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Abstract

The Internet of Things (IoT) plays an important role in the development of smart cities.
IoT forms a large network, and optimal controller placement plays a crucial role in en-
suring network performance and resilience. This paper proposes a hybrid optimization
approach that combines Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)
to strategically place controllers. Kaunas (Lithuania) was selected as a real-world smart city
model. A large-scale Narrowband Internet of Things (NB-IoT) network with 2000 nodes
was simulated, and 10 controllers were optimally placed in the network to minimize latency,
balance load, enhance energy efficiency, and redundancy. The performance of the proposed
hybrid GA-PSO algorithm was compared with random and K-Means clustering placements
under three scenarios: normal operation, node failures, and traffic spikes. Simulation
results demonstrate that the hybrid approach outperforms the other two methods in terms
of load balancing, packet loss, energy efficiency, scalability, and redundancy. These findings
highlight the robustness and effectiveness of the proposed hybrid algorithm in optimizing
controller placement for smart city environments.

Keywords: controller placement; hybrid optimization; NB-loT; GA-PSO; smart city

1. Introduction

The Internet of Things (IoT) plays an important role in the development of smart cities.
The massive deployment of IoT devices introduced many challenges related to operation
and management due to the heterogeneous and large number of connected devices. Among
these challenges, the placement of network controllers is a major challenge [1] as the whole
network depends on it. It plays a crucial role in the overall performance and resiliency of
the network. To overcome this problem, Software-Defined Networking (SDN) provides
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a solution by decoupling the control and data planes, enabling centralized control and
programmability. SDN Controller architecture can be broadly divided into centralized
and distributed architectures [2]. In centralized SDN architecture, a single control plane
manages the network traffic flow and resource allocation [3]. While distributed SDN ar-
chitecture adopts a decentralized approach by spreading the control plane across multiple
controllers, improving fault tolerance by having multiple controllers. It improves network
resilience and scalability by distributing control tasks and reducing load on individual
controllers [4]. Efficient controller placement directly impacts network performance metrics
such as latency, load distribution, redundancy, energy consumption, and scalability. There
are many standard protocols which are used for network connectivity in IoT; some of them
are Bluetooth, 3GPP, LTE, 6LoWPAN, ZigBee, IEEE 802.15.4, NB-IoT, and 5G. These proto-
cols define how the devices communicate with each other and cloud ensuring seamless
data exchange [5]. If controllers are placed in random or sub-optimal locations, the network
may suffer from high latency, controller overloading, poor redundancy, and reduced adapt-
ability to changing conditions, particularly in a large-scale, distributed IoT environment.
Finding an optimal solution for the number of controllers and their placement cannot be
obtained in a short period of time. Once determined, the controller placement cannot easily
be changed due to its complexity, making it essential to identify the best possible solution
during the initial phase of design. Various algorithms and approaches have been reviewed
to overcome these challenges and achieve an optimal solution [6].

The current research on controller placement in SDN-based IoT networks have mostly
concentrated on static or small-scale topologies, whereas optimization is limited to a single
performance parameter, such as latency, load balancing, or fault tolerance. Consequently,
the research gap was addressed by a proposed hybrid Genetic Algorithm (GA) and Par-
ticle Swarm Optimization (PSO) framework that simultaneously optimizes numerous
performance measures, specifically latency, load balancing, energy consumption, and fault
tolerance, in a large-scale, real-world IoT environment. This study fills the gap by carrying
out a realistic simulation of NB-IoT in Kaunas (Lithuania) city and evaluating performance
under normal, failure, and traffic-spike conditions. A GA-PSO was proposed to address the
mentioned limitation in IoT-based smart city network. The comprehensive methodology
and simulation setup are explained in the Methodology section. The proposed method
effectively combines the exploration capabilities of GA with the convergence properties of
PSO [7]; it produces a robust and optimized distribution of controller positions across the
city’s network. To validate the approach, a realistic geographic model of Kaunas, the second-
largest city in Lithuania [8,9] along with NB-IoT range [10], nodes, and controllers, reflecting
actual city conditions, was created. Whereas NB-IoT can support up to 50,000 devices [11].
The simulation uses three scenarios. These include normal operations, node failures, and
traffic spikes so that it can thoroughly evaluate the robustness and adaptability of the hybrid
algorithm. After that, its performance was compared against two methods, K-Means and
random placement, using different metrics, including latency, load balance, redundancy,
energy consumption, and scalability. The results demonstrate that the hybrid GA-PSO
approach demonstrated superior performance compared to K-Means and random strategy
based on defined metrics. The algorithm successfully minimizes latency and packet loss
while improving redundancy and load distribution, which is desirable for large-scale smart
city IoT networks.

Although hybrid GA-PSO algorithms have been studied before for controller place-
ment, this has occurred mostly in small-scale network topologies and with few performance
metrics. This study utilizes a hybrid GA-PSO approach within a realistic large-scale IoT
framework, based on the actual geographical topology of Kaunas (Lithuania). The proposed
approach utilizes a multi-objective fitness function that optimizes latency, load balancing,



Sensors 2025, 25, 7119

30f25

redundancy, fault tolerance, and scalability, while evaluating performance across various
network situations, including regular operations, node failures, and traffic surges. This
paper’s main contributions are summarized as follows:

o  The proposed GA-PSO algorithm uses a multi-objective fitness function that reduces
latency, controls load imbalance, reduces energy consumption, and enhances fault
tolerance, which results in more reliable and energy-efficient IoT operations.

e  Areal city-based IoT network model of Kaunas (Lithuania) has been setup, comprising
2000 nodes, 10 controllers, and 2 communication ranges of 1000 m and 3000 m, to
evaluate performance under valid geographic and density conditions.

e  The algorithm’s performance is evaluated across three network scenarios: normal
operation, random node failures, and traffic surges, to evaluate its robustness and
adaptability in dynamic smart city environments.

e  The comparative analysis with K-Means and random placement strategies illustrates
the edge of the hybrid GA-PSO approach in terms of latency reduction, load balancing,
energy efficiency, and redundancy.

e  The paper provides outcomes that validate the proposed method’s applicability for
large smart city IoT networks.

2. Related Work

The Controller Placement Problem (CPP) was first proposed by B. Heller et al. [12],
who studied the influence of controller quantity and placement for the performance of
SDN. This section combines various studies regarding controller placement and presents a
brief overview of the research performed in this field.

2.1. Hybrid DEWO Algorithm for Controller Placement

Controller placement is one of the main issues in SDN-based IoT networks for smart
cities, as it directly influences network performance metrics such as latency, load balancing,
and fault tolerance. To address this, S. K. Keshari et al. [13] proposed a Hybrid Differential
Evolution and Whale Optimization (DEWO) algorithm for optimizing controller placement.
The algorithm was evaluated using MATLAB 2019b across three real-world topologies
from the Internet Topology Zoo; these are TataNld, Deutsche, and Forthnet. Simulation
parameters included a population size of 100, 200 maximum iterations, switch nodes varied
from 50 to 150, and up to 40 controllers. The DEWO algorithm was compared with PSO
and Firefly Algorithm (FFA) based on different metrics such as latency, fault tolerance, and
link failure minimization. The results showed that DEWO outperformed both PSO and
FFA, particularly in reducing end-to-end latency and minimizing link failures, thereby
enhancing quality of service (QoS) in smart city environments. The results are summarized
in Table 1.

Table 1. Comparison of performance improvements: DEWO vs. PSO and FFA.

Topology Improvement Over PSO Improvement Over FFA
TataNId 7.82% 2.35%
Deutsche 20.25% 3.55%

Although DEWO demonstrated improved performance compared to PSO and FFA,
still, some switch nodes were unevenly clustered near certain controllers. Moreover,
simulations were conducted under static conditions, which may not fully reflect real-
world dynamics.
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2.2. GWOAP Algorithm for Load Management in SDN-IoT Networks

Load balancing is an important performance metric in SDN-based IoT networks for
smart cities. It ensures optimal performance of controllers and minimizes communication
cost. To address this, S. K. Keshari et al. [14] proposed a Grey Wolf Optimization Affinity
Propagation (GWOAP) algorithm for intelligent controller placement and load distribution.
The GWOAP was simulated in MATLAB 2019b using the OS3E topology. Consisting of
34 nodes (29 switches and 5 controllers) with 42 interconnecting links. The aim was to
minimize total communication cost using a fitness function, with a weighting factor of 0.8
and flow rate set at 1 Kb/sec. The GWOAP was compared against different algorithms.
These were GA, PSO, Genetic Algorithm with Affinity Propagation (GAAP), and Particle
Swarm Optimization with Affinity Propagation (PSOAP). GWOAP results performed well
compared to other methods in terms of balancing switch loads across controllers and
reducing communication costs. It achieved optimal performance with 5 to 6 controllers
and showed efficient execution times. Although the GWOAP algorithm achieved notable
results, it still has several limitations. It was only validated through simulation with no real-
world validation. Its scalability to large networks and adaptability to dynamic conditions
were not evaluated. Additionally, the optimization was limited to communication cost,
while other important metrics like energy efficiency, latency, and fault tolerance were
not considered.

2.3. Multiple Distributed Controller Load Balancing (MDCLB) Algorithm for SDN-IoT Networks

Load distribution among controllers is critical in SDN-based IoT environments for
smart cities, where performance metrics such as reliability and scalability are main concerns.
To overcome this issue, H. Babbar et al. [15] proposed a Multiple Distributed Controller
Load Balancing (MDCLB) algorithm. The algorithm aims to optimize CPU utilization
across multiple controllers. It reduces packet drops due to load imbalance and minimizes
network response times. Evaluations were performed using the Mininet emulator and
Ryu controller in a large-scale SDN-IoT scenario with a linear topology via OpenFlow 1.3
protocol. The MDCLB algorithm was compared with other algorithms; these are Dynamic
Load Balancing based on Nash Bargaining (DLBNB), Efficient Switch Migration Load
Balancing (ESMLB), and Efficiency Aware Switch Migration (EASM). The authors used the
iPerf test tool to simulate traffic loads and measure CPU utilization over a 0 to 20 s interval.
CPU usage was measured before and after applying the load-balancing technique. The
proposed MDCLB algorithm consistently performed well as compared to other algorithms
by improving average CPU utilization and stabilizing performance across all controllers.
The results are shown in Table 2.

Table 2. Average CPU Utilization Improvement of MDCLB vs. other algorithms.

Algorithm Average Improvement Over MDCLB
DLBNB 5%
ESMLB 3%

MDCLB showed improved CPU utilization and consistent control-plane performance.
It reduced latency and communication overhead compared to other algorithms. Despite its
advantages, the MDCLB algorithm has several limitations. Its scalability to large networks
is unclear. The algorithm used a fixed traffic load for load balancing, which raises concerns
regarding dynamic traffic fluctuations. Additionally, evaluation was focused on CPU
utilization, neglecting other important metrics like latency and scalability under real-world
network environments.
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2.4. Enhanced Sunflower Optimization (ESFO) and POCO Tool for Controller Placement
in SD-IoT

Efficient controller placement is a main challenge in Software Defined Internet of
Things (SD-IoT) networks. In this network, latency, fault tolerance, and load balancing
significantly impact network performance. To address this, S. Hans et al. [16] proposed
the Enhanced Sunflower Optimization (ESFO) algorithm, used in conjunction with the
Pareto Optimal Controller Placement Tool (POCO) tool. This hybrid approach aims to
determine optimal controller locations in wide area SD-IoT networks by minimizing delay
and improving load balance across the control plane. The algorithm was validated through
simulation using MATLAB and the results were compared against PSO, a hybrid SD
method, and the PASIN algorithm. The results are summarized below in Table 3, which
shows that the proposed algorithm significantly reduced average latency with two deployed
controllers. These results highlight the importance of effective controller placement.

Table 3. Average latency (in miles) for 2 controllers across different methods.

Algorithm  Average Latency (Miles) = Improvement Over Proposed Algorithm

Proposed 400 -
PSO 514 22.2%
Hybrid SD 1733 76.9%
PASIN 4944 91.89%

The ESFO algorithm, in conjunction with the POCO tool, effectively reduces latency.
While the proposed approach has many advantages, it also has certain limitations. First,
scalability for large-scale IoT networks was not covered, which increases uncertainties
about performance in denser and more dynamic environments. Second, the evaluation was
limited to simulation scenarios.

2.5. An Optimized Submodularity-Based Approach

A K. Tran [17] proposed an optimization framework based on submodularity to
address controller placement in large-scale IoT networks. The proposed approach focuses
on multiple performance metrics, including execution time, number of controllers required,
latency, and the impact of budget constraints. The proposed method was implemented in
Python and evaluated based on execution time across different network sizes. The results
demonstrated better results in terms of execution time, number of controllers, and network
latency. Table 4 attached below shows the execution time in relation to network size.

Table 4. Execution Time.

Network Size Execution Time (Seconds)
100 13
200 36
300 79
400 158

For comparison, the Optimal method using the Gurobi solver was unable to process
the 400-node network due to computational limitations, which highlights the scalability of
the submodularity-based approach. Despite these advantages, the proposed method has
several limitations. It may face challenges in highly dynamic environments where network
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conditions fluctuate rapidly. Additionally, scalability is unclear for very large IoT networks
due to computational overhead, which was not fully examined in this study.

2.6. loT-Aware VNF Placement (IVP) for Smart City Networks

Virtual Network Function (VNF) placement in IoT-based smart city networks faces sig-
nificant challenges due to the dynamic and heterogeneous nature of IoT traffic. To address
these, Y. Rafique et al. [18] introduced the IoT-aware VNF Placement (IVP) framework. It
optimized placement under both static and dynamic traffic conditions. This approach is
a multi-objective optimization approach to balance conflicting goals such as minimizing
deployment costs while reducing network latency. The paper highlights the importance of
Edge and Cloud infrastructures. The performance evaluation revealed that Mixed Integer
Programming (MIP)-based algorithms suffer from significantly longer convergence times,
ranging from 200 to 1000 times slower than heuristic alternatives, which makes them less
suitable for real-time dynamic applications.

Case Study: Performance Evaluation of IVP Algorithms.

To validate the IVP framework, the authors presented a case study based on multiple
objective smart city scenarios, including intelligent transport, public safety, smart energy,
and healthcare applications. These use cases reflect a wide range of infrastructure and
traffic requirements. Table 5 below shows the IoT traffic generated by different applications.

Table 5. IoT Traffic generated by a smart neighborhood.

Application Bandwidth (Mbps) Latency (ms) Device Density (/Km?)
Autonomous Traffic 0.05-10 10 12,000
Road Safety 0.005 10-100 3000
City Surveillance 20-100 10 60
Structural Health 50-100 1-20 >60,000
Home Energy 0.001-0.1 200-300 6000
Smart Grids 0.001-1.5 1-20 6000
Connected Ambulance 1000 10 60
Remote Monitoring 5 250 60,000

This highlights the importance of dynamic optimization algorithms that can adapt to
diverse traffic patterns and service requirements.

2.7. PACSA-MSCP Algorithm

The Parallel Ant Colony leveraged by the Simulated Annealing for Multiple-
Sink/Controller Placement (PACSA-MSCP) algorithm was introduced by H. R. Fara-
gardi [19]. It achieved notable results in optimizing the placement of sink nodes and
SDN controllers for industrial IoT networks. The algorithm achieves a deployment cost
reduction of up to 19% compared to other methods. One of its main advantages is the
reduction in execution time; for small-scale problems, PACSA-MSCP completed computa-
tion in approximately 4.2 min, whereas CPLEX took around 2 h. Similarly, for large-scale
scenarios, PACSA-MSCP took 29.2 min compared to CPLEX’s nearly 10 h. Although
the algorithm does not always find the exact optimal solution like CPLEX, it provides
near-optimal results in at least one out of ten runs, with significantly less computational
effort. Furthermore, comparing it with other heuristic algorithms such as Parallel Multi-
Agent System (PMAS), GA, Simulated Annealing (SA), and Reactive Greedy Randomized
Adaptive Search Procedure for Minimum Set Partitioning (R-GRASP-MSP), reveals that
PACSA-MSCP consistently achieves better cost results on the small scale; it outperformed
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R-GRASP-MSP by 19% and for large scale by 12%. It has faster execution, which shows its
computational efficiency and effectiveness. Table 6 presents a summary of the algorithm'’s
performance in comparison to CPLEX for both small- and large-scale problem scenarios.

Table 6. Execution Time Comparison.

Problem Scale PACSA-MSCP Time CPLEX Time
Small-scale 4.2 min 2h
Large-scale 29.2 min 10h

The main strength of PACSA-MSCP is the reduction in deployment cost by merging
colocated sinks and controllers. This technique works well, especially in small-scale scenar-
ios and remains competitive in larger networks. In terms of contributions, PACSA-MSCP
introduces a novel hybrid approach combining the Max-min Ant System with Simulated
Annealing. This proposed approach significantly reduces the cost and improves timeliness
and reliability for Industrial Internet of Things (IloT) deployments. It handles scalability
effectively and incorporates the practical benefit of colocating sinks and controllers to
reduce infrastructure. Despite its advantages, it has some limitations. The complexity
increases with more candidate locations, due to reduced efficiency. The proposed algorithm
requires a minimum number of candidate sites to find feasible solutions. It does not address
the overloading of nodes, which is important for maintaining real-time performance in
industrial applications.

2.8. PHCPA Algorithm

N. Firouz et al. [20] proposed the PHCPA (proposed hybrid controller placement
algorithm), which combines network partitioning with hybrid optimization techniques. Its
performance was evaluated on six real-world SDN-based topologies from the Topology Zoo
dataset. Simulation results demonstrated that PHCPA outperforms several meta-heuristic
algorithms in minimizing network latency and improving network performance. The
study also analyses the convergence rates, which show that PHCPA executes optimal
solutions faster across different numbers of controllers. The hybridization of Manta-Ray
Foraging Optimization (MRFO) and Salp Swarm Algorithm (SSA) enhances the search
process, addressing slow convergence and local optima issues. The paper contributes
by introducing a novel controller placement algorithm based on network partitioning
and hybrid nature-inspired methods (MRFO and SSA). It proposes new discretization
operators to adapt continuous algorithms to this discrete problem. Many experiments
across six SDN topologies by varying numbers of controllers confirm the algorithm'’s
effectiveness and scalability. By emphasizing average switch-to-controller latency as the key
performance metric, the study offers clear insights and outlines future research directions
to advance controller placement strategies. However, the study has certain limitations,
including reliance on older optimization algorithms such as PSO and FFA, which may
reduce adaptability and efficiency in modern network environments. The study only
focused on latency minimization while ignoring other important factors such as scalability,
fault tolerance, and network adaptability. While PHCPA presents optimal approach for
controller placement, these limitations should be carefully considered when applying it to
real-world scenarios.

2.9. Multi-Objective Marine Predator Algorithm (MOMPA)

N. Firouz et al. [21] introduced a Multi-Objective Marine Predator Algorithm
(MOMPA), to address controller placement problem in SDN. The proposed algorithm
integrates the MOMPA algorithm with the Non-dominated Sorting Genetic Algorithm-II
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(NSGA-II) to enhance optimization performance. Proposed algorithm results demonstrated
that MOMPA performed well compared to other algorithms by providing optimal solutions
and improved computational efficiency. The use of mutation and crossover operators
enables effective discretization of the algorithm, aligning it with the discrete nature of
controller placement. The proposed algorithm focuses on multiple performance metrics,
including installation cost, latency, load balancing, and imbalance, which demonstrates
the proposed algorithm superiority across these metrics. This approach improves net-
work performance by minimizing latency and balancing loads. The study also provides
transparency in parameter settings to ensure reproducibility and outlines future research
directions to further improve the algorithm’s applicability. Despite its advantages, it has
several limitations. The hybrid nature of the algorithm increases computational complexity,
which may pose challenges for deployment in large-scale and resource-constrained envi-
ronments. The focus on latency and load balance overlooks other metrics such as security,
fault tolerance, and scalability. Additionally, assumptions of ideal conditions, like no or
single-link failures, do not fully represent real-world network scenarios.

2.10. Hybrid HSA-PSO Algorithm for Multi-Controller Placement in SDN

The optimal placement of controllers is essential for enhancing performance and fault
tolerance in SDN. Radam et al. [22] introduced a hybrid HSA-PSO, combining the Harmonic
Search Algorithm (HSA) and Particle Swarm Optimization (PSO) for multi-controller place-
ment problem (MCPP) in SDN. The proposed model has three primary stages: (1) network
construction, wherein the SDN topology is represented as an undirected graph; (2) optimal
controller selection, in which the Firefly Algorithm (FA) determines the most appropriate
controllers based on criteria such as modularity, API support, version, and compatibility;
and (3) multi-controller placement optimization, where the hybrid HSA-PSO minimizes
propagation latency and inter-controller communication delay. This hybrid methodology
enables PSO to dynamically modify HSA parameters, hence improving global conver-
gence and preventing premature local optima. The proposed model was analyzed using
CloudSimSDN for propagation delay, round-trip time (RTT), reliability, throughput, and
latency. The HSA-PSO algorithm was analyzed in comparison to Simulated Annealing
Failure Foresight Capacitated CPP (SA-FFCCPP) and Garter Snake Optimization CPP
(GSOCCPP). Simulation results showed that HSA-PSO performed better compared to
GSOCCPP for delay metric by 50%, decreasing RTT to 7.3 ms in contrast to 14.7 ms, and
reliability to 0.95. The hybrid model accelerated convergence and enhanced scalability.
The proposed approach demonstrated significant results for delay reduction. It was an-
alyzed solely through simulations. Future work may focus on scalability testing across
various network topologies and real-world deployment situations to verify robustness
and flexibility.

Table 7 summarizes all reviewed approaches, analyzing their performance metrics,
advantages, and limitations, thereby providing a comprehensive overview of related studies
in this field.

Overall, the algorithms analyzed above mainly focus on a single performance metric
such as latency, load balancing, and packet loss, while neglecting other critical metrics essen-
tial for IoT networks, specifically energy efficiency, scalability, and redundancy. Moreover,
these methodologies are validated only for small-scale networks, which do not represent
the complex characteristics of large-scale IoT networks for smart cities. So, the present
research indicates an important gap for simultaneously addressing several Quality of Ser-
vice (QoS) metrics for large-scale IoT networks for smart cities. This study addresses the
identified gap by proposing a hybrid GA-PSO controller placement method that focuses on
improving multiple performance metric simultaneously in terms of latency, load balance,
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energy consumption, redundancy, and fault tolerance for large-scale IoT networks for

smart cities.

Table 7. Comparison of Controller placement strategies.

Algorithm Metrics Considered Strengths Limitations
. DEW.O (Hybrlc} Latency, Faglt Improved QoS, Reduced Clustering imbalance,
2.1 Differential Evolution + tolerance, Link . . L ¢ .
o . L link failure Static simulation
Whale Optimization) failure minimization
No real-world
GWOAP (Grey W.Ol.f Load distribution, Effective load validation, Ignores
22 Optimization + Affinity - P
. Communication cost distribution energy and
Propagation) 1 .
atency metrics
MDCLB (Multiple ﬁi?;?ge%af;et;gz: Static load scenario,
23 Distributed Controller Load balance . p Ignores latency
Load Balancing) time, Reduced and scalability
control overhead
ESFO + POCO.(EI)hapced Latency, load Significant latency Simulation only, Limited
24 Sunflower Optimization + balancin reduction scalability tested
POCO Tool) & y
. Execution time, Not validated in
Submodularity-Based L . .
2.5 R Controller count, Better execution time dynamic or real-time
Optimization L .
atency scenarios
IVP (IoT-aware Adapts to both static .
26 VNF Placement) Latency and dynamic traffic Complexity
PACSA-MSCP (Ant S . Increased algorithmic
. Execution time, Fast execution, Lower . ..
2.7 Colony + Simulated complexity, Sensitive to
. deployment cost deployment cost
Annealing) node placement
PHCPA (Partitioned Fast execution and Ignores scalability,
2.8 Hybrid Controller Latency convergence Fault tolerance
Placement Algorithm) &
. M.OM.PA . Latency, Load Improve network Compgtatlonal
29 (Multi-Objective Marine balance erformance complexity, Ignores
Predator Algorithm) P fault tolerance
HSA-PSO (Hybrid Propagation delay, Reduces propagation Only st lat} on based;
Harmony Search g ) lacks validation under
210 Algorithm + Particle Round Trip Time delay, improved RTT, dynamic or real-time
& (RTT), Reliability increases reliability Y

Swarm Optimization)

network conditions

3. Proposed Work
The GA-PSO was adopted for its effective optimization characteristics. GA applies

crossover and mutation to introduce diversity into the population [23] but it typically

suffers from slow convergence. GA has also been used for a variety of optimal placement

problems across complex network systems [24]. In contrast, PSO, which is influenced by

swarm intelligence, offers rapid convergence and computational efficiency via social and

cognitive learning [25], but it is vulnerable to becoming trapped in local minima. Therefore,

the proposed method combines GA and PSO for improved optimization performance. The

proposed algorithm cooperatively integrates both approaches within a single optimization
loop instead of sequentially. This allows GA to improve global exploration, while PSO
improves convergence via local exploitation. The proposed approach maintains population

variability and achieves improved results compared to random and K-Means independently

for controller placement in large IoT networks. To evaluate proposed controller placement
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strategy, a large-scale IoT network simulation was created to realistically represent the
city of Kaunas (Lithuania). The simulation was designed to reflect real-world conditions,
making the results more practical and applicable. The implementation process consists of
the following three main MATLAB scripts:

e init_network.m;
e  hybrid_ga_pso_controller_placement.m;
e evaluate_performance.m.

The pseudo-code in Figure 1 outlines the main steps of the MATLAB implementation.

Input: numNodes, numControllers, commRange
Qutput: Optimal controller placements (optControllers) and performance metrics

Part 1 — loT Network and Topology Initialization

1: Load Kaunas city map and water polygons
2: Define urban clusters and their centers
3: Generate loT node positions:
a. Place nodes inside cach cluster using Gaussian distribution
b. Exclude nodes located in water regions
c. Randomly deploy remaining nodes on valid land area
: Compute distance and adjacency matrices among nodes
: Initialize trafficMatrix with base loads and random event spikes
: Save node positions, connectivity, and traffic data for optimization

G U

Part 2 — Hybrid GA + PS5O Optimization

7: Initialize GA-PSO parameters:
popSize, numGen, crossoverRate, mutationRate, inertia w,
acceleration constants ¢l and ¢2
8: Randomly generate an initial population of controller placements
9: For each generation gen =1 to numCen do
10:  Evaluate fitness for each candidate using:
Fitness = wl*Latency + w2*LoadVariance + w3*Redundancy
— wd*FaultTolerance + w5*Scalability
11:  Update pBest (individual best) and gBest (global best) positions
12:  Update particle velocities and positions using PSO equations
3:  Apply GA operations:
a. Crossover between random pairs of candidates
b. Mutation on random controller coordinates
14:  Record best fitness value (fitnessHistory(gen))
15: End For
16: Return gBest as optControllers (optimized controller locations)
17: Save optControllers and fitnessHistory for analysis

Part 3 — Performance FEvaluation and Visualization

18: Load optControllers, node positions, and trafficMatrix
19: Generate Random and K-Means controller placements
20: Lvaluate all three methods under different scenarios:

* Normal operation

* Random node failures

» Traffic spike events
21: For each scenario, compute performance metrics:

Latency, Load Balancing, Packet Loss,

Energy Use, Scalability, Redundancy, Fault Tolerance
22: Generate bar plots and tables comparing all methods
23: Visualize optimized, random, and K-Means placements on Kaunas map
24: End

1y

Figure 1. Pseudo-code (“*” denotes multiplication).

Figure 2 illustrates the workflow of the proposed hybrid GA-PSO technique. The
method begins with data loading and the generation of a random population, succeeded by
iterative fitness evaluation using PSO, exploration generated by GA through crossover and
mutation, and convergence towards the optimal placement for the controller placement.
Then, the optimized algorithm is compared against random and K-Means placement under
normal, failure, and traffic-spike scenarios. A brief overview of each MATLAB script is
provided below.
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Calculate Fitness f; |

Is f; <gBestFli = f;

Initiilize PSO: pBest, gB Next Particle

Update Positions

Genetic Agorithm Crossover
(Random Selection)

Update Velocities v; Genetic Agorithm Mutation

ROHERU (Random Coordinate Reset)

Next Generation

Next Particle

Apply Position (Kaunas Area)

Op?imal. Controller W Select optControllers
Visualize Positions

Figure 2. Flowchart of the Hybrid GA-PSO algorithm.

e init network.m

In this study, a realistic simulation model was developed to represent the city of
Kaunas (Lithuania) to support the investigation of optimized controller placement. The
simulation includes 2000 IoT nodes deployed over a 15.35 km X 10.23 km area, reflecting
the actual geographic dimensions of the Kaunas city located in Lithuania. Each node was
analyzed for two communication ranges: 1000 m and 3000 m, with uplink traffic limited
to 0.25 Mbps, using NB-IoT standards [10]. To emulate realistic urban deployment, a
clustered spatial distribution model was applied with five high-density zones centered at
coordinates [4000 3000; 12,000 8000; 8000 6000; 4000 4500; 4000 1500]. Each cluster has a
radius of 2000 m, with nodes distributed using a Gaussian model [26]. Remaining nodes
are randomly placed within the city area to simulate heterogeneous density. Connectivity
was established by adjacency matrix linking nodes within 1000 m and 3000 m. For traffic
modeling, nodes were assigned baseline loads between 0.1 and 1 Mbps. Additionally, 10%
of nodes were designated as event-driven, simulating spikes of 2—4 Mbps, but all traffic
was capped at 0.25 Mbps. To assess network robustness, a 5% node failure probability
was introduced, and traffic spikes were simulated at 10% of the nodes. Then all generated
data were saved in network_data.mat for use in subsequent optimization and performance
evaluation stages.
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e  hybrid_ga_pso_controller_placement.m

To optimize controller placement using the hybrid GA-PSO approach, the algorithm
was initialized with a population of 50 candidate solutions, where each individual repre-
sents coordinates for up to 10 controllers within the 15.35 km x 10.23 km area of Kaunas
(Lithuania) city. The proposed algorithm uses a PSO framework, where each candidate’s
position (controller locations) is iteratively updated over 100 iterations using inertia, cogni-
tive, and social components. The control parameters for the hybrid GA-PSO optimization
have been determined empirically through multiple initial trials. The population size was
set at 50. The crossover and mutation rates have been set as 0.8 and 0.2, respectively. In the
PSO part, the inertia weight (w) was set at 0.7, while acceleration coefficients (c_1 and c_2)
were both set as 1.5, thus it is ensuring a balanced exploration—exploitation trade-off. Con-
troller placement was evaluated using a custom fitness function that incorporates multiple
criteria: traffic-weighted latency, controller load balance, redundancy, fault tolerance, and
scalability. The multi-objective fitness function is expressed as

F=040L + 0.2501,,4 + 0.10R — 0.15FT +0.10 S

The optimization process evaluates each controller placement using a multi-objective
fitness function which includes five essential metrics: latency, load balancing, redundancy,
fault tolerance, and scalability. The fitness value in the MATLAB environment is com-
puted as follows: f = 0.4 x totalLatency + 0.25 x loadVariance + 0.1 x avgRedundancy +
0.15 x faultTolerance + 0.1 x scalabilityScore. Total latency measures the traffic-weighted
distance between IoT nodes and their authorized controllers, load variance calculates the
difference in controller loads, and average redundancy indicates how much distance to
the second-nearest controller. Fault tolerance denotes the proportion of nodes covered by
multiple controllers within the communication range, whereas scalabilityScore indicates
the location of controllers to avoid excessive clustering. The proposed method utilizes
this fitness value to identify the optimum controller placement that improves latency, load
distribution, and network resilience.

To ensure exploration and avoid premature convergence, crossover and mutation
operations from GA are embedded into the PSO loop. Crossover combines controller
positions between individuals, while mutation randomly alters individual controller coor-
dinates with a small probability. The fitness function assigns each IoT node to its nearest
controller, computes latency, load variance, average redundancy (second-nearest controller
distance), fault tolerance (nodes within range of two or more controllers), and controller
dispersion (to enhance scalability). After optimization, the optimal controller placement
is saved into controller_results_kaunas.mat. A plot is then generated which shows the
IoT node distribution along with the optimized controller locations. This visualization
provides an overview of the controller deployment. The combination of GA and PSO
is considered optimal as it maximizes the advantages of both algorithms: GA maintains
population diversity and handles multi-objective optimization, whereas PSO ensures fast
convergence. A previous study [7] has demonstrated that the combination of GA and PSO
enhances accuracy and computational efficiency, therefore making it particularly suitable
for large-scale IoT controller placement applications.

To evaluate the results of the proposed algorithm, performance metrics were calculated
using the simulation. Latency was calculated as total latency is the sum of the product
of minimum distances and the traffic vector. Here, minDists indicates the minimum Eu-
clidean distance between each IoT node and its nearest controller, calculated by pdist2
(nodePositions, controllers), whereas trafficVector indicates the traffic load produced by
each node. The multiplication of these numbers gives a traffic-weighted delay contribution
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per node, and the sum of them results in the total latency. The expression used for controller
load balancing is expressed as load Variance = var (controllerLoads), where controllerLoads
represent the traffic loads allocated to each controller; a lower variance indicates more uni-
form utilization. Redundancy is defined as the mean of sortedDists (:, 2), which shows the
average distance from each node to its second-nearest controller, indicating the availability
of alternative pathways. Fault tolerance is defined as fault. Tolerance = multiReachN-
odes/n, which measures the ratio of nodes linked to a minimum of two controllers within
the communication range, hence indicating the network’s robustness against controller
failures. Scalability was determined using the formula scalabilityScore = 1/avgCtrlDist,
representing the inverse of the average inter-controller distance, which prevents controller
clustering and encourages extensive spatial coverage. In the end, energy efficiency was
evaluated indirectly through reduced latency and communication distance.

e evaluate_performance.m

This script initiates by loading two MATLAB files: network_data.mat, which contains
the node positions, traffic matrix, communication range, failure probabilities, traffic spike
node information, and controller_results_kaunas.mat, which stores the optimized controller
coordinates generated by the proposed hybrid GA combined with PSO (GA-PSO) method.
The performance of the optimized controller placement is then evaluated across three
different network scenarios:

e  Normal Operation: In this scenario, no node failures occur. The script invokes the
function evaluateMetrics using the optimized controllers, current node positions, and
traffic matrix. This function computes main network performance metrics including
latency, load balancing, packet loss, energy consumption, scalability, redundancy, and
fault tolerance.

e Random Failures: To simulate network instability, a percentage of nodes are randomly
designated as failed based on a predefined failure probability (failProb), which is
5%. The failed nodes are excluded from the performance evaluation. The metrics are
recalculated considering only the active nodes, which reflect the network’s robustness
under partial node failures.

e  Traffic Spikes: To mimic real-world traffic surges, 10% of the nodes are randomly
selected as spike nodes. Their traffic demand is doubled in the traffic matrix. The
script evaluates the network metrics under this increased load, providing insight into
the controller placement’s ability to handle sudden traffic spikes.

For evaluation and comparison purposes, two additional controller placement strate-
gies were used; these were random placement and K-Means Placement [27]. The same set of
performance metrics was computed for each placement strategy by calling evaluateMetrics.
The script then creates a structured table that summarizes the results for the optimized,
random, and K-Means controller placements, which helps in direct comparison of their
results. In the last script, a results figure was produced with subplots displaying bar charts
for each metric, accompanied by clear labels and grid lines to enhance interpretability.

4. Results and Discussion

The main objectives of this study are to find the optimal controller placement by
reducing latency, achieving balanced load distribution across controllers, increasing energy
efficiency, ensuring redundance, fault tolerance, and increasing network scalability within
a large-scale IoT network. Each metric’s result demonstrates that the proposed algorithm
achieved improved results compared to random and K-Means methods, starting with an
analysis of the initial script.
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e init network.m

To generate the simulation environment, the MATLAB script init_network.m was
executed, which creates a realistic model of IoT-based smart city using Kaunas (Lithuania)
city topology. Figure 3 illustrates the simulated IoT network topology for Kaunas (Lithua-
nia) city generated by the init_network.m script. It shows 2000 nodes distributed over a
15.35 km x 10.23 km area, where 20% of the nodes are clustered around five urban centers
[4000 3000; 12,000 8000; 8000 6000; 4000 4500; 4000 1500] and the remaining 80% nodes
are scattered in less dense regions. Each node has been analyzed for two communication
ranges: 1000 m and 3000 m. The connectivity and distance matrices were constructed to
support routing and controller analysis. Traffic loads followed NB-IoT protocol, where
most nodes produced low-rate data (0.1-0.25 Mbps), while 10% of the nodes were modeled
as event-based, experiencing additional traffic spikes and 5% failure probability of nodes
was also introduced to reflect real-world issues.

Nodes in Kaunas City, Lithuania

1km
1 mi |

f I ! * loT Nodes

Akademija

| Garliava | | _Esri, TomTom, Garmin, GeoTechnologies, Inc, METI/NASA, USGS

23°45'E

23°50'E 23°55'E 24°E 24°05'E
Longitude

Figure 3. Nodes deployment in Kaunas (Lithuania) city topology.

e  hybrid_ga_pso_controller_placement.m

In the second stage of the simulation, the script hybrid_ga_pso_controller_placement.m
was executed following the initialization by init_network.m. This phase applied GA-PSO
to determine the optimal controller placement across the Kaunas (Lithuania) city area. The
algorithm used a population size of 50, 100 iterations, and optimized controller positions
within a 15.35 km x 10.23 km area containing 2000 IoT nodes. Figures 4 and 5 show the
controller placement with communication ranges of 1000 m and 3000 m, respectively, where
10 controllers are optimally placed across the model city. Controllers are represented by red
dots across the city, blue dots indicate the nodes, and the red circle shows the communica-
tion range between the controller and the nodes within it. Controllers were strategically
placed in both high-density urban centers and peripheral regions, which reflects the multi-
objective fitness function’s success in optimizing communication efficiency, redundancy,
and scalability. These results confirm the robustness of the hybrid GA-PSO approach for
practical controller placement in real-world smart city IoT networks.
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Figure 4. Optimal controller placement across Kaunas (Lithuania) city with a communication range
of 1000 m.
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Figure 5. Optimal controller placement across Kaunas (Lithuania) city with a communication range
of 3000 m.

e evaluate_performance.m

This phase of the study involved evaluating the performance of the proposed al-
gorithm in large-scale IoT networks. The evaluation was carried out using the evalu-
ate_performance.m script, which compared three different controller placement strategies:
optimized hybrid GA-PSO, random, and K-Means clustering. The evaluation metrics
included latency, load balancing, packet loss, energy consumption, scalability, redun-
dancy, and fault tolerance. The results are shown in Figures 6 and 7 for communication
ranges of 1000 m and 3000 m, respectively, with the best results highlighted in green
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in Figures 8 and 9. Figure 10 illustrates the optimized controller placement, Figure 11
shows the random controller placement, and Figure 12 presents the K-Means controller
placement and their results are summarized in Table 8. Here is a summary of results in
terms of latency, which measures the average delay between nodes and their assigned
controllers: results for latency are identical for 1000 m and 3000 m communication range,
the optimized algorithm achieved the low latency of 1459.67 m, which outperforms the
K-Means method, which resulted 1461.49 m, while random placement achieved the high
latency at 2417.74 m. Latency results align with the theoretical and practical results of
Heller et al. [12]. Their study revealed that random controller placement normally results
in average latencies 1.4x—1.7 x times greater than those of optimal placements. Similarly,
the proposed hybrid GA-PSO method achieves an approximate 39.6% reduction in latency
compared to random placement, which is approximately identical with the improvement
ratio observed in Heller’s study. Load balancing reflects variance in traffic load across con-
trollers. All load balancing results are identical for both communication ranges. Optimized
algorithm achieved a low variance of 45.89 Mbps?, compared to 78.63 Mbps? for K-Means
and 773.61 Mbps? for random placement. This indicates the hybrid method effectively dis-
tributes the node load, reducing congestion and ensuring more stable network performance.
Packet loss is percentage of nodes outside the communication range of controller; thus,
the communication range affects the packet loss. The optimized method achieved a lower
packet loss rate of 74.25%, compared with 76.10% for K-Means and 82.60% for random
placement at the 1000 m range. While for the 3000 m range, K-Means performed slightly
well, due to its centroid node-based clustering approach [28], which results in very few
nodes becoming unreachable at the 3000 m range. Therefore, packet loss is slightly lower
compared to the proposed algorithm. However, it lags in all other essential performance
metrics such as latency, load balancing, and redundancy. The packet loss results at 3000 m
range are 2.35% for optimized, for random 28.40%, and 1.40% for K-Means. Regarding
energy consumption, which was modeled as proportional to the square of the distance
between nodes and their assigned controllers, algorithms achieved identical results for both
communication ranges. K-Means controller placement consumed the lowest energy by
achieving 1201.89 Mbps.m? (x 10°), followed by the optimized algorithm 1265.52 Mbps.m?
(x 10°), while random placement consumed 4053.33 Mbps.m? (x 10°). K-Means performed
slightly well for the energy consumption metric compared to the proposed algorithm, due
to its centroid node-based clustering approach; K-Means placed the controller near to
node clusters, which minimizes distances between nodes and the controller [28,29]. As a
result, transmission power requirement is reduced. Therefore, the energy consumption is
marginally lower compared to the proposed approach. However, this clustering base place-
ment comes at the cost of poor performance in other performance metrics such as latency,
load balancing, and redundancy. In terms of scalability, which was defined as the inverse
of the average inter-controller distance, all algorithms obtained identical results for both
ranges. The optimized approach achieved 0.000155 1/m, while random placements had the
lower value of 0.000139 1/m, followed by K-Means’ 0.000152 1/m. This suggests that the
optimized method has greater scalability as network size increases. Redundancy, measured
as the average distance to the second-nearest controller, results are identical for both ranges;
the optimized configuration achieved 2937.16 m, which is slightly lower than K-Means’
2984.81 m and random placement with 3406.09 m. Lower redundancy distance means
better backup of controller availability in case of failure, which is essential for resilient
smart city applications. Finally, fault tolerance, defined as the proportion of nodes within
the range of two or more controllers, results are different for both communication ranges:
the optimized algorithm achieved a fault tolerance value 0.00 and 0.60, random placement
achieved a 0.023 and 0.48, while K-Means achieved 0.00 and 0.58. Zero value here shows
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that it failed to provide overlapping coverage for any node. All performance metric findings
are identical across both communication ranges, except for packet loss and fault tolerance,
which exhibit different results. The communication range affects only these two metrics.
Other performance parameters, such as latency, load variance, energy, redundancy, and
scalability, are distance-based and independent of the communication range within this
setup. Thus, increasing the range from 1000 m to 3000 m does not change nearest-controller
allocations or node-controller distances; consequently, the results remain unchanged. How-
ever, the communication range influences node coverage. At 1000 m, the proposed hybrid
GA-PSO covers 25.75% of nodes (515/2000), compared to 23.9% for K-Means (478 /2000)
and 17.4% for random (348/2000). At 3000 m, nodes coverage significantly increases:
hybrid GA-PSO covers 97.65% (1953 /2000) node, K-Means 98.6% (1972 /2000) nodes, and
random 71.6% (1432/2000) nodes. Although K-Means shows slightly higher coverage at
3000 m, the optimal placement ensures balance load per-controller (162-252 nodes) com-
pared to random (62-257) and is identical to K-Means (167-259), and hence the proposed

algorithm reduces overload risk and facilitates stable operation. Figures 13 and 14 illustrate

the per-controller node coverage for optimized (hybrid GA-PSO), random, and K-Means

placements at communication ranges of 1000 m and 3000 m, respectively, while Table 9
provides the corresponding numerical data.
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Figure 10. Optimized controller placement.
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Figure 11. Random controller placement.
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Figure 12. K-Means controller placement.
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Figure 13. Nodes coverage per-controller comparison for optimized, random, and K-Means at 1000 m

comm. range.
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Nodes Covered

Table 8. Comparison of controller placement strategies for comm. range of 1000 m and 3000 m.

Metric Optimized Random K-Means
1000m 3000m 1000m 3000m 1000m 3000 m
Same Result Same Result Same Result
Latency (m) 1459.67 2417.74 1461.49
Load Variance (Mbpsz) 45.89 773.61 78.63
Packet Loss (%) 74.25 2.35 82.50 28.40 76.10 1.40
Energy Use <24bPS-m2> 1265.52 4053.33 1201.89
(x10%)
Scalability (1/m) 0.000155 0.000139 0.000152
Redundancy (m) 2937.16 3406.09 2984.81

Fault Tolerance

(fraction 0-1) 0.00 0.60 0.023 0.48 0.00 0.58

300

Per-Controller Node Coverage Comparison
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Figure 14. Nodes coverage per-controller comparison for optimized, random, and K-Means at 3000 m
comm. range.

Figure 15 illustrates the convergence behavior of the proposed hybrid GA-PSO al-
gorithm, demonstrating a steady decrease in the best fitness value over 100 generations.
A fast decline is observed in the earlier iterations, indicating effective global exploration,
which is followed by steady stability after around 40 generations, reflecting efficient
local exploitation and convergence towards an optimal solution. The algorithm stabi-
lizes at a fitness value of 2.8 x 10°, validating the hybrid’s robustness. The computa-
tional efficiency of the proposed model was empirically assessed using MATLAB file
hybrid_ga_pso_controller_placement.m, wherein the optimization process took approxi-
mately 1.5 min to execute 100 generations with a population size of 50 on a MacBook Pro
(M2, 8-core CPU, 8 GB RAM). This runtime illustrates that the method shows robust scala-
bility and is computationally feasible for large IoT networks. The convergence curve further
confirms the hybrid’s balance between exploration and exploitation, ensuring satisfactory
results across various optimization goals.
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Table 9. Per-controller node coverage comparison for optimized, random, and K-Means placements

under different comm. range.

Controller No: Optimized Random K-Means Optimized Random K-Means
(1000 m) (1000 m) (1000 m) (3000 m) (3000 m) (3000 m)
1 70 29 9 209 123 136
2 44 20 38 203 62 179
3 35 61 51 191 257 243
4 49 49 34 186 113 173
5 85 18 36 237 109 167
6 39 25 38 167 177 176
7 39 33 47 173 126 190
8 32 31 75 162 171 238
9 40 40 64 173 225 211
10 82 42 86 252 69 259
Covered Nodes 515 348 478 1953 1432 1972
Uncovered Nodes 1485 1652 1522 47 568 28
Coverage (%) 25.75 17.4 239 97.65 71.6 98.6

32 T T T T T T T T

Best Fitness Value

29

2385 -

10 20 30 40 50 60 70 80 90 100
Generation

Figure 15. Convergence curve of the hybrid GA-PSO optimization.

For comparative analyses, the proposed algorithm was evaluated with other algo-
rithms presented in a related work section. The DEWO [13] algorithm utilized 50-150 nodes
with a maximum of 40 controllers, results demonstrating latency and link-failure reduc-
tions of 7-20% in comparison with PSO, whereas the proposed approach achieved a 39.6%
improvement in latency compared to random placement. The ESFO + POCO [16] algorithm
improved latency by 22.2% compared to PSO (about 514 miles or 827 km), but it did not
include fault tolerance; in contrast, the proposed model achieved a fault tolerance of 0.60
by overlapping controller coverage. The HSA-PSO [22] lowered latency by 50%, reduced
round-trip time from 14.7 ms to 7.3 ms, and achieved a reliability of 0.95, whereas the
proposed GA-PSO demonstrates comparable reliability, with a packet loss of 2.35% at a
communication range of 3000 m and 74.25% at 1000 m. Overall, the proposed algorithm
achieved improved results across multiple metrics, including latency, load balancing, packet
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loss, redundancy, and fault tolerance, compared to other methods for Kaunas (Lithuania)
smart city network, consisting of 2000 nodes and 10 controllers.

5. Conclusions

This study presents a hybrid optimization algorithm combining GA and PSO for
effective controller placement in large-scale IoT networks. The method was evaluated
using real map and geographic data for the city of Kaunas (Lithuania). The proposed
approach was evaluated using MATLAB and tested under three scenarios: normal opera-
tion, node failures, and traffic spikes. These results were compared against K-Means and
random controller placement strategies across multiple performance metrics. The proposed
method outperformed the other approaches in all metrics except packet loss and energy
use metrics at a communication range of 3000 m, where K-Means achieved 1.40% and
1201.89 (Mbps.m?) (x 10°). The hybrid GA-PSO approach achieved a low average latency
of 1459.67 m, improved load balancing with a variance of 45.89 Mbps?, and achieved a
fault tolerance value of 0.60 at 3000 m communication range. These results indicate that
the hybrid algorithm performed well in terms of latency, reliability, and scalability for
optimized controller placement in large-scale IoT-based in Kaunas (Lithuania) city. The
communication range was found to affect only packet loss and fault-tolerance metrics.
These results demonstrate that the proposed method provides a resilient, balanced, and
scalable controller placement strategy, which makes it highly suitable for smart city loT
deployments. The proposed hybrid GA-PSO approach exhibits superior performance in
large-scale IoT networks compared to random and K-Means; however, the study has certain
limitations that must be acknowledged. The analyses relied solely on simulation-based
studies instead of implementation in a real-world environment. The network topology was
specifically implemented for the city of Kaunas (Lithuania), using its geographic topol-
ogy and node-density assumptions. This is a realistic case study; however, the outcomes
may vary for other cities with different sizes and densities. Additionally, the parameters
of the hybrid GA-PSO method (population size, iterations, and weighting factors) were
empirically selected and may need modification for different contexts or larger-scale imple-
mentations. Future work should address these limitations by implementing the algorithm
within a practical SDN-based IoT network, using adaptive traffic models, and validating
this methodology across many heterogeneous smart city topologies to ensure generaliz-
ability and scalability. In addition, while this study compared the proposed algorithm
with random and K-Means placements, future results will include comparisons with meta-
heuristic algorithms, such as Grasshopper Growth Optimization (GGO) and Takagi-Sugeno
Fuzzy Inference System-based Grey Wolf Optimizer (TSFIS-GWO), to further evaluate the
performance of the proposed algorithm.
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