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We introduce an approach to predict deterioration of reaction state for people having neurological movement disorders such as
hand tremors and nonvoluntary movements. These involuntary motor features are closely related to the symptoms occurring in
patients suffering from Huntington’s disease (HD). We propose a hybrid (neurofuzzy) model that combines an artificial neural
network (ANN) to predict the functional capacity level (FCL) of a person and a fuzzy logic system (FLS) to determine a stage of
reaction. We analyzed our own dataset of 3032 records collected from 20 test subjects (both healthy and HD patients) using
smart phones or tablets by asking a patient to locate circular objects on the device’s screen. We describe the preparation and
labelling of data for the neural network, selection of training algorithms, modelling of the fuzzy logic controller, and
construction and implementation of the hybrid model. The feed-forward backpropagation (FFBP) neural network achieved the
regression R value of 0.98 and mean squared error (MSE) values of 0.08, while the FLS provides a final evaluation of subject’s
reaction condition in terms of FCL.

1. Introduction

Huntington disease (HD) is a progressive genetic neurode-
generative disorder causing involuntary movement and cog-
nitive problems that significantly affect daily life of HD
patients. HD affects about 1 in 10,000 to 20,000 people of
European (Caucasian) descent [1], though in some isolated
populations it is much higher. HD reduces life expectancy
due to heart disease, pneumonia, physical injury from falls,
and suicide. The most visible symptom of HD is chorea,
which consists of jerky, involuntary movements of the upper
and lower extremities, face or body, and occurs in about 90%
of patients at some stage of their illness [2]. Other symptoms
include behavioural problems, cognitive impairment, psychi-
atric disorders, and dementia, which have a serious impact
on daily living of a patient and often result in hospitalization.
The societal and financial cost of HD on health and social
care systems is significant and is estimated to be £195 million
per year in the UK alone [3].

HD is currently incurable so most of the current
research in this area focuses on identifying the deficits at
the early stage of the disease, to benefit from future medical
interventions that may help delaying the progress of the
disease [4, 5]. This is also the case of the work presented
in this paper. Traditional HD research often include mag-
netic resonance neuroimaging (MRI) measures of striatum
and white matter volume, CAG repeat length in chromo-
some analysis, age, and striatal atrophy [6, 7]. Moreover,
medical personnel and doctors who have experience in
caring after HD patients and knowing that disease is cureless
are not usually motivated to conduct scientific research
themselves or to support multidiscipline (e.g., bioinfor-
matics) investigations.

Any scientific result (device, technology, and theoreti-
cal model) that could contribute towards improvement of
daily life of HD patient’s and help to monitor or predict
the progress of the disease can be useful for both doctors
and HD patients.
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The problematics of data prediction evolved with the rise
of artificial intelligence (AI) and machine learning (ML)
methods and algorithms. Artificial neural networks (ANN)
such as multilayer perceptron (MLP) can be used for classifi-
cation of accelerometer-based tremor signals invoked by
Parkinson patient’s involuntary movements [8]. Prediction
of Parkinson disease onset by adapting radial basis function
neural network (RBFNN) for tremor activity data recorded
via stimulation electrodes using electromyography (EMG)
signals is described in [9]. Dynamic neural network (DNN)
is used to detect time-varying occurrences of tremor and
dyskinesia from time series data acquired from EMG sensors
and triaxial accelerometers worn by Parkinson patients
[10]. Another approach of designing a prediction model
for Parkinson’s disease uses a decision tree and Iterative
Dichotomiser (ID3) methods to analyze data collected
from HD symptoms such as trembling in the legs, arms,
hands, impaired speech articulation, and production dif-
ficulties [11]. Hybrid models combine different AI and ML
approaches for reproducing intelligent human reasoning
process [12]. By using information fusion, hybrid models
combine heterogeneous ML approaches and improve quality
of reasoning for complex regression and classification prob-
lems [13]. Neurofuzzy systems combine neural network
and fuzzy logic paradigms to avoid the limitations of neural
network explanations to reach decision and limitations of
fuzzy logic to automatically acquire the rules used for making
those decisions [14]. Fuzzy expert systems such as neuro-
fuzzy system (ANFIS) can be applied in assessment of
Parkinson’s disease with a noninvasive screening system

for quantitative evaluation and analysis by using ampli-
tude, frequency, spectral characteristics, and trembling
localization parameters of input data [15]. Hybrid model
is adapted in designing a decision support system (DSS)
for the intelligent identification of Alzheimer where neu-
rofuzzy system explores approximation techniques from
neural networks to find the parameter of a fuzzy system
[16]. Hybrid systems are also used as a classifier fusion
strategy (Bayesian, SVM, k-nearest neighbours) in the preva-
lence of age-related diseases like Alzheimer’s and dementia
[17], diagnostics and measurement [18] with wavelet trans-
form (WT) and norm entropy feature extraction methods.
The DSS that uses MLP and RBFNN is applied for mon-
itoring patients with neurological disorders [19]. The data
is collected using noninvasive smart devices (modified
mouse and 3-axis accelerometer sensor). Integration of
neurofuzzy networks and information fusion for multi-
modal human cognitive state recognition is described in
[20]. Projection-based learning for metacognitive radial
basis function network (PBL-McRBFN) is applied to pre-
dict Parkinson’s disease [21]. Other hybrid systems and
applications include nonlinear adaptive system, which
fuses brain and gait information algorithmically using
multistate Markov model [22]. Accurate Parkinson disease
diagnosis model based on cluster analysis uses random
tree, classification and regression tree (C-RT), ID3, binary
logistic regression, k-NN, partial least square regression
(PLS), support vector machines (SVM) [23], and fuzzy c-
means clustering (FCM) [24]. Table 1 provides a summary
of methods used by other authors.

Table 1: Comparison of various ML methods adapted for neurodegenerative disorders such as Huntington or Parkinson disease to solve
prediction and classification problems.

Work ref. ML method Learning approach ML problem
Size of
data set

Number of
test subjects

Target group
Involve HD
patients

[8] ANN, MLP Supervised Classification — 21 PD, healthy No

[9] RBFNN Supervised Regression — — PD No

[10] DNN Supervised Classification — 12
PD (8),

healthy (4)
No

[11] Decision tree, ID3 Supervised Classification 195 31
PD (23),
healthy (8)

No

[15] Adaptive neurofuzzy Hybrid 100 — PD No

[16] Neurofuzzy system Hybrid — — ALS No

[17]
Fusion of classifiers
(Bayesian, SVM,

k-nearest neighbor)
Hybrid 640

ALS (13), PD (15),
HD (16), healthy (16)

ALS, PD, HD Yes

[18] Neurofuzzy system Hybrid — —
Only survey
was done

No

[19] ANN+MLP, RBFNN Hybrid — — PD No

[20] Neurofuzzy system Hybrid — — — No

[21] PBL-McRBFN Supervised Classification 22,283 72 (50 PD, 22 healthy) PD, healthy No

[22] Multistate Markov model Hybrid 2500 72 (82 PD, 62 healthy) PD, healthy No

[23]
Random tree, (C-RT), ID3,
binary logistic regression,
k-NN, (PLS), (SVM)

Supervised Classification 195 31 (23 PD, 8 healthy) PD, healthy No

[24] FCM Unsupervised Clustering 195 — PD No
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Our previous work included the development of text
input-based system for evaluating the condition of Hun-
tington’s patients [25]. The use of ANN for predicting
the functional capacity of a Huntington’s patient was pro-
posed in [26].

The aim of this paper is to create a computerized behav-
ioural model, which predicts an impaired reaction condition
for HD patients. We develop a mobile application to collect a
dataset using finger touch coordinates and reaction time fea-
tures extracted from test subjects (healthy and HD patients);
create an ANN to predict the functional capacity level and
fuzzy logic system (FLS) to determine the reaction condi-
tion (stage) for individual person; combine ANN with
FLS into a hybrid model to predict the impaired reaction
condition for HD patients; and simulate an experimental
setup for test subjects to perform a provided exercise (test)
at the different moments in time in order to predict a pos-
sibly impairing reaction condition with the help of the
proposed hybrid model.

2. Materials and Methods

2.1. Subjects. The study included ten (10) Huntington disease
(HD) patients living in Lithuania. Each HD patient agreed to
participate and allowed the data collected during the test to
be used for scientific purposes. Every HD patient fall in the
early clinical descriptor category of Huntington disease, that
is, I and II stages according to Shoulson–Fahn evaluation sys-
tem [27]. Such HD patients have hand tremors, body move-
ment distractions, but are capable to perform the test on a
mobile application without extra help, for example, from
medical personnel, nurses, or family members. Other ten
(10) participants were healthy people with no signs of any
neurological or neurodegenerative disorder.

2.2. Procedure. The test can be performed using various
mobile devices that support Android OS. The mobile appli-
cation randomly generates circular shape objects (2, 3, and
5 circles at time) of particular color that are generated on
the mobile device’s screen. Each circle is located in different
positions of the screen, thus no possible collisions (overlap-
ping) between two particular circles are possible. An active
circle that needs to be touched is marked by a black contour
so as to differ from other objects.

The subjects are instructed to touch every object, starting
from first in sequence, by finger as close to center and as
quickly as possible. When subject finishes the test, collected
data is stored in external mobile device storage and sent to
the database using the internet connection.

2.3. Dataset. The collected dataset consists of 3032 data
examples collected from 20 test subjects (10—healthy and
10—HD patients). The dataset (see a sample in Table 2) con-
tains the ground truth coordinates of the generated object,
the coordinates of subject’s touch, subject’s reaction time,
subject’s label, and the marker of Huntington’s disease.

2.4. Feature Extraction and Class Labelling. The subject’s
reaction time (rt) and the Euclidian distance between the
two points of true and touched positions (delta) serve as

features which are incorporated as input variables to ANN.
We assume that smaller rt and delta values indicate better
functional capacity level. The bigger delta value can show
stronger hand tremoring, whereas higher rt value is an indi-
cator of body stagnancy.

The statistical analysis of the rt and delta values has
revealed that the values are not normally distributed, but
after the applying the log transformation, which is com-
monly used in regression analysis of biological data with
highly skewed distribution [28], the values become normal
as confirmed by visual inspection in Figure 1 and skew-
ness γ and kurtosis κ tests (γrt = 1 046, κrt = 4 239 and
γdelta = 0 028, κdelta = 4 779). For data samples greater than
300, values γ < 2 and κ < 7 are considered as acceptable
for normality [29].

To analyze the power of rt and delta values to correctly
predict the healthy or sick state of the subject, we have
performed feature evaluation using the relative entropy (also
known as the Kullback–Leibler distance or divergence) crite-
rion, considering different number of objects presented at
the screen. The results are presented in Figure 2. In all
cases, delta feature has larger discriminative power than
rt, and the features from 3 and 5 objects test are more sta-
tistically discriminative.

2.5. ANN for Functional Capacity Level Prediction. We
have analyzed the following neural network models: (1)
feed-forward backpropagation (FFBP); (2) feed-forward
time delay neural network (FFTD); (3) cascade-forward
backpropagation (CFBP); (4) nonlinear autoregressive exog-
enous model (NARX); (5) Elman neural network; (6) layer
recurrent neural network (RNN); and (7) generalized regres-
sion neural network (GRNN).

FFBP is a simple neural network without any cycle
connections between neurons [30]. FFTD has no internal
state and adds delayed copies as other inputs as an input
signal to obtain time-shift invariance [31]. In CFBP, the
input values calculated after every hidden layer are backpro-
pagated and the weights adjusted [32]. NARX have a limited
feedback, which comes only from the output neuron rather
than from hidden layer [33]. Elman network additionally
has context units, which are connected to the hidden
units, thus providing the network with memory [34].
RNN represent an architecture where connections between

Table 2: Collected data from mobile application (random sample
data of 5 records).

x y xt yt nC rt delta User IsSick

126 871 125 872 5 1.665 1.414 1 0

411 403 390 408 3 3.886 21.587 1 0

243 609 299 592 3 0.573 58.523 2 1

580 377 618 449 5 0.545 81.413 2 1

501 634 437 585 2 0.741 56.436 3 1

x,y: screen coordinates of the center of circular object to touch; xt, yt: screen
coordinates of user touch; nC: number of circular objects rendered on the
device screen; rt: user’s reaction time in seconds; delta: the Euclidean
distance between object’s center and touch position. User: user ID; IsSick:
indicates if test subject has Huntington disease (1 yes, 0 otherwise).

3Journal of Healthcare Engineering



units form a directed cycle [35]. GRNN has only one
(smoothness) parameter, and its convergence is guaranteed;
fast and stable [36].

Each neural network has 2 inputs (rt, delta) and 1 output
(Y). Neural network is composed of single neurons that are
treated as a simple unit carrying signals (data) to each other
or different layers via transfer functions, which correspond
to sum of input signal. Training function is the optimization
algorithm used for finding global minimum of a function.
The outputs of ANN are class labels for determining the
functional capacity of a person (the larger value indicates
that a person is more capable to do motoric activities).
Such scenario imitates the TFC scale measurement system
for Huntington disease patients presented in Table 3 [27].

Table 4 illustrates the setup for analyzed ANN models
with their parameters.

2.6. Training and Testing. The dataset was randomly divided
into 3 sets: training, validation, and testing. Training set uses
all samples from 70% of users. Validation set (15%) is used to

measure network generalization and to stop training when
necessary. Testing set (15%) provides independent perfor-
mance of the network afterwards. We also analyzed a dif-
ferent partition of the dataset (40% for training, 30% for
validation, and 30% for testing); however, there were no
significant differences in the performance of ANN.

Overfitting was prevented by using the early stopping
technique, which controls error on the validation set which
is monitored during training process: when error increases
for a specified number of iterations then the training is
stopped and the weights and biases at the minimum of the
validation error are returned.

For each neural network model, we have repeated the
training and testing process for 20 times in order to allow
calculation of statistical characteristics (mean, standard
deviation) of ANN performance measures and to perform
statistical comparison.

2.7. Reaction Stage Determination Using Fuzzy Logic System
(FLS). The aim of the FLS system is to determine the reac-
tion stage of a patient (test subject) according to some
predefined parameters. The FLS consists of three main
parts: fuzzification block, inference mechanism, and defuz-
zification block. Membership functions, linguistic variables
are created in fuzzification module. Inference engine is
responsible for applying logical rules (fuzzy rule base) to
the knowledge base and deduce new knowledge. Defuzzifica-
tion module converts all the fuzzy terms created by the rule
base of the controller to crisp terms (numerical values). The
FLS uses triangular membership Mamdani-type functions
with fuzzy set inference mechanism (minimum implication,
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Figure 1: Statistical distribution of log-transformed rt (a) and delta (b) values.
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Figure 2: Feature ranking according to the Kullback–Leibler
distance.

Table 3: Total functional capacity score (TFC) and its relationship
to Shoulson–Fahn stages and clinical descriptors [27].

Descriptor TFC Stage

Early
11–13 I

7–10 II

Moderate or mid 4–6 III

Advanced or late
1–3 IV

0 V
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Table 4: Summary of different neural network models and their configuration parameters.

Network Hidden layer (neurons) Transfer function Training function Number of weight elements Time delay

FFBP 1 (10) Log-sigmoid, linear
Gradient descent with adaptive
learning rate backpropagation

41 −

FFTD 1 (10) Tan-sigmoid Levenberg–Marquardt 101 +

CFBP 1 (10) Tan-sigmoid Levenberg–Marquardt 43 −
NARX 1 (10) Tan-sigmoid Levenberg–Marquardt 81 +

Elman, RNN 1 (10) Tan-sigmoid Levenberg–Marquardt 141 +

GRNN 1 (size of dataset) Radial basis, linear Levenberg–Marquardt 800 −

Table 5: FLS rule base (5 random examples chosen for each reaction stage).

AVG1 AVG2 AVG3 Reaction stage

HIGH HIGH HIGH HEALTHY/PRECLINICAL

HIGH LOW HIGH EARLY

AVERAGE AVERAGE AVERAGE AVERAGE

LOW LOW HIGH LATE

LOW LOW LOW ADVANCED

Dataset formation

Uses

Uses

Uses

Fuzzy logic expert system (FLS)

. . . . . .

Disabled person 1

Disabled person 2

Disabled person N

Smart device 1
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Smart device N
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Artificial neural network (ANN) prediction model

1. Data query
Preparing and labelling

data for ANN

Preparation in workspace

Choosing
network type

Setting parameters

Training ANN
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Maximized R,
minimized MSE?

ANN prediction for
sample data

Trained ANN prediction

No

Determination of impaired reaction condition

First evaluation of subject
reaction condition

ANN prediction 2
(AVG21, AVG22, AVG23)

Second evaluation of
subject reaction condition

Eval1

Yes No
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Unchanged
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functional capacity level
at second time moment
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Linguistic input
variables
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Late

Advanced
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Figure 3: Schema of prototype hybrid model to forecast impaired reaction condition.
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maximum aggregation, minimum AND operator, maximum
OR operator) and centroid defuzzification method.

The parameters of the FLS are derived from the ANN
output corresponding to the functional capacity level, so in
the FLS design process, the model input and output values
need to be considered accordingly. There are three input
and one output variable in the FLS. The input parameters
are AVG1, AVG2, and AVG3, which correspond to the aver-
age of ANN output values when test subject is working with
two, three, and five objects, respectively. All three inputs can
have values in range [0; 10].

The linguistic variables (terms) for AVG1, AVG2, and
AVG3 are

(1) LOW [0 2 4];

(2) AVERAGE [3.6 5.5 7];

(3) HIGH [6.6; 8.5 10].

The model has one output parameter ReactionStage
can have one of five values: close to peaks 1, 3, 5, 7, or
9, that is, each peak corresponds to particular linguistic
variable of ReactionStage. The terms for output parameter
ReactionStage are

(1) ADVANCED [0 1 2];

(2) LATE [1.5 3 4];

(3) AVERAGE [3.5 5 6];

(4) EARLY [5.5 7 8];

(5) HEALTHY/PRECLINICAL [7.5 9 10].

The FLS rule base is formed from 27 fuzzy rules. Table 5
illustrates the principles of constructing fuzzy rule base.

Table 6: Regression and prediction result comparison of different ANN models.

Functional capacity level predictions (data sample of 10 records from 1 test subject)

rt 2.65 0.25 0.67 0.26 0.24 0.78 0.4 0.29 0.34 0.25

delta 22.36 108.3 87.8 267 60.1 20.8 37 113 41.4 68.8

TFC 8 3 4 1 5 8 7 3 7 5

FFBP 8.02 3.31 3.90 1.32 5.39 8.55 7.25 3.19 6.85 4.83

FFTD 7.99 3.26 3.94 0.97 5.41 8.51 7.24 3.15 6.83 4.87

CFBP 7.94 3.32 3.59 1.28 5.45 8.84 7.15 3.16 6.83 4.87

NARX 8.06 3.28 3.83 1.20 5.43 8.81 7.24 3.16 6.85 4.87

Elman 8.01 3.27 3.87 1.19 5.40 8.79 7.30 3.16 6.88 4.84

RNN 7.97 3.28 3.86 1.15 5.42 8.54 7.27 3.15 6.87 4.87

GRNN 8.20 2.92 3.86 0.99 5.18 8.93 6.83 2.91 6.88 4.87

Table 7: Performance comparison of analyzed ANN models.

Neural
network
model

Mean
R

95% confidence
intervals of R

Mean
MSE

95% confidence
intervals of MSE

FFBP 0.9876
[0.9871,
0.9880]

0.0809 [0.0782, 0.0835]

FFTD 0.9861 [0.9855, 0.9867] 0.0906 [0.0865, 0.0948]

CFBP 0.9827 [0.9787, 0.9868] 0.1125 [0.0860, 0.1389]

NARX 0.9868 [0.9868, 0.9869] 0.0858 [0.0855, 0.0860]

Elman 0.9868 [0.9868, 0.9868] 0.0857 [0.0856, 0.0857]

RNN 0.9870 [0.9870, 0.9870] 0.0845 [0.0845, 0.0845]

GRNN 0.9849 [0.9841, 0.9858] 0.0977 [0.0926, 0.1029]

Friedman p value: 0.000 • Different • CritDist: 2.0 

FFBP-1.00

FFDT-5.00

CFBP-6.75

NARX-4.00

Elman-3.00

RNN-2.00

GRNN-6.25

Figure 4: Results of Nemenyi test on performance (MSE) of ANN
models.
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These can be interpreted as general fuzzy IF-THEN rules
containing only fuzzy logical AND operators, for example,

IF AVG1 is LOW AND AVG2 is LOW AND AVG3
is LOW

THEN ReactionStage is ADVANCED.

3. Proposed Hybrid Model

The hybrid model (see Figure 3) is composed of four sub
models: (1) dataset formation; (2) ANN prediction model;
(3) fuzzy logic expert system (FLS); and (4) decision module
for determination of person’s condition.

During dataset formation, test subjects (under the super-
vision of a healthy person—a medical doctor or a nurse) use
smart devices to perform reaction and accuracy test experi-
ments with their fingers. The collected data is stored in the
database. The ANN submodel predicts the functional capac-
ity level of a person using the data from the database. The
network is trained by observing regression (R), that is, corre-
lation measurement between outputs and targets and mean
squared error (MSE) values. Once the network is trained, it
can make predictions on new sample data. Finally, to evalu-
ate the reaction condition of a test subject, the test session

is repeated at a different time and the ANN predictions are
aggregated, and the reaction stage of a person is evaluated
using a fuzzy rules system.

4. Experimental Results

The hybrid model was implemented with MATLAB Neural
Network and Fuzzy Logic Toolbox software (MathWorks
Inc.). The results of regression and comparison of the predic-
tion results of the analyzed ANN models is presented in
Table 6, whereas the performance of neural networks in
terms of means and 95% confidence intervals of R and MSE
is given in Table 7. The “TFC” field indicates the ground
truth evaluation of the patient state provided by a medical
neurologist expert according to the TFC scale. The R metric
measures the correlation between output and targets,
whereas the MSE metric is the average squared difference
between outputs and targets.

Nonparametric Friedman test was conducted to compare
the performance results (MSE) among ANN models. Results
show that there is a significant difference in performance
among all ANN models (chi-square = 133.15; p = 2 · 10−26).
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Figure 5: FFBP performance evaluation using R (a) and MSE (b) metrics.
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Posthoc Nemenyi tests further reveal that the performance of
FFBP is the best among all ANN models (Figure 4).

Figure 5 shows an example of FFBP best performance
equal to R=0.993 and MSE=0.094 on the validation set.

Table 8 illustrates impaired reaction condition simula-
tion example on a single test subject using the FLS system.
In order to make comparison, data samples were collected
at different time moments. Feature (rt1, delta1, rt2, and
delta2) values are presented in all three modes (10 attempts),
thus giving two separate ANN (in the example provided,
FFBP model was used) prediction outputs, which are used
to calculate average values and evaluate the reaction condi-
tion in the FLS.

5. Conclusions

We have presented an actual experimental framework to
assess finger-tapping tests performed by patients suffering
from the Huntington’s disease (HD). The proposed model
was validated using a dataset of 3032 data records collected
from 20 test subjects (both healthy and HD patients). The
reaction condition was determined using the developed
Mamdani Type-1 fuzzy logic expert system (FLS) with 3
input (3 linguistic variables), 1 output (5 linguistic variables),
triangular membership functions, and 27 fuzzy rules base.

We describe an architecture that combines several artifi-
cial neural networks (ANN) of different type (FFBP, FFDT,
CFBP, NARX, Elman, RNN, and GRNN) to create a hybrid
(neurofuzzy) model, which integrates feature extraction, pre-
diction, and classification routines to forecast the impaired
reaction condition for HD patients. The best results were
achieved using the feed-forward backpropagation (FFBP)
neural network model, which predicts the total functionality

capability (TFC score) with high performance results, that is,
it has obtained regression R value not less than 0.98 and
mean squared error (MSE) values of 0.08, while FLS evaluates
several measurements taken time apart to provide a final
evaluation of the subject’s reaction condition.

Future work will focus on the validation of the proposed
system using a larger dataset, which includes the data col-
lected from the Parkinson’s and Alzheimer’s patients as well,
the analysis and use of more sophisticated finger-tapping
features, and the comparison of the ANN results with those
of SVM regression.
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Table 8: Example of hybrid model results for evaluation of a single test subject.

(a)

Feature
Mode 1
2 objects

Mode 2
3 objects

Mode 3
5 objects

Dataset formation: data portion 1

rt1 4.75 8.05 5.30 2.27 7.09 1.48 6.58 6.33 2.29 1.82

delta1 3.32 2.99 4.05 19.09 0.31 19.15 0.51 19.42 5.95 10.50

Artificial neural network (ANN) prediction model: ANN prediction 1

8.94 8.00 8.43 6.68 8.99 6.79 9.00 5.46 9.03 8.10

Dataset formation: data portion 2

rt2 8.62 8.96 1.89 6.60 9.41 1.48 6.58 6.33 2.29 1.82

delta2 1.42 9.78 16.99 19.94 0.89 10.85 17.27 18.18 16.90 17.57

Artificial neural network (ANN) prediction model: ANN prediction 2

8.01 7.94 7.00 5.10 8.01 7.26 7.01 6.93 5.99 7.04

(b)

Fuzzy logic expert system (FLS)
AVG11 AVG12 AVG13 AVG21 AVG22 AVG23 eval1 eval2 Condition 1 Condition 2

8.47 8.03 7.67 7.98 6.70 6.84 9.00 7.00 Healthy/Preclinical Early

Conclusion: Impaired reaction condition.
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