
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 
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Abstract— Land Remote sensing image classification is 

crucial for understanding ongoing geographical and 

environmental changes. It aids in land use and land cover 

classification, crop and vegetation classification, change 

detection, and classification of coastal and aerial regions. 

Many advanced techniques were introduced based on 

some substantial modifications in the models; however, 

this resulted in a complex framework that is difficult to 

adapt. In this work, we proposed a novel Lightweight 

Dense Mixture of Experts (LiteDenseMoe) model for aerial 

and coastal regions classification using remote sensing 

images. The proposed model initially incorporates light, 

dense blocks with lightweight dense layers, as well as 

channel and spatial attention mechanisms. The resulting 

model is further fused with an Mixture of Experts block 

that extracted more relevant and essential features for the 

accurate prediction of complex aerial scenes. In the 

training process of the proposed model, a Hyperband 

Optimization technique is employed for hyperparameter 

initialization, rather than manual selection. After training 

the proposed model, classification was performed, along 

with output interpretation. The proposed LiteDenseMoe 

architecture is evaluated on three datasets and achieved an 

accuracy of 93.25% on MLRSNet, 92.56% on NWPU-
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RESISC45, and 96.54% on the EuroSAT dataset with only 

0.3 million parameters. Expert allocation and their 

confidence per class, Expert disagreement Network, and t-

SNE visualization are also observed to interpret the Moe 

results. Detailed Ablation studies and comparative analysis 

with pre-trained and SOTA models confirm the impact 

and efficiency of the proposed architecture for aerial and 

coastal regions classification. 

Index Terms— Remote sensing; Aerial scene; Deep 

learning; Hyperparameter tuning; Mixture of Experts; 

Model interpretations  

I. INTRODUCTION 

umerous socioeconomic and environmental 

applications, including urban and regional planning as 

well as the management and conservation of natural 

resources, depend on continuously updated land use and land 

cover data. [1, 2]. Remote sensing (RS) is defined as the 

science of obtaining information about the land and water 

bodies of the Earth from the images acquired from a distance 

using electromagnetic radiation emitted [3, 4]. It is beneficial 

as it allows us to monitor and understand the complex 

geological and environmental processes which cannot be 

tracked otherwise [5]. The history of remote sensing dates 

back to the early 1800s with the discovery of infrared 

radiation to aerial photography using balloons and airplanes; 

however, the term “remote sensing” was first used in the 

1960s as the term “aerial photography” no longer justified the 

several forms of images collected using the invisible 

electromagnetic spectrum [4]. Over time, several evolutions 

have impacted the field of remote sensing, including satellite 

remote sensing, digital image processing, hyperspectral 

remote sensing, global remote sensing, and Lidars, among 

others [3]. These modern advancements lead to more complex 

and enriched remote sensing data, which can be used for more 

precise classification and detection of features on the Earth's 

surface [6].  

Despite the growing capabilities of remote sensing, the 

analysis and classification of remote sensing data are still 

challenging tasks due to their high dimensionality and high 

spectral similarity [7, 8]. Many RS classes share overlapping 

visual characteristics which creates a confusion between 

classes like parking lots and bare lands, urban residential and 

industrial zones etc. Also, there is high intra-clas variability in 

RS data as a same land cover class shows visual variations 

ubder different environmental and seasonal changes. Apart 

from this, multi-scale feature requirements and limited labeled 
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data further increases the challenges, making it difficult for 

model to leann consistent class representations. 

 Initially,  traditional machine learning (ML) algorithms such 

as Support Vector Machines (SVM) [9], decision trees (DT) 

[10], Random Forest (RF) [11] and Artificial Neural Networks 

(ANNs) [12] were used for remotely sensed image 

classification. However, these algorithms require manual 

feature extraction, due to which the model’s performance 

becomes highly dependent on extracted features  [13]. 

Moreover, their inability to deal with high-dimensional data 

shifts the researchers' interest towards deep learning [14]. 

Unlike Machine learning, deep learning algorithms support 

automatic feature extraction and also show good performance 

on complex hyperspectral remote sensing data [15-17]. Many 

techniques have been introduced in the literature for the 

classification and detection of land use and land cover from 

remote sensing and hyperspectral images [18-20]. 

 K. Ali et al. [21] used a convolutional neural network (CNN) 

for the classification of land cover areas in semi-arid regions 

through Sentinel-2 satellite images. They trained the model on 

different areas and tested it on unseen regions to check 

whether the model can classify areas in similar environments. 

Also, they compared two types of Sentinel-2 satellite images, 

4-band and 10-band, to check their ability to classify difficult 

land regions. Experimental findings reveal that a CNN with 

the proposed architecture trained on 4-band images 

outperformed. However, the architecture of the model can be 

improved as it still struggles to differentiate between highly 

similar spectral regions. In [22], the authors evaluated 

different deep learning models on benchmark datasets and 

compared their performance for LiDAR point cloud 

classification. They evaluated two types of models: projection-

based (U-Net, ResNet, VGG, and DeepLab) and point-based 

(DGCNN, ConvPoint, PointNet, PointNet++) on four 

benchmarking datasets (Toronto3D, S3DIS, ModelNet40, 

ISPRS Vaihingen). Experimental results demonstrate that 

DCGNN and ConvPoint surpass other models by achieving 

the highest accuracy across all the datasets. However, the use 

of both models is limited as DCGNN is computationally heavy 

and ConvPoint is scale-agnostic. In [23], the authors compared 

three deep learning models for remotely sensed image 

classification. The convolutional neural network is the first 

model of this work that is built from scratch; however, the 

other models are pre-trained, such as EfficientNetB7, and fine-

tuned EfficientNetB7. All these models are evaluated on the 

UCM Land use dataset, which comprises 21 classes, each 

containing 100 images. Results show that fine-tuned 

EfficientNetB7 achieved the highest accuracy of 88% 

followed by pre-trained EfficientNetB7 and CNN-FE. 

However, the dataset used in this study is relatively small, 

which limits the model's performance in terms of 

generalizability. M. Aljebreen et al. [24] presented a novel 

technique for land use land cover classification which employs 

River flow dynamic algorithm with deep learning ( LULCC-

RFDADL). It incorporates a pretrained CNN model, Dense-

EfficientNet, for feature extraction; however, it also utilizes a 

River Flow Dynamic Algorithm for hyperparameter selection 

and a Multi-scale Convolutional Autoencoder (MSCAE) for 

classification. Moreover, they used the Seeker Optimization 

Algorithm for parameter optimization. Experiments are 

conducted on the Eurostat dataset, which contains 10 classes, 

each with 500 images. Experimental results show that the 

proposed model outperforms other deep learning models by 

achieving an overall accuracy of 98.12% and an average 

precision, recall, and F1-score of 90.7% across all the classes. 

The drawback of this model is its computational expense, and 

performance can vary with variations in data quality. 

M. Fayas et al. [25] evaluated different deep learning models 

for accurate and efficient land cover classification using high-

resolution remote sensing imagery. The study focuses on three 

DL models, namely Inception-v3, ResNet-50, and DenseNet-

121. They used these models based on a fine-tuning process 

where they froze the top layers and added custom layers. All 

the models are evaluated on the UC-Merced_LandUse dataset, 

which comprises 18,000 images across 18 classes, and are also 

compared with State-Of-The-Art models. Experimental 

findings reveal that Inception-v3 surpassed all the models by 

obtaining an accuracy, precision, recall, and F1-score of 92%, 

93%, 92% and 92%, respectively. F. S. Alsubaei et al. [26] 

introduced a block scrambling-based encryption technique 

with deep learning for remote sensing image classification. 

The study involves the encryption of RS images for 

preservation of transmission, storage, and classification of 

these encrypted images using deep learning techniques. 

Encryption is performed by dividing the image into non-

overlapping blocks, which then undergo random shuffling, 

flipping, and rotations to make it compatible with JPEG 

standards. These encrypted images are then passed through 

DenseNet for feature extraction, whereas Artificial Gorilla 

Troops Optimizer (AGTO) is employed for hyperparameter 

optimization. The proposed model is evaluated on the UC 

Merced land use dataset and shows a classification precision 

rate of 98%. In [27], the authors presented a novel deep 

learning model, ResMoCNN, for the classification of 

Hyperspectral images by injecting morphological features into 

3DCNN features via residual connections. The model 

incorporates a 3DCNN core for hierarchical feature extraction 

and a Spatial-Spectral Morphology box (SSMB) for structural 

and environmental feature extraction. These morphological 

features are extracted through four morphological operators, 

namely erosion, perimeter, dilation, and top-hat. These 

extracted features are then injected into multiple 3DCNN 

layers via residual connection. Before feeding it to the model, 

HSI data is preprocessed by PCA for dimensionality 

reduction. The model is trained and tested on four datasets and 

shows that the proposed model outperforms traditional ML 

and DL models by achieving an overall classification accuracy 

of 97.81% on the Indian Pines dataset, 99.33% on the Pavia 

University dataset, 98.67% on the Houston University dataset, 

and 99.71% on the Salinas dataset. Albarakati et al. [28] 

presented a novel deep learning approach based on 

information fusion of deep convolutional neural networks for 

remote sensing image classification. In this study, they 

implemented a Super Resolution (SR) technique to improve 

the contrast of images. After that, the enhanced images are 

passed to two separate models such as ResSANS6 and RS-

IRSAN. The extracted features from both architectures are 

then fused by Mutual Information-Based Serial Fusion 

(MIBSF) and standardized by median normalization. An 

Arithmetic Optimization Algorithm (AOA) is employed to 
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select optimal features while a Shallow Wide Neural Network 

(SWNN) is used as a classifier. Experiments are conducted on 

three datasets, and results show that the proposed technique 

achieved classification accuracy of 95.7% on RSI-CB128, 

97.5% on WHU-RS19, and 92.0% on NWPU_RESISC45 

dataset, respectively. Some studies focus on deep learning and 

design architectures for the classification of satellite images, 

such as SemHi [29], which is based on the SwinUNETR, 

custom CNN, pre-trained dense, and ResNet architectures [30, 

31]. 

 Most of the techniques proposed so far are based on either 

pre-trained deep learning models or custom CNN models. 

These techniques have some common limitations such as 

overfitting, high computational cost, limited generalization, 

and data dependency. Also, there is minimal research on the 

classification of aerial and coastal regions through RS data. In 

this study, we proposed a novel deep learning-based Mixture 

of Experts model named Lightweight Dense Mixture of 

Experts (LiteDenseMoe) for the accurate and efficient 

classification of aerial and coastal regions through remote-

sensed imagery. The proposed model addresses the challenges 

in  RS data through it novel architecture. The Mixture of 

Experts mechanism integrated in the architecture enables the 

model to learn specialized representations for different classes, 

thus overcoming intra-class variability. Also, the attention 

mechanisms highlight distinct spatial and spectral features, 

clearing the inter-class confusion. Multi-scale features are 

captured by dense connections, and a lightweight architecture 

prevents overfitting on limited data. These contributions 

collectively lead to more accurate and efficient classification.  

Our main contributions and the significant challenges that are 

addressed by these contributions are as follows: 

 Efficient Light-weight Architecture: We proposed a 

lightweight dense block modified with a depth-wise 

separable convolutional layer to minimize the 

computational cost while preserving the high 

representational ability. 

 Customized MoE: We designed a novel MoE model 

that consists of multiple specialized expert blocks and 

a routing mechanism that dynamically assigns the 

features to the most appropriate expert.  

 Manual hyperparameter optimization is a time-

consuming task, which can be replaced by an 

automated optimization technique such as Hyperband 

Optimization, which is employed in this model. 

 Interpretability and Analysis: A comprehensive series 

of interpretability studies is performed, including 

some extensive expert engineer allocation analysis, 

confidence visualization, t-SNE feature space 

visualizations and GradCAM visualization to further 

explain the behavior and specialization of the 

proposed model. 

 
Figure 1: Sample images of the selected remote sensing datasets

II. DATASET DESCRIPTION 

In this work, we utilized three datasets for the evaluation of 

the proposed architecture such as MLRSNet dataset [32], 

NWPU-RESISC45 [33], and Coastal areas combined dataset.   

 

MLRSNet dataset: The MLRSNet dataset consists of 109161 

high-resolution images divided into 46 categories, and the 

number of images in each category varies from 1500 to 3000. 

Each image has a fixed pixel size of 256 256 and pixel 

resolution ranging from 10m to 0.1m. Each image is tagged 

using pre-defined 60 class labels, and the number of labels for 

each image varies from 1 to 13. Sample images of the 

MLRSNet dataset are shown in Figure 2. 

 

NWPU-RESISC45 dataset: The NWPU-RESISC45 dataset 

is composed of 10500 images separated into 12 classes such as 
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Airfield, Harbor, Beach, Dense residential, Farm, Overpass, 

Forest, Game space, Parking space, River, Sparse residential 

and Storage tanks. Each image has a pixel size of 256 256 3 

with dpi of 96 96. Sample Images of NWPU-RESISC45 

dataset are shown in the Figure 3. 

Coastal Areas Combined Dataset: We acquired coastal-

related classes from several publicly available datasets such as  

EuroSAT, MLSRNet, and SIRI-WHU to classify coastal 

areas. We selected 13 classes from these datasets, as shown in 

Figure 1. The dataset contains 13 classes: Anchorage, beach, 

harbor, harbor & port, island, lake, landslide, red sea fish, 

river, snow berg, swimming pool, water, and wetland. The 

size of each sample is 256×256×3, and the nature of the 

samples is RGB. The total number of samples in the collected 

dataset is 9206. 

 

III. PROPOSED LITEDENSEMOE 

In this section, we presented our proposed Lightweight Dense 

Mixture of Experts (LiteDenseMoe) model for aerial and 

coastal regions classification from remote sensing images. 

Convolutional Neural Network (CNN) is one of the most 

fundamental architectures of deep learning, which was 

initially introduced as LeNet by Yann LeCun [34]. It can 

capture hierarchical features at multiple receptive fields due to 

its convolutional, dense, and pooling layers. Initially proposed, 

CNN has some limitations such as the vanishing gradient 

problem and degradation with deeper architectures, which 

were later improved by its different variants such as 

DenseNet, ResNet, and Inception. Despite their improved 

performance, the inability of CNNs to recognize essential 

features leads to the introduction of attention modules (i.e., 

spatial and channel attention). These modules highlight the 

important channels and features of the image and suppress the 

less important ones. However, these attention-driven models 

were still unable to deal with diverse input data, which laid the 

foundation of Mixture of Experts (MoE). MoE is composed of 

different expert blocks and routing mechanisms that can train 

multiple expert blocks differently to handle diverse input 

images. In this work, considering the individual advantages of 

various deep learning models, we proposed a novel network, 

LiteDenseMoe, which incorporates DenseNet, channel and 

spatial attention blocks, and a Mixture of Experts for the 

classification of aerial and coastal images. A complete 

architecture of the proposed model is shown in Figure 2. The 

detailed description of this model is given below in 

subsections.  
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Figure 2: Proposed LiteDenseMoe for remote sensing image 

classification 

 

A. Detailed Architecture 

 

The detailed layer wise architecture detail is given under this 

subsection based on the mathematical formulation and visual 

representations of the inside modules of the proposed model.  

1)  Initial  Layers:  

The model starts with an input layer that accepts an image of 

size             . The input image pixels are pass it to 

a     convolutional layer with stride of     and padding 

of     for initial feature extraction. The extracted features of 

this layer are then followed by a batch normalization layer 

(BNL)   that normalize the inputs and ReLU activation 

function  , and maxpooling layer (MPL)    with pool size 

of     is employed. The initial layers are mathematically 

presented as: 

       (         ))                              (1) 

Where   denoted the input,    represents the convolutional 

weights,    is the bias and   presented the convolutional 

operation. 

2) First Dense Block 

The first dense block is employed with four dense layers, as 

shown in Figure 3. In dense block, depth wise separable 

convolutional layer is employed instead of traditional 

convolutional layer for parameter efficiency. In a dense layer 

BNL layer followed by ReLU is attached. After that a   
  convolution is connected that followed by a BNL and ReLU 

activation layers. Later on, the output of this layer is passing to 

depth wise      separable convolutional layer. After that, a 

pointwise convolutional layer, BNL layer, and a ReLU 

activation is attached. Mathematically, this block is presented 

as follows: 

      (  
  )

     
  )

)                             (2) 

          ( (   )))                                     (3) 

Where        denotes the depth wise separable 

convolutional layer. The final output of a dense layer is then 

concatenated with outputs of previous layer and pass on to the 

next layer, defined as: 

   [            ]                                             (4) 

 

 

 
Figure 3: Proposed Dense block with four layers 

3) Transition Layers Block 1 

After first dense block, a transition block has been attached. 

The transition block is consist of BNL layer, convolutional 

layer, and ReLU activation. A     convolutional layer is 

added to reduce number of channels; however, an average 

pooling layer is added in the last to reduce spatial dimensions 

of the previous output, as shown in Figure 4. Mathematically, 

this process is formulated as: 

       (  
  )

 ( (   )))    
  )

)             (5) 

Where    denoted the average pooling layer and    presented 

the first transition layers block.  

 

 
Figure 4: Proposed first transition layers block 
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4) Second Dense Block 

After the first transition layer block, a second dense block has 

been connected. The second dense block is composed of 6 

dense layers. At this time, the number of dense increases to 

capture representations that are more complex, as visually 

shown in Figure 5. All the layers in this block are connected to 

the next, respectively. 

 

 
Figure 5: Proposed dense block with six layers 

5) Transition Layers Block 2 

Another transition layer is followed by this dense block to 

prevent the model from high complexity. The second 

transition layers block fallows the same phenomena as 

previously defined in Figure 4.  

6) Third Dense  Block 

After second transition layers block, third dense block has 

been added with 8 dense layers. This dense block layers also 

consist of     convolution, BNL, ReLU activation, depth 

wise      separable convolutional layer, pointwise 

convolutional layer with BNL layer, and ReLU activation, as 

shown in Figure  6. 

 
Figure 6: Proposed Dense block with eight layers 

7) Channel and Spatial Attention Module 

In the next phase, channel and spatial attention modules are 

employed. Channel attention module consist of an average 

pooling layer and pass it to     convolutional layer to 

reduce number of channels by a factor of    and learn channel 

wise relationships. Another      convolutional layer is 

employed to restore the original dimensions after feature 

processing. A ReLU activation function is applied between 

these two convolutional layers, and sigmoid activation 

function is employed after the second convolutional layer to 

scale the channel importance. This weight matrix is then 

multiplied with original tensor to emphasize the important 

channels. Mathematically, this process is defined as follows: 

      (  
   )

  (  
   )

      )))               (6) 

                                                      (7) 

Where     denoted the channel attention weight,    represent 

output of third dense block,   denotes the sigmoid activation 

function,     is the output of channel attention mechanism, 

and   represents element wise multiplication.  

The output of the channel attention module is passed to the 

spatial attention mechanism to enhance the critical spatial 

regions. First of all, it aggregates channel-wise information to 

a spatial map and then applies a 3×3 convolution layer on it to 

learn spatial relationships. A sigmoid activation function is 

used to scale the weights, which are ultimately multiplied with 

the original input tensor to enhance important spatial regions. 

Mathematically, this process is presented as follows: 

     (  
   )

       ))                                     (8) 

                                                            (9) 

Where    presented the spatial attention weights and    

denoted the spatially emphasized feature map. The channel 

and spatial attention module is shown in Figure 7. After this 

module, BNL, ReLU, average pooling layer is employed and 

then passed to the flatten layer. 

 
Figure 7: Proposed Channel Attention Mechanism 

8) MoE Experts and Routing Mechanism 

In this next phase, two MoE experts are connected with the 

output of the flattened layer. Each expert block is composed of 

two linear layers, a dropout layer, and a ReLU activation 

function. First, the linear layer projects the features into a 

higher-dimensional feature space to learn non-linear 

relationships. Then, a dropout layer with a 0.5 dropout factor 

is applied, which randomly discards 50% of neurons to 

prevent the model from overfitting. Another linear layer is 

utilized to map the hidden representations to the output nodes. 

An expert block is mathematically defined as: 

     (     ( (     ))))                            (10) 

Wher    denoted the output of flatten layer,    and    are 

linear layers, and   denotes the dropout layer. After experts, a 

routing mechanism is employed to assign the weights. The 

routing mechanism is composed of a linear layer followed by 

a ReLU activation layer. Another linear layer is added after 

that and is followed by a SoftMax. During learning, features 

are passed through both expert blocks and the routing 

mechanism simultaneously. Initially, router assigns random 

but different weights to both expert blocks. These weights are 

refined during learning, which ultimately results in two expert 

blocks with other properties. Only the router is aware of expert 

properties, so when a test image comes, the router analyzes it 

and then assigns weights to both experts according to their 

capabilities and relevant features. The outcome of each expert 

block is multiplied by its corresponding weight, which is then 

added to generate the final output. The experts and the routing 

mechanism are visually presented in Figure 8. It can be 

represented as: 

        (      )        ))                          (11)
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Figure 8: Proposed Mixture of Expert block for aerial scene and 

coastal regions classification 

9) Final Output and Auxiliary Classifier 

The final output is generated by combining the outputs of both 

expert blocks, which are later passed through SoftMax 

activation. The softmax activation converts the raw logits into 

probabilities, and the class with the highest probability will be 

output as the final prediction. However, apart from final 

classification, an auxiliary classifier is also introduced after 

the first dense block. This auxiliary classifier provides 

intermediate predictions, helping the model learn at its initial 

stages. The auxiliary classifier is composed of a 1×1 

convolutional layer, a BNL layer, a ReLU layer, an average-

pooling layer, a flatten layer, and a linear layer for 

classification output. An auxiliary classifier is shown in Figure  

9. The categorical cross-entropy is utilized as a loss function, 

and the proposed model has only 0.3 million trainable 

parameters. Both final and auxiliary losses are added to the 

total loss. Mathematically, it can be defined as: 

                                                     

(12) 

Where       is te final classification loss,      is auxiliary 

classification loss and         is the load balancing loss to 

ensure balanced expert utilization.              are respective 

weights assigned to these losses and their values are set to 0.6, 

0.3 and 0.1 respectively.  

 
Figure 9: Proposed Auxiliary classifier for aerial scene classification 

IV. HYPERPARAMETER SELECTION AND MODEL TRAINING 

After designing the model, the selected datasets are divided 

into training and a testing set. 70% of the images from each 

dataset are utilized for training, and the remaining 30% of the 

data is employed for testing. The data is divided into a random 

process. Hyperband Optimization is used to select 

hyperparameters dynamically, rather than through manual 

selection.  

A.  Hyperband Optimization 

 Hyperparameter selection plays a vital role in model 

performance. Therefore, to select the most optimal 

hyperparameters, we applied the Hyperband Optimization 

technique [35], which finds the best hyperparameters while 

using limited resources. This technique starts by selecting the 

minimum budget per bracket (number of epochs) R and 

reduction factor η. This minimum budget and reduction factor 

is used to calculate total number of brackets and 

configurations per bracket. It then samples these numbers of 

configurations and divides the budget across them equally. 

During the first bracket, all configurations are trained using 

the limited budget, and then the one that performs well 

advances to the next bracket. After each bracket, the number 

of configurations is reduced by the reduction factor. 

Therefore, if initial configurations were 18 and the reduction 

factor is 3, only the top 6 performing configurations will go to 

the next round. In the next bracket, the budget will be divided 

across the remaining configurations so that each configuration 

will receive a larger budget for training. Again, the top-

performing configurations will go to the next round. This 

process will continue until only one configuration is left. This 

configuration will be trained using the entire budget, and the 

selected hyperparameters will be used for the model’s training. 

In this way, this technique selects the most optimal 

hyperparameters at a lower computational cost. Total number 

of brackets, configurations per bracket, and budget per 

configuration are calculated as follows: 

            )                                             (12) 

   
  

 
                                                       (13) 

   
 

                                                             (14) 

In this study, minimum budget was selected 30 and reduction 

factor was set to 3. The hyperparameters range and the best 

configuration selected by the optimization technique are 

shown in the Table 1.  

 

 
Table 1: Hyperparameter range and selected best configuration 

Hyperparameter Range Best Configuration 

Epochs 30-100 50 

Batch size 16, 32, 64,128 128 

Learning rate 0.0001 – 0.01 0.001 

Optimizer Adam, SGD Adam 

B. Training and Testing Process 

After the model design and hyperparameter selection, the next 

step is to train the model on the selected remote sensing 

datasets. The training curves are shown in Figure 10. In this 

figure, the training and testing plots for all datasets are 

visualized. The first part of this figure shows the curves for the 

MLRSNET dataset, indicating a stable and prosperous 

learning process. In the loss plot, the training and testing loss 

curves decline smoothly across the 50 epochs, with the testing 

loss declining smoothly and steadily approaching the training 

loss, which suggests good generalization. Both training and 

testing accuracy improve smoothly, as shown in the accuracy 

plot, with testing accuracy reaching over 90% by the end of 

epoch 50.     
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In the second part of Figure 10, the training and testing plots 

of the EuroSAT dataset have been illustrated. The training loss 

demonstrates a consistent, steady decline, while the testing 

loss exhibits significant fluctuations, particularly in the earlier 

epochs, indicating that it is sensitive to the dataset. As training 

continues, the training and testing loss converge and stabilize 

at a much lower level. The accuracy plot also reflects 

fluctuations at the earlier stages of training via testing 

accuracy. Still, by epoch 20, it has stabilized and improved, 

with its trajectory matching that of the training accuracy, with 

testing accuracy slightly below the training accuracy, which 

rose over 95%.  

In the third part of Figure 10, the training and testing plots for 

the NWPU dataset have been added. Both training and testing 

loss exhibit a clear downward trend; however, the testing loss 

has more noise than the training loss. This performance 

indicates that the training loss exhibits greater stability 

compared to the testing graph. Arguments can be made that 

although the fluctuations in testing loss are less extreme than 

the previous dataset, they suggest some variance in overall 

model performance across validation batches. The accuracy 

plot produces the same results, where both training and testing 

accuracy exhibit an overall steady increase over the epochs; 

however, testing accuracy does not reach the same level of 

training accuracy. The testing accuracy for this dataset is 

above 85%, whereas the training curve reaches 90%.  

 

 

 
Figure 10: Training and validations plot against different datasets of this work using proposed model
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V. EXPERIMENTAL SETUP 

In this section, the experimental setup has been discussed. The 

hyperparameters, such as mini-batch size, learning rate, 

optimizer, and epochs, are dynamically selected using the 

hyperband optimization. The static hyperparameters are 

learning decay is 0.2, and min LR is 0.00001. The 

performance of the proposed model is evaluated using 

traditional metrics such as accuracy, precision, recall, F1-

score, and confusion matrix. To interpret the proposed model 

decisions, we visualize the expert allocation for all the classes 

and the confidence of the expert in their predictions. 

Disagreement between the expert predictions is analyzed to 

understand the learning behavior of the proposed model. 

Lastly, T-SNE visualization of the feature space is performed 

to visualize the classification abilities of the proposed model. 

All experiments were conducted using Python 3.10 and the 

PyTorch library on a Desktop Computer Equipped with 

128GB RAM, an NVidia 20 GB RTX A4500 graphics card, 

and a 512 GB SSD Drive.  

A. Results on MLRSNet dataset 

The classification results achieved using the proposed 

LiteDenseMoE model on the MLRSNet dataset have been 

presented in Table 2. In this table, the proposed model 

achieved an overall classification accuracy of 93.25% which 

demonstrates the capacity of the architecture to handle 

complex aerial imagery. The complex aerial imagery contains 

both high intra-class variability and inter-class similarity. 

After closely inspecting the confusion matrix as shown in 

Figure 11, it is evident that the LiteDenseMoE has high 

performance for several visually complex and fine-grained 

classes, including swimming_pool, where the F1score is 

0.9941, shipping_yard (0.9906), and vegetable_greenhouse 

(0.9759), respectively. The high scores in these classes further 

reiterate the model's demonstrated robustness at distinguishing 

detailed structural patterns, which holds importance in remote 

sensing tasks. Similarly, classes with strong visual features, 

such as airplane, cloud, and island, also performed well in 

terms of F1-score, exceeding 0.96.    

On the other hand, some categories showed relatively lower 

performance, such as railway station, Park, and overpass. 

These classes indicate difficulty in differentiating due to 

similar patterns. The misclassifications related to these classes 

can be explained by shared features with neighboring classes, 

such as railway, and in cases where the adjacent classes may 

have more relevance to the context spatially.  The precision 

and recall across most classes also indicate that the 

LiteDenseMoE model has a good balance of false positives 

and false negatives. This directional balance is significant for 

remote sensing applications, especially as a class imbalance. 

This class imbalance shows subtle differences between 

classes, particularly for rare or confusing class types. 

Moreover, it can lead to a detection bias that many remote 

sensing models exhibit. The ability of the model to sustain 

high recall for rare or confusing classes, such as snowberg 

(recall 0.9717) and tennis_court (recall 0.9533), reaffirms the 

adaptiveness of the proposed architecture. 

Table 2: Classification report of proposed architecture using 

MLRSNet dataset 

Class Label Precision Recall F1-

Score 

Support 

airplane 0.9706 0.9594 0.9650 517 

airport 0.9131 0.8920 0.9024 648 

bareland 0.9303 0.9078 0.9189 412 

Baseball-diamond 0.9850 0.9641 0.9744 613 

Basketball-court 0.9302 0.8822 0.9055 891 

beach 0.9530 0.9695 0.9612 753 

bridge 0.9120 0.8930 0.9024 766 

chaparral 0.9633 0.9658 0.9646 761 

cloud 0.9724 0.9760 0.9742 541 

Commercial-area 0.8897 0.9342 0.9114 760 

Dense-residential-

area 

0.9577 0.9879 0.9726 825 

Desert 0.9706 0.9693 0.9699 749 

Eroded-farmland 0.8886 0.9120 0.9001 761 

farmland 0.9519 0.9648 0.9583 739 

Forest 0.9559 0.9180 0.9366 732 

Freeway 0.9338 0.9531 0.9433 725 

Golf-course 0.9471 0.9585 0.9528 747 

Ground-track-

field 

0.9207 0.9232 0.9219 742 

Harbor-port 0.9779 0.9580 0.9679 786 

Industrial-area 0.9418 0.9239 0.9328 631 

intersection 0.9479 0.9090 0.9280 780 

island 0.9764 0.9713 0.9738 766 

lake 0.9842 0.9120 0.9467 750 

meadow 0.9289 0.9218 0.9254 780 

Mobile-home-

park 

0.9666 0.9693 0.9679 716 

Mountain 0.8960 0.8716 0.8836 771 

Overpass 0.8682 0.8487 0.8584 714 

Park 0.8126 0.9140 0.8603 465 

Parking-lot 0.9763 0.9723 0.9743 721 

Parkway 0.9266 0.9064 0.9164 780 

Railway 0.8400 0.8422 0.8411 773 

Railway-station 0.7628 0.7548 0.7588 673 

River 0.9418 0.9051 0.9231 769 

roundabout 0.8818 0.9040 0.8928 594 

Shipping-yard 0.9946 0.9867 0.9906 751 

Snowberg 0.9140 0.9717 0.9420 777 

Sparse-

residential-area 

0.9719 0.9488 0.9602 547 

Stadium 0.9069 0.9019 0.9044 724 

Storage-tank 0.9723 0.9409 0.9563 745 

Swimming-pool 0.9949 0.9933 0.9941 595 

Tennis-court 0.8952 0.9533 0.9234 771 

Terrace 0.9327 0.9537 0.9431 712 

Transmission-

tower 

0.9508 0.9716 0.9611 775 

Vegetable-

greenhouse 

0.9681 0.9838 0.9759 803 

Wetland 0.8493 0.9043 0.8759 773 

Wind-turbine 0.9871 0.9776 0.9823 625 

Accuracy   0.9325 32749 
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Macro Average 0.9329 0.9327 0.9325 32749 

Weighted 0.9332 0.9325 0.9326 32749 

Average 

 

 

 
Figure 11: Confusion matrix of proposed architecture for MLRSNet 

dataset 

B.  Results on NWPU-RESISC45 Dataset 

The classification results of the proposed LiteDenseMoE 

model on the NWPU-RESISC45 dataset have been presented 

in Table 3. The proposed model achieved an overall accuracy 

of 92.56%, as shown in this table.  The macro average F1-

score is 91.88% and the weighted average was 91.57%, 

respectively, which indicates that LiteDenseMoE has strong 

classification performance. From the confusion matrix in 

Figure 12, it is clear that LiteDenseMoE performs 

exceptionally well on classes that are visually distinct from 

one another, such as Forest (F1-score: 0.9746), Parking Space 

(0.9515), and Dense Residential (0.9548), where the precision 

and recall for several of these classes were each above 95%. 

Based on these values, it is noted that the proposed 

LiteDenseMoE framework effectively learns fine-grained 

relevant details of scenes, as well as differentiable spatial 

patterns. Classes such as Anchorage, Beach, and Farm also 

performed well, with F1-scores greater than 0.93 and a close 

to 1.0 recall value.  However, some classes with lower 

performances, such as River (F1-score: 0.8109) and Sparse 

Residential (0.9104), exhibited higher misclassification rates 

at their respective accuracies, likely due to their high visual 

similarities with other natural or urban-based classes. 
Table 3: Classification report of proposed architecture for NWPU 

dataset 

Class Precision Recall F1-

Score 

Support 

Airfield 0.8773 0.8853 0.8813 436 

Anchorage 0.9352 0.9484 0.9417 213 

Beach 0.9378 0.9378 0.9378 209 

Dense 0.9596 0.9500 0.9548 200 

Residential 

Farm 0.9282 0.9502 0.9391 422 

Flyover 0.8905 0.9179 0.9040 195 

Forest 0.9697 0.9796 0.9746 196 

Game Space 0.8825 0.8949 0.8886 428 

Parking Space 0.9600 0.9432 0.9515 229 

River 0.7990 0.8232 0.8109 198 

Sparse 

Residential 

0.9543 0.8704 0.9104 216 

Storage Cisterns 0.9594 0.9043 0.9310 209 

Accuracy   0.9256 3151 

Macro Avg 0.9211 0.9171 0.9188 3151 

Weighted Avg 0.9164 0.9156 0.9157 3151 

 

 

Figure 12: Confusion matrix of proposed architecture for NWPU 

dataset 

C. Results on EuroSAT Dataset 

In Table 4, the classification results of the proposed 

LiteDenseMoE model on the EuroSAT dataset have been 

presented. From this table, it is observed that the overall 

accuracy achieved by the model is 96.54% and macro and 

weighted F1-scores are 96.49% and 96.54%, respectively. For 

the detailed observation, the confusion matrix is shown in 

Figure 13. This figure indicates that the LiteDenseMoE 

performs exceptionally well in components such as the 

Residential class, achieving an F1-Score value of 0.9917, Sea 

Lake is 0.9929, and the Forest class is 0.9885, respectively. 

These classes all present sharp visual clarity and 

distinguishable texture patterns present in remote sensing 

imagery. For the more visually ambiguous classes, such as 

Herbaceous Vegetation (F1-score: 0.9461) and Annual Crop 

(0.9478), the model also provides a strong classification 

performance. There is a minor confusion between the Annual 
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Crop and Herbaceous Vegetation classes. Confusion between 

those specific classes is widespread due to their seasonal and 

spectral aspects. However, the recall and precision of 

Herbaceous Vegetation are close in numerical outcomes, 

representing acceptable output values.  Moreover, the model 

obtains strong recall across all classes, limiting the amount of 

false negatives, indicating class-specific instances are far less 

likely to be missed entirely. This recall rate is essential for use 

case usability when considering real-world remote sensing 

problems, such as monitoring agricultural land or urban 

planning. 
Table 4: Classification report of proposed LiteDenseMoE 

architecture for EuroSAT dataset 

Class Precision Recall F1-

Score 

Support 

Annual Crop 0.9667 0.9296 0.9478 938 

Forest 0.9885 0.9885 0.9885 873 

Herbaceous 

Vegetation 

0.9399 0.9524 0.9461 903 

Highway 0.9599 0.9624 0.9612 772 

Industrial 0.9728 0.9795 0.9761 730 

Pasture 0.9509 0.9556 0.9532 608 

Permanent Crop 0.9239 0.9492 0.9363 767 

Residential 0.9912 0.9923 0.9917 904 

River 0.9612 0.9485 0.9548 757 

Sea Lake 0.9918 0.9941 0.9929 848 

Accuracy   0.9654 8100 

Macro Avg 0.9647 0.9652 0.9649 8100 

Weighted Avg 0.9656 0.9654 0.9654 8100 

 

 

 
Figure 13: Confusion matrix of proposed LiteDenseMoE model using 

EuroSAT dataset 

VI. MODEL INTERPRETATION 

A. Study 1 

This section presents the allocation of experts for each class, 

which means which expert block is more suitable to handle the 

respective class. In Figure 14, the blue color represents Expert 

1, while the orange color represents Expert 2. Each bar 

represents a respective class, and the majority color in that bar 

shows the preferred expert for that class. In the EuroSAT 

dataset, Expert 1 is selected for the Sea-lake, Pasture, and 

Forest classes, indicating that this expert is particularly 

efficient at extracting these types of features. For all the other 

classes, Expert 2 is the major choice. In the NWPU dataset, 

Expert 1 is allocated to 4 out of 12 classes, and Expert 2 is 

selected for 6 out of 12 classes. The remaining two classes 

demonstrate a 50-50 preference for both experts. For the 

MLRSNet dataset, Expert 1 is preferred for almost 14 classes 

out of 46. For all the other classes, Expert 2 is the primary 

choice. Overall, it is observed that Expert 2 is primarily 

selected for most classes, while Expert 1 is preferred for only 

a few classes. 

 

B. Study 2 

This section shows each expert's confidence level for the 

respective class. In Figure 15, the color chart represents the 

intensity of confidence level for each expert, where blue color 

shows the highest confidence level and light-yellow color 

shows the lowest confidence level. The right column 

represents Expert 2 while the left column represents Expert 1 

in each plot. For the MLRSNet dataset, most instances in the 

right column display different shades of blue, indicating that 

Expert 2 is confident in its predictions for the respective 

classes. Only a few cases show a yellow color, which 

represents low confidence for those classes. In the left column, 

the primary color is light yellow, indicating that Expert 1 is 

not very confident in its prediction. In the NWPU dataset, the 

trade-off between blue and yellow colors is almost the same 

for both columns, indicating that Expert 1 is confident in its 

predictions for 50% of instances. At the same time, Expert 2 is 

confident for the remaining half. In the EuroSAT dataset, 

Expert 2 shows higher confidence for 8 out of 10 classes. In 

comparison, Expert 1 shows higher confidence for almost six 

classes, which means that for some instances, both experts are 

confident in their predictions.  
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Figure 14: Expert allocation per class for all three datasets 

 

 

 
Figure 15: Expert confidence per class for all three datasets 

C. Study 3 

The t-SNE visualization of feature space and expert 

specialization in that feature space has been presented in 

Figure 16. The left plot in this figure shows the t-SNE 

visualization for each dataset, whereas the cluster of different 

colors denotes the dataset classes. Closely filled distinctive 

clusters show that the model can effectively differentiate 

among classes, whereas mixed points between clusters show 

that the model is confused among those classes. The right plot 
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shows the allocation of experts for that class. Here, expert one 

is represented by red and expert two is represented by green. If 

the same color shows a whole cluster, it means that the model 

can differentiate this class among others and assigns the same 

expert for that entire class. If a cluster shows both (red and 

green) colors, then the model misclassified some instances of 

that class. In this case, allocates different experts and 

considers them different classes.  

 

 
Figure 16: t-SNE visualization of feature space for all three datasets 

VII. ABLATION STUDIES 

A. Experiment 1 

In Table 5, an ablation study has been conducted by 

employing different model configurations in the architecture 

and evaluated on three selected datasets to verify the model's 

robustness and effectiveness. Using the MLRSNet dataset, it is 

observed that the proposed LiteDenseMoE uses both types of 

attention modules and achieves better accuracy than all 

ablation variants, reaching an accuracy of 93.25%. The 

proposed LiteDenseMoE, with only a spatial attention module, 

achieves an accuracy of 89.08%, while with only channel 

attention, it has an estimated accuracy of 90.09%. It is 

observed that the spatial and channel attention modules guide 
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the model to focus on portions of the aerial imagery. This 

imagery was important in space to discriminate feature-map 

dependent spatial-based feature cues that our model processes. 

On the EuroSAT dataset, the proposed LiteDenseMoE model 

achieved an accuracy of 96.54%. The accuracies of 90.60% 

and 89.79% achieved without considering spatial attention and 

channel attention. However, the accuracy dropped to 86.83% 

with no attention modules, still demonstrating the importance 

of accurately emphasizing certain spatial and spectral features 

that distinguish fine gain classifications. These results are also 

shown for the NWPU dataset. The proposed architecture 

achieved an accuracy of 92.56%. 

In comparison, the variant that only used the spatial attention 

module had an accuracy of 87.03%, and the other variant that 

only included a channel attention module had a similar 

accuracy of 88.16%. Again, removing both attention modules 

from the proposed model reduced the performance to 84.70%. 

This data reaffirms that spatial attention does allow the model 

to focus on features of interest that are more salient within that 

region. Moreover, the channel attention enabled the model to 

discover and strengthen inter-channel dependencies, which are 

crucial in complex coastal and land scene regions with noisy 

visual ambiguity. 
Table 5: Ablation study one of proposed architecture for all three 

datasets 

Architecture 

Configuration 

Accuracy Precision Recall F1-

Score 

MLRSNET Dataset 

With Spatial 

Attention 

89.08 90.10 89.08 89.06 

With Channel 

Attention 

90.09 90.34 90.34 90.32 

Without Spatial 

and Channel 

Attention 

82.61 84.97 83.61 82.61 

Proposed 93.25% 93.32 93.25 92.26 

EUROSAT Dataset 

With Spatial 

Attention 

90.60% 90.61% 90.60% 90.60% 

With Channel 

Attention 

89.79% 89.80% 89.79% 89.79% 

Without Spatial 

and Channel 

Attention 

86.83% 86.84% 86.83% 86.83% 

Proposed 96.54% 96.56% 96.54% 96.54% 

NWPU Dataset 

With Spatial 

Attention 

87.03 87.11 87.03 87.02 

With Channel 

Attention 

88.16 88.17 88.16 88.13 

Without Spatial 

and Channel 

Attention 

84.70 84.73 84.70 84.69 

Proposed 92.56 91.64 91.56 91.57 

B. Experiment 2 

This section provides a comparative analysis of the proposed 

LiteDenseMoE with pre-trained models. We selected top-

performing pre-trained models such as AlexNet, VGG16, 

VGG19, GoogLeNet, ResNet50, and ResNet101 and 

evaluated them on all three selected datasets, as presented in 

Table 7. The LiteDenseMoE achieves the highest 

classification accuracy in all datasets, such as 93.25% on 

MLRSNet, 92.56% on NWPU, and 96.54% on EuroSAT, 

respectively. The LiteDenseMoE is also a remarkably 

lightweight design with only 0.3M parameters and 1.27 MB 

model size. The other deep models, such as VGG16, VGG19, 

and deep ResNet101, are on a completely different scale in 

terms of memory and complexity. Also, these models 

achieved less accuracy than LiteDenseMoE using large-scale 

remote sensing datasets. In the MLRSNet dataset, ResNet101 

achieves an accuracy of 86.41% with 170 MB, while the 

LiteDenseMoE model achieves almost 7% higher accuracy 

with only 1.27 MB. The same pattern occurs for the NWPU 

and EuroSAT datasets. If we extend this comparison to 

relatively lightweight models like GoogLeNet, which has 6.8 

million parameters and is 23 MB in size, the model's accuracy 

is approximately 9% less than the proposed model. This 

performance is a tribute not only to the parameter efficiency of 

LiteDenseMoE but to the architectural creativity of 

LiteDenseMoE and its complete integration of a number of 

design principles, such as dense connectivity paired with a 

Mixture of Experts mechanism that effectively increases 

representational capacity without increasing computation. 
Table 6: Comparative analysis of proposed architecture with pre-

trained models 

Models Accuracy Parameters Model Size 

MLRSNET Dataset 

Alexnet 61.42 60 240 MB 

VGG16 72.14 138 528 MB 

VGG19 67.34 143.7 548 MB 

GoogleNet 84.47 6.8 23 MB 

ResNet50 85.25 25.6 102 MB 

ResNet101 86.41 44.5 170 MB 

Proposed Model 93.25 0.3 1.27 MB 

NWPU Dataset 

AlexNet 71.00 60 240 MB 

VGG16 74.94 138 528 MB 

VGG19 74.97 143.7 548 MB 

GoogLeNet 83.54 6.8 23 MB 

ResNet50 88.95 25.6 102 MB 

ResNet101 89.05 44.5 170 MB 

Proposed Model 92.56% 0.3 1.27 MB 

EUROSTAT Dataset 

AlexNet 80.00 60 240 MB 

VGG16 83.00 138 528 MB 

VGG19 83.59 143.7 548 MB 

GoogLeNet 87.54 6.8 23 MB 

ResNet50 88.95 25.6 102 MB 

ResNet101 90.00 44.5 170 MB 

Proposed Model 96.54% 0.3 1.27 MB 

C. Experiment 3 

In Figure 17, the stability of the proposed model is evaluated 

against the noise. The heatmap shows the effect of noise 

intensity on classification accuracy across the three datasets, 
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MLRSNet, NWPHU, and EuroSAT. There is an overall 

decrease in accuracy as the intensity of noise increased from 

0.1% to 2.0%. The overall downward trend in accuracy also 

indicates the sensitivity of the models to input noise. EuroSAT 

has the highest overall resilience across the datasets, with 

consistently high accuracy even at the higher noise levels 

(89% at 2.0%) and even higher accuracy of 94% at the lowest 

noise level. MLRSNet and NWPHU exhibited similar trends, 

with accuracy decreasing from 92% to 87% for MLRSNet and 

from 92% to 86% for NWPHU as the noise level increased. 

These results indicate that while there is some resilience to 

low levels of noise for all models, higher levels of noise result 

in more prominent degradations in performance. Therefore, 

the performance of the models is negatively and weakly 

correlated. The EuroSAT dataset is more resistant to noise 

than the other two datasets in all noise intervals. Additionally, 

these results reveal the importance of the proposed model's 

performance and its noise robustness in real-world 

applications. 

 

 
Figure 17: Heatmap to evaluate the model stability against the noisy 

data 

Experiment 4: A critical design decision in this architecture 

was determining the optimal number of experts. While the 

conventional wisdom suggests that an increase in the number 

of experts will result in improved performance, our ablation 

study reveals a different picture. We evaluate the performance 

of our model with 2, 3, 4, and 6 experts across all three 

datasets, and the results are shown in the Table. The table 

shows that the proposed model achieved the highest 

accuracies of 93.25%, 92.56%, and 96.54% on the MLRSNet, 

NWPU, and EuroSAT datasets, respectively, with only two 

experts. The number of parameters in this configuration is also 

the least (30M). However, as the number of experts increases 

from 2, the model's performance starts to diminish, along with 

an increase in computational complexity. A drop in accuracy 

of almost 2% and nearly double the computational overhead 

suggest that an optimal accuracy-efficiency trade-off is 

possible with only two expert blocks. The reason behind these 

results is the overspecialization of experts, where each expert 

becomes overly specialized in a small subset of the training 

data, thereby reducing their ability to generalize effectively. 

Additionally, with an increased number of experts, routing 

mechanisms must make fine-grained decisions, which 

increases decision complexity and leads to suboptimal routing, 

ultimately degrading overall performance. These results 

validate our decision to select just two results for this 

architecture.  

 

 

No. of 

Experts 

MLRSNet 

Accuracy 

% 

NWPU 

Accuracy 

% 

EuroSAT 

Accuracy 

% 

Parameters 

2 93.25 92.56 96.54 0.30M 

3 92.87 91.98 96.12 0.42M 

4 92.45 91.45 95.68 0.54M 

6 91.82 90.87 95.23 0.78M 

 

Experiment 5: This study validates our choice of channel-

spatial attention integrated in the architecture. Unlike natural 

images, RS images contain distinct spatial and spectral 

properties that need special attention. RS images, particularly 

those obtained from multispectral sensors, contain information 

across different wavelengths. Also in RGB representations, 

these channels encode essential details on land cover types. 

The channel attention enables the model to dynamically 

recalibrate channel-wise features, allowing it to learn specific 

spectral information for each scene type. On the other hand, 

Ariel scenes contain more spatially localized objects that are 

critical for classification. Spatial attention learns to focus on 

discriminative spatial regions while suppressing background 

information. The sequential integration of channel attention, 

followed by spatial attention, is based on the “what-then-

where” principle, where channel attention identifies the 

critical feature maps, and spatial attention determines where in 

the image these features are most relevant. To justify this 

choice, we compared the proposed model with alternative 

attention mechanisms on the MLRSNet dataset, as shown in 

the table. The table shows that the proposed channel-spatial 

attention combination (CBAM-style) achieves superior 

accuracy while maintaining the computational complexity. 

The SE-Net with channel attention only achieves 90.34% 

accuracy, while spatial attention achieves 89.08% accuracy, 

highlighting the need for complementary attention modules. 

Self-attention shows good performance in terms of accuracy, 

but it is more computationally expensive than the proposed 

module. Thus, this study confirms that channel-spatial 

attention is the most optimal choice for this architecture.   

 

Attention 

Mechanism 

Accuracy Precision Recall F1-score 

SE-Net 

(channel only) 

90.34% 89.94% 90.05% 88.90% 

Spatial only 89.08% 87.54% 89.98% 89.00% 

Self-Attention 91.45% 90.45% 89.78% 91.00% 

CBAM 

(proposed) 

93.25% 93.32 93.25 92.26 

 

VIII. CROSS-DATASET EVALUATION 

To evaluate the generalization ability of the proposed 

LiteDenseMoE beyond the same train-test data splits, we 

conducted a comprehensive cross-dataset evaluation where 
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models were trained on one dataset and tested on another. The 

table presents the results for all six possible combinations 

across our three benchmark datasets. The table shows that 

when the model was trained on MLRSNet and tested on 

NWPU, the accuracy drops from 92.56% (same-dataset 

performance) to 84.23%. A similar trend is observed in all the 

combinations. The cross-dataset performance varies based on 

domain gap differences.  

The performance drop observed on MLRSNet->EuroSAT is 

the lowest (7.09%), which is explained by MLRSNet’s diverse 

spatial resolution range (0.1m-10m), including training 

samples similar to EuroSAT’s 10m resolution. On the other 

hand, the most significant performance gap was observed in 

EuroSAT-MLRSNet (14.33%), which can be attributed to the 

lower spatial resolution (64x64 vs 256x256) and the limited 

class diversity of the EuroSAT dataset. When the model is 

trained on 10 classes and tested on 46 classes, it shows a 

greater drop than when it is trained on 46 classes and tested on 

10 classes. However, despite these performance gaps, the 

proposed model still outperforms baseline deep learning 

models, such as ResNet-50 and DenseNet-121. This strong 

cross-dataset generalization validates that the proposed model 

learns fundamental transferable characteristics of RS data 

rather than overfitting to dataset-specific artifacts.  

 

Train Dataset Test Dataset Accuracy F1-score 

MLRSNet NWPU 84.23% 83.67% 

MLRSNet EuroSAT 89.45% 89.12% 

NWPU MLRSNet 81.34% 80.89% 

NWPU EuroSAT 88.67% 88.34% 

EuroSAT MLRSNet 78.92% 78.45% 

EuroSAT NWPU 82.56% 82.12% 

 

IX. STATISTICAL SIGNIFICANCE ANALYSIS 

To ensure the statistical significance of the performance 

shown by LiteDenseMoE, we conducted a statistical analysis 

that is shown in table . We performed a 5-fold cross-validation 

on all three datasets, and for each fold, we trained the 

LiteDenseMoE from scratch using the same hyperparameters. 

Table shows the mean accuracies and standard deviations for 

all three datasets. Small std Dev of 0.43, 0.51 and 0.31 

represents the robustness and stability of model across each 

fold. The 95% confidence intervals further provide evidence 

of the model's strong performance. The narrow ranges 

showcased the reliable and robust behavior of model under 

different training/testing splits.   

 

Dataset Mean 

Accuracy 

Std Dev 95% CI 

MLRSNet 93.25% ±0.43% [92.82, 93.68] 

NWPU 92.56% ±0.51% [92.05, 93.07] 

EuroSAT 96.54% ±0.31% [96.23, 96.85] 

 

X. COMPARISON WITH SOTA MODELS 

 

A comprehensive comparison between the proposed model 

and SOTA models has been presented in Table 8. This table 

illustrates that the proposed model achieved the highest 

performance against the state-of-the-art methods. In NWPU 

dataset, the authors [36] employed pre-trained models with 

global optimal structural loss (GOSL) and they achieved 

90.30% highest accuracy. In [37], the authors designed a 

DBOW feature unsupervised learning method, and they 

obtained 82.10% accuracy. Authors in [38]and [39] 

implemented DELF+ VLAD and IBNR-65+DenseNet64 

models, and both studies achieved 85.70% and 91.70% 

accuracies, respectively. Similarly,  On EuroSAT and 

MLSRNet datasets, the authors of [36], [40], [41], [41], and 

[42] employed pre-trained models and they obtain 88.68, 

85.23, 87.52, 88.51, and 82.59% accuracies, respectively. In 

[43] and [44], the authors employed customized CNNs such as 

FMANet and AMEGRF-Net, but they gained 91.00% and 

91.51% of accuracy on these selected datasets. Our proposed 

model achieved improved accuracy of 92.56, 96.54, and 

93.25% on NWPU, EuroSAT, and MLSRNet datasets, 

respectively. 
Table 7: Comparative analysis of proposed architecture with SOTA 

models 

Architecture Accuracy 

NWPU Dataset 

Pretained models + GOSL [36] 90.30 

DBOW feature based [37] 82.10 

DELF + VLAD [38] 85.70 

IBNR-65 + Densenet-64 [39] 91.70 

Proposed 92.56 

EUROSAT Dataset 

Global Optimal structured loss [36] 88.68 

EfficientNet [40] 85.23 

MobileNetV2 [41] 87.52 

InceptionV1 [45] 88.51 

Proposed 96.54 

MLRSNet Dataset 

FMANet [43] 91.0 

AMEGRF-Net [44] 91.51 

MobileNetV3 + Channel Attention + Spatial 

pyramid pooling [42] 

82.59 

Proposed 93.25% 

 

XI. GRADCAM EXPLAINABLE AI (XAI) RESULTS 

 The Grad-CAM visualizations in Figure 18 demonstrate that 

the model achieves strong alignment between prediction and 

relevant image regions in most cases. Correct classifications, 

such as airfield, dense residential, forest, and wind turbine, 

show clear attention to distinctive features like aircraft, 

housing blocks, vegetation, and turbine structures, confirming 

the reliability of the network’s learned representations. 

However, some misclassifications reveal important 

limitations. The farm image classified as forest highlights the 

difficulty of separating large-scale vegetation patterns, while 

the flyover classified as game space indicates confusion 

caused by structurally complex layouts. Similarly, the beach 
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image misclassified as cloud reflects the challenge of low-

texture surfaces where discriminative cues are minimal. 

Overall, the results emphasize that while the model 

demonstrates high accuracy and interpretable feature 

utilization in many cases, it remains sensitive to texture 

similarity and structural overlap across certain categories. 

 

 

 
Figure 18: Explainable AI (XAI) GradCAM results

XII. CONCLUSION 

This paper presents a novel deep learning architecture named 

Lightweight Dense Mixture of Experts (LiteDenseMoE) for 

aerial and coastal regions classification using remote sensing 

images. The proposed model benefits from the depth-wise 

separable convolutional block, incorporating both channel 

attention and spatial attention modules. Moreover, a two-

expert MoE block functioning with an intelligent routing 

mechanism has been connected. Hence, the proposed model 

extracted the most important information of an image using 

the current mechanism. Hyperparameters of the proposed 

model during the training process are initialized through the 

Hyperband optimization algorithm, which improved the 

training efficiency and scalability. The model was 

systematically and rigorously evaluated using three publicly 

available benchmark datasets, such as MLRSNet, NWPU-

RESISC45, and EuroSAT, and obtained improved accuracies 

of 93.25, 92.56, and 96.54% respectively, with a compact 

model size of 0.3 million parameters.  

Comprehensive ablation studies demonstrated the impact of 

each component of the proposed model that contributes to the 

classification performance. The interpretability analysis 

highlighted the different expert behaviours, the confidence of 

the experts, and described the type of features for MoE 

representation. GradCAM visualization further interpreted 

model predictions. Even with promising results, there are still 

some limitations.  

• The model performance could be sensitive to noise in lower-

quality remote sensing data 

• The performance could vary in diverse geographies and 

sensor modalities, as currently these datasets do not have this 

challenge. 

• GradCAM-based interpretation shows exceptional 

classification abilities of the model; however, wrong 

predictions for a few images suggest there is room for 

improvement.  

• It is also noted that the reliance on two expert blocks could 

limit the scalability into more complex scenes, which require 

more specialization.  

Future work could involve extending the LiteDenseMoE 

framework to support multi-modal and multi-temporal 

datasets. Moreover, we will apply the scalability analysis to 

measure the computational performance. 
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