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Abstract— Land Remote sensing image classification is
crucial for understanding ongoing geographical and
environmental changes. It aids in land use and land cover
classification, crop and vegetation classification, change
detection, and classification of coastal and aerial regions.
Many advanced techniques were introduced based on
some substantial modifications in the models; however,
this resulted in a complex framework that is difficult to
adapt. In this work, we proposed a novel Lightweight
Dense Mixture of Experts (LiteDenseMoe) model for aerial
and coastal regions classification using remote sensing
images. The proposed model initially incorporates light,
dense blocks with lightweight dense layers, as well as
channel and spatial attention mechanisms. The resulting
model is further fused with an Mixture of Experts block
that extracted more relevant and essential features for the
accurate prediction of complex aerial scenes. In the
training process of the proposed model, a Hyperband
Optimization technique is employed for hyperparameter
initialization, rather than manual selection. After training
the proposed model, classification was performed, along
with output interpretation. The proposed LiteDenseMoe
architecture is evaluated on three datasets and achieved an
accuracy of 93.25% on MLRSNet, 92.56% on NWPU-
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RESISC45, and 96.54% on the EuroSAT dataset with only
0.3 million parameters. Expert allocation and their
confidence per class, Expert disagreement Network, and t-
SNE visualization are also observed to interpret the Moe
results. Detailed Ablation studies and comparative analysis
with pre-trained and SOTA models confirm the impact
and efficiency of the proposed architecture for aerial and
coastal regions classification.

Index Terms— Remote sensing;
learning; Hyperparameter tuning;
Model interpretations

Aerial scene; Deep
Mixture of Experts;

. INTRODUCTION

umerous  socioeconomic  and  environmental

applications, including urban and regional planning as

well as the management and conservation of natural
resources, depend on continuously updated land use and land
cover data. [1, 2]. Remote sensing (RS) is defined as the
science of obtaining information about the land and water
bodies of the Earth from the images acquired from a distance
using electromagnetic radiation emitted [3, 4]. It is beneficial
as it allows us to monitor and understand the complex
geological and environmental processes which cannot be
tracked otherwise [5]. The history of remote sensing dates
back to the early 1800s with the discovery of infrared
radiation to aerial photography using balloons and airplanes;
however, the term ‘“remote sensing” was first used in the
1960s as the term “aerial photography” no longer justified the
several forms of images collected using the invisible
electromagnetic spectrum [4]. Over time, several evolutions
have impacted the field of remote sensing, including satellite
remote sensing, digital image processing, hyperspectral
remote sensing, global remote sensing, and Lidars, among
others [3]. These modern advancements lead to more complex
and enriched remote sensing data, which can be used for more
precise classification and detection of features on the Earth's
surface [6].
Despite the growing capabilities of remote sensing, the
analysis and classification of remote sensing data are still
challenging tasks due to their high dimensionality and high
spectral similarity [7, 8]. Many RS classes share overlapping
visual characteristics which creates a confusion between
classes like parking lots and bare lands, urban residential and
industrial zones etc. Also, there is high intra-clas variability in
RS data as a same land cover class shows visual variations
ubder different environmental and seasonal changes. Apart
from this, multi-scale feature requirements and limited labeled
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data further increases the challenges, making it difficult for
model to leann consistent class representations.

Initially, traditional machine learning (ML) algorithms such
as Support Vector Machines (SVM) [9], decision trees (DT)
[10], Random Forest (RF) [11] and Artificial Neural Networks
(ANNs) [12] were wused for remotely sensed image
classification. However, these algorithms require manual
feature extraction, due to which the model’s performance
becomes highly dependent on extracted features [13].
Moreover, their inability to deal with high-dimensional data
shifts the researchers' interest towards deep learning [14].
Unlike Machine learning, deep learning algorithms support
automatic feature extraction and also show good performance
on complex hyperspectral remote sensing data [15-17]. Many
techniques have been introduced in the literature for the
classification and detection of land use and land cover from
remote sensing and hyperspectral images [18-20].

K. Ali et al. [21] used a convolutional neural network (CNN)
for the classification of land cover areas in semi-arid regions
through Sentinel-2 satellite images. They trained the model on
different areas and tested it on unseen regions to check
whether the model can classify areas in similar environments.
Also, they compared two types of Sentinel-2 satellite images,
4-band and 10-band, to check their ability to classify difficult
land regions. Experimental findings reveal that a CNN with
the proposed architecture trained on 4-band images
outperformed. However, the architecture of the model can be
improved as it still struggles to differentiate between highly
similar spectral regions. In [22], the authors evaluated
different deep learning models on benchmark datasets and
compared their performance for LiDAR point cloud
classification. They evaluated two types of models: projection-
based (U-Net, ResNet, VGG, and DeeplLab) and point-based
(DGCNN, ConvPoint, PointNet, PointNet++) on four
benchmarking datasets (Toronto3D, S3DIS, ModelNet40,
ISPRS Vaihingen). Experimental results demonstrate that
DCGNN and ConvPoint surpass other models by achieving
the highest accuracy across all the datasets. However, the use
of both models is limited as DCGNN is computationally heavy
and ConvPoint is scale-agnostic. In [23], the authors compared
three deep learning models for remotely sensed image
classification. The convolutional neural network is the first
model of this work that is built from scratch; however, the
other models are pre-trained, such as EfficientNetB7, and fine-
tuned EfficientNetB7. All these models are evaluated on the
UCM Land use dataset, which comprises 21 classes, each
containing 100 images. Results show that fine-tuned
EfficientNetB7 achieved the highest accuracy of 88%
followed by pre-trained EfficientNetB7 and CNN-FE.
However, the dataset used in this study is relatively small,
which limits the model's performance in terms of
generalizability. M. Aljebreen et al. [24] presented a novel
technique for land use land cover classification which employs
River flow dynamic algorithm with deep learning ( LULCC-
RFDADL). It incorporates a pretrained CNN model, Dense-
EfficientNet, for feature extraction; however, it also utilizes a
River Flow Dynamic Algorithm for hyperparameter selection
and a Multi-scale Convolutional Autoencoder (MSCAE) for
classification. Moreover, they used the Seeker Optimization
Algorithm for parameter optimization. Experiments are

conducted on the Eurostat dataset, which contains 10 classes,
each with 500 images. Experimental results show that the
proposed model outperforms other deep learning models by
achieving an overall accuracy of 98.12% and an average
precision, recall, and F1-score of 90.7% across all the classes.
The drawback of this model is its computational expense, and
performance can vary with variations in data quality.

M. Fayas et al. [25] evaluated different deep learning models
for accurate and efficient land cover classification using high-
resolution remote sensing imagery. The study focuses on three
DL models, namely Inception-v3, ResNet-50, and DenseNet-
121. They used these models based on a fine-tuning process
where they froze the top layers and added custom layers. All
the models are evaluated on the UC-Merced_LandUse dataset,
which comprises 18,000 images across 18 classes, and are also
compared with State-Of-The-Art models. Experimental
findings reveal that Inception-v3 surpassed all the models by
obtaining an accuracy, precision, recall, and F1-score of 92%,
93%, 92% and 92%, respectively. F. S. Alsubaei et al. [26]
introduced a block scrambling-based encryption technique
with deep learning for remote sensing image classification.
The study involves the encryption of RS images for
preservation of transmission, storage, and classification of
these encrypted images using deep learning techniques.
Encryption is performed by dividing the image into non-
overlapping blocks, which then undergo random shuffling,
flipping, and rotations to make it compatible with JPEG
standards. These encrypted images are then passed through
DenseNet for feature extraction, whereas Artificial Gorilla
Troops Optimizer (AGTO) is employed for hyperparameter
optimization. The proposed model is evaluated on the UC
Merced land use dataset and shows a classification precision
rate of 98%. In [27], the authors presented a novel deep
learning model, ResMoCNN, for the classification of
Hyperspectral images by injecting morphological features into
3DCNN features via residual connections. The model
incorporates a 3DCNN core for hierarchical feature extraction
and a Spatial-Spectral Morphology box (SSMB) for structural
and environmental feature extraction. These morphological
features are extracted through four morphological operators,
namely erosion, perimeter, dilation, and top-hat. These
extracted features are then injected into multiple 3DCNN
layers via residual connection. Before feeding it to the model,
HSI data is preprocessed by PCA for dimensionality
reduction. The model is trained and tested on four datasets and
shows that the proposed model outperforms traditional ML
and DL models by achieving an overall classification accuracy
of 97.81% on the Indian Pines dataset, 99.33% on the Pavia
University dataset, 98.67% on the Houston University dataset,
and 99.71% on the Salinas dataset. Albarakati et al. [28]
presented a novel deep learning approach based on
information fusion of deep convolutional neural networks for
remote sensing image classification. In this study, they
implemented a Super Resolution (SR) technique to improve
the contrast of images. After that, the enhanced images are
passed to two separate models such as ResSANS6 and RS-
IRSAN. The extracted features from both architectures are
then fused by Mutual Information-Based Serial Fusion
(MIBSF) and standardized by median normalization. An
Arithmetic Optimization Algorithm (AOA) is employed to
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select optimal features while a Shallow Wide Neural Network
(SWNN) is used as a classifier. Experiments are conducted on
three datasets, and results show that the proposed technique
achieved classification accuracy of 95.7% on RSI-CB128,
97.5% on WHU-RS19, and 92.0% on NWPU_RESISC45
dataset, respectively. Some studies focus on deep learning and
design architectures for the classification of satellite images,
such as SemHi [29], which is based on the SwinUNETR,
custom CNN, pre-trained dense, and ResNet architectures [30,
31].

Most of the techniques proposed so far are based on either
pre-trained deep learning models or custom CNN models.
These techniques have some common limitations such as
overfitting, high computational cost, limited generalization,
and data dependency. Also, there is minimal research on the
classification of aerial and coastal regions through RS data. In
this study, we proposed a novel deep learning-based Mixture
of Experts model named Lightweight Dense Mixture of
Experts (LiteDenseMoe) for the accurate and efficient
classification of aerial and coastal regions through remote-
sensed imagery. The proposed model addresses the challenges
in RS data through it novel architecture. The Mixture of
Experts mechanism integrated in the architecture enables the
model to learn specialized representations for different classes,
thus overcoming intra-class variability. Also, the attention
mechanisms highlight distinct spatial and spectral features,
clearing the inter-class confusion. Multi-scale features are

captured by dense connections, and a lightweight architecture
MLRSNet Dataset

tennis court temace

Il. DATASET DESCRIPTION

In this work, we utilized three datasets for the evaluation of
the proposed architecture such as MLRSNet dataset [32],
NWPU-RESISC45 [33], and Coastal areas combined dataset.

MLRSNet dataset: The MLRSNet dataset consists of 109161
high-resolution images divided into 46 categories, and the
number of images in each category varies from 1500 to 3000.

prevents overfitting on limited data. These contributions
collectively lead to more accurate and efficient classification.
Our main contributions and the significant challenges that are
addressed by these contributions are as follows:

o Efficient Light-weight Architecture: We proposed a
lightweight dense block modified with a depth-wise
separable convolutional layer to minimize the
computational cost while preserving the high
representational ability.

e Customized MoE: We designed a novel MoE model
that consists of multiple specialized expert blocks and
a routing mechanism that dynamically assigns the
features to the most appropriate expert.

e Manual hyperparameter optimization is a time-
consuming task, which can be replaced by an
automated optimization technique such as Hyperband
Optimization, which is employed in this model.

e Interpretability and Analysis: A comprehensive series
of interpretability studies is performed, including
some extensive expert engineer allocation analysis,
confidence visualization, t-SNE feature space
visualizations and GradCAM visualization to further
explain the behavior and specialization of the
proposed model.

NWPU-RESISC45 Dataset

o
AirField

Parking Space River Sparse Residential ~ Storage Cisterns

EuroSAT Dataset

N

3

Herbaceous Vegetation Highway Industrial
River

Seahke

Each image has a fixed pixel size of 256x256 and pixel
resolution ranging from 10m to 0.1m. Each image is tagged
using pre-defined 60 class labels, and the number of labels for
each image varies from 1 to 13. Sample images of the
MLRSNet dataset are shown in Figure 2.

Annual Crop Forest

Pasture Permanent Crop

Figure 1: Sample images of the selected remote sensing datasets

Residential

NWPU-RESISC45 dataset: The NWPU-RESISC45 dataset
is composed of 10500 images separated into 12 classes such as
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Airfield, Harbor, Beach, Dense residential, Farm, Overpass,
Forest, Game space, Parking space, River, Sparse residential
and Storage tanks. Each image has a pixel size of 256x256%3
with dpi of 96x96. Sample Images of NWPU-RESISC45
dataset are shown in the Figure 3.

Coastal Areas Combined Dataset: We acquired coastal-
related classes from several publicly available datasets such as
EuroSAT, MLSRNet, and SIRI-WHU to classify coastal
areas. We selected 13 classes from these datasets, as shown in
Figure 1. The dataset contains 13 classes: Anchorage, beach,
harbor, harbor & port, island, lake, landslide, red sea fish,
river, snow berg, swimming pool, water, and wetland. The
size of each sample is 256x256x3, and the nature of the
samples is RGB. The total number of samples in the collected
dataset is 9206.

I1l. PROPOSED LITEDENSEMOE

In this section, we presented our proposed Lightweight Dense
Mixture of Experts (LiteDenseMoe) model for aerial and
coastal regions classification from remote sensing images.
Convolutional Neural Network (CNN) is one of the most
fundamental architectures of deep learning, which was
initially introduced as LeNet by Yann LeCun [34]. It can

capture hierarchical features at multiple receptive fields due to
its convolutional, dense, and pooling layers. Initially proposed,
CNN has some limitations such as the vanishing gradient
problem and degradation with deeper architectures, which
were later improved by its different variants such as
DenseNet, ResNet, and Inception. Despite their improved
performance, the inability of CNNs to recognize essential
features leads to the introduction of attention modules (i.e.,
spatial and channel attention). These modules highlight the
important channels and features of the image and suppress the
less important ones. However, these attention-driven models
were still unable to deal with diverse input data, which laid the
foundation of Mixture of Experts (MoE). MoE is composed of
different expert blocks and routing mechanisms that can train
multiple expert blocks differently to handle diverse input
images. In this work, considering the individual advantages of
various deep learning models, we proposed a novel network,
LiteDenseMoe, which incorporates DenseNet, channel and
spatial attention blocks, and a Mixture of Experts for the
classification of aerial and coastal images. A complete
architecture of the proposed model is shown in Figure 2. The
detailed description of this model is given below in
subsections.
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shown in Figure 3. In dense block, depth wise separable

.ﬁ convolutional layer is employed instead of traditional

e com = & = convolutional layer for parameter efficiency. In a dense layer

[ pemcBlki BNL Jayer followed by RelU is attached. After that a1 x
1 convolution is connected that followed by a BNL and ReLU
activation layers. Later on, the output of this layer is passing to
depth wise 3 x 3 separable convolutional layer. After that, a
pointwise convolutional layer, BNL layer, and a RelLU

2) First Dense Block
The first dense block is employed with four dense layers, as

x| cony

it B 9 s ” : activation.is attached. Mathematically, this block is presented
l o as follows: @ "
y = Ble(W,'" «Z + b;”) 2
y' = Convpy (a(B)) ©)
Where Convpy,, denotes the depth wise separable
R ooy convolutional layer. The final output of a dense layer is then
‘Transition Layer concatenated with outputs of previous layer and pass on to the
next layer, defined as:
YV, =y, V-1, ... Yol 4)
®—
1x1 conv 1x1 conv I 3x3 o
I Channel Attention Spatial

L1 L2 L3 L4

| Dense Block 1

Figure 3: Proposed Dense block with four layers

3) Transition Layers Block 1

After first dense block, a transition block has been attached.

Figure 2: Proposed LiteDenseMoe for remote sensing image The transition block is consist of BNL layer, convolutional
classification layer, and ReLU activation. A 1 x 1 convolutional layer is

added to reduce number of channels; however, an average

pooling layer is added in the last to reduce spatial dimensions

A Detailed Architecture of the previous output, as shown in Figure 4. Mathematically,
this process is formulated as:
The detailed layer wi i il is gi is 7= 4,7« (a(Bm)) + ") ®)
yer wise architecture detail is given under this 1 p\" 1
subsection based on the mathematical formulation and visual ~ Where A, denoted the average pooling layer and T; presented
representations of the inside modules of the proposed model. the first transition layers block.

1) Initial Layers:
The model starts with an input layer that accepts an image of

size 224 x 224 x 3. The input image pixels are pass it to
a7 x 7 convolutional layer with stride of 2 x 2 and padding
of 3 x 3 for initial feature extraction. The extracted features of
this layer are then followed by a batch normalization layer
(BNL) B that normalize the inputs and RelLU activation
function o, and maxpooling layer (MPL) M, with pool size -

of 3 x 3 is employed. The initial layers are mathematically
presented as: Transition Layer
Z = My(o(BW; * X + b)) @
Where X denoted the input, W; represents the convolutional
weights, b; is the bias and = presented the convolutional
operation.

Figure 4: Proposed first transition layers block
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4) Second Dense Block

After the first transition layer block, a second dense block has
been connected. The second dense block is composed of 6
dense layers. At this time, the number of dense increases to
capture representations that are more complex, as visually
shown in Figure 5. All the layers in this block are connected to
the next, respectively.

[ Dense Block 2 ]

Figure 5: Proposed dense block with six layers

5) Transition Layers Block 2

Another transition layer is followed by this dense block to
prevent the model from high complexity. The second
transition layers block fallows the same phenomena as
previously defined in Figure 4.

6) Third Dense Block

After second transition layers block, third dense block has
been added with 8 dense layers. This dense block layers also
consist of 1 x 1 convolution, BNL, ReLU activation, depth
wise 3 x 3 separable convolutional layer, pointwise
convolutional layer with BNL layer, and ReLU activation, as
shown in Figure 6.

l Dense Block 3 I

Figure 6: Proposed Dense block with eight layers

7) Channel and Spatial Attention Module
In the next phase, channel and spatial attention modules are
employed. Channel attention module consist of an average
pooling layer and pass it to 1 x 1 convolutional layer to
reduce number of channels by a factor of 16 and learn channel
wise relationships. Another 1 x 1 convolutional layer is
employed to restore the original dimensions after feature
processing. A ReLU activation function is applied between
these two convolutional layers, and sigmoid activation
function is employed after the second convolutional layer to
scale the channel importance. This weight matrix is then
multiplied with original tensor to emphasize the important
channels. Mathematically, this process is defined as follows:
(ca) (ca)
Aen = » (WL« (W 5 4,(v3))) (6)
Yo = 5QAc, (7
Where A.; denoted the channel attention weight, Y5 represent
output of third dense block, i denotes the sigmoid activation
function, Y, is the output of channel attention mechanism,
and @ represents element wise multiplication.
The output of the channel attention module is passed to the
spatial attention mechanism to enhance the critical spatial
regions. First of all, it aggregates channel-wise information to

a spatial map and then applies a 3x3 convolution layer on it to
learn spatial relationships. A sigmoid activation function is
used to scale the weights, which are ultimately multiplied with
the original input tensor to enhance important spatial regions.
Mathematically, this process is presented as follows:

A= p (WS 4,()) ®
Yo = Ag*Yen ©)
Where A, presented the spatial attention weights and Y,
denoted the spatially emphasized feature map. The channel
and spatial attention module is shown in Figure 7. After this
module, BNL, ReLU, average pooling layer is employed and
then passed to the flatten layer.

G

1x1 conv 3x3 conv

1x] conv

Channel Attention Spatial Attention

Figure 7: Proposed Channel Attention Mechanism

8) MOoE Experts and Routing Mechanism

In this next phase, two MoOE experts are connected with the
output of the flattened layer. Each expert block is composed of
two linear layers, a dropout layer, and a ReLU activation
function. First, the linear layer projects the features into a
higher-dimensional feature space to learn non-linear
relationships. Then, a dropout layer with a 0.5 dropout factor
is applied, which randomly discards 50% of neurons to
prevent the model from overfitting. Another linear layer is
utilized to map the hidden representations to the output nodes.
An expert block is mathematically defined as:

E= L, (6,0.5 (U(Ll(YF)))) (10)
Wher Y denoted the output of flatten layer, £, and £, are
linear layers, and & denotes the dropout layer. After experts, a
routing mechanism is employed to assign the weights. The
routing mechanism is composed of a linear layer followed by
a ReLU activation layer. Another linear layer is added after
that and is followed by a SoftMax. During learning, features
are passed through both expert blocks and the routing
mechanism simultaneously. Initially, router assigns random
but different weights to both expert blocks. These weights are
refined during learning, which ultimately results in two expert
blocks with other properties. Only the router is aware of expert
properties, so when a test image comes, the router analyzes it
and then assigns weights to both experts according to their
capabilities and relevant features. The outcome of each expert
block is multiplied by its corresponding weight, which is then
added to generate the final output. The experts and the routing
mechanism are visually presented in Figure 8. It can be
represented as:

Yeina = ((E1 X Ry) + (E; X Rz)) (11)
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]

Figure 8: Proposed Mixture of Expert block for aerial scene and
coastal regions classification

9) Final Output and Auxiliary Classifier

The final output is generated by combining the outputs of both
expert blocks, which are later passed through SoftMax
activation. The softmax activation converts the raw logits into
probabilities, and the class with the highest probability will be
output as the final prediction. However, apart from final
classification, an auxiliary classifier is also introduced after
the first dense block. This auxiliary classifier provides
intermediate predictions, helping the model learn at its initial
stages. The auxiliary classifier is composed of a 1x1
convolutional layer, a BNL layer, a ReLU layer, an average-
pooling layer, a flatten layer, and a linear layer for
classification output. An auxiliary classifier is shown in Figure
9. The categorical cross-entropy is utilized as a loss function,
and the proposed model has only 0.3 million trainable
parameters. Both final and auxiliary losses are added to the
total loss. Mathematically, it can be defined as:

Ltotal = ll X Lmain + AZ X Laux + 13 X Lrouter

(12)

Where L,,q.in is te final classification loss, L, is auxiliary
classification loss and L,,y:e IS the load balancing loss to
ensure balanced expert utilization. 1, A, and 15 are respective
weights assigned to these losses and their values are set to 0.6,
0.3 and 0.1 respectively.

[ Auxilliary Classifier ]

Figure 9: Proposed Auxiliary classifier for aerial scene classification

IV. HYPERPARAMETER SELECTION AND MODEL TRAINING

After designing the model, the selected datasets are divided
into training and a testing set. 70% of the images from each
dataset are utilized for training, and the remaining 30% of the
data is employed for testing. The data is divided into a random
process. Hyperband Optimization is used to select
hyperparameters dynamically, rather than through manual
selection.

A. Hyperband Optimization

Hyperparameter selection plays a vital role in model
performance. Therefore, to select the most optimal
hyperparameters, we applied the Hyperband Optimization

technique [35], which finds the best hyperparameters while
using limited resources. This technique starts by selecting the
minimum budget per bracket (number of epochs) R and
reduction factor n. This minimum budget and reduction factor
is used to calculate total number of brackets and
configurations per bracket. It then samples these numbers of
configurations and divides the budget across them equally.
During the first bracket, all configurations are trained using
the limited budget, and then the one that performs well
advances to the next bracket. After each bracket, the number
of configurations is reduced by the reduction factor.
Therefore, if initial configurations were 18 and the reduction
factor is 3, only the top 6 performing configurations will go to
the next round. In the next bracket, the budget will be divided
across the remaining configurations so that each configuration
will receive a larger budget for training. Again, the top-
performing configurations will go to the next round. This
process will continue until only one configuration is left. This
configuration will be trained using the entire budget, and the
selected hyperparameters will be used for the model’s training.
In this way, this technique selects the most optimal
hyperparameters at a lower computational cost. Total number
of brackets, configurations per bracket, and budget per
configuration are calculated as follows:

Smax = lOgn (R) (12)
ne T (13)
B= % (14)

In this study, minimum budget was selected 30 and reduction
factor was set to 3. The hyperparameters range and the best
configuration selected by the optimization technique are
shown in the Table 1.

Table 1: Hyperparameter range and selected best configuration

Hyperparameter Range Best Configuration
Epochs 30-100 50
Batch size 16, 32, 64,128 128
Learning rate 0.0001 -0.01 0.001
Optimizer Adam, SGD Adam

B. Training and Testing Process

After the model design and hyperparameter selection, the next
step is to train the model on the selected remote sensing
datasets. The training curves are shown in Figure 10. In this
figure, the training and testing plots for all datasets are
visualized. The first part of this figure shows the curves for the
MLRSNET dataset, indicating a stable and prosperous
learning process. In the loss plot, the training and testing loss
curves decline smoothly across the 50 epochs, with the testing
loss declining smoothly and steadily approaching the training
loss, which suggests good generalization. Both training and
testing accuracy improve smoothly, as shown in the accuracy
plot, with testing accuracy reaching over 90% by the end of
epoch 50.
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In the second part of Figure 10, the training and testing plots
of the EuroSAT dataset have been illustrated. The training loss
demonstrates a consistent, steady decline, while the testing
loss exhibits significant fluctuations, particularly in the earlier
epochs, indicating that it is sensitive to the dataset. As training
continues, the training and testing loss converge and stabilize
at a much lower level. The accuracy plot also reflects
fluctuations at the earlier stages of training via testing
accuracy. Still, by epoch 20, it has stabilized and improved,
with its trajectory matching that of the training accuracy, with
testing accuracy slightly below the training accuracy, which
rose over 95%.

In the third part of Figure 10, the training and testing plots for
the NWPU dataset have been added. Both training and testing

8

loss exhibit a clear downward trend; however, the testing loss
has more noise than the training loss. This performance
indicates that the training loss exhibits greater stability
compared to the testing graph. Arguments can be made that
although the fluctuations in testing loss are less extreme than
the previous dataset, they suggest some variance in overall
model performance across validation batches. The accuracy
plot produces the same results, where both training and testing
accuracy exhibit an overall steady increase over the epochs;
however, testing accuracy does not reach the same level of
training accuracy. The testing accuracy for this dataset is
above 85%, whereas the training curve reaches 90%.
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Figure 10: Training and validations plot against different datasets of this work using proposed model
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V. EXPERIMENTAL SETUP

In this section, the experimental setup has been discussed. The
hyperparameters, such as mini-batch size, learning rate,
optimizer, and epochs, are dynamically selected using the
hyperband optimization. The static hyperparameters are
learning decay is 0.2, and min LR is 0.00001. The
performance of the proposed model is evaluated using
traditional metrics such as accuracy, precision, recall, F1-
score, and confusion matrix. To interpret the proposed model
decisions, we visualize the expert allocation for all the classes
and the confidence of the expert in their predictions.
Disagreement between the expert predictions is analyzed to
understand the learning behavior of the proposed model.
Lastly, T-SNE visualization of the feature space is performed
to visualize the classification abilities of the proposed model.
All experiments were conducted using Python 3.10 and the
PyTorch library on a Desktop Computer Equipped with
128GB RAM, an NVidia 20 GB RTX A4500 graphics card,
and a 512 GB SSD Drive.

A. Results on MLRSNet dataset

The classification results achieved using the proposed
LiteDenseMoE model on the MLRSNet dataset have been
presented in Table 2. In this table, the proposed model
achieved an overall classification accuracy of 93.25% which
demonstrates the capacity of the architecture to handle
complex aerial imagery. The complex aerial imagery contains
both high intra-class variability and inter-class similarity.
After closely inspecting the confusion matrix as shown in
Figure 11, it is evident that the LiteDenseMoE has high
performance for several visually complex and fine-grained
classes, including swimming_pool, where the Flscore is
0.9941, shipping_yard (0.9906), and vegetable greenhouse
(0.9759), respectively. The high scores in these classes further
reiterate the model's demonstrated robustness at distinguishing
detailed structural patterns, which holds importance in remote
sensing tasks. Similarly, classes with strong visual features,
such as airplane, cloud, and island, also performed well in
terms of F1-score, exceeding 0.96.

On the other hand, some categories showed relatively lower
performance, such as railway station, Park, and overpass.
These classes indicate difficulty in differentiating due to
similar patterns. The misclassifications related to these classes
can be explained by shared features with neighboring classes,
such as railway, and in cases where the adjacent classes may
have more relevance to the context spatially. The precision
and recall across most classes also indicate that the
LiteDenseMoE model has a good balance of false positives
and false negatives. This directional balance is significant for
remote sensing applications, especially as a class imbalance.
This class imbalance shows subtle differences between
classes, particularly for rare or confusing class types.
Moreover, it can lead to a detection bias that many remote
sensing models exhibit. The ability of the model to sustain
high recall for rare or confusing classes, such as snowberg
(recall 0.9717) and tennis_court (recall 0.9533), reaffirms the
adaptiveness of the proposed architecture.

Table 2: Classification report of proposed architecture using

MLRSNet dataset
Class Label Precision | Recall | F1- Support
Score
airplane 0.9706 | 0.9594 | 0.9650 517
airport 0.9131 | 0.8920 | 0.9024 648
bareland 0.9303 | 0.9078 | 0.9189 412
Baseball-diamond 0.9850 | 0.9641 | 0.9744 613
Basketball-court 0.9302 | 0.8822 | 0.9055 891
beach 0.9530 | 0.9695 | 0.9612 753
bridge 0.9120 | 0.8930 | 0.9024 766
chaparral 0.9633 | 0.9658 | 0.9646 761
cloud 0.9724 | 0.9760 | 0.9742 541
Commercial-area 0.8897 | 0.9342 | 0.9114 760
Dense-residential- | 0.9577 | 0.9879 | 0.9726 825
area
Desert 0.9706 | 0.9693 | 0.9699 749
Eroded-farmland 0.8886 | 0.9120 | 0.9001 761
farmland 0.9519 | 0.9648 | 0.9583 739
Forest 0.9559 | 0.9180 | 0.9366 732
Freeway 0.9338 | 0.9531 | 0.9433 725
Golf-course 0.9471 | 0.9585 | 0.9528 747
Ground-track- 0.9207 | 0.9232 | 0.9219 742
field
Harbor-port 0.9779 | 0.9580 | 0.9679 786
Industrial-area 0.9418 | 0.9239 | 0.9328 631
intersection 0.9479 | 0.9090 | 0.9280 780
island 0.9764 | 0.9713 | 0.9738 766
lake 0.9842 | 0.9120 | 0.9467 750
meadow 0.9289 | 0.9218 | 0.9254 780
Mobile-home- 0.9666 | 0.9693 | 0.9679 716
park
Mountain 0.8960 | 0.8716 | 0.8836 771
Overpass 0.8682 | 0.8487 | 0.8584 714
Park 0.8126 | 0.9140 | 0.8603 465
Parking-lot 0.9763 | 0.9723 | 0.9743 721
Parkway 0.9266 | 0.9064 | 0.9164 780
Railway 0.8400 | 0.8422 | 0.8411 773
Railway-station 0.7628 | 0.7548 | 0.7588 673
River 0.9418 | 0.9051 | 0.9231 769
roundabout 0.8818 | 0.9040 | 0.8928 594
Shipping-yard 0.9946 | 0.9867 | 0.9906 751
Snowberg 0.9140 | 0.9717 | 0.9420 777
Sparse- 0.9719 | 0.9488 | 0.9602 547
residential-area
Stadium 0.9069 | 0.9019 | 0.9044 724
Storage-tank 0.9723 | 0.9409 | 0.9563 745
Swimming-pool 0.9949 | 0.9933 | 0.9941 595
Tennis-court 0.8952 | 0.9533 | 0.9234 771
Terrace 0.9327 | 0.9537 | 0.9431 712
Transmission- 0.9508 | 0.9716 | 0.9611 775
tower
Vegetable- 0.9681 | 0.9838 | 0.9759 803
greenhouse
Wetland 0.8493 | 0.9043 | 0.8759 773
Wind-turbine 0.9871 | 0.9776 | 0.9823 625
Accuracy 0.9325 32749
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o s Residential
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Storage Cisterns 0.9594 | 0.9043 | 0.9310 209
Accuracy 0.9256 3151
Macro Avg 0.9211 | 0.9171 | 0.9188 3151
Weighted Avg 0.9164 | 0.9156 | 0.9157 3151

Predicted

Figure 11: Confusion matrix of proposed architecture for MLRSNet
dataset

B. Results on NWPU-RESISC45 Dataset

The classification results of the proposed LiteDenseMoE
model on the NWPU-RESISC45 dataset have been presented
in Table 3. The proposed model achieved an overall accuracy
of 92.56%, as shown in this table. The macro average F1-
score is 91.88% and the weighted average was 91.57%,
respectively, which indicates that LiteDenseMoE has strong
classification performance. From the confusion matrix in
Figure 12, it is clear that LiteDenseMoE performs
exceptionally well on classes that are visually distinct from
one another, such as Forest (F1-score: 0.9746), Parking Space
(0.9515), and Dense Residential (0.9548), where the precision
and recall for several of these classes were each above 95%.
Based on these values, it is noted that the proposed
LiteDenseMoE framework effectively learns fine-grained
relevant details of scenes, as well as differentiable spatial
patterns. Classes such as Anchorage, Beach, and Farm also
performed well, with F1-scores greater than 0.93 and a close
to 1.0 recall value. However, some classes with lower
performances, such as River (F1-score: 0.8109) and Sparse
Residential (0.9104), exhibited higher misclassification rates
at their respective accuracies, likely due to their high visual
similarities with other natural or urban-based classes.

Table 3: Classification report of proposed architecture for NWPU
dataset

Class Precision | Recall | F1- Support
Score

Airfield 0.8773 | 0.8853 | 0.8813 436

Anchorage 0.9352 | 0.9484 | 0.9417 213

Beach 0.9378 | 0.9378 | 0.9378 209

Dense 0.9596 | 0.9500 | 0.9548 200
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Figure 12: Confusion matrix of proposed architecture for NWPU
dataset

C. Results on EuroSAT Dataset

In Table 4, the classification results of the proposed
LiteDenseMoE model on the EuroSAT dataset have been
presented. From this table, it is observed that the overall
accuracy achieved by the model is 96.54% and macro and
weighted F1-scores are 96.49% and 96.54%, respectively. For
the detailed observation, the confusion matrix is shown in
Figure 13. This figure indicates that the LiteDenseMoE
performs exceptionally well in components such as the
Residential class, achieving an F1-Score value of 0.9917, Sea
Lake is 0.9929, and the Forest class is 0.9885, respectively.
These classes all present sharp visual clarity and
distinguishable texture patterns present in remote sensing
imagery. For the more visually ambiguous classes, such as
Herbaceous Vegetation (F1-score: 0.9461) and Annual Crop
(0.9478), the model also provides a strong classification
performance. There is a minor confusion between the Annual
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Crop and Herbaceous Vegetation classes. Confusion between
those specific classes is widespread due to their seasonal and
spectral aspects. However, the recall and precision of
Herbaceous Vegetation are close in numerical outcomes,
representing acceptable output values. Moreover, the model
obtains strong recall across all classes, limiting the amount of
false negatives, indicating class-specific instances are far less
likely to be missed entirely. This recall rate is essential for use
case usability when considering real-world remote sensing
problems, such as monitoring agricultural land or urban
planning.

Table 4: Classification report of proposed LiteDenseMoE
architecture for EuroSAT dataset

Class Precision | Recall | F1- Support
Score

Annual Crop 0.9667 | 0.9296 | 0.9478 938
Forest 0.9885 | 0.9885 | 0.9885 873
Herbaceous 0.9399 | 0.9524 | 0.9461 903
Vegetation

Highway 0.9599 | 0.9624 | 0.9612 772
Industrial 0.9728 | 0.9795 | 0.9761 730
Pasture 0.9509 | 0.9556 | 0.9532 608
Permanent Crop 0.9239 | 0.9492 | 0.9363 767
Residential 0.9912 | 0.9923 | 0.9917 904
River 0.9612 | 0.9485 | 0.9548 757
Sea Lake 0.9918 | 0.9941 | 0.9929 848
Accuracy 0.9654 8100
Macro Avg 0.9647 | 0.9652 | 0.9649 8100
Weighted Avg 0.9656 | 0.9654 | 0.9654 8100
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Figure 13: Confusion matrix of proposed LiteDenseMoE model using
EuroSAT dataset

VI. MODEL INTERPRETATION

A. Study 1

This section presents the allocation of experts for each class,
which means which expert block is more suitable to handle the
respective class. In Figure 14, the blue color represents Expert
1, while the orange color represents Expert 2. Each bar
represents a respective class, and the majority color in that bar
shows the preferred expert for that class. In the EuroSAT
dataset, Expert 1 is selected for the Sea-lake, Pasture, and
Forest classes, indicating that this expert is particularly
efficient at extracting these types of features. For all the other
classes, Expert 2 is the major choice. In the NWPU dataset,
Expert 1 is allocated to 4 out of 12 classes, and Expert 2 is
selected for 6 out of 12 classes. The remaining two classes
demonstrate a 50-50 preference for both experts. For the
MLRSNet dataset, Expert 1 is preferred for almost 14 classes
out of 46. For all the other classes, Expert 2 is the primary
choice. Overall, it is observed that Expert 2 is primarily
selected for most classes, while Expert 1 is preferred for only
a few classes.

B. Study 2

This section shows each expert's confidence level for the
respective class. In Figure 15, the color chart represents the
intensity of confidence level for each expert, where blue color
shows the highest confidence level and light-yellow color
shows the lowest confidence level. The right column
represents Expert 2 while the left column represents Expert 1
in each plot. For the MLRSNet dataset, most instances in the
right column display different shades of blue, indicating that
Expert 2 is confident in its predictions for the respective
classes. Only a few cases show a yellow color, which
represents low confidence for those classes. In the left column,
the primary color is light yellow, indicating that Expert 1 is
not very confident in its prediction. In the NWPU dataset, the
trade-off between blue and yellow colors is almost the same
for both columns, indicating that Expert 1 is confident in its
predictions for 50% of instances. At the same time, Expert 2 is
confident for the remaining half. In the EuroSAT dataset,
Expert 2 shows higher confidence for 8 out of 10 classes. In
comparison, Expert 1 shows higher confidence for almost six
classes, which means that for some instances, both experts are
confident in their predictions.
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Figure 14: Expert allocation per class for all three datasets
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Figure 15: Expert confidence per class for all three datasets

C. Study3 visualization for each dataset, whereas the cluster of different

' colors denotes the dataset classes. Closely filled distinctive
The t-SNE visualization of feature space and expert clysters show that the model can effectively differentiate
specialization in that feature space has been presented in  among classes, whereas mixed points between clusters show
Figure 16. The left plot in this figure shows the t-SNE  that the model is confused among those classes. The right plot
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shows the allocation of experts for that class. Here, expert one
is represented by red and expert two is represented by green. If
the same color shows a whole cluster, it means that the model
can differentiate this class among others and assigns the same
expert for that entire class. If a cluster shows both (red and

13

green) colors, then the model misclassified some instances of
that class. In this case, allocates different experts and
considers them different classes.
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Figure 16: t-SNE visualization of feature space for all three datasets

VII. ABLATION STUDIES

A. Experiment 1

In Table 5, an ablation study has been conducted by
employing different model configurations in the architecture
and evaluated on three selected datasets to verify the model's
robustness and effectiveness. Using the MLRSNet dataset, it is

observed that the proposed LiteDenseMoE uses both types of
attention modules and achieves better accuracy than all
ablation variants, reaching an accuracy of 93.25%. The
proposed LiteDenseMoE, with only a spatial attention module,
achieves an accuracy of 89.08%, while with only channel
attention, it has an estimated accuracy of 90.09%. It is
observed that the spatial and channel attention modules guide
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the model to focus on portions of the aerial imagery. This
imagery was important in space to discriminate feature-map
dependent spatial-based feature cues that our model processes.
On the EuroSAT dataset, the proposed LiteDenseMoE model
achieved an accuracy of 96.54%. The accuracies of 90.60%
and 89.79% achieved without considering spatial attention and
channel attention. However, the accuracy dropped to 86.83%
with no attention modules, still demonstrating the importance
of accurately emphasizing certain spatial and spectral features
that distinguish fine gain classifications. These results are also
shown for the NWPU dataset. The proposed architecture
achieved an accuracy of 92.56%.

In comparison, the variant that only used the spatial attention
module had an accuracy of 87.03%, and the other variant that
only included a channel attention module had a similar
accuracy of 88.16%. Again, removing both attention modules
from the proposed model reduced the performance to 84.70%.
This data reaffirms that spatial attention does allow the model
to focus on features of interest that are more salient within that
region. Moreover, the channel attention enabled the model to
discover and strengthen inter-channel dependencies, which are
crucial in complex coastal and land scene regions with noisy
visual ambiguity.

Table 5: Ablation study one of proposed architecture for all three
datasets

performing pre-trained models such as AlexNet, VGG16,
VGG19, GooglLeNet, ResNet50, and ResNetl01 and
evaluated them on all three selected datasets, as presented in
Table 7. The LiteDenseMoE achieves the highest
classification accuracy in all datasets, such as 93.25% on
MLRSNet, 92.56% on NWPU, and 96.54% on EuroSAT,
respectively. The LiteDenseMoE is also a remarkably
lightweight design with only 0.3M parameters and 1.27 MB
model size. The other deep models, such as VGG16, VGG19,
and deep ResNet101, are on a completely different scale in
terms of memory and complexity. Also, these models
achieved less accuracy than LiteDenseMoE using large-scale
remote sensing datasets. In the MLRSNet dataset, ResNet101
achieves an accuracy of 86.41% with 170 MB, while the
LiteDenseMoE model achieves almost 7% higher accuracy
with only 1.27 MB. The same pattern occurs for the NWPU
and EuroSAT datasets. If we extend this comparison to
relatively lightweight models like GoogLeNet, which has 6.8
million parameters and is 23 MB in size, the model's accuracy
is approximately 9% less than the proposed model. This
performance is a tribute not only to the parameter efficiency of
LiteDenseMoE but to the architectural creativity of
LiteDenseMoE and its complete integration of a number of
design principles, such as dense connectivity paired with a
Mixture of Experts mechanism that effectively increases
representational capacity without increasing computation.

Architecture | Accuracy | Precision | Recall | F1- Table 6: Comparative analysis of proposed architecture with pre-
Configuration Score trained models

MLRSNET Dataset
With  Spatial [ 89.08 90.10 89.08 | 89.06 Models | Accuracy | Parameters | Model Size
Attention MLRSNET Dataset
With  Channel 90.09 90.34 90.34 90.32 Alexnet 61.42 60 240 MB
Attention VGG16 72.14 138 528 MB
Without Spatial 82.61 84.97 83.61 82.61 VGG19 67.34 143.7 548 MB
and  Channel GoogleNet 84.47 6.8 23 MB
Attention ResNet50 85.25 25.6 102 MB
Proposed 93.25% 93.32 93.25 92.26 ResNet101 86.41 44.5 170 MB

EUROSAT Dataset Proposed Model 93.25 0.3 1.27 MB
With  Spatial | 90.60% 90.61% | 90.60% | 90.60% NWPU Dataset
Attention AlexNet 71.00 60 240 MB
With Channel | 89.79% 89.80% | 89.79% | 89.79% VGG16 74.94 138 528 MB
Attention VGG19 74.97 143.7 548 MB
Without Spatial | 86.83% 86.84% | 86.83% | 86.83% GoogLeNet 83.54 6.8 23 MB
and  Channel ResNet50 88.95 25.6 102 MB
Attention ResNet101 89.05 445 170 MB
Proposed 96.54% 96.56% | 96.54% | 96.54% Proposed Model | 92.56% 03 1.27 MB

_ _ NWPU Dataset EUROSTAT Dataset
With  Spatial 87.03 87.11 87.03 87.02 AlexNet 80.00 60 240 MB
Attention VGG16 83.00 138 528 MB
With Channel 88.16 88.17 88.16 88.13 VGG19 83.59 143.7 548 MB
Attention __ GoogLeNet 87.54 6.8 23 MB
Without Spatlal 84.70 84.73 84.70 84.69 ResNet50 88.95 25.6 102 MB
L onennel ResNet101 90.00 445 170 MB
Proposed Model | 96.54% 0.3 1.27 MB

Proposed 92.56 91.64 9156 | 91.57 P 2

B. Experiment 2

This section provides a comparative analysis of the proposed
LiteDenseMoE with pre-trained models. We selected top-

C. Experiment 3

In Figure 17, the stability of the proposed model is evaluated
against the noise. The heatmap shows the effect of noise
intensity on classification accuracy across the three datasets,
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MLRSNet, NWPHU, and EuroSAT. There is an overall
decrease in accuracy as the intensity of noise increased from
0.1% to 2.0%. The overall downward trend in accuracy also
indicates the sensitivity of the models to input noise. EuroSAT
has the highest overall resilience across the datasets, with
consistently high accuracy even at the higher noise levels
(89% at 2.0%) and even higher accuracy of 94% at the lowest
noise level. MLRSNet and NWPHU exhibited similar trends,
with accuracy decreasing from 92% to 87% for MLRSNet and
from 92% to 86% for NWPHU as the noise level increased.
These results indicate that while there is some resilience to
low levels of noise for all models, higher levels of noise result
in more prominent degradations in performance. Therefore,
the performance of the models is negatively and weakly
correlated. The EuroSAT dataset is more resistant to noise
than the other two datasets in all noise intervals. Additionally,
these results reveal the importance of the proposed model's
performance and its noise robustness in real-world
applications.

Dataset
NWPHU MLRSNet

Accuracy (%)

EuroSAT

0.1 0.3 0.5 2.0
Noise Intensity (%)

Figure 17: Heatmap to evaluate the model stability against the noisy

data

Experiment 4: A critical design decision in this architecture
was determining the optimal number of experts. While the
conventional wisdom suggests that an increase in the number
of experts will result in improved performance, our ablation
study reveals a different picture. We evaluate the performance
of our model with 2, 3, 4, and 6 experts across all three
datasets, and the results are shown in the Table. The table
shows that the proposed model achieved the highest
accuracies of 93.25%, 92.56%, and 96.54% on the MLRSNet,
NWPU, and EuroSAT datasets, respectively, with only two
experts. The number of parameters in this configuration is also
the least (30M). However, as the number of experts increases
from 2, the model's performance starts to diminish, along with
an increase in computational complexity. A drop in accuracy
of almost 2% and nearly double the computational overhead
suggest that an optimal accuracy-efficiency trade-off is
possible with only two expert blocks. The reason behind these
results is the overspecialization of experts, where each expert
becomes overly specialized in a small subset of the training
data, thereby reducing their ability to generalize effectively.
Additionally, with an increased number of experts, routing
mechanisms must make fine-grained decisions, which

increases decision complexity and leads to suboptimal routing,
ultimately degrading overall performance. These results
validate our decision to select just two results for this
architecture.

No.of | MLRSNet | NWPU | EuroSAT | Parameters
Experts | Accuracy | Accuracy | Accuracy
% % %
2 93.25 92.56 96.54 0.30M
3 92.87 91.98 96.12 0.42M
4 92.45 91.45 95.68 0.54M
6 91.82 90.87 95.23 0.78M

Experiment 5: This study validates our choice of channel-
spatial attention integrated in the architecture. Unlike natural
images, RS images contain distinct spatial and spectral
properties that need special attention. RS images, particularly
those obtained from multispectral sensors, contain information
across different wavelengths. Also in RGB representations,
these channels encode essential details on land cover types.
The channel attention enables the model to dynamically
recalibrate channel-wise features, allowing it to learn specific
spectral information for each scene type. On the other hand,
Ariel scenes contain more spatially localized objects that are
critical for classification. Spatial attention learns to focus on
discriminative spatial regions while suppressing background
information. The sequential integration of channel attention,
followed by spatial attention, is based on the “what-then-
where” principle, where channel attention identifies the
critical feature maps, and spatial attention determines where in
the image these features are most relevant. To justify this
choice, we compared the proposed model with alternative
attention mechanisms on the MLRSNet dataset, as shown in
the table. The table shows that the proposed channel-spatial
attention combination (CBAM-style) achieves superior
accuracy while maintaining the computational complexity.
The SE-Net with channel attention only achieves 90.34%
accuracy, while spatial attention achieves 89.08% accuracy,
highlighting the need for complementary attention modules.
Self-attention shows good performance in terms of accuracy,
but it is more computationally expensive than the proposed
module. Thus, this study confirms that channel-spatial
attention is the most optimal choice for this architecture.

Attention Accuracy | Precision | Recall | Fl-score
Mechanism
SE-Net 90.34% 89.94% | 90.05% | 88.90%
(channel only)
Spatial only 89.08% 87.54% | 89.98% | 89.00%
Self-Attention | 91.45% 90.45% | 89.78% | 91.00%
CBAM 93.25% 93.32 93.25 92.26
(proposed)
VIII. CROSS-DATASET EVALUATION

To evaluate the generalization ability of the proposed
LiteDenseMoE beyond the same train-test data splits, we
conducted a comprehensive cross-dataset evaluation where
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models were trained on one dataset and tested on another. The
table presents the results for all six possible combinations
across our three benchmark datasets. The table shows that
when the model was trained on MLRSNet and tested on
NWPU, the accuracy drops from 92.56% (same-dataset
performance) to 84.23%. A similar trend is observed in all the
combinations. The cross-dataset performance varies based on
domain gap differences.

The performance drop observed on MLRSNet->EuroSAT is
the lowest (7.09%), which is explained by MLRSNet’s diverse
spatial resolution range (0.1m-10m), including training
samples similar to EuroSAT’s 10m resolution. On the other
hand, the most significant performance gap was observed in
EuroSAT-MLRSNet (14.33%), which can be attributed to the
lower spatial resolution (64x64 vs 256x256) and the limited
class diversity of the EuroSAT dataset. When the model is
trained on 10 classes and tested on 46 classes, it shows a
greater drop than when it is trained on 46 classes and tested on
10 classes. However, despite these performance gaps, the
proposed model still outperforms baseline deep learning
models, such as ResNet-50 and DenseNet-121. This strong
cross-dataset generalization validates that the proposed model
learns fundamental transferable characteristics of RS data
rather than overfitting to dataset-specific artifacts.

A comprehensive comparison between the proposed model
and SOTA models has been presented in Table 8. This table
illustrates that the proposed model achieved the highest
performance against the state-of-the-art methods. In NWPU
dataset, the authors [36] employed pre-trained models with
global optimal structural loss (GOSL) and they achieved
90.30% highest accuracy. In [37], the authors designed a
DBOW feature unsupervised learning method, and they
obtained 82.10% accuracy. Authors in [38]and [39]
implemented DELF+ VLAD and IBNR-65+DenseNet64
models, and both studies achieved 85.70% and 91.70%
accuracies, respectively. Similarly,  On EuroSAT and
MLSRNet datasets, the authors of [36], [40], [41], [41], and
[42] employed pre-trained models and they obtain 88.68,
85.23, 87.52, 88.51, and 82.59% accuracies, respectively. In
[43] and [44], the authors employed customized CNNs such as
FMANet and AMEGRF-Net, but they gained 91.00% and
91.51% of accuracy on these selected datasets. Our proposed
model achieved improved accuracy of 92.56, 96.54, and
93.25% on NWPU, EuroSAT, and MLSRNet datasets,
respectively.

Table 7: Comparative analysis of proposed architecture with SOTA
models

Train Dataset | Test Dataset Accuracy F1-score
MLRSNet NWPU 84.23% 83.67%
MLRSNet EuroSAT 89.45% 89.12%

NWPU MLRSNet 81.34% 80.89%
NWPU EuroSAT 88.67% 88.34%
EuroSAT MLRSNet 78.92% 78.45%
EuroSAT NWPU 82.56% 82.12%

IX. STATISTICAL SIGNIFICANCE ANALYSIS

To ensure the statistical significance of the performance
shown by LiteDenseMoE, we conducted a statistical analysis
that is shown in table . We performed a 5-fold cross-validation
on all three datasets, and for each fold, we trained the
LiteDenseMoE from scratch using the same hyperparameters.
Table shows the mean accuracies and standard deviations for
all three datasets. Small std Dev of 0.43, 0.51 and 0.31
represents the robustness and stability of model across each
fold. The 95% confidence intervals further provide evidence
of the model's strong performance. The narrow ranges
showcased the reliable and robust behavior of model under
different training/testing splits.

Dataset Mean Std Dev 95% CI
Accuracy

MLRSNet 93.25% +0.43% [92.82, 93.68]

NWPU 92.56% +0.51% [92.05, 93.07]

EuroSAT 96.54% +0.31% [96.23, 96.85]

X. COMPARISON WITH SOTA MODELS

Architecture | Accuracy
NWPU Dataset
Pretained models + GOSL [36] 90.30
DBOW feature based [37] 82.10
DELF + VLAD [38] 85.70
IBNR-65 + Densenet-64 [39] 91.70
Proposed 92.56
EUROSAT Dataset
Global Optimal structured loss [36] 88.68
EfficientNet [40] 85.23
MobileNetV2 [41] 87.52
InceptionV1 [45] 88.51
Proposed 96.54
MLRSNet Dataset
FMANEet [43] 91.0
AMEGRF-Net [44] 91.51
MobileNetV3 + Channel Attention + Spatial 82.59
pyramid pooling [42]
Proposed 93.25%

Xl. GRADCAM EXPLAINABLE Al (XAI) RESULTS

The Grad-CAM visualizations in Figure 18 demonstrate that
the model achieves strong alignment between prediction and
relevant image regions in most cases. Correct classifications,
such as airfield, dense residential, forest, and wind turbine,
show clear attention to distinctive features like aircraft,
housing blocks, vegetation, and turbine structures, confirming
the reliability of the network’s learned representations.
However, some  misclassifications reveal important
limitations. The farm image classified as forest highlights the
difficulty of separating large-scale vegetation patterns, while
the flyover classified as game space indicates confusion
caused by structurally complex layouts. Similarly, the beach
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image misclassified as cloud reflects the challenge of low-
texture surfaces where discriminative cues are minimal.
Overall, the results emphasize that while the model
demonstrates high accuracy and interpretable feature

Predicted: Airfield
Confidence: 99.97%

True Class: Airfield
=] -

Predicted: Dense Residential
Confidence: 100.00%

predicted: Forest Grad.CAM
Confidence: 98.99%

True Class: bareland

True Class: baseball diamond

predictad: eroded_farmland
Confidence: 43.39%

e 4

Grad-CAM

Predicted: basketball court Grad-CAM
Confidence: 100.00%

Predicted: baseball diamond
Confidence: 100.00%

True Class: basketball_court

True Class: Anchorage

True Class: Flyover
True Class: beach
True Class: transmission_tower

True Class: wind_turbine

utilization in many cases, it remains sensitive to texture
similarity and structural overlap across certain categories.

Predicted: Anchorage
Confidence: 100.00%

Predicted: Forest
Confidence: 100.00%

Predicted: Game Space
Confidence: 66.47%

Predicted: cloud Grad-CAM

Confidence: 57.00% T ———Y

Grac-CAM

Predicted: transmission tower
Confidence: 100.00%

Predicted: wind_turbine
Confidence: 98.99%

Figure 18: Explainable Al (XAl) GradCAM results

XI1l. CONCLUSION

This paper presents a novel deep learning architecture named
Lightweight Dense Mixture of Experts (LiteDenseMoE) for
aerial and coastal regions classification using remote sensing
images. The proposed model benefits from the depth-wise
separable convolutional block, incorporating both channel
attention and spatial attention modules. Moreover, a two-
expert MoE block functioning with an intelligent routing
mechanism has been connected. Hence, the proposed model
extracted the most important information of an image using
the current mechanism. Hyperparameters of the proposed
model during the training process are initialized through the
Hyperband optimization algorithm, which improved the
training efficiency and scalability. The model was
systematically and rigorously evaluated using three publicly
available benchmark datasets, such as MLRSNet, NWPU-
RESISC45, and EuroSAT, and obtained improved accuracies
of 93.25, 92.56, and 96.54% respectively, with a compact
model size of 0.3 million parameters.

Comprehensive ablation studies demonstrated the impact of
each component of the proposed model that contributes to the

classification performance. The interpretability analysis
highlighted the different expert behaviours, the confidence of
the experts, and described the type of features for MoE
representation. GradCAM visualization further interpreted
model predictions. Even with promising results, there are still
some limitations.

* The model performance could be sensitive to noise in lower-
quality remote sensing data

» The performance could vary in diverse geographies and
sensor modalities, as currently these datasets do not have this
challenge.

* GradCAM-based interpretation shows exceptional
classification abilities of the model; however, wrong
predictions for a few images suggest there is room for
improvement.

« It is also noted that the reliance on two expert blocks could
limit the scalability into more complex scenes, which require
more specialization.

Future work could involve extending the LiteDenseMoE
framework to support multi-modal and multi-temporal
datasets. Moreover, we will apply the scalability analysis to
measure the computational performance.
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