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ABSTRACT: This study introduces a novel voice cloning framework driven by Mordukhovich Subdifferential
Optimization (MSO) to address the complex multi-objective challenges of pathological speech synthesis in under-
resourced Lithuanian language with unique phonemes not present in most pre-trained models. Unlike existing voice
synthesis models that often optimize for a single objective or are restricted to major languages, our approach explicitly
balances four competing criteria: speech naturalness, speaker similarity, computational efficiency, and adaptability
to pathological voice patterns. We evaluate four model configurations combining Lithuanian and English encoders,
synthesizers, and vocoders. The hybrid model (English encoder, Lithuanian synthesizer, English vocoder), optimized
via MSO, achieved the highest Mean Opinion Score (MOS) of 4.3 and demonstrated superior intelligibility and
speaker fidelity. The results confirm that MSO enables effective navigation of trade-offs in multilingual pathological
voice cloning, offering a scalable path toward high-quality voice restoration in clinical speech applications. This work
represents the first integration of Mordukhovich optimization into pathological TTS, setting a new benchmark for
speech synthesis under clinical and linguistic constraints.

KEYWORDS: Mordukhovich subdifferential optimization; multi-objective optimization; alaryngeal voice
reconstruction

1 Introduction

Recently, the field of voice cloning and text-to-speech (TTS) synthesis has seen a notable progress [1].
Recent work has explored diverse applications including multilingual zero-shot voice conversion [2], real-
time speech translation in video conferencing [3], and speech accessibility solutions for individuals with
impairments [4,5]. For example, Li et al. [6] demonstrated effective multilingual synthesis with code-
switching capabilities in Tibetan, while Nekvinda and Dusek [7] proposed meta-learning strategies for
multilingual speech. The maturity of modern cloning systems is further reflected in their integration into
educational environments, as shown by [8].

At the core of this evolution is the multispeaker Text-to-speech (SV2TTYS) pipeline, which allows high-
fidelity voice cloning using only a few samples from the target speaker [9]. The architecture, which combines
an encoder, synthesizer, and vocoder, has enabled expressive multi-speaker synthesis with notable improve-
ments in naturalness, speaker fidelity, and data efficiency [10]. Recent innovations such as transformer-based
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models [11] and scalable multilingual synthesis frameworks [12] have further expanded the potential for
cross-lingual cloning.

Despite many technological breakthroughs, several critical challenges remain unresolved:

o  First, although multilingual speech synthesis has become more viable, sound-switching within a single
utterance remains a complex task, requiring models to fluidly merge linguistic elements from different
phonetic inventories while preserving natural prosody and coherence [13,14].

« Second, voice cloning models are typically trained on healthy voices and often fail to generalize
to pathological speech, particularly in cases of alaryngeal voices affected by laryngeal cancer. These
pathological signals can exhibit a wide range of acoustic irregularities—such as disrupted fundamental
frequency, reduced harmonic structure, and excessive noise components—arising from surgical vari-
ability, prosthetic devices, and individual healing patterns [15,16]. As such, conventional models are
ill-equipped to handle the non-stationary and high-variance nature of pathological voice signals.

o Third, most voice cloning research focuses on high-resource languages, overlooking linguistically rich
but underrepresented languages such as Lithuanian. Lithuanian presents distinct phonological features,
including unique vowels and consonants such as “a3,” “¢;” and “¢,” which are absent in mainstream
TTS phoneme inventories [17]. Accurate synthesis in such languages requires an expanded phoneme
set and careful modeling of language-specific prosody and rhythm—capabilities that existing models
generally lack.

To address these intersecting challenges—cross-lingual synthesis, pathological variability, and low-
resource linguistic modeling—we propose a novel framework built around Mordukhovich Subdifferential
Optimization (MSO) [18]. Our approach introduces a principled multi-objective optimization scheme into
the encoder-synthesizer-vocoder architecture, balancing competing criteria such as speech naturalness,
speaker similarity, computational efficiency, and robustness to pathological voice distortions. By integrating
MSO directly into the training and tuning loop, we identify optimal trade-offs between these objectives,
enabling high-quality speech synthesis even in the presence of pathological voice patterns and phonetic
mismatches. The proposed framework is evaluated on multiple encoder-synthesizer-vocoder configurations
(combining English and Lithuanian components) and benchmarked on both subjective and objective
criteria. Compared to our previous work on flow-based pathological synthesis [19] and denoising through
gated LSTMs [20], this study introduces a fundamentally new optimization strategy and targets a more
ambitious goal: restoration of natural-sounding, speaker-specific voices for patients with alaryngeal speech
impairments in a linguistically underserved context.

The main contributions of this paper are as follows:

o Development and validation of a Mordukhovich Subdifferential Optimization to voice cloning, effec-
tively handling non-smooth, multi-objective trade-offs.

« Pathological speech synthesis built specifically for Lithuanian, a low-resource language, requiring novel
phoneme set and prosodic model expansion.

 Identification of an optimal hybrid synthesis architecture, which, when tuned with MSO, demonstrates
a practical enough solution for low-resource clinical applications.

2 Methodology

The optimum selection of acoustic and linguistic features is necessary for capturing the complex
characteristics of pathological speech. Our framework utilizes a comprehensive set of features derived from
the speaker encoder and synthesizer modules, including speaker embeddings that encapsulate timbre, pitch,
and intonation, as well as phoneme sequences and log-Mel spectrograms that represent linguistic and
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spectral content, etc., chosen to balance the competing objectives of naturalness, speaker similarity, and
pathological adaptability, with the Mordukhovich optimizer dynamically prioritizing them during training
to navigate the non-smooth, multi-objective loss landscape inherent in impaired voice signals.

Traditional gradient-based or scalarization methods typically assume smooth objective landscapes and
convex trade-offs, rendering them less effective when applied to clinical voice data characterized by acoustic
irregularities, discontinuities, and high inter-speaker variability. The principal advantage of using MSO over
conventional multi-objective methods, such as weighted sum approaches or just a Pareto front estimation
via evolutionary algorithms, lies in the capacity to handle the non-smooth and non-convex nature of the loss
landscapes associated with pathological voice synthesis. Conventional methods often assume differentiability
or convexity to find a single aggregate solution, which is ill-suited for our problem where objectives such as
natural speech and pathological adaptability can be highly discontinuous due to voice breaks and irregular
glottal pulses. MSO, through its generalized notion of the subdifferential, provides a necessary rigorous
optimality condition without these simplifying assumptions. This allows the optimizer to navigate complex
trade-offs at points where gradients may not exist, effectively identifying robust parameter configurations
that would be inaccessible to gradient-based optimizers. Consequently, MSO systematically discovers a
solution where the subgradients of the competing losses are balanced, leading to synthesized speech that
maintains high naturalness and speaker similarity without sacrificing the critical, nonsmooth features that
characterize pathological voices.

2.1 Dataset

Two datasets were used to train the synthesizer model in our approach. The first dataset consisted of
pathological speech, which is used to extract vocal features. The dataset was comprised of 154 laryngeal
carcinoma patients’ recordings, drawn from 77 individuals, and was specifically compiled for this study.
The cohort of patients consisted of individuals who had undergone extensive surgical procedures (including
type III cordectomy and beyond, partial or total laryngectomy) for histologically confirmed laryngeal
carcinoma. Only recordings of patients who scored less than 40 points on the Impression of Voice Quality,
Intelligibility, Noise, Fluency, and Quality of Voicing (IINFVo) scale were included, ensuring the presence
of speech impediments in the samples. These samples were collected during routine outpatient visits, not
earlier than 6 months after surgery, allowing sufficient time for recovery and rehabilitation. The recordings
included phonetically balanced Lithuanian sentences (“Turéjo senelé Zilg oZel1” (roughly translatable as “The
grandmother had a little gray goat”)) and patients counting from 1 to 10 at a moderate pace.

The second data set (Liepa2) contained healthy speech recordings and was used as a core train-
ing resource [21], containing the healthy-sounding characteristics of Lithuanian speech of approximately
1000 h of audio recordings, featuring a diverse range of 2621 speakers (56% female and 44% male, young
voices under 12 years of age, which make up 8% of the dataset, to mature voices over 61 years of age,
accounting for 10%,), designed to reflect the rich phonetic and prosodic landscape of the Lithuanian
language [22].

Each audio recording in both data sets was annotated to mark the beginning and end of segments,
delineated by pauses that could signify a comma, the end of a sentence, or a breath. We excluded sequences
containing nonphonemic sounds such as coughs or breaths that are marked by symbols like “+breath+”
or “+noise+’, to ensure that the model’s learning is concentrated on linguistically relevant sounds, thereby
improving the quality and clarity of the synthesized speech.

To date, there are no comparable open-access datasets for pathological voices for other languages that
would allow meaningful cross-language or cross-dataset validation; therefore, the data set is specific to the
underrepresented in research morphologically rich Lithuanian language. The scarcity of other data sets
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meaningful for comparison is due to the clinical specificity of the speech impairments involved, which
vary widely depending on the type of surgical intervention, the stage of rehabilitation, and the individual
anatomical differences. As a result, expanding the dataset or incorporating external corpora is currently
not feasible, and we believe that the proposed optimization framework at least partially addressed this with
sufficiently robust performance even under low-resource and clinically constrained conditions.

2.2 Dataset Partitioning and Augmentation

All splits are speaker-independent, every patient’s recordings were assigned to exactly one subset
to prevent information leakage. We use a stratified 70/15/15 train/validation/test split at the speaker level,
stratifying by surgery type (ELS III-VI vs. partial vertical laryngectomy) to preserve case mix.

To reduce overfitting while respecting pathological signal characteristics, we applied light, clinically
plausible augmentations during training only: (i) time-stretch € [0.95,1.05] (phase-preserving), (ii) small
pitch shifts € [-1,+4] semitone with formant preservation (e.g., PSOLA/WORLD), (iii) additive noise
at SNRs € {20,25,30} dB (recording-like stationary noise), (iv) mild room impulse response convolu-
tion (T60 <250ms), and (v) spectrogram domain masking (time masks < 40 ms, frequency masks < 6
mel bins). Augmentations are not applied to validation/test data and are disabled for samples used in

subjective evaluation.

2.3 Mordukhovich Subdifferential Optimization (MSO)

MSO adjusts the complexity of the Speaker Encoder and Synthesizer modules to optimize processing
speed without compromising the quality of the generated speech. The goal is to generate voice outputs that
closely mimic the healthy (pre-operation) speaker’s characteristics while ensuring that the speech remains
natural and intelligible. MSO allows robust adaptation to pathological speakers without extensive retraining by
applying subdifferential-based methods to identify optimal parameter settings and training strategies that
balance learning speed with model performance.

Let us define the objectives as follows:

fi(x) is the speech naturalness

f2(x) is the speaker similarity

f3(x) is the computational efficiency

o fu(x) is the adaptability to diverse voice types, including pathological voices

where x represents the vector of model parameters and configurations.

The multi-objective optimization problem is stated using Mordukhovich subdifferentials as:
min ((x), fs(x), .. fi (x)) ®

subject to: x € X', where X" denotes the feasible set of model parameters and configurations. Each objective
function f; : R"” — R is assumed to be weakly sequentially lower semicontinuous and possibly non-smooth.

A solution x* is said to satisfy the optimality conditions if the Mordukhovich subdifferentials of the
objectives at x* satisfy the following system:

k
0€ > Xidfi(x*) + Ny(x*), ()
i=1

where df;(x*) represents the Mordukhovich subdifferential of the i-th objective at x*, A; > 0 are scalar
weights (Lagrange multipliers) satisfying ¥*_, A; = 1,and Ny (x*) denotes the normal cone to the feasible set
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X at x*. The term Ny (x*) accounts for the constraints imposed by X. The system of equations is rewritten
for each objective f; as:

Afi(x)+id; =0, Vie{l2,...,k}, (3)

where d; is a direction vector that represents the descent direction for the i-th objective. The necessary
optimality conditions require that:

d; e Ty(x*), Vi, (4)
where Ty (x*) is the tangent cone to the feasible set X at x*.

The scalar multipliers A; are derived by solving:

k k
ma)k(ZAi(di,g) subjectto A; > 0, Z)L,' =1, (5)
AeRF 53 i=1

where g is the aggregated gradient direction in the feasible region:
g(Aix) = Hry (- b(kix)) (X =R",g(kx)=-b(Ax)). (6)
We choose the simplex weights by minimizing the norm of this feasible direction,

* . 2
A€ arg min lg(x:x) | (7)

The Pareto front for this multi-objective problem is approximated by identifying the set of all solutions
X" satisfying:

k
Y Aidfi(x)| (8)

i=1

x* = arg min sup
xeX LeAk

where AF represents the simplex of non-negative scalars 1; satisfying YEodi=1

To complement the formal derivation, Fig. 1 illustrates where the Mordukhovich Subdifferential Opti-
mization (MSO) module sits in our pipeline and how it operates during training. The synthesizer produces
mel predictions, four objective surrogates fi- f4 (naturalness, speaker similarity, efficiency, adaptability) yield
per-objective (sub)gradients via automatic differentiation, these gradients are normalized and combined on
the probability simplex by adapting weights A € A*, and the resulting blended direction gyso = 3; A9 f;
is applied by the optimizer (with module-wise learning-rate scaling), and each update balances competing
goals rather than being dominated by any single loss.

Algorithm in Fig. 2 summarizes the MSO-augmented training step for a single minibatch: after a
standard forward pass (encoder — speaker embedding v, synthesizer — predicted mel, optional vocoder), we
compute four objective surrogates f;-f4 (naturalness, speaker similarity, efficiency, adaptability) and obtain
their (sub)gradients via automatic differentiation (using the usual subgradients for non-smooth terms like
Ly/Huber); each gradient is scale-normalized by its minibatch MAD, the simplex weights A € A* are updated
with a projected-gradient step to balance objectives on the current batch, the blended direction guso =
> Ai 0f; is formed, and the optimizer applies this update (with optional module-wise learning-rate scaling),
yielding parameter changes that track a local Pareto compromise rather than any single loss.
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Figure 1: MSO-integrated training flow. The Mordukhovich subdifferential module (MSO) blends per-objective
subgradients into a single update direction applied to the synthesizer (and used for module-wise LR scaling)

Algorithm: MSO-augmented training step (per minibatch)

Sample minibatch (text, audio); compute mel targets.

Forward pass: encoder — v; synthesizer — mel; vocoder (optional for metrics).
Compute objective surrogates fi, ..., fs.

Backprop to get per-objective (sub)gradients df;(6) via autodiff.

Normalize each: g; < df;/MAD(9f;).

Update simplex weights by projected gradient: A < ITyu(A — 17 V|| i Aigil|2)-
Form blended direction: gpmso < Y; Aigi-

Apply optimizer step with gpso (and module-wise LR scaling 1+ yA; ).

®© NN TN

Figure 2: Pseudocode for combining per-objective subgradients via MSO. IT5+ denotes projection onto the probability
simplex

2.4 Model Architecture

Our model was built upon the architecture proposed by Jia et al. [9], adapted for the voice cloning
language model trained for English speakers. Because English phonemes differ greatly from Lithuanian, the
network has been expanded to support Lithuanian phonemes such as “g3”, “C”, “é”, etc., and modifications
were made to adapt to the Lithuanian prosody and support the extraction of voice characteristics from
pathological voices. Additional step was also introduced into the model by adding our proposed Mordukhovich
optimization.

Fig. 3 outlines the architecture of our voice cloning model, composed of components that work to
synthesize speech that mimics the voice of a target speaker from a given text input. It begins with learning
the unique vocal characteristics of a target speaker, then maps text input to a spectral representation

conditioned on the learned speaker characteristics, and finally, generates a waveform that retains the speaker’s
vocal qualities.



Comput Model Eng Sci. 2025

Input:
Model Parameters & Configs

Optimization Objectives:
¢ Naturalness (f1)
 Similarity (f2)

« Efficiency (£3)

» Adaptability (f4)

y

Subdifferential Optimization:
0 € = Ai ofi(x*) + Nx(x*)

Input:
Pathological Voice Sample

Output:
Optimized Parameters x*

. 'Optimize 0 E

| 4

Speaker Embedding Generator
E(a; 6_E) > v €R?

s \1

Minimize Intra-Speaker Distance
Maximize Inter-Speaker Distance

Output:
Speaker Embedding v

Input:
Text G + Embedding v

Tune Decoder Params

|

Encoder + Attention: .
Align text and voice .

A B
\ L
\

4« _ »

Decoder:
Generate Log-Mel Spectrogram

4 \‘

Loss:
Mel-Spectrogram MSE

Log-Mel Spectrogram

Output:

Log-Mel Spectrogram

Input:

Vocoder:

Generate Audio Waveform

Figure 3: Model architecture

Output:
Synthesized Voice




8 Comput Model Eng Sci. 2025

Let x(t) be the reference waveform of the pathological speaker. This waveform serves as the audio input
sample for the target speaker and contains the unique vocal attributes that the system must replicate to predict
the preoperative voice of the patient. The speaker encoder processes the reference waveform x(¢) and extracts
a fixed-dimensional vector, termed the “speaker embedding” Denote the encoder function as E : R" — R4,
where 7 is the length of the input audio signal, and d is the dimensionality of the speaker embedding. The
speaker embedding v € R is given by: v = E(x(t)). Speech synthesis is guided by a grapheme sequence G =
{g1,£2, .., gn}> which represents the text to be converted into speech. The synthesizer consists of multiple
components:

o The encoder processes the sequence of phonemes from the pathological voice, denoted by @ =
{¢1,¢2,..., du}, into an intermediate feature representation. Let the encoder function be F : RM —
R?, mapping phonemes to a feature space: h = F(®), where h € R? is the intermediate feature vector.

o The attention mechanism aligns the encoder output h with the temporal sequence of the speaker’s voice.
Let a;; be the attention weight aligning the i-th phoneme ¢; with the j-th spectrogram frame. The
alignment process is expressed as: a;; = exp(e;;)/ i, exp(eix), where e;; is an energy function that
quantifies the relevance between ¢; and the spectrogram frame j.

o The decoder generates a sequence of spectrogram frames S = {s,s,, ..., s} using the aligned features.
Formally, the decoder is expressed as: S = D(h, a), where D is the decoding function that outputs the
spectrogram frames conditioned on the encoder features h and the attention weights a.

« 'The synthesizer’s output is a log-mel spectrogram log M(f, t), a time-frequency representation where
the frequency scale is mapped to the mel scale. This spectrogram encodes the perceived frequency of
sounds, reflecting the unique characteristics of the voice captured by the speaker embedding v.

o The vocoder converts the log-mel spectrogram into the final audio waveform. Denote the vocoder as
a function V : RF*T — R”, where F and T are the frequency and time dimensions of the spectrogram,
respectively. The generated waveform %(¢t) is given by: x(t) = V(log M(f, t)).

The final audio output is synthesized, conditioned on reference waveform’s unique vocal attributes,
captured through speaker embedding, and represented in the log-mel spectrogram.

2.4.1 Encoder Mechanism

The encoder has a function to discern and distinguish among individual pathological speakers,
capturing the essence of their unique vocal characteristics in the form of voice embeddings, serving as a
distilled representation of a speaker’s characteristics, and encapsulating attributes such as timbre, pitch, and
intonation. These are used to condition the synthesizer and the vocoder to produce restored speech that
retains unique characteristics of pre-operation voice of a patient.

The quality of encoding is evaluated using two metrics: Intra-Speaker Distance and Inter-Speaker
Distance, quantifying the encoder’s performance in generating distinctive embeddings that reflect the unique
vocal characteristics of individual speakers while ensuring that embeddings from different speakers are
sufficiently dissimilar.

Intra-Speaker Distance is defined as the average distance between multiple embeddings generated from
the same speaker:

Dintr = He € HZ (9)
TR DPAES

where N is the number of embeddings for the same speaker, e; and e; are the embedding vectors of the i-th
and j-th utterances by the same speaker, and || - ||, denotes the Euclidean distance.
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Inter-Speaker Distance is defined as the average distance between embeddings generated from different
speakers:

Dier =150 5 et el (10)
M(M-1) 3 j=Lj#i

where M is the number of different speakers, e is an embedding vector from speaker a’s i-th utterance, e;’
is an embedding vector from speaker b’s j-th utterance, with a # b, ensuring that the comparison is made

between different speakers.

2.4.2 Attention Mechanism

The attention mechanism in our synthesizer was built on Tacotron [23]. It has to align the input text
sequence with corresponding acoustic output. The mechanism enables the model to selectively focus on
specific parts of the input sequence to predict each segment of the output sequence accurately. Given an input
sequence x and an output sequence y, the attention weights & are calculated to facilitate alignment between
these sequences. For each output time step ¢ and input position s, the attention weight a; ; is calculated as:

exp(ers)

G 4 LY 11
> exp(ens) )

t,s
where e, ; denotes the energy term associated with the input at position s and the output at time .

2.5 Implementation

The implementation of our approach is organized into two primary modules (see the class diagram
in Fig. 4). The encoder and synthesizer are implemented, respectively, for capturing a speaker’s unique
vocal characteristics (postoperative voice of the patient impaired with alaryngeal cancer) and generating
synthesized speech, mimicking original preoperative speech.

TrainingProcess
trainingData: List

+ trainModel() : : void

v -
EncoderTraininghetrics / MordukhovichOptimization T Attentionechanism PR— ~
et o i fe— U S
T
et o B
, N———

| + optimize(params: foat[], objectives: List) : : loat[] — | + collect(): : vt + calculateAttentionWelghts(inputseq: float

] — -
v Ve N -
Hrt UMAPVisualization Enlmes

parameters: floatt] parameters: float(]

 generate(embeddings: Lit) : £ void

+ encode{audio: AudioSample) : : floatl] |+ synthesizetext: Textinput, speakerEmbedding: Embedding)  : Spectrogram

_we——
uses ~ visualizes _— uses

v v } v v
Audiosample S Embedding Textinput Spectrogram

+ audioData: float(] + data: floatl] + text: String + data: float()

Figure 4: The implementation diagram of our voice cloning synthesizer

Audio was resampled to 22,050 Hz, 16-bit PCM, mono. Silence was trimmed (energy threshold
—40 dBFS, 20 ms min duration). Mel spectrograms used STFT window 1024, hop 256, Hann window, #y.|s =
80, fmin = 20 Hz, fiax = 8000 Hz, dynamic range 80 dB, log-mel scaling.

We adopt a d-vector style encoder that maps log-mel frames to a fixed-dimensional speaker embedding.
The projection (embedding) dimension is 256; embeddings are /,-normalized. Training clips are random
1.6 s crops.
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The text encoder comprises 3 one-dimensional convolutional blocks (kernel size 5, 512 channels each,
ReLU, batch normalization), followed by a recurrent encoder block with hidden size 256 per direction.
The attention mechanism is location-sensitive content-based attention (additive energy). The decoder stack
generates mel frames autoregressively with two recurrent layers of hidden size 1024; a two-layer prenet of
size 256-256 (ReLU, dropout 0.5) precedes the decoder, and a 5-layer convolutional postnet (kernel size 5,
512 channels, batch normalization, tanh) refines outputs. We used r = 5 frames per step (reduction factor).
L1 mel-reconstruction loss was set to weight 1.0 and a stop-token binary cross-entropy to weight 0.2.

At each synthesizer step we compute subgradients of the four objectives (f; ... f1) and form a simplex-
constrained convex combination 3°; ;0f; with A € A* updated by projected gradient (step = 0.05, 3 inner
iters/step). Objectives are normalized to unit MAD per minibatch; initial A; = 0.25. MSO updates modulate
decoder/prenet/postnet learning rates via per-module scaling 1 + y A; (y = 0.5).

SpecAugment was used on synthesizer inputs (time mask < 40 ms; freq mask < 6 mel bins; max 2 each),
dropout as above, weight decay per optimizer, EMA of generator weights (decay 0.999). Training-only audio
augments: time-stretch [0.95,1.05], pitch shift +0.25 semitone with formant preservation, additive stationary
noise (SNR 20/25/30 dB), light RIRs (T60 < 250 ms). Augmentations are disabled for validation/test and for
MOS/SMOS stimuli.

Synthesizer uses length-bucketed batches (bucket width 100 frames). Warm-start curriculum: r = 5 from
step 0; teacher forcing with scheduled sampling from 0% to 20% over first 50k steps.

All experiments were carried out on a Linux workstation with an Intel Core i9-14900 CPU (128 GB
RAM) and a single NVIDIA GeForce RTX 5090, using Python/PyTorch with mixed precision stable.

Three expert raters (board-certified otolaryngologists; native Lithuanian speakers) scored #=90 stimuli
(30 utterances x 3 scenarios) using 5-point ITU-T P.800 MOS and SMOS scales. Stimuli were randomized
per rater; ratings were independent and collected under headphone listening in a quiet office setting.

2.6 Speaker-Group Cross-Validation and Statistical Pooling

To improve the stability of the estimation with a modest cohort, we performed a 5-fold GroupKFold
cross-validation (it is used for MOS/SMOS analysis only) with the patient as the grouping unit; the
train/validation/test partitions of each fold are mutually disjoint between speakers and preserve the same
stratification scheme as above. Within each fold, MOS/SMOS are analyzed using linear mixed-effects models
with fixed effect Scenario and random intercepts for Rater and Utterance. Fold-specific contrasts (Scenario 1
vs. 2; 3 vs. 2; 1 vs. 3) are obtained with Satterthwaite ¢-tests and Tukey correction. We then pool the fold-wise
contrast estimates & ¢ by inverse-variance weighting.

A Z;zl Wf(gf 1

Opooled = > W= —=0 (12)
poe Z;zlwf / Var(o¢)

and report pooled 95% CIs and p-values. As a nonparametric robustness check, we repeat the analysis on
per-utterance means using Wilcoxon signed-rank tests within each fold and combine p-values via Fisher’s
method. All analyses enforce speaker disjointness and identical preprocessing across folds.



Comput Model Eng Sci. 2025 1

2.7 Bias Analysis and Inter-Rater Reliability

To quantify potential perceptual bias, we first computed an objective-quality index (OQI) per utterance
and scenario:

1
0QI = g[z(PESQ) +2(STOI) - z(MCD) - z(VDE) - z(GPE)], (13)
with metrics z-standardized across all conditions and signs oriented so that larger values reflect better quality.
We then fit linear mixed-effects models separately for MOS and SMOS,

Rating, , = Bo+B1OQI, + P2 W {s=1} + B3 W {s=3} +b, + b, + &4 (14)

including random intercepts for rater b, and utterance b,. The proportion of the Scenario-1 vs. Scenario-2
improvement attributable to perceptual bias (i.e., not predicted by OQI) was computed as

Aobs — Apred(OQI)

(15)
Aobs

Inter-rater reliability was assessed across 3 raters and 90 items using Cronbach’s « (internal consistency
of the 5-point ratings) and Fleiss’ k with linear weights (chance-corrected agreement for ordinal categories).
95% confidence intervals were estimated via bias-corrected bootstrap (1000 resamples).

2.8 Significance Testing for MOS/SMOS

To assess statistical significance of subjective improvements, we modeled MOS and SMOS using linear
mixed-effects models:

Rating, , .= Bo + B It {s=1}+Po W {s=3}+b,+b, +¢& s (16)

where s € {1, 2,3} indexes Scenario (2 is reference), b, ~ N'(0, 6?) and b, ~ N'(0, 02) are random intercepts
for Rater and Utterance, and W{-} denotes the indicator function—equal to 1 when the stated condition
holds and 0 otherwise—so Scenario 2 is the reference level (both indicators = 0).

We tested the fixed effect of Scenario via likelihood-ratio tests (LRT) comparing full vs. reduced models;
pairwise contrasts were obtained with Tukey correction. The assumptions were checked through residual
diagnostics; Satterthwaite-adjusted degrees of freedom were used for t-tests on contrasts. As a robustness
analysis, we aggregated ratings to per-utterance means and applied paired tests (Scenario 1 vs. 2; 1 vs. 3; 3
vs. 2) using Wilcoxon signed-rank tests. Effect sizes were summarized as Hedges’ g with 95% confidence
intervals (bias-corrected bootstrap, 1000 resamples).

3 Results

We have used objective metrics to assess the similarity in prosody and timbre between cloned speech
and real reference speech, namely, Mel Cepstral Distortion (MCD), Voting Decision Error (VDE), Gross
Pitch Error (GPE), FO Frame Error (FFE), Log-Likelihood Ratio (LLR), and Weighted Spectral Slope (WSS,
normalized).

The baseline is the English model trained on top with Lithuanian speech, the proposed model is the
model that has all English characteristics replaced with Lithuanian features with an additional Mordukhovich
optimization step.

The results presented in Tables 1-4 offer a comparison between the proposed voice cloning method
and a baseline approach across several evaluation metrics. The obtained Mean Opinion Score (MOS) and
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Similarity Mean Opinion Score (SMOS) values (Table 1) show that the proposed method outperforms the
baseline, achieving MOS of 4.0 (+0.2) compared to the baseline’s 3.5 (+0.2). The results indicate that experts
who evaluated the speech generated by the proposed method perceived it as more natural. The SMOS score
of 3.7 (+0.2) indicates that the cloned voice was judged to be more similar to the target speaker compared to
the baseline, which received a SMOS of 3.1 (+0.3).

Table 1: Mean opinion score (MOS) and similarity mean opinion score (SMOS)

Method MOS (95% CI) SMOS (95% CI)
Proposed method 40+0.2 37+0.2
Baseline method 35+£0.2 31+03

Table 2 shows that the Mel Cepstral Distortion (MCD) value for the proposed method is lower (2.8 dB
+ 0.2) compared to baseline (4.0 dB + 0.3), indicating more accurate reproduction of the spectral envelope.
The proposed method also exhibits substantial improvements in Voicing Decision Error (VDE), Gross Pitch
Error (GPE), and FO Frame Error (FFE), with reductions of over 50% in each of these metrics relative to the
baseline, all of which highlight the method’s ability to capture the fine-grained prosodic details required for
producing intelligible and natural-sounding speech.

Table 2: Comparison of MCD, VDE, GPE, and FFE scores

MCD (dB) +95% VDE (%) + 95% GPE (%) + 95% FFE (%) = 95%

Method CI CI CI CI
Proposed method 28+0.2 45+ 10 75+ 15 9.5+2.0
Baseline method 4.0+0.3 9.0 +£2.0 14.0 £ 2.5 18.0 + 3.0

Table 3 supports this, as Log-Likelihood Ratio (LLR) and Weighted Spectral Slope (WSS) indicate
spectral similarity between synthesized and target speech, showed lower values for the proposed method
(LLR: 0.4 + 0.05, WSS: 0.25 + 0.03) than for the baseline (LLR: 0.7 + 0.08, WSS: 0.45 + 0.05). Perceptual
Evaluation of Speech Quality (PESQ, ITU-T P.862.2 wideband, 16 kHz; MOS-LQO scale) measures overall
speech quality, and it showed an improvement, with the proposed method achieving a score of 4.0 (+0.1)
compared to the baseline’s 3.4 (£0.2).

Table 3: Comparison of LLR, WSS, and PESQ Scores

Method LLR + 95% CI WSS £95% CI  PESQ + 95% CI
Proposed method 0.4 £0.05 0.25 + 0.03 40+0.1
Baseline method 0.7 + 0.08 0.45 + 0.05 34+0.2

In Table 4, the proposed method demonstrates better intelligibility, as reflected by higher Speech
Intelligibility Index (SII) and Short-Time Objective Intelligibility (STOI) scores, although this was expected,
given that the baseline is an English model trained with Lithuanian speech. The proposed method achieves
an SIIT of 0.72 (£0.05) and a STOI of 0.82 (+0.03), while the baseline scores are considerably lower (SII: 0.60
+0.05, STOI: 0.70 + 0.04), with the Lithuanian approach being better at preserving intelligibility, even in the
case of challenging pathological voices.
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Table 4: SII and STOI metrics

Method SII (95% CI) STOI (95% CI)
Proposed method 0.72 + 0.05 0.82 + 0.03
Baseline method 0.60 + 0.05 0.70 + 0.04

3.1 Ablation Study of the Influence of Lithuanian and English Models

When comparing models across languages, one must consider the linguistic characteristics that may
affect the quality of the clone. Lithuanian phonetic accents and longer consonant sounds may pose challenges
not present in English. The performance of the Lithuanian model (Lt-ENC, Lt-SYN, and Lt-VOC) must be
assessed with these linguistic nuances in mind, ensuring that the quality of cloning retains the natural flow
and expressiveness of the Lithuanian. In contrast, English models (En-ENC and En-VOC) must be evaluated
against the backdrop of English phonology and prosody.

The configurations evaluated are summarized in Table 5. The models have managed to generate a proper
sentence of the test sequence “turéjo senelé Zilg oZel1” containing key Lithuanian phonemes (see Table 6). We
observed that the fully Lithuanian model (Lt-ENC — Lt-SYN — Lt-VOC) demonstrated a Mean Opinion
Score (MOS) of 3.6, slightly lower than the hybrid model (En-ENC — Lt-SYN — En-VOC) with MOS of 3.9.
This shows the effectiveness of the hybrid model in maintaining audio quality and is likely a limitation of
having a limited size Lithuanian dataset.

Table 5: Model configurations evaluated for the lithuanian speech synthesis

Configuration Key details observed

Uses English encoder and vocoder, with a Lithuanian
En-ENC — Lt-SYN — En-VOC synthesizer. Balances Lithuanian speech synthesis with
English-accented vocal features.

Adds a Lithuanian vocoder for better prosodic and phonetic

En-ENC — Lt-SYN — Lt-VOC accuracy, enhancing naturalness and authenticity of
Lithuanian speech.

Lithuanian encoder and synthesizer, with an English vocoder.

Lt-ENC — Lt-SYN — En-VOC  Strong Lithuanian nuance generation but may affect speech
quality in final output.
Fully Lithuanian model offering the most accurate,
Lt-ENC — Lt-SYN — Lt-VOC  natural-sounding speech synthesis by capturing all linguistic
and acoustic characteristics.

Table 6: Performance metrics across model configurations

En-ENC + Lt-SYN En-ENC + Lt-SYN  Lt-ENC + Lt-SYN  Lt-ENC + Lt-SYN

Metric + En-VOC + LEVOC + En-VOC + LEVOC
MOS 39402 38+02 37+02 3.6+ 03
SMOS 36402 35402 34402 33+03
MCD (dB) 3.0+ 02 32+02 34402 3.6+03

(Continued)
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Table 6 (continued)

En-ENC + Lt-SYN En-ENC + Lt-SYN  Lt-ENC + Lt-SYN  Lt-ENC + Lt-SYN

Metric +En-VOC + Lt-VOC +En-VOC +Lt-VOC
VDE (%) 554 1.0 5.7 4 1.0 6.0 10 62411
GPE (%) 75+ 1.5 7.8 £ 1.5 8.0+15 83+16
FFE (%) 9.0+2.0 93+ 2.0 95+ 2.0 9.8 +2.1

LLR 0.45 + 0.05 0.47 + 0.05 0.49 + 0.05 0.51 + 0.06
WSS 0.28 + 0.03 0.30 + 0.03 0.32 + 0.03 0.34 + 0.04
PESQ 41401 40401 3.940.1 3.8 402
SII 0.72  0.05 0.70 + 0.05 0.68 + 0.05 0.66 = 0.05
STOI 0.82 + 0.03 0.80 £ 0.03 0.78 £ 0.03 0.76 + 0.04

3.2 Clinical Validation Study

A total of 10 patients treated at the Department of Otorhinolaryngology, Lithuanian University of Health
Sciences, agreed to be included in the preliminary clinical validation of the alaryngeal voice replacement
synthesizer. Patients were stratified according to the type of surgical intervention (Table 7). The mean age
was 61.7 years (SD = 15.9). The majority underwent endolaryngeal cordectomy (ELS type III-VI), while a
smaller subset received partial vertical laryngectomy.

Table 7: Patient groups in the pilot study based on the type of surgery

Group n Age (SD)
Endolaryngeal
cordectomy, ELS 8 62.43 (15.74)
type III-VI
Partial vertical 5 59.21 (18.62)
laryngectomy

Objective acoustic analysis of standardized phrase recordings demonstrated clear enhancement of
voice stability and periodicity in the synthesized speech samples (Table 8). Jitter decreased in synthesized
compared to original speech (2.62% (SD = 1.38) vs. 3.58% (SD = 2.09)), though the difference did not reach
statistical significance (p = 0.081). Shimmer showed a modest increase (11.94% (SD = 2.12) vs. 10.41% (SD =
3.87); p = 0.046), consistent with mild amplitude modulation introduced by synthesis. Voicing parameters
improved markedly. Synthesized speech exhibited significantly higher average voicing efficiency (AVE =
88.37% (SD =4.26) vs. 80.95% (SD = 8.74); p = 0.012), periodic voiced fraction (PVF = 75.82% (SD =10.22) vs.
53.67% (SD =17.35); p = 0.004), and periodic voiced segment ratio (PVS = 7719% (SD = 9.84) vs. 58.04% (SD
=18.97); p = 0.003). Spectral metrics further supported these findings, with synthesized samples showing
higher harmonic-to-noise ratio (HNR = 2.41dB (SD =1.76) vs. 1.02 dB (SD =1.48); p = 0.029) and improved
cepstral peak prominence (CPP = 0.12 (SD = 0.03) vs. 0.10 (SD = 0.02); p = 0.011).
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Table 8: Comparison of acoustic speech parameters in a standardized phrase (Original vs. Synthesized, n = 10).
Abbreviations: SD—standard deviation; AVE—average voicing efficiency; PVF—periodic voiced fraction; PVS—
periodic voiced segment ratio; ASVI—acoustic spectral voicing index; HNR—harmonics-to-noise ratio; CPP—cepstral
peak prominence

Parameter  Original mean Original SD Syn;il;srllzed Synthesized SD P
Jitter (%) 3.58 2.09 2.62 1.38 0.081
Shimmer 10.41 3.87 11.94 212 0.046

(%)
AVE (%) 80.95 8.74 88.37 4.26 0.012
PVF (%) 53.67 17.35 75.82 10.22 0.004
PVS (%) 58.04 18.97 7719 9.84 0.003
ASVI 10.38 2.52 24.89 2.06 0.021

HNR (dB) 1.02 1.48 241 1.76 0.029
CPP (dB) 0.10 0.02 0.12 0.03 0.011

Running speech analysis confirmed a consistent pattern of improvement across most acoustic domains
(Table 9). The mean fundamental frequency (F,) was significantly reduced in synthesized speech (142.15 Hz
(SD = 35.27) vs. 178.93 Hz (SD = 61.48); p = 0.011), indicating more stable pitch behavior. Jitter decreased
from 3.69% (SD =1.83) to 3.11% (SD = 1.42) (p = 0.049), while shimmer increased moderately (12.42% (SD =
3.64) vs.14.91% (SD = 2.38); p = 0.008). Voicing efficiency improved substantially, with AVE increasing from
78.31% to 86.48% (p = 0.002), PVF from 36.12% to 51.27% (p = 0.003), and PVS from 47.22% to 64.93% (p =
0.002). ASVI nearly tripled (8.74 (SD = 3.27) vs. 20.91 (SD = 5.82); p < 0.001), reflecting improved periodicity
and harmonic structure. Spectral measures corroborated these changes: HNR increased from 1.08 dB (SD
= 1.25) to 1.59 dB (SD = 1.43) (p = 0.042), and CPP improved from 0.86 (SD = 0.12) to 0.96 (SD = 0.16)
(p = 0.009). Despite significant gains, both remained below typical healthy phonation thresholds.

Table 9: Overall comparison of acoustic parameters in running speech (Original vs. Synthesized, n = 10)

Original Original  Synthesized Synthesized

Parameter mean SD mean SD
F, (Hz) 178.93 61.48 142.15 35.27 0.011
Jitter (%) 3.69 1.83 3.1 1.42 0.049
Shimmer 12.42 3.64 14.91 2.38 0.008

(%)

AVE (%) 78.31 8.93 86.48 3.42 0.002
PVF (%) 36.12 14.88 51.27 10.84 0.003
PVS (%) 4722 19.97 64.93 8.75 0.002
ASVI 8.74 327 20.91 5.82 <0.001
HNR (dB) 1.08 1.25 1.59 1.43 0.042

CPP (dB) 0.86 0.12 0.96 0.16 0.009
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3.3 Bias Analysis

To further assess the robustness of the evaluation results, we examined potential sources of bias that
may affect the Mean Opinion Score (MOS) and Similarity MOS (SMOS) ratings. Theoretically, a rater
familiarity with the Lithuanian phonological structure can introduce a phoneme-congruity bias, wherein
evaluators are more attuned to subtle articulatory correctness in Lithuanian phonemes (e.g., nasalized vowels
such as “3’, retroflex consonants such as “¢”, and fronted vowels such as “¢”). As a result, speech samples
from English-trained models, which lack these phonemes in their synthesis inventory, may be penalized
disproportionately, not because of lower synthesis fidelity per se, but due to perceived phonetic incongruity.
Furthermore, all MOS/SMOS assessments were performed by otolaryngologists from the Department of
Otorhinolaryngology of the Academy of Medicine of the Lithuanian University of Health Sciences, all with
extensive experience in alaryngeal rehabilitation, but also all being native Lithuanian speakers. Although
this expertise ensures clinical relevance, it can also theoretically introduce an expectation bias toward
pathological speech realism, favoring models that preserve degraded prosodic contours and irregularities
typical of post-laryngectomy speech. Thus, a model producing more fluent or “overcorrected” speech may
paradoxically score lower on SMOS due to reduced pathological authenticity, even if its acoustic similarity
is technically higher. Furthermore, perceptual anchoring effects may arise when raters are exposed to lower
quality English baseline samples prior to evaluating the Lithuanian-optimized outputs, leading to inflated
MOS scores due to relative contrast rather than absolute perceptual quality.

To quantify these effects, we performed a stratified comparative analysis in three evaluation scenarios
(see Table 10): (1) linguistic and clinical conditions matched (Lithuanian-trained model in Lithuanian
pathological data), (2) linguistic but matched clinical conditions matched (English-trained model in Lithua-
nian pathological data) and (3) linguistically matched but clinically mismatched conditions (Lithuanian
trained model in Lithuanian healthy data). All samples were rated by the same panel of experts as in other
experiments using a 5-point ITU-T P.800 scale, with randomized sample ordering to minimize anchoring.

Table 10: Influence of linguistic and clinical matching on subjective ratings (Mean + 95% CI)

Evaluation scenario MOS SMOS
. 1) L.1thuan1an m9del on 40500 37102
Lithuanian pathological speech
_(2) English model on 35+0.2 31+ 0.3
Lithuanian pathological speech
(3) Lithuanian model on 39102 35402

Lithuanian healthy speech

The results indicate that the observed gains in MOS/SMOS are partially attributable to linguistic
congruence (a 0.5 MOS gap between scenarios 1 and 2) and, to a lesser extent, to clinical voice matching (a
0.1 MOS difference between scenarios 1 and 3), which indicates that the synthesis model benefits from both
pathological domain alignment and phoneme-level compatibility, but also highlights that approximately
20%-25% of subjective improvements reported over English-trained baselines may stem from language-
specific perceptual bias rather than intrinsic model superiority.

After adjusting for objective quality (OQI) in mixed-effects models, the residual advantage of Scenario
1 over Scenario 2 was 0.10 MOS (of a 0.50 total gain) and 0.12 SMOS (of a 0.48 total gain), corresponding
to 20% and 25% of the subjective improvement, respectively. Inter-rater reliability was high: Cronbach’s
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a = 0.92 (MOS) and 0.90 (SMOS), and Fleiss’ k = 0.64 (MOS; 95% CI 0.58-0.70) and 0.61 (SMOS; 95% CI
0.55-0.67), indicating substantial agreement among raters.

Linear mixed-effects analyses revealed a significant main effect of Scenario for both MOS and
SMOS (LRT, p < 0.001). Tukey-adjusted contrasts showed higher ratings for Scenario 1 (Lt-model on Lt-
pathological) than Scenario 2 (En-model on Lt-pathological) for both MOS and SMOS (p < 0.001), and
Scenario 3 (Lt-model on Lt-healthy) > Scenario 2 (p < 0.01). The difference between Scenario 1and Scenario 3
was not significant for MOS and was marginal/non-significant for SMOS after correction. Robustness checks
on per-utterance means using Wilcoxon signed-rank tests yielded the same pattern of significance. Effect
sizes (Hedges’ g) indicated large improvements for Scenario 1 vs. Scenario 2 for both MOS and SMOS, with
95% confidence intervals not crossing zero.

3.4 Comparison with Other Approaches

Table 11 emphasizes the performance of the proposed method relative to our previous efforts [19] and
three open-source approaches (WaveGlow [24], Tacotron [23], and WaveNet [25]), all additionally trained
on our dataset and under as identical conditions as possible given their different approaches to speech
synthesis. We faced challenges adapting other TTS engines for Lithuanian alaryngeal speech because the full
source code or trained language models needed for translation into Lithuanian were unavailable. We also
investigated the effect of our MSO, which provided a modest but measurable performance boost across all
baseline models. Added optimization improved both subjective (MOS, SMOS) and objective (MCD, VDE,
GPE) metrics without altering the core model architectures.

Table 11: Comparison of the proposed model with our previous model and three English models including with added
optimization

Previous
Proposed  Previous WaveGlow WaveGlow + Tacotron  Tacotron+  WaveNet  WaveNet +

model model [19] MI::;e(l);t [24] Mord. Opt. [23] Mord. Opt. [25] Mord. Opt.

MOS 43+0.1 42+01 425+0.1 3.8+0.2 39+0.2 35+0.2 3.6+0.2 3.6+0.2 3.7+0.2
SMOS 4.0+0.2 39+0.2 4.0+0.2 34+03 35+0.3 32+03 33+03 33+£03 34+03

Metric

I\(/fi%l)) 3.0+0.2 32+0.2 31+0.2 4.6 +0.3 44+03 50+04 4.8+ 0.4 48+03 4.6 +0.3
VDE (%) 53+1.0 5.6 +1.0 54+1.0 10.8 +1.9 102 +1.9 120 £2.0 1.5 + 2.0 11.5+21 10.9 + 2.1
GPE (%) 7514 79 + 1.4 7.7 £ 1.4 14.5+2.4 14.0 + 2.4 16.0 £2.5 155+ 2.5 155+ 2.6 14.8 +£2.6

FFE (%) 9.4 +2.0 9.7 £2.0 9.5+2.0 18.7 £ 2.8 18.0 £2.8 20.0 £ 3.0 19.4 + 3.0 195+ 2.9 18.8 £2.9
LLR 045+0.05 05+0.05 048+005 0.8+008 075+0.08 09+0.07 0.85+007 085+£0.06 0.8+0.06
WSS 0.28+0.03 0.3+0.03 029+0.03 05+005 048+0.05 0.6+004 058+0.04 055+0.05 0.52+0.05

PESQ 43+0.1 42+0.1 4.25+0.1 3.6+0.2 3.7+02 34+0.2 35+0.2 35+0.2 3.6+0.2
SIT 0.78+0.05 0.75+0.05 0.76£0.05 0.65+0.05 0.68+0.05 0.6+0.05 0.62+0.05 0.62+0.05 0.65=+0.05
STOI 0.87+0.03 0.85+0.03 086+0.03 075+004 077+004 07+0.04 072+0.04 0.72+0.04 0.74+0.04

The proposed model demonstrated the best overall performance in nearly all metrics, with MOS of
4.3 and SMOS of 4.0, indicating a higher level of naturalness and speaker similarity in synthesized speech.
Its MCD (3.0 dB), VDE (5.3%), and GPE (7.5%) are the lowest among all models, showing the potential of
the proposed model’s ability to produce accurate spectral and pitch representations. It shows better speech
intelligibility, with an SII of 0.78 and an STOI of 0.87, which are slightly higher than the other models,
confirming its effectiveness in producing clearer and more understandable speech.

Looking at our previous model [19], it performs well on its own, but with the addition of Mordukhovich
optimization, slight improvements are observed in all metrics. MOS increases from 4.2 to 4.25 and SMOS
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from 3.9 to 4.0, showing imporved speech quality and speaker similarity. MCD, VDE, and GPE metrics show
reductions, which means better spectral accuracy and pitch control with Mordukhovich optimization.

The same trend is observed for the WaveGlow, Tacotron, and WaveNet models. Although these models
are of comparatively lower performance because they are English models just trained with Lithuanian speech
on top (e.g., WaveGlow has MOS of 3.8, and Tacotron is at 3.5), applying Mordukhovich optimization leads
to small but consistent gains. WaveGlow’s MOS increases from 3.8 to 3.9, and its MCD drops from 4.6 to
4.4 dB. Similar improvements are seen in Tacotron and WaveNet, with each model showing slightly increased
spectral and pitch accuracy;, as reflected in VDE and GPE reductions.

3.5 Limitations

The focused approach of the study, while a strength in demonstrating efficacy for a specific clinical-
linguistic population, inherently presents a scope for future generalization. We concentrated on the use
case of Lithuanian alaryngeal speech, a combination that is severely underrepresented in speech technology
research, necessary to provide a rigorous, in-depth validation of our proposed framework under highly
challenging conditions. Expanding the cohort size or including multiple languages at this proof-of-concept
stage is not possible, considering that to the best of our knowledge no such publicly accessible resources
exist in sufficient scale, furthermore, it would have compromised the depth of analysis for this primary
objective. Therefore, we believe that while our validation established a foundational benchmark, the modular
architecture explicitly paves the way for future work to scale the approach to other languages once similar
specialized datasets are developed.

The choice of expert evaluators, Lithuanian-speaking otolaryngologists, was a methodologically sound
decision to ensure clinical relevance to linguistic authenticity, as the Lithuanian language being very unique
in the European context [26]. Subjective assessment of pathological speech synthesis requires a nuanced
understanding that only domain experts can provide, particularly when evaluating the delicate balance
between naturalness and characteristic features of post-operative voice. We proactively addressed potential
biases by conducting a stratified analysis to quantify the influence of linguistic and clinical matching,
however, we acknowledge the theoretical possibility of biases. While a broader expert panel of listeners
could be considered in future studies, it is hard to organize, considering there are not that many overall,
and that the use of expert raters in this initial investigation was essential to ground-truth the model’s
performance against real-world clinical standards and ensure the synthesized output is meaningful for its
intended rehabilitative purpose.

Finally, we acknowledge that the prioritization of synthesis quality over computational efficiency in this
phase of the research is a trade-off in early-stage methodological development. The primary contribution of
this work is the introduction and validation of the MSO paradigm itself. A comprehensive benchmarking
of its computational overhead against other optimizers, while an important future step, was secondary to
the goal of establishing its performance superiority in handling non-smooth, multi-objective loss land-
scapes. We believe our paper successfully demonstrated achievement of main goal of enhanced naturalness
and similarity, justifies the initial focus on algorithmic innovation. The framework’s design is inherently
compatible with efficiency optimizations in future iterations, especially towards the path toward real-time
clinical deployment.

4 Conclusions

This study demonstrates that the integration of a Mordukhovich Subdifferential Optimizer (MSO)
into the voice cloning pipeline enables a principled and effective solution to the multicriteria optimization
challenges inherent in pathological speech synthesis. Unlike traditional voice cloning approaches that focus
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on isolated performance metrics, our method explicitly formulates the task as a multi-objective optimization
problem balancing four competing goals: speech naturalness, speaker similarity, computational efficiency,
and adaptability to pathological voice characteristics.

The experimental results validate the effectiveness of this formulation. The MSO-guided models
consistently outperformed the baseline and conventional multilingual TTS systems in a comprehensive suite
of objective and subjective evaluation metrics. In particular, the optimized hybrid configuration achieved
the highest Mean Opinion Score (MOS) and Similarity Mean Opinion Score (SMOS), reflecting substantial
improvements in both perceived naturalness and speaker fidelity. Objective metrics such as Mel cepstral
distortion (MCD), Voicing decision error (VDE), gross pitch error (GPE) and FO frame error (FFE) were
reduced, confirming the optimizer’s ability to fine-tune the model’s sensitivity to prosodic and pitch-related
nuances, especially critical in pathological speech contexts. Enhancements in spectral similarity metrics (LLR
and WSS) and perceptual quality scores (PESQ) reinforce the optimizer’s role in producing high-fidelity
speech that aligns more closely with natural reference audio. The improvements in intelligibility, evidenced by
increased Speech Intelligibility Index (SII) and Short-Time Objective Intelligibility (STOI), further support
the MSO’s capacity to generalize across variable and impaired voice data.

Beyond performance metrics, the broader significance of this work lies in its methodological novelty:
this is the first application of Mordukhovich subdifferential calculus in the context of voice cloning, offer-
ing a robust mathematical foundation for navigating trade-offs between human-centric quality attributes
and computational constraints. The optimizer’s flexibility also enables integration with language-specific
phoneme expansions, such as those required for Lithuanian, while remaining robust to signal irregularities
caused by pathological voice conditions.

Although the proposed framework demonstrates promising results for the synthesis of Lithuanian
pathological speech, real-world deployment in clinical settings would require not only high quality synthesis,
but also seamless integration into rehabilitation workflows, compatibility with assistive devices and usability
for both clinicians and patients with varying degrees of digital literacy. Second, the scalability of the
approach to other low-resource languages presents a significant challenge, particularly for similarly rarely
used languages such as Lithuanian, where annotated pathological speech data are still scarce due to low
numbers of population and available patients. Practical adaptation to other languages would require careful
expansion of the phoneme set, prosodic modeling, and cultural contextualization to ensure linguistic fidelity
and patient acceptance. Finally, the ethical implications of the generation of synthetic pathological voices
warrant careful consideration. Although these systems offer new opportunities to restore vocal identity
and improve quality of life, they also raise concerns about consent, data ownership, potential misuse in
identity spoofing, and the psychological impact on patients hearing synthetic versions of their impaired or
preoperative voice.
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