
re

at
m

en
t 

40°C 
10 min 1 1.78 

20 min 2 1.79 

60°C 
5 min 3 1.87 
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40°C 
10 min 5 1.76 

20 min 6 1.66 

60°C 
5 min 7 1.65 

10 min 8 1.62 

2
0
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40°C 
10 min 9 1.66 

20 min 10 1.74 

60°C 
5 min 11 1.68 

10 min 12 1.71 

3
 h

 

40°C 
10 min 13 1.62 

20 min 14 1.61 

60°C 
5 min 15 1.64 

10 min 16 1.60 
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CONCLUSIONS 

1. Using simple methods, H2SenS2O6-type acids are formed. Upon analysing 

acids using three methods, it was determined that n varies between 1.04 and 2.1. The 

formation and decomposition of selenopolythionates was studied and it was 

determined that these processes depend greatly on the concentration, temperature and 

additives. Using KHSO3 instead of H2SO3 allows increasing the concentration of 

selenotrithionate and diselenotetrathionate acid solution to 0.2 mol/l and its stability, 

as H2SO4 was eliminated. 

2. Selenium, copper selenide, copper and indium selenide layers were obtained 

through successive ionic layer adsorption and reaction (SILAR) method using 

H2SenS2O6 as a selenium precursor. 

3. Multiple phases were identified using XRD analysis method: monoclinic 

selenium, hexagonal klockmannite Cu0.87Se, cubic berzelianite Cu2–xSe, tetragonal 

umangite Cu3Se2, cubic copper selenide Cu7Se4, cubic indium selenide In2Se3. Copper 

selenide peaks are most dominant with hexagonal klockmannite phase. New intense 

hexagonal selenium, more intense indium selenide In2Se3 and new cubic copper 

indium selenide CuInSe2 phases are observed after annealing in an inert nitrogen 

atmosphere. 

4. Copper and indium selenide layers can be formed using a three-step method: 

• Selenium layer (step 1); 

• Cu0.87Se, Cu2–xSe (step 2); 

• In2Se3, Cu0.87Se, Cu3Se2, Cu7Se4 (step 3); 

• CuInSe2, In2Se3, Cu0.87Se, Se (after annealing in an inert nitrogen 

atmosphere). 

5. XPS analysis confirms that multiphase layers are formed containing CuInSe2, 

In2Se3, In(OH)3, Cu2Se, Cu2O and elemental selenium. Also, adsorbed InCl3 can be 

found on the surface of the layer. 

6. SEM analysis shows that layers that were selenized for two hours are grainy, 

more uniform compared to three hours. EDS analysis shows that layers that were 

selenized for longer contain more selenium and samples that were treated with copper 

solution in higher temperature (60°C) have more copper compared to the ones treated 

in lower temperature (40°C). 

7. Optical analysis showed that direct band gap values are between 1.60 and 

1.87 eV. Obtained layers are multiphase and their optical properties are characteristic 

to the optical properties of copper and indium selenide. 
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