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Summary
Background The conventional clinical approach to characterising traumatic brain injuries (TBIs) as mild, moderate, 
or severe using the Glasgow Coma Scale (GCS) total score has well-known limitations, prompting calls for more 
sophisticated strategies.

Methods We used item response theory (IRT) to develop a new method for quantifying TBI severity using 24 clinical, 
head computed tomography, and blood-based biomarker variables familiar to clinicians and researchers. IRT uses 
individuals’ response patterns across indicators to estimate relationships between the indicators and a latent 
continuum of TBI severity. Model parameters were used to assign severity scores in two large cohorts, and 
associations with traditional GCS categories and 6-month functional outcomes (Glasgow Outcome Scale-
Extended [GOSE]) were tested with correlational and logistic regression analyses.

Findings In the prospective Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) cohort (N = 2545), 
modelling showed the 24 indicators index a common latent continuum of TBI severity. IRT enabled us to identify 
the relative contribution of these features to estimate an individual’s TBI severity. Finally, within both the TRACK-
TBI derivation sample and an external validation sample (Collaborative European NeuroTrauma Effectiveness 
Research in TBI [CENTER-TBI]), TBI severity scores generated using this novel IRT-based method incrementally 
predicted functional (GOSE) outcome better than classic clinical (mild, moderate, severe) or International 
Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) classification methods.

Interpretation Our findings directly inform ongoing international efforts to refine and deploy new pragmatic, 
empirically-supported strategies for characterising TBI, while illustrating a strategy that may be useful to improve 
staging systems for other diseases.
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Introduction
The Glasgow Coma Scale (GCS) 1 was the first widely 
adopted method for estimating traumatic brain injury 
(TBI) severity. Soon after its introduction, clinicians 
and researchers began using it to classify injuries into 
the broad categories of mild (GCS 13–15), moderate 
(GCS 9–12), or severe (GCS 3–8) TBI. 2–5 This practice 
began in the early 1980s as a way to describe TBI 
subpopulations and rapidly became commonplace, 3,4 

with later approaches evolving to additionally consider 
indicators such as duration of posttraumatic amnesia 
(PTA), duration of loss of consciousness (LOC), and 
presence versus absence of acute intracranial findings 
on clinical neuroimaging (generally computed tomog-
raphy [CT]) scans; see Table 1 for common approaches 
for defining mild, moderate, and severe TBI). 2,6–9 

Although the GCS-based staging convention ad-
dresses clinical and research needs to characterise and 
communicate about severity, it has been criticised for 
its lack of precision and insensitivity to the heteroge-
nous pathologies of TBI. 2,10,11 The 3-category GCS 
approach, for example, labels over 90% of TBIs 
“mild,” 12,13 which can be misleading given the varied, 
sometimes poor outcomes of this TBI subgroup. 10,14,15 

Besides loss of information in staging patients using 
GCS total scores, 2 TBI severity classification approaches 
rely on clinical signs of altered consciousness that may 
be confounded by non-TBI factors common in patients

with trauma, such as alcohol/substance intoxication, 
use of sedatives and analgesics, and extracranial in-
juries. 2,10 For this reason, experts have called for the 
development of new ways to quantify TBI severity that 
would use not only traditional clinical signs but also 
more direct indicators of injury pathophysiology such 
as specific radiographic findings and biochemical 
measures (e.g., blood-based biomarkers). 11,16 Yet current 
systems that incorporate objective brain injury markers 
do so by dichotomising head CT findings as positive or 
negative, conflating neuroradiologic findings with 
widely disparate, or even opposing, effects on long-term 
outcome. In particular, CT findings are commonly 
considered “positive” for acute intracranial injury due 
to epidural haematomas (EDH). However, large-scale 
studies of severe TBI have not found EDH to indicate 
poor long-term prognosis, whereas other imaging 
findings (e.g., subarachnoid haemorrhage [SAH], sub-
dural haematoma [SDH]) are robustly associated with 
adverse long-term outcomes. It remains unclear how 
these types of neuroimaging findings should be used 
when quantifying TBI severity. 17

To date, efforts to enhance TBI severity grading 
systems have been limited by a lack of large, 
well-characterised TBI samples and objective bio-
markers suitable for clinical use to better detect un-
derlying pathophysiology. Additionally, because TBI 
severity is reflected in indicators across measurement

Research in context

Evidence before this study
The most commonly used method for classifying traumatic 
brain injury (TBI) severity is to categorise the Glasgow Coma 
Scale total score into mild (13–15), moderate (9–12), and 
severe (3–8) levels. This method is well-recognised to be 
problematic, because it does not adequately reflect the 
heterogeneity of TBI, is not sensitive to the underlying 
pathophysiology of injury, and because the labels (“mild,” 
“severe”) can mislead patients and clinicians about individual 
patient prognoses and thereby undermine patient-centred 
care.

Added value of this study
This study uses a novel modelling approach to identify the 
relationship between diverse signs individually recognised to 
reflect acute TBI severity and to develop a new method for 
quantifying TBI severity. This provides a personalised, more 
precise method to score individuals’ acute TBI severities, 
addressing calls to develop evidence-based approaches to 
improve the characterisation of TBI severity beyond mild, 
moderate, and severe TBI. The study’s focus on clinically-

recognised, validated individual indicators of TBI—i.e., clinical 
signs, neuroimaging findings, and blood-based biomarkers— 

improves understanding of TBI and sets the stage for future 
clinical adoption of improved TBI characterisation 
approaches.

Implications of all the available evidence
This work builds upon a wealth of recent work to validate 
neuroimaging and blood-based biomarkers of TBI, 
demonstrating that they can be used alongside traditional 
clinical signs to improve the characterisation of TBI severity. 
As a well-established modelling strategy that has been 
successfully applied to improve measurement of other 
conditions, the item response theory (IRT) approach taken 
shows promise to provide a flexible, rigorous approach to 
refining the characterisation of TBI. Together, recent 
advances in TBI science and the findings of this study 
provider a concrete path toward improving the detection of 
TBI in healthcare settings, acute clinical decision making, 
outcome prediction, and more individualised, patient-
centred care.
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domains (e.g., clinical, neuroimaging, blood-based 
markers), tools are needed to empirically position 
diverse indicators along the underlying continuum of 
TBI severity. Recent large-scale prospective TBI studies 
provide invaluable data to cultivate new strategies for 
characterising TBI severity. Using the large prospective 
Transforming Research and Clinical Knowledge in TBI 
(TRACK-TBI) sample of United States (U.S.) Level I 
trauma centre patients, we developed a novel data-
driven approach to characterise the broader spectrum 
of TBI severity.

We used a novel item response theory (IRT) 
approach to model the continuum of TBI severity from 
diverse clinical signs and objective injury-related bio-
markers. IRT is a statistical framework suited to iden-
tify an individual’s position along a continuum using 
indicators from differing measurement domains. 
Following recommendations that new TBI classification 
systems be pragmatic, 18 analyses focused on classifying 
TBI severity using variables widely available in the 
acute care setting (e.g., GCS, head CT) or on the near 
horizon of clinical translation (blood-based bio-
markers). In particular, the individual GCS compo-
nents (eye, motor, verbal), LOC duration, PTA duration, 
pupil reactivity, and 13 specific CT findings (e.g., 
contusion, SDH) were incorporated into models with 
more precision than current grading systems, to 
emphasise pathoanatomic imaging features in classifi-
cation, enable clearer differentiation among patients, 
and empirically determine the contributions of each 
indicator on the severity spectrum. Additionally, we 
incorporated several blood-based biomarkers to address 
calls for incorporating more biological markers into TBI 
severity grading. 11 Their inclusion was justified by the 
near-term feasibility of employing them clinically (e.g., 
two markers—glial fibrillary acidic protein [GFAP] and

ubiquitin C-terminal hydrolase [UCH-L1]—were 
already FDA- and EMA-approved for decisions about 
neuroimaging and a third—S100 calcium binding 
protein B [S100B]—was included in Scandinavian 
guidelines for managing GCS 14–15 TBI). 19–21 Finally, 
we used the model to score individuals in the TRACK-
TBI derivation sample and an external validation 
sample (Collaborative European NeuroTrauma Effective-
ness Research in TBI [CENTER-TBI]) on the dimension 
of TBI severity in order to demonstrate the distribution 
and predictive value of novel TBI Severity IRT scores. 
Establishing the relationship between clinically relevant 
signs of TBI severity may corroborate what is known 
from clinical experience and studies of individual signs. 
By establishing that these clinical signs and biomarkers of 
TBI reflect a single underlying dimension of severity and 
locating them on that continuum, this study can advance 
understanding of the spectrum of severity while offering 
a quantitative tool for further developing and refining 
practical TBI severity grading approaches.

Methods
Study design and participants
The TRACK-TBI study is a prospective observational 
cohort study of 2545 participants with TBI diagnosis 
aged ≥17 years from 18 U.S. Level I trauma centres, 
enrolled between 2014 and 2018, all of whom were 
included in the current analysis (Table 2). Inclusion 
criteria were: enrolment within 24 h of injury, CT scan 
ordered for clinical care, documentation of TBI consis-
tent with the American Congress of Rehabilitation 
Medicine definition (i.e., head trauma resulting in neu-
roimaging structural brain injury and/or evidence of 
alteration of consciousness), and adequate visual acuity 
and hearing to complete outcome examinations.

GCS-based Mild Moderate Severe 

GCS 13–15 GCS 9–12 GCS 3–8 
U.S. Veteran’s Affairs 3-group Mild Moderate Severe

GCS 13–15 
LOC <30 min 
PTA <24 h
AMS up to 24 h. 
CT−

GCS 9–12 
LOC >30 min & <24 h. 
PTA >24 h & < 7 d 
AMS >24 h.
CT− or CT+

GCS 3–8
LOC >24 h. 
PTA >7 d. 
AMS >24 h. 
CT− or CT+

4-group Uncomplicated mild Complicated mild Moderate Severe
GCS 13–15 
LOC <30 min 
PTA <24 h 
CT−

GCS 13–15 
LOC <30 min 
PTA <24 h 
CT+

GCS 9–12 
30 min < LOC < 24 h. 
24 h < PTA < 7 d

GCS 3–8
LOC >24 h. 
PTA >7 d.

Note. The top-most GCS-based definition is perhaps the most widely used strategy to distinguish mild, moderate, and severe TBI. 2–4 The U.S. Department of Defense/ 
Department of Veteran’s Affairs adheres to the middle definition, 6 while the latter 4-group classification system employed Harvey Levin’s work to distinguish 
complicated (CT+) from uncomplicated (CT−) mild TBI and has been widely used in the field of neuropsychology. 7–9 If a patient meets criteria in more than one category 
of severity, the higher severity level is assigned. Abbreviations: AMS, alteration of consciousness/mental status; CT, head computed tomography scan (CT+ reflects the 
presence of acute intracranial findings, CT− reflects that acute intracranial findings are absent or the test was not performed); GCS, Glasgow Coma Scale score; LOC, loss of 
consciousness; PTA, posttraumatic amnesia; TBI, traumatic brain injury.

Table 1: Commonly used systems for classifying TBI severity used to inform variables included in item response theory model.
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Exclusion criteria were being pregnant, in police custody, 
or on psychiatric hold; history of debilitating mental or 
neurological disorders; non-English- and non-Spanish-

speaking; penetrating TBI; non-survivable (moribund) 
trauma; severe polytrauma or medical comorbidities 
(e.g., end-stage cancer) that would interfere with follow-
up and outcome assessment; and being in an interven-
tional trial.

The CENTER-TBI study was a prospective, longitu-
dinal study that enrolled patients from 55 European 
trauma centres, with similar inclusion criteria and 
follow-up protocols as TRACK-TBI. 22 Of the 4509 in-
dividuals enrolled, 4500 had data on the variables of 
interest to be included in the present study (Table 2).

Ethics
The TRACK-TBI and CENTER-TBI studies obtained 
ethical approval at each enrolling site. TRACK-TBI 
completed informed consent with patients or legally 
authorised representatives whenever possible; some 
sites used an approved waiver of consent to enrol per-
sons with impaired decision-making capacity. 

CENTER-TBI obtained informed consent by the 
patients and/or the legal representatives/next of kins 
according to local legislations. The list of sites, Ethical 
Committees, approval numbers and approval dates can 
be found on the website: https://www.center-tbi.eu/ 
project/ethical-approval. The CENTER-TBI study (EC 
grant 602150) has been conducted in accordance with 
all relevant laws of the EU if directly applicable or of 
direct effect and all relevant laws of the country where 
the Recruiting sites were located, including but not 
limited to, the relevant privacy and data protection laws 
and regulations (the “Privacy Law”), the relevant laws 
and regulations on the use of human materials, and all 
relevant guidance relating to clinical studies from time 
to time in force including, but not limited to, the ICH 
Harmonised Tripartite Guideline for Good Clinical 
Practice (CPMP/ICH/135/95) (“ICH GCP”) and the 
World Medical Association Declaration of Helsinki 
entitled “Ethical Principles for Medical Research 
Involving Human Subjects”. Informed Consent by the 
patients and/or the legal representative/next of kin was 
obtained, accordingly to the local legislations, for all 
patients recruited in the Core Dataset of CENTER-TBI 
and documented in the e-CRF.

Procedures and variables for TRACK-TBI model 
development
TBI severity indicators
Model development was performed on 24 indicators in 
the TRACK-TBI sample (named in Fig. 1; see also 
Supplementary Table S1). Admission GCS scores were 
extracted from medical records and coded separately for 
the eye (range 1–4), verbal (1–5), and motor (1–6) 
component scores. Untestable GCS codes (N = 6 eye, 
187 verbal, 39 motor) were treated as missing to allow 
for GCS to be treated as an ordinal variable. Secondary 
analyses that included untestable GCS codes in IRT 
modelling (treating the GCS variables as nominal)

TRACK-TBI derivation 
sample N = 2545

CENTER-TBI external 
validation sample 
N = 4500

Demographics
Age, years 38 (26, 55) 50 (30, 66)
Sex a

Female 783 (30.8%) 1483 (33.0%)
Male 1762 (69.2%) 3017 (67.0%)

Race a

Asian 93 (3.7%) 75 (1.7%)
Black 406 (16.0%) 63 (1.4%)
White 1949 (76.6%) 4155 (92.3%)
Other/unknown 97 (3.8%) 207 (4.6%)

Ethnicity a

Hispanic 516 (20.3%) –
Non-Hispanic 1990 (78.2%) –
Unknown 39 (1.5%) –

Education, years 12 (12, 16) 13 (10, 16)
Health insurance 

Medicaid/uninsured 789 (31.0%) –
Other insurance 1571 (61.7%) –
Unknown 185 (7.3%) –

Injury characteristics
Admission GCS total score a 15 (14, 15) 15 (10, 15)

3–8, n (%) 360 (14.5%) 986 (22.8%)
9–12, n (%) 123 (5.0%) 389 (9.0%)
13–15, n (%) 1995 (80.5%) 2955 (68.3%)

Positive head CT b 1162 (47.8%) 2430 (59.8%)
Number nonreacting pupils c 

Zero 2072 (93.4%) 3802 (89.5%)
One 42 (1.9%) 164 (3.9%)
Two 105 (4.7%) 281 (6.6%)

Cause of injury
Motor vehicle/traffic crash 1456 (57.2%) 1682 (37.4%)
Fall 673 (26.4%) 2021 (43.9%)
Assault/violence 168 (6.6%) 242 (5.4%)
Other/unknown 248 (9.7%) 555 (12.3%)

Level of care/Stratum d 

Emergency department 530 (20.8%) 847 (18.8%)
Inpatient floor 870 (34.2%) 1523 (33.8%)
Intensive care unit 1145 (45.0%) 2137 (47.4%)

Loss of consciousness duration c 

None 282 (15.8%) –
<1 min. 336 (18.8%) –
1–29 min. 828 (46.4%) –
30–59 min. 61 (3.4%) –
1–24 h 114 (6.4%) –
24 h–7 days 94 (5.3%) –
>7 days 70 (3.9%) –

Posttraumatic amnesia duration c 

None 416 (23.8%) –
<1 min. 98 (5.6%) –
1–29 min. 494 (28.2%) –

(Table 2 continues on next page)
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supported their exclusion from IRT modelling (i.e., 
yielded unstable item parameter estimates and did not 
support these codes as indicating more severe injury). 
Duration of LOC and PTA were collected from medical 
records and/or participant (patient and/or legally 
authorised representative) interviews and coded in cat-
egories consistent with the National Institute of 
Neurological Disorders and Stroke TBI Common Data 
Elements (CDE). 23 This information was collected via 
participant interview as soon as was feasible at one of 
the study visits (<24 h of injury; 2 weeks; and 3-, 6-, and 
12-months post-injury).” Pupil reactivity (coded as 
number of nonreacting pupils; range 0–2), was 
included from participant medical records, given that it 
is commonly used clinically to detect more severe TBI 
and is a validated indicator of severity. 24

Head CT scans performed on admission for clinical 
purposes were sent to a central imaging repository 
(Laboratory of Neuro Imaging, Los Angeles, CA, USA) 
and assessed by one board-certified neuroradiologist 
(ELY, who was blinded to injury and biomarker infor-
mation) for findings consistent with the TBI CDE for 
Radiologic Imaging. 25 Binary present/absent codes 
were used for each of 13 imaging findings associated 
with acute head trauma (SAH, acute SDH, midline 
shift, etc.).

Biospecimen collection and processing
Blood samples were collected in the hospital within 
24 h of injury and then processed, aliquoted, and stored 
in a freezer within 2 h of collection. Analyses used data 
for the core set of biomarkers acquired for the full study 
sample: glial fibrillary acidic protein (GFAP), ubiquitin 
C-terminal hydrolase (UCH-L1), high-sensitivity C-
reactive protein (hsCRP), S100 calcium binding protein 
B (S100B), and neuron-specific enolase (NSE). Coded 
blood samples were shipped from the study’s central 
repository to site laboratories and analysed blinded to 
any clinical information. For biospecimen collection 
and processing procedures for the TRACK-TBI study, 
see: https://tracktbi.ucsf.edu/researchers. Plasma sam-
ples were analysed for GFAP and UCH-L1 at Abbott 
Laboratories (Abbott Park, IL, USA) on either the 
company’s prototype point-of-care iSTAT Alinity Sys-
tem or the prototype core lab ARCHITECT platform. 
The measures were highly correlated and converted for 
analysis to iSTAT equivalent units for analysis. 26 Anal-
ysis of hsCRP was carried out on serum samples by a 
laboratory at the University College of Dublin using the 
(Abbott ARCHITECT c8000, MULTIGENT CRP Vario 
assay) using the high-sensitivity method (CRP16). 27 

Analysis of S100B and NSE were conducted by a labo-
ratory at the University College of Dublin using an 
electrochemiluminescence immunoassay (Elecsys® 
S100B; Roche Diagnostics, Penzberg, Germany) on an 
automated Cobas® system from Roche. 28 Serum sam-
ples were thawed in batches at room temperature and

centrifuged at 10 000 rcf for 10 min at 4 ◦ C prior to 
testing in duplicate. The S100B assay is the trade-
marked assay used clinically in Europe for S100B 
(reportable range 0.005–39 μg/L; CV of 20%), which 
was optimised for serum. The reportable range of the 
NSE assay was 0.05–370 μg/L and CV was <20%.

Functional outcome
We evaluated incremental validity of our novel IRT-
based TBI severity score for predicting functional 
outcome, as reflected by the Glasgow Outcome Scale-
Extended (GOSE), over/above traditional classifica-
tions based on GCS total scores. The GOSE is an 
ordinal measure of global functional outcome that as-
signs one of 8 scores: 1 = Death; 2 = Vegetative State; 
3 = Lower Severe Disability; 4 = Upper Severe 
Disability; 5 = Lower Moderate Disability; 6 = Upper 
Moderate Disability; 7 = Lower Good Recovery; 8 = Up-
per Good Recovery. Two GOSE scores were derived 
from structured interviews with patients and in-
formants at 2 weeks and 6 months post-injury 29 —a 
GOSE-ALL score reflecting the overall change in func-
tional independence due to all injury (TBI and extra-
cranial) and a GOSE-TBI score, indicating the change 
in independence resulting solely from the TBI. 30,31 To 
reflect qualitatively different functional outcomes and 
expected nonlinear associations between measures of 
TBI severity and GOSE outcomes, 32 scores were 
dichotomised as death (GOSE = 1), unfavourable 
outcome (GOSE<5), and incomplete recovery 
(GOSE<8). Death and unfavourable outcome were 
defined to align with models used to develop Interna-
tional Mission for Prognosis and Analysis of Clinical 
Trials in TBI (IMPACT) scores, which were compared 
to IRT scores (see below). 24 Complete recovery 
(GOSE = 8 versus <8) was included to align with studies

TRACK-TBI derivation 
sample N = 2545

CENTER-TBI external 
validation sample 
N = 4500

(Continued from previous page) 

30–59 min. 138 (7.9%) –
1–24 h 363 (20.7%) –
24 h–7 days 121 (6.9%) –
>7 days 121 (6.9%) –

Note. Sample reflects all TRACK-TBI study participants who had traumatic brain injury and were at least 17 
years old. Abbreviations: CT, computed tomography scan; CENTER-TBI, Collaborative European NeuroTrauma 
Effectiveness Research in Traumatic Brain Injury study (validation sample); GCS, Glasgow Coma Scale; min., 
minutes; TRACK-TBI, Transforming Research and Clinical knowledge in TBI study (derivation sample). a The 
study did not record how biological sex, race, and ethnicity was collected. b Positive findings included any acute 
intracranial haemorrhage (i.e., subdural haematoma, epidural haematoma, subarachnoid haemorrhage, 
contusion, intraventricular haemorrhage, small haemorrhages consistent with traumatic axonal injury, and 
intracerebral haematoma), any acute brain herniation (midline shift, partial or complete effacement of basal 
cisterns, any cerebellar herniation), acute infarct, and brain swelling or oedema). c n = 77 missing Admission 
GCS; n = 110 missing Head CT outcome; n = 236 missing pupil reactivity; n = 760 missing loss of 
consciousness duration; n = 794 missing posttraumatic amnesia duration. d Variable reflects the highest level 
of care in the TRACK-TBI sample, and the level of care at the time of enrolment in the CENTER-TBI sample.

Table 2: Sample characteristics, n (%) or Median (IQR).
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Fig. 1: Item information curves from a single item response theory (IRT) model of 24 TBI severity indicators, stratified by mea-
surement domain for readability (a: brain imaging; b: clinical assessments; c: blood biomarkers). The model reflects all 2545 individuals 
with TBI age 17 or older in the TRACK-TBI study. The x-axis reflects the latent TBI severity spectrum modelled from the associations between 
the indicators using IRT. The y-axis reflects IRT information, which reflects the precision with which each variable can be used to measure 
individuals on the severity dimension, which can vary at different levels of severity. Higher information reflects lower standard errors to 
estimate individuals at a given level of severity. Abbreviations: CT, computed tomography; EDH, epidural haematoma; GCS, Glasgow Coma 
Scale; GFAP, glial fibrillary acidic protein; hsCRP, high-sensitivity C-reactive protein; IVH, intraventricular haemorrhage; NSE, neuron-specific 
enolase; LOC, loss of consciousness; PTA, posttraumatic amnesia; S100B, S100 calcium binding protein B; SAH, subarachnoid haemorrhage; 
SDH, subdural haematoma; TBI, traumatic brain injury; UCH-L1, ubiquitin C-terminal hydrolase.
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of more mild injuries and provide a more comprehen-
sive picture of the association between TBI severity and 
outcome. 33,34

CENTER-TBI validation sample
The CENTER-TBI study sample was used for external 
validation of the model developed in the TRACK-TBI 
sample. Details about the study, including biospecimen 
collection and processing, are available in prior publica-
tions. 35 Based on the availability and equivalence of data 
across studies, 17 variables were used to estimate 
CENTER-TBI participants’ TBI Severity IRT scores using 
item parameters established in the TRACK-TBI sample. 
These included 9 CT (SAH, SDH, EDH, skull fracture, 
midline shift, shear, intraventricular haemorrhage, and 
extraaxial haematoma), 4 clinical (GCS eye, verbal, and 
motor scores; number of nonreactive pupils), and 4 
biomarker variables (GFAP, UCH-L1, NSE, S100B; see 
also Supplementary Table S1. NSE and S100B were run 
on the same assay as TRACK-TBI. GFAP and UCH-L1 
were run with a different assay (Quanterix Neuro 4-
plex), but values converted to the scale used in 
TRACK-TBI using linking tables developed by running 
samples from TRACK-TBI on both assays.

Statistics
Statistical analyses were conducted using R v.4.3.1, 36 

apart from initial factor analytic modelling, which was 
performed in Mplus v.8.10. 37 IRT analyses were per-
formed using the “mirt” package in R. 38 We summar-
ised the sample and TBI indicators of interest using 
descriptive statistics (frequencies/percentages; me-
dians/interquartile ranges). Blood-based biomarker 
variables were categorised for all analyses into equal-
sized groups, as needed for IRT modelling. Within the 
TRACK-TBI sample, we performed exploratory factor 
analysis (EFA) using diagonally weighted least squares 
estimation (WLSMV) to evaluate the key assumption 
underlying unidimensional IRT modelling: that the set 
of 24 TBI indicators (6 clinical signs, 13 acute head CT 
findings, and 5 blood-based biomarkers) predominantly 
indexed a single latent dimension. Meeting the sufficient 
unidimensionality criterion indicates that any multidi-
mensional features within the data are small enough to 
not significantly bias parameter estimates in a unidi-
mensional IRT model. 39 Consistent with convention, we 
defined sufficient unidimensionality a priori as an EFA 
first-to-second eigenvalue ratio >4, and model fit statis-
tics as follows: root mean square error of approximation 
(RMSEA) < 0.08, comparative fit index (CFI) > 0.90, and 
Tucker–Lewis Index (TLI) > 0.90. 39–42

We then fit a 2-parameter/graded response hybrid 
logistic unidimensional IRT model to the 24 indicators, 
which assumes a continuous latent dimension under-
lying the indicators and accommodates both binary 
items (presence/absence of each CT feature) and 
ordinal items (LOC and PTA duration, pupil reactivity,

GCS scores, biomarkers). The model estimates two 
parameters per item, discrimination (a j ) and one or 
more threshold parameters (b j ). Threshold (or difficulty) 
reflects the location on the TBI severity continuum 
where a respondent has, for a binary indicator, a 0.5 
probability of the indicator or, for a polytomous 
ordinal item, a 0.5 probability of displaying that cate-
gory or a more severe one. Discrimination reflects the 
strength of the relationship between the item and the 
latent dimension; more discriminating items distin-
guish better between individuals who differ in TBI 
severity, especially at the threshold/difficulty level of 
the item. 39 Analyses displayed the overall precision of 
each TBI indicator and their combined performance in 
a metric called information, which aggregates difficulty 
and discrimination and reflects the inverse of the 
standard error of measurement around estimates of 
the latent variable (TBI severity) across the continuum 
of severity.

The IRT model was identified by fixing the latent 
variable’s mean to zero and its variance to one. The 
model used full-information maximum likelihood esti-
mation, which provides robust estimates in the pres-
ence of ignorable missing data conditions (i.e., missing 
completely at random [MCAR] and missing at random 
[MAR] mechanisms) and allowed all enrolled partici-
pants to be included. 43 Missing data rates varied by 
variable domain: 4.5–7.9% for CT features, 3.1–10.3% 
for GCS domains, 12.8% for pupil reactivity, 
29.9–31.2% for LOC/PTA duration, and for 4.8%– 
17.9% blood-based biomarkers. Because having a head 
CT and providing a Day 1 research blood sample were 
inclusion criteria for study entry, missingness on these 
factors was likely MCAR, due to unsystematic protocol 
deviations and expected assay failure rates (e.g., due to 
sample mishandling and software/instrument issues). 44 

In support of this hypothesis, regression models pre-
dicting missingness on these features from other IRT 
model indicators not reveal any reliable patterns of 
missingness as a function of TBI severity. In contrast, 
clinical indicators were assumed to be MAR. For 
example, low-severity injuries may not prompt clinical 
documentation of TBI signs; in higher-severity injuries, 
signs may not be assessable due to TBI, extracranial 
injury, and associated medical treatments (e.g., sedation 
and mechanical ventilation). 2 In support of MAR, we 
found associations between model indicators of more 
severe TBI and missingness on, for example, GCS Ver-
bal, loss of consciousness, and posttraumatic amnesias. 

The model yielded IRT-based TBI severity scores for 
each participant, which were submitted to further an-
alyses to explore their potential validity and utility. Us-
ing the model parameters for each item established in 
the derivation sample, we also scored individuals from 
17 available items in the CENTER-TBI sample to 
examine the validity of the model across both study 
samples.
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In both study samples, we generated histograms to 
display the distribution of TBI Severity IRT scores; 
scatterplots to display the association between IRT 
scores and traditional TBI classifications (e.g., mild, 
moderate, severe); and fit separate sequential binary 
logistic regression models to examine the predictive 
value of TBI Severity IRT scores alone and their in-
cremental predictive value over/above (i) traditional 
GCS-based mild, moderate, and severe TBI classifica-
tion, and (ii) IMPACT scores. 24

IMPACT scores were previously developed and 
cross-validated in large samples to prognosticate func-
tional (GOSE) outcome in persons with GCS<13 
TBI. 24,45 Our logistic regression modelling separately 
tested IMPACT Core model (comprising age, GCS 
motor score, and pupil reactivity) and the IMPACT 
Extended model score (which adds to the Core model 
hypotension, hypoxia, and select head CT features), 
each of which produces separate scores for predicting 
mortality and unfavourable outcome (for details, see: 
http://www.tbi-impact.org/?p=impact/calc.) Nagelkerke 
R 2 served as the primary indicator of model fit, and chi-
square likelihood ratio tests used to evaluate the incre-
mental predictive value of adding IRT scores to models 
incorporating traditional indicators of TBI severity. 46

Role of funders
The funders had no role in study design, data collec-
tion, data analyses, interpretation, or writing of this 
manuscript.

Results
Sample and IRT model fit
The TRACK-TBI sample (N = 2454) had a Median 
age = 38 (IQR = 26, 55) and was 69.2% male; the 
CENTER-TBI sample (N = 4500) had a Median age = 50 
(IQR = 30, 66) and was 67.0% male. Both samples 
displayed diverse injury severity characteristics 
(Table 2). For example, 47.7% (TRACK-TBI) and 59.8% 
(CENTER-TBI) had acute intracranial findings on CT; 
18.5% and 18.1%, respectively, were GCS 15 and 
showed no acute intracranial CT findings.

The EFA of the 24 acute TBI indicators supported 
proceeding with unidimensional IRT modelling and 
indicated that these diverse clinical signs, head CT 
findings, and blood-based biomarkers reflect a single 
common dimension, referred to henceforth as TBI 
severity (see Supplementary Figure S1; Supplementary 
Table S2).

Characteristics of the IRT model
IRT model parameters are provided in Supplementary 
Table S3 (see Supplementary Material), which can be 
visualised as item (Fig. 1, Supplementary Figure S2) 
and test (Fig. 2a) information curves, with the latter 
reflecting the sum of information provided by items

into each respective measurement domain (clinical, CT, 
and biomarker indicators). Fig. 2b displays the incre-
mental improvements in test information (solid line) 
and reductions in standard error (dashed lines) ach-
ieved by adding to the GCS other types of data in the 
following order: CT; pupil reactivity, LOC duration, and 
PTA duration; and biomarkers. The information curves 
(which reflect a combination of the discrimination [a] 
and severity [b] IRT parameters) convey both where 
along the injury spectrum the indicators, or combina-
tion of indicators, fall (scaled in standard deviations) 
and which features are better- or worse-performing (i.e., 
higher or lower in height, respectively).

Looking at the domains as a whole, positive head CT 
findings indexed the upper half of the severity spectrum 
(b = 0.04–3.51 SD, where b reflects the levels of the 
latent TBI severity dimension where these indicators 
best distinguish individuals on severity), Within this 
upper half of severity, head CT features varied in the 
level of severity they indexed. For example, Duret hae-
morrhage—a brainstem haemorrhage associated with 
cerebral herniation—provided high information at the 
right-most portion of the spectrum (3.11 SD), indi-
cating that it operates as a sensitive index of the most 
severe injuries. Evidence of herniation, oedema, and 
midline shift contributed information about mid-to-
high range TBI severity (1.41–2.54 SD). Contusion, 
SAH, and SDH provided information about the mid-
range of the severity spectrum (0.39–0.97 SD). Other 
features (e.g., EDH) provided little information (i.e., 
little ability to help differentiate individuals varying in 
severity). Skull fracture, although not technically a 
brain-injury-specific finding, fit within the model and 
indexed the latent spectrum similarly to SDH and 
contusion.

Similar to CT findings, clinical signs of GCS domain 
scores and pupil reactivity contributed to indexing in-
juries in the upper half of the severity spectrum 
(b = 0.34–2.17). While all GCS domains indexed a similar 
level of severity, the motor score displayed the highest 
information (precision). LOC duration (b = −1.65 to 
2.84), PTA duration (b = −1.24 to 2.06), and blood-based 
biomarkers (b = −2.48 to 2.51) provided information 
across a wide spectrum of severity that included lower-
severity injuries. Among the blood-based biomarkers, 
GFAP performed best to characterise severity. Within 
the lower half of the severity spectrum, LOC duration, 
PTA duration, and blood-based biomarkers contributed 
to a marked increase in measurement precision as 
compared other indicators.

Evaluations of differential item functioning (DIF) by 
age and sex revealed no practically important DIF 
(Supplementary Figure S3). Women were, on average, 
0.31 SD lower on latent severity than men. As 
compared to individuals who were under 30 years old, 
those aged 30–49 were 0.10 SD higher on severity, and 
those age 50 and older were 0.18 SD higher on severity.
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Associations between GCS-based TBI severity 
groups, novel IRT-based severity scores, and 
functional outcomes
Model-based estimates of TBI Severity IRT scores, 
scaled in SD units, were derived for each participant in 
both the TRACK-TBI and CENTER-TBI samples, using 
parameters estimated in the TRACK-TBI derivation 
sample. Leveraging the information contained within 
the 24 items (17 for CENTER-TBI) produced a score 
with much more granularity than classic mild, moder-
ate, and severe TBI categories (see Fig. 3a), with 2446/ 
2454 scores in the TRACK-TBI sample and 3438/4500 
scores in the CENTER-TBI sample being unique. The 
monotonic relationship observed between the IRT

scores and traditional GCS-based categories (Fig. 3b) 
supports that the two reflect the same construct. 
Supplementary Figure S4 shows the relationship be-
tween TRACK-TBI TBI Severity IRT scores and other 
classifications commonly used in the U.S. (the VA 3-
group and the 4-group system described in Table 1). 

Univariable logistic regression models demon-
strated that TBI Severity IRT scores were robustly 
associated with discrete 6-month GOSE outcomes, 
especially death (R 2 = 0.35–0.42) and unfavourable 
outcome (i.e., severe disability; R 2 = 0.41–0.54; 
Supplementary Table S4). Moreover, in both samples 
TBI Severity IRT scores independently predicted all 
GOSE outcomes relative to GCS-based classifications

a

b

Fig. 2: Test information curves for TBI severity indicators grouped by measurement domains. The model reflects all 2545 individuals with 
TBI age 17 or older in the TRACK-TBI study. (a) Test information curves for each measurement domain. Test information reflects the sum of 
item-level information (see Fig. 1) across all indicators (items) in each measurement domain. Higher information reflects greater mea-
surement precision (i.e., lower standard error) in characterising and distinguishing persons at a given level of TBI severity. (b) Test infor-
mation (solid lines) and associated standard errors (dashed lines) for increasingly complex sets of indicators, starting with GCS domain scores 
and adding, in order: pupil reactivity, LOC duration, and PTA duration; CT findings; and blood-based biomarkers. Abbreviations: EDH, epidural 
haematoma; GCS, Glasgow Coma Scale; GFAP, glial fibrillary acidic protein; hsCRP, high-sensitivity C-reactive protein; IVH, intraventricular 
haemorrhage; NSE, neuron-specific enolase; LOC, loss of consciousness; PTA, posttraumatic amnesia; S100B, S100 calcium binding protein B; 
SAH, subarachnoid haemorrhage; SDH, subdural haematoma; TBI, traumatic brain injury; UCH-L1, ubiquitin C-terminal hydrolase.
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Fig. 3: Distribution and prognostic value of item response theory (IRT)-based traumatic brain injury (TBI) severity scores. The model was developed from profiles of 24 
indicators of acute TBI severity within the TRACK-TBI sample; those parameters were used to score individuals on the severity spectrum in both the TRACK-TBI 
(derivation) and CENTER-TBI (external validation) sample. Due to differences between studies, the CENTER-TBI subjects were scored using 17 of the original 24 
variables. (a) Histogram depicting the distribution of TBI Severity IRT scores, which provides substantially more precision in estimating individual differences in TBI 
severity than traditional mild, moderate, and severe TBI classification (2446/2545 scores in the TRACK-TBI sample and 3438/4500 scores in the CENTER-TBI sample 
were unique). (b) Scatterplot of TBI Severity IRT scores versus traditional GCS-based classification of TBI; the robust, expected associations supports an interpretation 
that TBI Severity IRT scores reflect the same construct (TBI severity) as GCS-based classification, with more precision afforded by the IRT scores. Scatterplot points 
(individual subjects) are lagged in the direction of the y-axis to facilitate visualisation of the number of points along the x-axis. (c) Model Nagelkerke R 2 for models 
predicting death, unfavourable outcome, and incomplete recovery at 6 months post-injury from traditional 3-level GCS-based TBI severity categories (mild, moderate, 
severe) and IMPACT model scores, as well as the increase in R 2 observed after adding TBI Severity IRT scores to the models (all likelihood ratio test p ≤ 0.001). The 
figure illustrates that TBI Severity IRT scores, while not developed specifically to predict functional outcome, they nevertheless incrementally predict outcome beyond 
these other more traditional prognostic scores (GCS and IMPACT). Abbreviations: CENTER-TBI, Collaborative European NeuroTrauma Effectiveness Research in Traumatic 
Brain Injury study; GCS, Glasgow Coma Scale score; GOSE, Glasgow Outcome Scale-Extended; IMPACT, International Mission for Prognosis and Analysis of Clinical Trials 
in TBI; TRACK-TBI, Transforming Research and Clinical knowledge in TBI study.
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(increase in R 2 = 0.11–0.17, likelihood ratio test [LRT] p
< 0.001), IMPACT Core (increase in R 2 = 0.03–0.16, 
LRT p < 0.001), and IMPACT Extended scores (increase 
in R 2 = 0.01–0.07, LRT p ≤ 0.001; Supplementary 
Table S5; Fig. 3c). Similar to the univariable models, 
gains in predictive power were especially strong when 
predicting death and unfavourable outcome. Models 
predicting death and incomplete recovery fit somewhat 
better in the TRACK-TBI sample, whereas models 
predicting incomplete recovery fit better in the 
CENTER-TBI sample (e.g., univariable model predict-
ing outcome from IRT scores R 2 = 0.24 versus 0.08).

Finally, a sensitivity analysis examined the perfor-
mance of TBI Severity IRT scores in TRACK-TBI 
computed without blood-based biomarkers. Scores 
computed with and without biomarkers were correlated 
r = 0.97 (Supplementary Figure S5). Prognostic models 
incorporating these recomputed IRT scores yielded the 
same overall pattern of results (i.e., independent pre-
diction of TBI Severity IRT scores computed without 
biomarkers), with model R 2 values lower by, on average, 
R 2 = 0.03 relative to those that used biomarkers in IRT 
score calculations (Supplementary Table S6).

Discussion
In the large (N = 2545) TRACK-TBI sample of Level I 
trauma centre patients aged 17 years and older with 
GCS 3–15 TBI, we used IRT to model the continuum of 
TBI severity from 24 clinical, head CT, and blood-based 
biomarker features assessable soon after injury. We 
identified four key findings. First, a well-fitting one-
factor model provided empirical support for the 
widespread assumption that TBI severity exists on a 
continuum. This continuum can be indexed across sex 
and age groups by GCS components, pupil reactivity, 
duration of altered consciousness (LOC, PTA), and 
objective CT and blood-based biomarkers. Second, IRT 
information curves provided a novel view of the level of 
TBI severity indexed by each indicator and the relative 
ability of the indicators to characterise individuals’ po-
sitions along the severity continuum. Third, blood-
based biomarkers collected within 24 h of injury— 
particularly GFAP—proved useful in indexing the 
entire injury continuum. Finally, we demonstrated the 
validity of IRT-based TBI severity scores by showing 
that these were associated with traditional GCS-based 
severity categories and incrementally improved predic-
tion of death and injury-related disability beyond GCS-
based severity categories and IMPACT scores, within 
both the TRACK-TBI sample and the CENTER-TBI 
sample. That the model yielded robust, prognostic 
TBI Severity IRT scores within each of these samples is 
particularly remarkable in light of differences across 
studies in health systems and the fact that CENTER-TBI 
IRT scores were derived from a subset of information 
available (17/24 variables) in the TRACK-TBI sample.

Our study addresses the calls of expert working 
groups assembled by the National Institute of Neuro-
logical Disorders and Stroke (NINDS) to develop new 
approaches for characterising TBI severity. 11,16 A 2007 
working group recommended that new methods ideally 
would integrate clinical effects of injury (e.g., GCS) with 
more objective markers. 11 Since then, significant prog-
ress has been made in collecting large prospective TBI 
samples needed to act on these recommendations to 
validate blood-based biomarkers for clinical decision 
making. Our results are responsive to the 2007 working 
group’s recommendation in this regard as well as the 
2024 initiative’s emphasis on characterising TBI from a 
combination of clinical, head CT, and blood-based 
biomarker indicators. 16 This study aligns well with 
these consensus-based initiatives, while illustrating a 
rigorous scientific method that can refine evolving TBI 
conceptualisations.

Our results also contribute to growing evidence that 
incorporating blood-based biomarkers improves the 
characterisation of TBI severity. 47 For example, our 
findings suggest that GFAP, already FDA-cleared for 
assisting clinical neuroimaging decisions, 20 also con-
tributes to differentiating persons on the severity 
spectrum. This was especially valuable in the lower half 
of the severity spectrum, where other indicators (e.g., 
GCS, CT) are less useful. For persons in the upper half 
of the severity spectrum, biomarkers combined with 
clinical observations could be invaluable in settings 
where CT is unavailable to guide decisions about the 
need and urgency for transfer to a facility with neuro-
imaging and neurosurgical services. Two other widely-
used TBI biomarkers, UCH-L1 and S100B, improved 
characterisation of severity but less so than GFAP. That 
these three biomarkers were most informative is un-
derstandable given their higher specificity to TBI relative 
to NSE and hsCRP and their robust associations with 
other indicator variables, especially CT findings. 48–51 

However, because these markers vary in their half-lives 
but were sampled at a single timepoint, we caution 
against interpreting their relative performance. More 
generally there is a need for standardised approaches to 
biomarker sampling and analyses in order to realise their 
full potential as indicators of severity.

This new method of scoring TBI severity yields 
many opportunities for advancing the clinical assess-
ment and management of TBI. Adopting the TBI 
Severity IRT score in practice would promote recogni-
tion of the wide individual differences of TBI, 
addressing aforementioned concerns of patient harm 
due to traditional TBI labels and staging. Moreover, TBI 
Severity IRT scores could support tailored in-
terventions, more accurate prognoses, and improved 
clinical management. They also could be integrated into 
electronic health records, enabling automatic, multi-
modal data-driven injury assessments, providing added 
clinical information based on multimodal data to
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support injury characterisation and offer opportunities 
for tailored, evidence-based management decisions. For 
instance, scores might help stratify patients into follow-
up care pathways suited to their severity. For example, 
to manage healthcare resources it may be appropriate to 
funnel lower-severity injuries to primary care for 
monitoring, provide active outreach and nurse case 
management for more severe injuries, and offer spe-
cialised multidisciplinary rehabilitation routinely to in-
dividuals above a certain severity level. As compared to 
traditional, imprecise TBI classification systems, the 
increased precision and sophistication of this novel 
IRT-based approach to grading severity affords greater 
opportunity to develop evidence-based approaches to 
characterise and manage diverse TBIs.

Another advantage of the present approach is its 
ability to score individuals on TBI severity even when 
there is incomplete data, as was illustrated in our 
application of the model to the CENTER-TBI sample 
where only 17/24 original indicators were available. 
With further validation, this method would allow cli-
nicians in diverse settings and with different resources 
to score injuries on a unified index. Mobile scoring 
tools could be deployed to further increase accessibility 
in diverse settings, while offering feedback about the 
accuracy of estimates based on the data available as well 
as interpretive feedback. For example, in a field/pre-
hospital setting, clinical signs and point-of-care blood-
based biomarkers like GFAP may be used to estimate 
injury severity and aid in decisions about evacuation or 
transfer for further care. Hospital systems with 
comprehensive resources could incorporate all in-
dicators from the IRT model to enable precise posi-
tioning of patients along the severity continuum, or to 
add new information to that gathered in the pre-
hospital setting, affording more precise estimation of 
severity. These capabilities would also be of value in 
research, providing a way to index and compare TBI 
severity among samples assessed with different TBI 
severity indicators, as is common across sport, civilian, 
and military TBI studies.

Following conventions in grading TBI severity, our 
model is mainly based on information available on the 
first day of injury (with the exception of LOC and PTA 
duration). Future work could investigate whether 
adding other acute indicators (e.g., hypotension, hyp-
oxia, lesion location), 24 or variables reflecting patients’ 
evolving clinical course, operates to improve severity 
characteriaation. 47 Future work should also cross-
validate the model in new samples, extend the model 
to other TBI subpopulations (such as persons with 
injuries that do not necessitate treatment at Level I 
trauma centres), and solicit clinician feedback to 
explore strategies for future clinical implementation. 
Work to promote clinical implementation might 
benefit from examples from other areas of medicine 
that routinely quantify clinically relevant measures

(e.g., bone density, regional brain volume) on a 
continuous scale and provide interpretable output for 
patients and clinicians. 52,53 Finally, simplified versions 
of the model could be developed to balance precision 
and accessibility.

A strength of the current study is that analyses 
included the full TRACK-TBI sample to derive the 
model, a feature enabled by limited missingness on 
most variables and the use of full-information methods 
for IRT parameter estimation. Given expert recom-
mendations to incorporate objective (e.g., radiographic, 
biochemical) signs of TBI into measurement models of 
TBI severity, 11 it was valuable to initiate this line of in-
quiry using a large Level I trauma-centre based sample, 
as this provided sufficient variability in specific CT 
findings to estimate relations between these findings 
and the continuum of TBI. Additionally, the TRACK-
TBI sample comprised a large number of individuals 
with more subtle TBI as reflected in these characteris-
tics (e.g., N = 471 with GCS 15 CT− TBI). The resulting 
model assigned a unique TBI score to 2446/2545 in-
dividuals in the sample, highlighting the ability of the 
IRT model to differentiate a wide spectrum of TBI 
severity.

Although the study samples are fairly representative 
of adult TBI cases that require prompt ED evaluation, 
they are not representative of all TBI. Thus, the findings 
should not be generalised to other TBI subpopulations, 
such as sport-related concussion, which is typically 
managed without emergency department evaluation. 
Additionally, although we confirmed the model can be 
applied across sex and age groups, future studies 
should verify model fit in important subgroups such 
persons varying in peripheral injury severity, 54–59 which 
may influence the validity and interpretation of blood-
based biomarkers and other model components. Work 
of this kind would serve as a valuable next step toward 
clinical implementation of the IRT-based staging model 
introduced here. Beyond generalisability, another limi-
tation of this study is that certain indicators may not 
have been optimally collected. Blood, for example, was 
collected at one timepoint within 24 h of injury (12 h or 
later for many samples), often missing the early peak of 
UCH-L1 and S100B and preceding the peak of hsCRP. 35 

The relative information provided by the blood-based 
biomarkers should be interpreted with this limitation 
in mind. Additionally, the TRACK-TBI study did not 
assess LOC and PTA duration through standardised 
assessments or verify reliability of these data, which 
raises the possibility of that these clinical signs could be 
more informative if assessed under more controlled 
conditions. Finally, these indicators were missing more 
often than other model variables, which may increase 
the possibility of estimation bias particularly if data 
were MNAR. 60 Although most model indicators had 
limited missingness and were plausibly assumed to be 
MCAR or MAR, MNAR cannot be verified in real
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datasets and is therefore a potential threat to validity for 
any study. 61 While techniques to estimate the impact of 
potential MNAR are emerging, they require making 
assumptions that cannot be verified and are not well 
validated for IRT models. 62,63

Unlike IMPACT scores, which were developed to 
predict functional outcome and, in turn, provide an early 
estimate of TBI severity, our IRT-based scores were 
developed by modelling a latent dimension underlying 
covariation among observed TBI indicators and esti-
mating the relationship between those indicators and the 
latent dimension. This may explain why we did not uni-
formly see reduced prognostic modelling performance in 
the external validation sample. The finding that IRT-
based severity scores incrementally predicted functional 
outcomes when combined with IMPACT scores suggests 
that IRT methods can complement the more traditional 
regression-based approach to developing indices that 
inform prognosis and conceptualisation of TBI.

In summary, the current study fills a need to grade 
TBI severity using indicators from multiple measure-
ment domains (clinical, neuroimaging, blood-based 
biomarkers) 11 and provides an initial demonstration 
that IRT—a quantitative tool widely used in other fields 
to develop practical clinical assessments 64–66 —provides a 
powerful and interpretable method to develop evidence-
based strategies to characterise TBI. This study also 
provides a flexible model for integrating diverse data 
into a unified model of TBI severity, a model that could 
be adapted to integrate other relevant measures in the 
future. This rigorous, clinically relevant approach to 
scoring TBI severity addresses longstanding challenges 
in TBI classification and lays a strong foundation for 
continued innovation and progress in the field.
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