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1. Introduction 
 
 Field programmable gate arrays (FPGAs) are digital 
devices that can implement logic circuits required by users 
in the field. As a result, most prototypes and many 
production designs are now implemented on FPGAs, 
making hardware implementation economically feasible 
even for those applications which were previously 
restricted to software implementation. There are many 
different architectures of FPGAs driven by different 
programming technologies. One important class is the 
SRAM based FPGAs, also called the look-up table (LUT) 
FPGAs. Such a programmable circuit consists of a matrix 
of logic modules and interconnection elements. 
 As the use of FPGAs in commercial products 
becomes more widespread, the importance of reliability 
and test obtains a great value. For reprogrammable FPGAs 
two types of testing can be considered [1]. One is the 
testing of unprogrammed FPGAs which is accomplished 
by the producer right after manufacturing (Manufacturing-
Oriented Test Procedure, MOTP). The other is the testing 
of the programmed FPGA which is accomplished by the 
user when the device is deployed by a given application 
(Application-Oriented Test Procedure, AOTP). An 
unprogrammed FPGA can realize many different 
programmed FPGAs by loading different programs. 
Theoretically, to test the unprogrammed FPGA, we might 
have to test all the programmed FPGAs obtained from the 
unprogrammed FPGA. FPGAs appear as very complex 
circuits and all papers that consider the testing of FPGA 
use a classical divide and conquer approach. Usually each 
paper targets a specific FPGA part: the logic cells [2, 3], 
the memory cells [4], the interconnect cells [5]. All above 
mentioned papers are devoted to unprogrammed FPGAs. 
There are only few papers devoted to programmed FPGAs 
[1, 6, 7]. These papers also use the same divide and 
conquer approach and consider faults only in the logic 
cells. It is possible to distinguish among them only two 
slightly different approaches. Both of them agree that the 
test vectors computed by a gate level test pattern generator 
with the gate level circuit netlist and stuck-at faults 
produce a low coverage according to the FPGA 
implementation. A FPGA logic implementation can be 
used for the test pattern generation and leads to better 
results. The papers [1, 6] consider the adoption of the 

classical test pattern generator investigating the active 
logic cell FPGA description of the application configured 
in FPGA. But a FPGA description is by definition much 
more complex than the circuit netlist because of the inherit 
flexibility of the FPGA. Consequently, the authors [1, 6] 
noticed that the initial FPGA description has a huge 
number of application configuration (AC) redundant faults. 
Therefore they defined different classes of AC-redundant 
faults: a) AC-redundant faults due to logical redundancy; 
b) AC-redundant faults due to unused logic; c) AC-
redundant faults due to the constant signal. Elimination of 
redundant faults from the list gives the reduction from 4% 
to 93%. But in that approach, the model describing the 
possible faults affecting the configuration memory is 
approximate, since it does not consider the faults affecting 
the values of the memory cells composing each LUT. It 
considers only the faults affecting the value of the output 
of the LUT. 
 On the other hand, the approach [7] extends the set of 
faults in comparing with [1, 6] by adding the faults 
affecting the LUT bit cells. But the paper [7] does not 
propose the method how to generate the test patterns to 
detect these faults. The paper only states the fact that the 
fault coverage is generally low of the faults which affect 
the LUT bit cells when the classical test pattern generator 
is used. The paper also demonstrates the fact that there is 
almost no difference which test pattern generator to use: 
the gate-level commercial ATPG or a RT-level academic 
ATPG. 
 In this paper, we propose an approach of the 
exhaustive testing of logic cells for an FPGA configured 
circuit to implement a given application. In our approach, 
we apply the exhaustive test pattern generation for every 
logic cell. Such an approach lets to neglect the inner 
structure of the logic cell and test patterns generated 
according to our approach are able to detect all inner 
defects of logic cells that could be detected by a single test 
pattern. As experimental results show, the exhaustive 
testing cannot be established for all logic cells due to 
problems controllability or observability. Reconfiguring an 
application-oriented FPGA into a tree like structure can 
solve this problem, but the FPGA configuration process is 
an excessively time-consuming. 
 The paper is organized as follows. Section 2 
introduces a new model of the configurable logic block. 
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Section 3 analyzes the process of the test pattern 
generation for the FPGA configured circuit. Section 4 
presents and comments experimental results. Section 5 
draws main conclusions. 
 
2. The circuit transformation 
 
 In AOTP approach the user needs to test only the part 
of the FPGA used by the configured application. We 
restrict our investigation to CLBs only. But as distinct 
from the approaches [1, 6, 7] we do not investigate the 
structure of the CLB. Such an approach relies on our 
model of the CLB. Tests constructed according to our 
model of the CLB ensure the detection of all faults related 
to the inner structure of the CLB that can be detected by a 
single test pattern. 

The testing of CLBs is similar to the classical TPG 
problem for ASIC circuits. But in the context of FPGA 
implementation, test vectors computed by classical TPG 
tool with the circuit netlist and adequate fault models 
produce a very low fault coverage [6]. This is mainly due 
to the fact that the circuit netlist used in the design phase 
before implementation into the FPGA does not contain any 
structural information on the final physical FPGA. A more 
accurate approach needs to consider – the real circuit 
mapped into a FPGA and a suitable fault model. 

For a CLB, a fault may occur at the memory matrix, 
decoder, inputs and outputs of a CLB. A faulty matrix has 
some memory cells that are incapable of storing the correct 
logic values (stuck-at 1 or stuck-at 0 may occur at a 
memory cell). If a fault occurs at the decoder, then 
incorrect access, non-access or multiple access faults may 
occur. Consider an example. Let's say, the CLB under 
consideration accomplishes two inputs AND function. To 
detect all its single stuck-at faults, we have to construct 3 
test patterns (0,1), (1,0), (1,1). The last possible test pattern 
(0,0) is not included into the test sequence. Let's say, this 
CLB because of a memory bit fault changes the function to 
NOR (Table 1). As we can see from the fifth column of 
Table 1, such a change of the function can be detected by 
the third test pattern. So, no additional test patterns are 
needed to detect such a change of the function. But if the 
CLB function because of the LUT memory bit fault 
changes to NOT(A) XOR B, such a fault cannot be 
detected by the first three test patterns. Only the test 
pattern (0, 0) which was initially unused can detect such a 
change of the CLB function. 

 
Table 1. Test patterns for 2 inputs CLB 

A B A AND B A NOR B NOT(A) XOR B 
0 1 0 0 0 
1 0 0 0 0 
1 1 1 0 1 
0 0 0 1 1 

 
Consider another example, presented in [7], where 

the CLB function L = (A AND B) OR C is given. All 
single stuck-at faults can be detected by four test patterns 
(Table 2): the first three test patterns {1, 2, 3} and one test 
pattern from the last three patterns {4a, 4b, 4c}. To detect 
the fault C Sa0, any of test patterns 4a, 4b or 4c can be 
used. There are unused four test patterns. Let's say, the 

CLB because of the LUT memory bit fault changes the 
function to LF = (A AND B) OR (NOT(B) AND C). An 
interesting situation arises. If an initial test set included the 
test pattern number 4a, this fault would be detected. But if 
an initial test set included a test pattern 4b or 4c, the fault 
would not be detected. There is no guarantee that the test 
pattern generator would include the test pattern number 4a. 
Therefore, in general, the fault is not detected by the initial 
four test patterns. 

 
Table 2. Test patterns for 3 inputs CLB 
N A B C NOT B L LF 
1 0 1 0 0 0 0 
2 1 0 0 1 0 0 
3 1 1 0 0 1 1 
4a 0 1 1 0 1 0 
4b 1 0 1 1 1 1 
4c 0 0 1 1 1 1 

 
Note that a standard CLB usually has 4 address 

inputs. It means that more complicated functions than in 
case of 2 or 3 inputs can be constructed. Consequently, 
more changes because of memory bit faults can be made to 
the original function. These faults as we saw from the 
previous two examples cannot be detected by the test 
patterns devoted to detect all single stuck-at faults of the 
original function. Therefore we suggest to apply the 
exhaustive testing of the CLB function. Only the 
exhaustive testing of CLB ensures detecting of all possible 
function changes. If a CLB has 4 address inputs, so it has 
to be checked with all 24 different test patterns.  

Now a single problem arises – how to generate 
exhaustive test patterns for each CLB of the FPGA mapped 
circuit. One possible solution is to use the classical stuck-at 
fault test pattern generator. Since stuck-at fault test 
generation tools are mature and highly efficient, it is 
conceivable that utilizing a stuck-at fault test generation 
tool for the exhaustive testing of CLB would be very 
effective. But the classical test pattern generator is able to 
generate test patterns only for single stuck-at faults. 
Therefore, there is a need for the circuit transformation. A 
circuit has to be transformed in such a way that this 
transformation would not change the function of the circuit 
and would compel the test pattern generator to test 
exhaustively every CLB in the circuit. A circuit 
transformation should transform a given circuit into 
different one before the test pattern generation. Then tests 
are generated for the transformed circuit. After that, the 
generated tests for the transformed circuit are directly 
applied without transformation for the original circuit. 

We suggest to change every 2 inputs CLB by the 
circuit presented in Fig.1. This transformation satisfies all 
restrictions (the transformation of the circuit does not 
change the function of the circuit, the test pattern generator 
is compelled to test exhaustively every CLB in the circuit) 
presented in the above paragraph. Let's consider this 
circuit. As we see from Fig.1 every 2 inputs CLB is 
changed by the CLB itself and a multiplexer. Inputs of the 
CLB become controlling inputs of the multiplexer. The 
output of the CLB is connected to every data input of the 
multiplexer. Stuck-at faults are injected only on the data 
inputs of the multiplexer. So we have 8 stuck-at faults on 
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the inputs of the multiplexer. To test stuck-at faults on the 
first input of the multiplexer, the test generator has to 
assign to the controlling inputs test pattern (0, 0). But these 
inputs are also inputs of the CLB. So the inputs of the CLB 
also get the combination (0,0). To test stuck-at faults on 
the second input of the multiplexer, the test generator has 
to assign to the controlling inputs test pattern (0, 1). In 
such a way, the test generator provides all 4 combinations 
to the inputs of the CLB. Such a test is an exhaustive test 
of the address inputs of the CLB. Therefore the 
transformation presented in Fig.1 ensures the exhaustive 
testing of the 2 inputs CLB. The same principle of the 
transformation is applicable to any number inputs of the 
CLB.  
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Fig. 1. The transformed 2 inputs CLB 
 
3. Test pattern generation 
 
 It is necessary to notice that some faults in the 
proposed model are redundant. Consider the transformed 
CLB in Fig.1. As we remember the faults are injected on 
the data inputs of the multiplexer. Let's say CLB 
implements 2 inputs AND function. Then test pattern (0, 0) 
implies at the output of the CLB value 0 and this pattern 
for the multiplexer selects the first data input which has the 
value 0. Consequently, the fault Sa1 on the first data input 
of the multiplexer can be detected. But there is no test to 
detect the fault Sa0 on this input, because there is no 
possibility to provide the value 1. All other test patterns 
select other data inputs of the multiplexer. The test pattern 
(0, 1) implies the value 0 at the output of the CLB, selects 
the second data input of the multiplexer and can detect the 
fault Sa1 on this input. The fault Sa0 on the second data 
input can not be detected as well. The similar situation is 
with the other two test patterns. Initially we proposed to 
inject 8 stuck-at faults on the inputs of the multiplexer. But 
as we see, half of them is redundant. This is true for any 
function of the CLB. If 2 inputs CLB implements AND 
function redundant faults are: 

• Sa0 on the first data input of a multiplexer; 
• Sa0 on the second data input of a multiplexer; 
• Sa0 on the third data input of a multiplexer; 
• Sa1 on the fourth data input of a multiplexer. 

If 2 inputs CLB implements OR function redundant faults 
are: 

• Sa0 on the first data input of a multiplexer; 
• Sa1 on the second data input of a multiplexer; 
• Sa1 on the third data input of a multiplexer; 
• Sa1 on the fourth data input of a multiplexer. 
Thus redundant faults depend on the function of the 

CLB. Therefore there are two approaches for the test 
pattern generation: a) blind approach; b) targeted approach. 

In the blind approach, the functions of the CLB are not 
taken into account. Two faults are injected on every data 
input of the multiplexer. When the test pattern generator is 
not able to find a test for the target fault such a fault is 
declared as untestable. Of course, there is a possibility to 
make an improvement – if a test is already constructed for 
one fault of the input, another fault of this input can be 
declared as redundant and there is no need to generate a 
test for this fault. But we know that a test pattern generator 
is adopted to find test for the target fault. A test pattern 
generator has to spend a lot of time to conclude that the 
target fault is untestable. Therefore a blind approach has 
two deficiencies: 

• spends a lot of time (sometimes hours) trying to 
construct a test for a redundant fault when before the test 
generation there is a possibility to identify that there is no 
test for such a fault. 

• can not distinguish between redundant and 
untestable faults. 

From the first sight the second conclusion may seem 
wrong. It is possible to argue that when a test constructed 
for one fault, the other fault of this input can be declared as 
redundant despite of the order of the generation for these 
faults. This is true when a test is constructed for one fault. 
But there can be situations when there is no possibility to 
find the test for both faults of the input because the input is 
not controllable or the output is not observable. In this 
situation, there is no possibility to distinguish which fault 
is redundant without considering a function of the CLB. 

We believe the targeted approach is more preferred. 
In the targeted approach, the preprocessing step is taken 
before the test pattern generation. The functions of the 
CLB are analyzed and redundant faults are excluded from 
the list. The redundant faults will not be shown in the fault 
coverage statistics. In this case, if a test pattern generator is 
not able to construct a test for the target fault, this fault is 
really untestable. 

A very similar approach for the exhaustive testing of 
high-level modules is applied in papers [8] where the 
model of the input pattern (IP) fault is presented. But these 
papers differ in the following: 

• they do not target FPGA; 
• the application of the multiplexer has the same goal 

but the multiplexer is adopted in a different manner. 
We believe that our way of the adoption of the 

multiplexer is much simpler. A definition [8] of the IP fault 
model when a high-level module has a single output 
matches the faults used in our approach, therefore in the 
following we will use this term in order to distinguish from 
the classical stuck-at faults. Each IP fault of the module 
with a single output corresponds to the single input stimuli 
of the module. The detecting of all IP faults of the module 
corresponds to the exhaustive testing of the module. 
 
4. Experiments 
 

In the experiments, we used circuits from the 
ISCAS'85 benchmark suite. The circuits were mapped into 
FPGA using the SynopsysTM synthesis tool and VirtexTM-II 
library. Tests for the transformed circuit were generated by 
the SynopsysTM test generation tool TetraMaxTM. 
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 The test generation was carried out for three circuits 
from the benchmark suite ISCAS'85: c432, c880 and 
c5315. The numbers of CLBs of all three circuits are 
presented in Table 3. 
 

Table 3. The CLBs of FPGA configured circuits 
Circuit 2 inputs 

CLB 
3 inputs 
CLB 

4 inputs 
CLB 

Total 

C432 11 10 50 71 
C880 21 21 79 121 
C5315 109 62 319 490 

  
The results of the test generation for IP faults are 

presented in Table 4. The total number of IP faults is the 
total number of the input stimuli of CLB implied by the 
exhaustive testing and can be counted as follows: the 
number of 2-inputs CLBs multiplied by 22 plus the number 
of 3-inputs CLBs multiplied by 23 plus the number of 4-
inputs CLBs multiplied by 24. The total number of IP faults 
is calculated according to the figures in Table 3. 

 
Table 4. Test generation for FPGA configured circuits 

Circuit Total Detect Rdun Rdun  % 
FPGA 

Rdun % 
gate lev 

C432 924 745 179 19.37 9.6 
C880 1516 1442 74 4.87 6.1 
C5315 6036 5392 644 10.67 15.8 

  
The column under name "Rdun % (FPGA)" of Table 

4 shows that every circuit has some fraction of 
redundancy. The proof of the existence of the redundancy 
costs some efforts. We would like to pay attention to the 
fact that tests were generated by the automatic test pattern 
generator. Such a generator usually abandons some faults 
due to run time restrictions. The similar situation was in 
our case. When a fault is abandoned, it is not clear if this 
fault is untestable or hard-to-detect. To resolve this 
situation the model of the transformed circuit was 
minimized by deleting multiplexers for CLBs that did not 
have undetected faults. Then the test generation for 
undetected faults was repeated. The process of 
minimization and generation was repeated several times. 
When the minimization did not lead to the solution the 
time of generation for a single fault was increased. The 
increase of time for a single fault was repeated until there 
were no abandoned faults. Of course, in some cases the 
time of the test generation increased from few seconds to 
hours, but therefore we can say for sure that undetected IP 
faults are redundant. 

The last column of Table 4 is presented for 
comparison purposes. It shows a redundancy at gate level 
of the circuit. The numbers of this column were taken from 
the paper [8]. As we can see the tendency of the 
redundancy of IP faults for FPGA mapped circuits and 
their gate level equivalents is quite different. The only 
circuit c880 has similar numbers while the other two 
circuits have very different numbers. Such a result only 
confirms the fact that the FPGA implementation of the 
circuit is very different from its gate level equivalent.  

The faults that are untestable in the given application 
of the FPGA mapped circuit may be testable in the other 
configuration. A configuration that will have no untestable 
faults is a tree like structure of the circuit. Therefore the 

untestable faults of the given application can be easily 
tested if the CLBs of the given application were 
reconfigured into a tree like structure. Of course, it needs 
to note that such a reconfiguration changes the initial 
function of the given application and a configuration 
process is excessively time-consuming. 
  
 Table 5. The comparison of test lengths 

Circuits No RC No R1 No RG No B2 No B3 
C432 232 57 73 122 1123 
C880 216 62 92 379 4955 
C5315 332 130 168 1113 4598 

R1 – The non-redundant ISCAS’85 benchmark circuit 
RG – The gate level replacement of CLBs of FPGA  
RC – FPGA configured circuit 
B2 – Black Box model 2D matrix 
B3 – Black Box model 3D matrix 
 

The length and the coverage of the generated test 
sequence for the FPGA mapped circuit were compared 
with appropriate sizes of test sequences for other 
implementations of the circuit. The comparison of lengths 
of test sequences is presented in Table 5. We used for 
comparison the gate level tests of the original gate level 
circuit (R1), the tests for gate level replacement of the 
FPGA mapped circuit (RG). The latter implementation was 
included in the hope that it would have results of the test 
generation similar to the FPGA mapped circuit constructed 
of CLBs. As we will see later this hope did not stand – this 
implementation behave like the other gate level 
implementations. If were compared the lengths of tests 
only of these three implementations, the longest tests are of 
FPGA mapped circuits which were checked by the 
exhaustive testing of all input stimuli (RC). We also 
included for comparison tests generated according to the 
black box model of the circuit on the base of a two 
dimensional matrix (B2) [9] and on the base of a three 
dimensional matrix (B3) [10]. These tests are longer than 
for the FPGA mapped circuit, especially tests generated on 
the base of a three dimensional matrix. But we would like 
to pay attention that tests generated according to the black 
box model do not take into account the structure of the 
circuit. When the structure of the circuit is known it is 
possible to select quite a smaller subset of the initial set by 
means of the fault simulation. 

The experiment shows that the exhaustive testing of 
CLBs cannot be established. Therefore the decision was 
made to analyze the reasons of this phenomenon. The 
circuit C432 was chosen for the experiment. The CLBs of 
the mapped into FPGA circuit C432 were leveled 
according to their distance to the primary inputs. Then the 
CLBs were grouped into groups according to their level 
and their number of inputs. The groups were formed of 
three consecutive levels of CLBs that an information 
would be presented in manageable quantities. The results 
are presented for each such group separately in Table 6. As 
we see only the first group of CLBs which is located 
nearest to the primary inputs has the 100% coverage of IP 
faults. Therefore the investigation was carried out to 
understand why IP faults of other groups are not fully 
detectable. All outputs of all CLBs were made like primary 
outputs. That ensures the propagation of all input IP faults 
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to the primary outputs. Such an experiment allows to 
distinguish between the problems of controlling the values 
on the inputs of the CLBs and propagating these values to 
the primary outputs. The experiment showed that none new 
group got a 100% coverage of IP faults. An increase was 
observed only for the groups of levels 10-12 and levels 13-
15. The increase for the whole circuit was observed only 
from 80.63% to 84.30% of the IP fault coverage. 15.70% 
of IP faults were untestable because there was no 
capability to set an appropriate stimuli on the inputs of the 
CLB, 3.73% (84.30% - 80.63%) of IP faults were 
untestable because their effects were not propagated to the 
outputs of the circuit. It means that the function of the 
circuit restricts the capabilities to construct a certain 
stimuli on the inputs of the CLBs. The propagation of the 
stimuli to the primary outputs is a smaller problem. 
 
Table 6. Results of C432 
Levels 2 in 3 in 4 in Total (%) 

Number of CLB 8 0 3 11  
Total IP faults 32 0 48 80  
Detected 32 0 48 80 100 

1-3 

Undetected 0 0 0 0  
Number of CLB 0 4 12 16  
Total IP faults 0 32 192 224  
Detected 0 17 166 183  81.69 

4-6 

Undetected 0 15 26 41  18.31 
Number of CLB 0 5 14 19  
Total IP faults 0 40 224 264  
Detected 0 15 170 185  70.07 

7-9 

Undetected 0 25 54 79  29.93 
Number of CLB 0 1 13 14  
Total IP faults 0 8 208 216  
Detected 0 8 158 166  76.85 

10-12 

Undetected 0 0 50 50  23.15 
Number of CLB 3 0 8 11  
Total IP faults 12 0 128 140  
Detected 12 0 119 131  93.57 

13-15 

Undetected 0 0 9 9    6.43 
Number of CLB 11 10 50 71  
Total IP faults 44 80 800 924  
Detected 44 40 661 745  80.63 

Total 

Undetected 0 40 139 179  19.37 
  

When the tests were constructed for all considered 
implementations we crossed over the tests and the 
implementations. The results are presented in Table 7 and 
Table 8. Table 7 shows the results of the application of 
tests of various implementations to detect IP faults. We 
note that only testable IP faults were used in the 
experiment. These results were separated because the 
considered faults in this implementation are different from 
all the other implementations. The faults of the 
implementation RC denote IP faults of CLBs meanwhile 
the faults of all the other implementations are classical 
stuck-at faults. The tests generated according the black box 
model can detect 96.56% of IP faults (2D matrix) and 
99.35% of IP faults (3D matrix). These numbers are quite 
higher than the numbers of the other implementations 
which were gate level except the tests that were targeted to 
the IP faults. 

Table 8 includes the results of detecting stuck-at 
faults of various implementations by test patterns 
generated according to various models. The 

implementation RG (the gate level replacement of CLBs of 
FPGA) unlike the other implementations had redundant 
faults. These faults are excluded from the list of faults and 
their number is shown separately after the sign "+" in the 
line "#faults". We also included in this investigation two 
extra implementations: R2 – the synthesized original 
circuit on the base of library class.db, and R3 – the 
synthesized original circuit on the base of the library 
and_or.db. The tests were not constructed for these 
implementations separately. 
 

Table 7. Testing of FPGA mapped circuits 
Circuit #IP 

faults 
RC 
% 

R1 
% 

RG 
% 

B2 
% 

B3 
% 

C432 745 100 79.33 71.01 78.12 96.37 
C880 1442 100 76.63 86.34 95.90 98.75 

C5315 5392 100 92.10 94.20 99.29 99.92 

 
  
Table 8. The test generation for stuck-at faults 

Circuits Implementations 
 Test R1 R2 R3 RG 
C432 # faults 507 420 460 430+9 

R1 100% 99.05% 99.78% 98.37% 
RG 99.21% 99.29% 100% 100% 

 

RC 99.80% 99.76% 100% 100% 
 B2 96.05% 97.85% 98.69% 96.27% 
 B3 100% 100% 100% 100% 
C880 # faults 942 854 928 970+48 

R1 100% 99.88% 100% 98.25% 
RG 99.79% 100% 100% 100% 

 

RC 99.79% 99.88% 99.89% 100% 
 B2 99.89% 99.88% 99.89% 99.89% 
 B3 100% 100% 100% 100% 
C5315 # faults 5248 3875 4130 3931+92 

R1 100% 99.74% 99.76% 99.47% 
RG 99.09% 99.41% 99.64% 100% 

 

RC 99.68% 99.95% 100% 100% 
 B2 100% 100% 100% 100% 
 B3 100% 100% 100% 100% 

 
The tests B3 suit best of all for different 

implementations. But we do not have to forget that the 
purpose of these tests is just the same – to suit to any 
implementation of the given function. The diversity of tests 
B2 and tests RC is comparable. The tests B2 quite well suit 
for the implementation RC of the circuit, except the circuit 
C432. The tests RC (IP faults) show a very high fault 
coverage (aproximately 100%) for all circuits at the gate 
level implementation. It means that tests generated for IP 
faults suits very well for any implementation of the given 
circuit. 
 
5. Conclusions 
 

The paper proposes a testing approach for an 
FPGA configured circuit to implement a given application. 
This approach is based on the exhaustive testing of every 
logic cell. The exhaustive testing of logic cells ensures the 
detection of all defects in the inner structure of the logic 
cell. This does not depend on what configuration of the 
inner structure of the logic cell is used. The exhaustive 
testing of logic cells detects all defects that could be 
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detected by a single test pattern. But the length of the test 
is increased and a construction of such test requires some 
extra time to prove that certain combinations are 
untestable. The structure of the circuit restricts the 
capabilities of checking  every logic cell in the circuit 
exhaustively. The experimental results showed that the 
exhaustive tests of the FPGA mapped circuit are 3.13 times 
longer in average than the tests for the equivalent gate 
level circuit. The tests of the gate level circuit can detect 
87.90% of input patterns faults in average. The fault 
simulation experiments indicated that tests generated to 
detect input patterns faults have a strong tendency to detect 
non-targeted faults. These tests can detect 99.81% stuck-at 
faults in average of various implementations of equivalent 
gate level circuits. Our work proved that there is no need to 
consider internal faults of FPGA logic cells. 
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E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas. FPGA loginių ląstelių testavimas // Elektronika ir elektrotechnika. - Kaunas: 
Technologija, 2004. - Nr. 7(56). – P.37–42. 

Pagamintoms FPGA testuoti naudojamos kelios konfigūracijos ir konfigūruojami loginiai blokai (KLB) tikrinami parenkant visus 
rinkinius. Kai FPGA jau turi nustatytą funkciją, jai tikrinti visiško perrinkimo rinkiniai taip pat būtų labai pageidautini, nes reikia 
patikrinti visus išrinkimo lentelių bitus. Visiško perrinkimo testams sudaryti schema transformuojama. Kiekviena loginė ląstelė yra 
papildoma skirstikliu. Konstantiniai gedimai įvedami tik skirstiklio duomenų įėjimuose. Toks būdas leidžia naudoti klasikinį ventilio 
lygmens testų generatorių ir užtikrina visišką kiekvienos ląstelės perrinkimą. Pasiūlytas metodas buvo panaudotas ISCAS85 schemoms. 
Atlikti eksperimentai parodė, kad visiško perrinkimo rinkiniai gerai tinka įvairioms tos pačios schemos realizacijoms. Il. 1, bibl. 10 
(anglų kalba; santraukos lietuvių, anglų ir rusų k.). 

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas. Testing of FPGA Logic Cells // Electronics and Electrical Engineering. - 
Kaunas: Technologija, 2004. – No. 7(56). – P.37-42. 

The manufacturing test procedure of RAM-based FPGAs uses several configurations and the exhaustive testing of all configurable 
logic blocks (CLB). The transformation of the circuit is applied during a test pattern generation. A multiplexer is added to every logic 
cell in such a way that it does not change a function of the circuit. The stuck-at faults are injected only on the data inputs of the 
multiplexer. Such an approach allows to use a classical gate level test pattern generator and ensures an exhaustive testing of every logic 
cell. The proposed approach was used to generate test sets for ISCAS85 benchmarks that were mapped into FPGA. We also conducted 
fault simulation experiments that show exhaustive test patterns are effective in detecting faults of different implementations of the same 
circuit. Ill.1, bibl. 10 (English, Abstracts in Lithuanian, English and Russian). 

Э. Барейша, В. Юсас, К. Мотеюнас, Р. Шейнаускас. Тестирование логических блоков ПЛМ  // Электроника и 
электротехника. – Каунас: Технология, 2004. –№7(56). - С.37-42. 

Тестирование ПЛМ можно разделять на две категории: тестирование после производства и тестирование после загрузки 
конкретной функции. Тестирование после производства включает несколько конфигураций и подачу полного перебора 
тестовых наборов. В статье предлагается использовать эту же методику и для тестирования конкретной функции ПЛМ. Для 
того чтобы можно было использовать обычный генератор тестовых наборов для вентильного уровня каждый логический блок 
дополняется мультиплексором. Эксперименты были проведены для цифровых схем ISCAS85. Ил. 1, библ. 12 (на английском 
языке; рефераты на литовском, английском и русском яз.). 
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