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Abstract

Background/Objectives: The aim of this study was to identify systemic, metabolic, and
host-related prognostic factors for long-term outcomes in patients with a diabetic foot
ulcer (DFU). Methods: One hundred patients were selected from a high-risk cohort of
426 individuals with a DFU (January 2021–January 2023) based on predefined inclusion and
exclusion criteria. Clinical, laboratory, and imaging data were collected. Outcomes were
categorized as favorable (healing) or unfavorable (non-healing, re-ulceration, amputation,
or death). Prognostic factors were analyzed using random forest and categorical boosting
models, with SHAP values to determine the importance of individual predictors. Results:
The median age of participants was 65 years (interquartile range [IQR], 57–69.25), and
the median duration of diabetes was 18 years (IQR, 12–26). Over a mean 2.1-year follow-
up, unfavorable outcomes occurred in 53% of the whole cohort and in 36% of survivors.
The strongest predictors of poor prognosis were prior amputation, elevated inflammatory
markers, reduced eGFR, and dyslipidemia. Triglycerides showed a U-shaped association
with outcomes. A lower BMI and shorter diabetes duration paradoxically were also linked
to poorer prognosis. Glycemic control, comorbidities, and local foot characteristics had
limited predictive value. Conclusions: Long-term DFU prognosis is driven mainly by
systemic and host-related factors rather than by ulcer characteristics alone. Inflammation,
renal dysfunction, dyslipidemia—particularly triglycerides—and prior amputation were
the strongest predictors of unfavorable outcomes.

Keywords: diabetes mellitus; diabetic foot ulcer; outcomes; risk factors; machine
learning analysis

1. Introduction
Diabetic foot disease represents one of the most severe and debilitating complications

of diabetes, contributing substantially to morbidity, premature mortality, and escalating
healthcare costs worldwide. With the prevalence of diabetes continuing to rise, affecting
an estimated 65.6 million individuals in Europe in 2024, with a projected 10% increase by
2050 [1], the global burden of diabetic foot disease is anticipated to grow proportionally.

Over the course of their lifetime, between 19% and 34% of individuals with diabetes
will develop a diabetic foot ulcer (DFU) [2–5]. More than half of these ulcers progress to
infection [6], and approximately 20% of moderate-to-severe infections ultimately culminate
in amputation [7,8]. Even after apparently successful healing, recurrence is alarmingly
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frequent: around 40% of patients experience a new ulcer within one year, nearly 60%
experience a new ulcer within three years, and up to 65% experience a new ulcer within
five years [2].

Mortality in patients with a DFU is markedly elevated, with approximately 50% dying
within five years of diagnosis [2,4,5]. The risk of death is more than doubled compared
to individuals with diabetes who do not develop foot ulcers [2,9]. The leading causes of
death are cardiovascular disease and infection, accounting for almost 50% and 25% of
deaths, respectively [4].

Identifying predictors of unfavorable outcomes is essential to enhance risk stratifi-
cation, guide timely and targeted interventions, and ultimately mitigate the burden of
diabetes-related foot complications. Numerous factors have been related to poor outcomes
in DFU, including advanced age, male sex, peripheral arterial disease, chronic kidney
disease, heart failure, prior cardiovascular events, ulcer severity (including depth, location—
especially hindfoot—and presence of infection or ischemia), delayed presentation, and
history of previous ulcer or amputation [5,10–14]; however, despite substantial progress in
this field, a universally accepted and validated tool capable of reliably predicting outcomes
in high-risk DFU patients is still lacking [15–19].

The aim of this investigation was to evaluate clinical, laboratory, and imaging factors
associated with unfavorable outcomes in high-risk patients with a DFU. To address this
objective, we analyzed a well-characterized cohort of individuals with long-standing
diabetes and active foot ulceration, integrating demographic, clinical, laboratory, and
imaging data.

2. Materials and Methods
2.1. Patient Population

For the purpose of this study, a series of 100 patients treated for a DFU that were seen
by the multidisciplinary consultation unit at the Department of Endocrinology, Hospital of
the Lithuanian University of Health Sciences Kaunas Clinics between January 2021 and
January 2023 were evaluated.

During this period, a total of 426 patients were seen at the unit, of whom 115 were
assessed dead by June 2024.

The inclusion criteria for the analysis were as follows:

• Disease codes, based on the International Statistical Classification of Diseases and Re-
lated Health Problems, Tenth Revision, Australian Modification (ICD-10-AM): E11.73,
E10.73, E11.52, E10.52, L97, Z89.4, Z89.5, and Z89.6;

• Confirmed diagnosis of type 1 or type 2 diabetes mellitus;
• Seen by the multispecialty consultation unit at the Department of Endocrinology for a

confirmed DFU;
• Age between 18 and 80 years.

Patients were excluded if they had other types of diabetes; were undergoing dialysis
for end-stage renal disease (ESRD); had advanced malignancy or immunosuppressive
disease; or were receiving immunosuppressant therapy.

For the analysis, 73 patients were reassessed in the clinic in December 2023–June 2024,
duration of observation 1.2–3 years (mean 2.1 years), as well as the first visit. Database data
were extracted of 27 randomly selected deceased subjects meeting the aforementioned eligi-
bility criteria. All participants provided written informed consent prior to their enrolment
in this study.
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2.2. Data Collection

The following data were collected for each patient: demographic variables (age,
gender), diabetes-related variables (type and duration of diabetes, use of antidiabetic
medications, previous foot ulcer and/or history of lower limb amputation), and comor-
bidities (history of stroke, myocardial infarction, presence of arterial hypertension, chronic
kidney disease). Collection and documentation of demographic data were performed by
an endocrinologist.

Objective clinical parameters included body mass index (BMI), presence of foot de-
formities, and assessment of diabetic polyneuropathy and peripheral angiopathy. Body
mass index (BMI) was calculated as weight in kilograms divided by height in meters
squared (kg/m2), based on the World Health Organization (WHO) criteria. Weight was
measured to the nearest 0.1 kg, with participants wearing light clothing and no shoes,
and height was recorded to the nearest 0.1 cm using a stadiometer. Foot deformities were
assessed for the presence of hallux valgus, toe deformities, Charcot deformity, and arch
abnormalities. Diabetic polyneuropathy was assessed using a 10 g monofilament and
a tuning fork in accordance with the International Working Group on the Diabetic Foot
(IWGDF) recommendations [20]. Peripheral arterial disease was evaluated by palpation of
the a. dorsalis pedis and a. tibialis posterior. The clinical evaluation was performed by a
trained diabetes nurse.

Laboratory tests comprised lipid profile (total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides), white
blood cell (WBC) count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and
estimated glomerular filtration rate (eGFR); glycemic control was assessed by glycosylated
hemoglobin (HbA1c). Biochemical and hematological analyses were carried out in the
local clinical laboratory using automated analyzers and established assay methodologies,
performed according to standardized protocols.

Imaging evaluation consisted of bilateral foot radiographs obtained in two standard
projections primarily aimed at detecting radiological signs of osteomyelitis. The X-ray
results were coded as 0—not performed, 1—no osteomyelitis, and 2—confirmed osteomyelitis.

The presence and absence of a feature for each categorical variable was coded as 1 and
0, respectively.

2.3. Outcome Measures

For this analysis, the outcomes of clinical course of the DFU were dichotomized as
favorable or unfavorable. An unfavorable outcome (“event”) was defined as failure to
heal of a previously existing ulcer, development of a new ulcer, any level of lower-limb
amputation (ranging from major amputations above the ankle to minor foot amputations,
including toes), or death.

In the survivor group analysis, the event was an unhealed existing ulcer, development
of a new ulcer, or amputation.

Patients were stratified according to clinical outcome, classified as favorable (outcome = 0)
or unfavorable (outcome = 1).

2.4. Prediction Problem

Consider a dataset with n observations and m features, denoted as D = {(xi, yi)},
where xi ∈ Rm corresponds to the input vector of i-th observation, while yi ∈ (1, . . . , K)
denotes its categorical class label for K possible classes, with i = 1, n. For any given
instance xi, the machine learning model h(xi) produces a prediction ŷi, typically expressed
as either a class probability distribution over K categories or a discrete class label. In
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this study, two ensemble-based machine learning models were selected to address the
prediction of DFU outcome.

The dataset under investigation comprises both categorical and numerical features. To
completely employ its structure, categorical boosting (CatBoost) was chosen, as it achieves
state-of-the-art predictive accuracy and is specifically designed to process categorical
variables through ordered target statistics. Its boosting framework enables capturing
complex non-linear relationships, which are often present in medical data [21–23]. As an
alternative, random forest (RF) was chosen to serve as a robust and interpretable baseline.
RF builds multiple decision trees on bootstrapped samples and aggregates their outputs,
thereby reducing variance and enhancing stability in noisy or heterogeneous datasets [24–26].

2.4.1. Categorical Boosting

CatBoost, introduced by [27], constructs an ensemble of decision trees sequentially,
with each tree focusing on correcting the errors of the previous ones. Its objective function
is explicitly regularized and can be expressed as follows:

L =
n

∑
i=1

l(yi, ŷi) + Ω( f ),

where l(yi, ŷi)= −∑K
k=1 1{yi = k}log(pi,k) represents the loss function, with 1{yi = k} be-

ing an indicator function, and pi,k =
exp(ŷi,k)

∑K
j=1 exp(ŷi,j)

representing a softmax probability of

class k. The L2 regularisation penalty is defined as Ω( f ) = λ∑T
j=1 ω2

j , where ωj are
the leaf weights and λ is the regularization coefficient. This formulation ensures that
CatBoost not only optimizes predictive accuracy but also prevents overfitting, making
it well suited for heterogeneous datasets with categorical and numerical features. The
balance between accuracy and generalization is achieved through the careful adjustment
of several hyperparameters, which directly influence how the model learns from data
and controls complexity [28,29]:

Parameters like iterations, depth, and learning_rate affect how quickly the loss is
minimized. More specifically, the iterations parameter specifies the number of boosting
rounds, where additional trees can improve predictive accuracy but also increase the risk
of overfitting. The learning_rate η controls the optimization step size, with lower values
producing more stable and reliable probability estimates, though requiring more iterations
to converge. The depth parameter determines the maximum depth of individual trees:
deeper trees are able to capture complex patterns in patient data but may overfit, making
this parameter essential for balancing accuracy with generalization;

l2_lea f _reg and random_strength directly regularize the objective, smoothing solutions
and avoiding overfitting. In healthcare data, where sample sizes are often modest, this reg-
ularization improves robustness against spurious associations. By using random_strength,
higher randomness when selecting tree splits is enabled, thereby improving its ability to
generalize across diverse patient populations;

cat_ f eatures influences how categorical data enter the optimization process. Unlike
many other machine learning algorithms that require manual preprocessing (e.g., one-
hot encoding), CatBoost can process categorical data using its ordered boosting scheme,
which allows the capture of meaningful patterns in categorical variables without exploding
dimensionality as in one-hot encoding;

early_stopping_rounds and num_ f olds ensure that progress in the objective function
indicates meaningful learning rather than spurious patterns from noise. In particular, the
parameter early_stopping_rounds specifically monitors the validation loss Lval , while the
parameter num_ f olds indicates the number of folds used in cross-validation by helping
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to evaluate the model’s robustness across multiple subsets and reduce the risk of biased
performance estimates.

2.4.2. Random Forest

Random forest (RF), introduced by Breiman [30], is an ensemble learning method
based on the principle of bootstrap aggregation (bagging) applied to decision trees. It is
widely used in medical diagnostics due to its robustness, interpretability, and ability to
handle heterogenous datasets [31–33]. Each tree is trained independently on a random
sample, with further randomness introduced by selecting a random subset of features at
each split. Instead of minimizing a global objective with explicit regularization, RF relies
on split criteria such as Gini impurity or information gain at each node, such as

Gini = 1 −
K

∑
k=1

p2
k ,

where pk is the proportion of samples of class k at the node. The ensemble averaging
reduces variance and prevents overfitting. RF performance and generalization are strongly
influenced by a set of hyperparameters that control the ensemble size, tree complexity, and
randomness introduced during training. The key parameters in balancing predictive power
and overfitting prevention are as follows [34,35]:

• n_estimators are used to control the ensemble size. In particular, it defines the number
of decision trees in the forest. A larger number of trees generally improve stability and
reduce variance but increase the computation time;

• max_depth, min_samples_split, and min_samples_leaf are the parameters used to de-
termine the tree complexity. Using these parameters, the maximum depth of each
tree, the minimum number of samples required to split a node, and the minimum
number of samples allowed in a terminal leaf are specified, respectively. Collectively,
these settings determine how each decision tree in the forest is constructed. By con-
straining depth, splits, and leaf size, the parameters are used to prevent the model
from overfitting while maintaining sufficient flexibility to identify certain patterns in
the data;

• max_features and bootstraps are used to control diversity and randomness. By reg-
ulating the number of features used at each split, the diversity and correlation of
trees are controlled. In comparison, the randomness is introduced using bootstrap
through resampling, which allows the reduction of variance and stabilizes the overall
model performance.

2.4.3. Fine-Tuning of Model Parameters

To optimize the listed parameters of both CatBoost and RF, tree-structured Parzen
estimator (TPE) [36,37] was implemented. TPE is a form of Bayesian optimization that
models the hyperparameter search space probabilistically. First, several trials are split into
good and poor configurations according to the objective metric (e.g., balanced accuracy
in this study). Then, two probability density functions are constructed using Gaussian
mixture models: l(x)—likelihood of hyperparameters among the good configurations,
g(x)—likelihood of hyperparameters among all other configurations. A configuration of
new parameters is selected by maximizing the likelihood ratio:

x∗ = argmax
x

l(x)
g(x)

.
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This ensures that values similar to those in the good configurations are sampled more
frequently, focusing the search on promising regions of the parameter space. With each trial,
the density functions of l(x) and g(x) are updated. Thus, as trials continue, TPE gradually
adjusts its sampling strategy to favor regions of the hyperparameter combinations observed
for better performance, thereby converging efficiently toward optimal configurations.

2.4.4. Performance Metrics

To assess the generalization performance of the trained model and its predictive ability
on unseen data, k-fold cross-validation (CV) was applied [38]. This approach evaluates
model stability by partitioning the dataset into k equal folds by training on k − 1 folds and
validating on the remaining folds. By using multiple splits, k-fold CV reduces the risk of
biased evaluation results caused by a single train–test division, thereby providing a more
reliable estimate of predictive performance.

The evaluation of binary classification models is measured using metrics derived from
the confusion matrix [39], which compares predicted outcomes against actual outcomes.
Suppose true positives (TP) represent correctly predicted positive cases, true negatives (TN)
denote correctly predicted negative cases, false positives (FP) show the number of negative
cases that were incorrectly classified as positive, and false negatives (FN) show positive
cases mistakenly classified as negative. The detailed formulas for all metrics are provided
in Supplementary Material S1.

In diagnostic tasks, recall ensures actual outcomes are not overlooked, precision en-
sures positive predictions are trustworthy, and balanced accuracy together with AUC pro-
vide a robust performance metric in the presence of class imbalance. Using multiple
complementary metrics allows for a more comprehensive assessment of model performance.

2.4.5. Explanations Using SHAP Values

To improve the interpretability of the CatBoost and RF models, we applied SHapley
Additive exPlanations (SHAP). This is a state-of-the-art approach that provides both local
interpretability (at the level of individual predictions) and global interpretability (feature
importance). SHAP decomposes each prediction into additive contributions of individual
features based on cooperative game theory [40,41]. This approach is particularly valu-
able for identifying the key factors driving model decisions, thereby supporting model
validation and deepening the understanding of the underlying clinical phenomena.

In particular, for a prediction h(x), the SHAP value is decomposed as

h(x) = ϕ0 +
m

∑
j=1

ϕj,

where ϕ0 denotes the model’s average prediction across the dataset, while ϕi represents
the SHAP value associated with feature i, with m being the total number of input features.
Each reflects the marginal contribution of feature i to the prediction averaged across all
possible feature subsets [42]. The exact contribution of a given feature j is given by

ϕj = ∑

S⊆Nj}
|S|!(|N| − |S|−1)!

|N|! (hS∪{j}− hS)

,

where S ⊆ Nj} represents a subset of all features excluding feature j, N is the full set of
features, hS∪{j} denotes the model prediction when feature j is included in subset S, and
hS corresponds to the prediction based solely on features in S. As the computation of

exact ϕj values is very computationally expensive, tree-based models, such as CatBoost
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and random forest, enable efficient computation of SHAP values by exploiting the internal
structure of decision trees [43].

2.5. Ethical Considerations

Approval by the Kaunas Regional Biomedical Research Ethics Committee for the
biomedical study (No. BE-2-22) was received 22 March 2023.

3. Results
Over the observation period (mean duration 2.1 years), data from 100 patients were

available for analysis: a total of 27 died before the outcome visit, and 73 were reassessed
in the clinic. The demographics of the patients are presented in Table 1, while the com-
parisons for continuous and categorical variables in both cohorts by outcome are shown
in Figures 1 and 2, respectively.

Table 1. Baseline characteristics of the subjects.

Variable Mean ± SD Min–Max Q1 Median Q3

Age (years) 63.62 ± 8.79 41.00–77.00 57.00 65.00 69.25
Diabetes duration (years) 20.19 ± 12.19 1.00–60.00 12.00 18.00 26.00
Previous HbA1c (%) 8.50 ± 1.69 5.60–13.40 7.25 8.30 9.60
BMI (kg/m2) 32.55 ± 6.96 15.04–54.05 27.85 31.70 36.69
T. cholesterol (mmol/L) 4.49 ± 1.35 2.03–8.60 3.45 4.35 5.35
HDL cholesterol (mmol/L) 1.11 ± 0.37 0.42–2.40 0.86 1.01 1.28
LDL cholesterol (mmol/L) 2.77 ± 0.93 1.25–5.41 2.03 2.60 3.37
Triglycerides (mmol/L) 2.15 ± 2.02 0.39–17.98 1.16 1.65 2.62
eGFR (mL/min/1.73 m2) 74.45 ± 24.27 14.10–127.68 59.40 74.90 93.15
WBC (×109/L) 8.68 ± 3.35 4.20–23.20 6.50 7.80 10.10
CRP (mg/L) 47.69 ± 64.59 2.00–290.60 5.60 18.65 56.58
ESR (mm/h) 47.49 ± 33.40 2.00–116.00 15.50 47.00 80.50

Abbreviations: SD—standard deviation; Min—minimum; Max—maximum; Q1—first quartile (25th percentile);
Q3—third quartile (75th percentile); Median—second quartile (50th percentile); HbA1c—glycosylated hemoglobin;
BMI—body mass index; T. cholesterol—total cholesterol; HDL—high-density lipoprotein; LDL—low-density
lipoprotein; eGFR—estimated glomerular filtration rate; WBC—white blood cell count; CRP—C-reactive protein;
ESR—erythrocyte sedimentation rate.

The median age was 65 years (interquartile range [IQR], 57–69.25; range, 41–77 years),
and the duration of diabetes was 18 (IQR, 12–26) years, reflecting a population with
long-standing and advanced disease. The majority of patients were overweight or obese,
and the glycemic control was generally suboptimal, with a mean HbA1c level of 8.3
(IQR 7.25–9.6)%. Lipid parameters demonstrated notable variability: LDL cholesterol
(2.60 [IQR, 2.03–3.37] mmol/L) and total cholesterol (4.35 [IQR, 3.45–5.35] mmol/L) were

moderately elevated in relation to the patients’ high cardiovascular risk, underscoring the
prevalent burden of dyslipidemia in this cohort. HDL cholesterol levels varied widely, while
triglyceride concentrations demonstrated pronounced dispersion (range, 0.4–18.0 mmol/L),
indicating substantial metabolic heterogeneity within the research population. The median
eGFR of 74.9 (IQR, 59.4–93.15) mL/min/1.73 m2 indicates that the majority of patients ex-
hibited mildly reduced yet predominantly preserved renal function. Inflammatory markers
(CRP, ESR, WBC) were substantially elevated and highly variable, suggesting pronounced
systemic inflammation and possible underlying infection. Overall, the study cohort was
characterized by long-standing diabetes, poor metabolic control, obesity, variable degrees
of renal dysfunction, and high systemic inflammatory burden—features consistent with a
population at increased risk of adverse DFU outcomes.

Unfavorable outcomes were observed in 53 subjects (53%) of the overall cohort and in
26 (36%) of the survivors. Of the latter, ulcers failed to heal or recured in seven subjects
(26.9%), while fourteen (53.8%) and five (19.2%) patients underwent minor and major
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amputations, respectively. When stratified by diabetes type, unfavorable outcomes were
observed in 38.1% of patients with type 1 diabetes (T1D) and 53.2% of those with type
2 diabetes (T2D) in the overall cohort. Among survivors, these outcomes occurred in 44.4%
of T1D and 32.7% of T2D patients.

Figure 1. The means with 95% confidence intervals (CIs) across the subject groups: favorable,
unfavorable in the whole cohort, and unfavorable among survivors. Each subplot corresponds
to a single variable. Abbreviations: HbA1c—glycosylated hemoglobin; BMI—body mass index;
T. cholesterol—total cholesterol; HDL—high-density lipoprotein; LDL—low-density lipoprotein;
eGFR—estimated glomerular filtration rate; WBC—white blood cell count; CRP—C-reactive protein;
ESR—erythrocyte sedimentation rate.
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Figure 2. Comparison of proportions with 95% confidence intervals (CIs) for categorical variables
across the groups: favorable, unfavorable in the whole cohort, and unfavorable among survivors.
A value of 1 indicates the presence of the trait. Abbreviations: SGLT-2i—sodium–glucose cotrans-
porter 2 inhibitors; GLP-1RA—glucagon-like peptide-1 receptor agonists; Foot X-rays—plain foot
radiographs obtained in two standard projections (anteroposterior and lateral) to assess the presence
of osteomyelitis.

In the outcome comparison between the two cohorts, only three groups are presented,
as the favorable outcome groups overlapped.
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While the metrics in the favorable outcome group could largely be interpreted as
the most positive, for the majority of variables, only modest numerical differences were
observed, with a substantial overlap in intervals indicating no statistical significance.
Interestingly, age, diabetes duration, and BMI trended to be the highest in this group.
Inflammatory markers (WBC, CRP, ESR) demonstrated the greatest separation among the
groups, especially for ESR.

For categorical variables, the use of metformin and hypertension tended to differ
between the favorable and unfavorable groups, though some overlap of confidence inter-
vals is observed. Comparatively, myocardial infarction appeared more common in the
unfavorable groups. Previous amputations, previous events, and previous ulcerations
were more common in the unfavorable groups, especially among survivors. To sum up,
the most discriminative categorical predictors of unfavorable outcomes are previous ulcer,
previous amputation, foot deformation, and previous event (any previous ulcer or ampu-
tation). These risk factors strongly differentiate the patient groups, while variables such
as hypertension, stroke, myocardial infarction, and angiopathy also contributed but with
more overlap.

Risk Factor Analysis and Modelling

As shown in Figure 3, the cumulative confusion matrix summarizes the random forest
model’s performance across 5-fold cross-validation, showing 32 true negatives, 37 true
positives, 15 false positives, and 16 false negatives. These results indicate that sensitivity
(69.8%) and specificity (68.1%) are closely balanced, suggesting the model performs compa-
rably in predicting both positive and negative cases. Similarly, precision (71.2%) and an
F1-score of 0.705 indicate a reasonable balance between correctly identifying true positives
and minimizing false positives. The balanced accuracy (0.689) further confirms a moderate
generalization across classes. In the same vein, ROC analysis over k = 5 folds suggests
that the RF model has a moderate predictive ability in distinguishing between unfavorable
and favorable outcomes. The differing values of AUC values among folds reflect variability
in model performance across data splits.

 
 

(a) (b) 

Figure 3. Whole cohort: (a) cumulative confusion matrix and (b) receiver operating characteristic
(ROC) curves for the random forest model. True labels are shown on the y-axis, and predicted labels
are shown on the x-axis.

Figure 4 illustrates the CatBoost model’s performance for the whole cohort. In panel (a),
the cumulative confusion matrix shows the aggregated results across 5-fold cross-validation,
where 36 true negatives and 45 true positives were correctly identified alongside 11 false
positives and 8 false negatives. This indicates that CatBoost achieves an overall accuracy of
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81.0%, with sensitivity (84.9%) slightly exceeding specificity (76.6%), suggesting stronger
performance in detecting unfavorable outcomes. Precision (80.4%), together with an F1-
score of 0.826 and a balanced accuracy of 0.808, reflects a strong balance between minimizing
false positives and correctly identifying true unfavorable cases. This suggests that the
CatBoost model, being optimized for categorical variables, showed higher predictive
values and, thus, was used for further risk factor analysis in the whole sample as well as
the survivor-only analysis. As shown in Figure 4b, the CatBoost classifier achieved an AUC
of 0.806 on average, indicating solid predictive ability in distinguishing unfavorable from
favorable outcomes across the full patient set. While there is some variability between folds
(ranging from 0.717 to 0.920), the overall performance remains above chance, confirming
that CatBoost generalizes well across different subsets of patient data and performs better
than RF.

 

 
(a) (b) 

Figure 4. Whole cohort: (a) cumulative confusion matrix and (b) receiver operating characteristic
(ROC) curves for the CatBoost model.

Figure 5 depicts the performance of the CatBoost model in the survivor cohort. In
Figure 5a, the cumulative confusion matrix summarizes the 5-fold cross-validation results,
showing 40 correctly identified negatives and 20 correctly identified positives alongside
seven false positives and six false negatives. It shows that CatBoost achieved an over-
all accuracy of 82.2%, with relatively balanced performance (0.810) across both classes.
Specificity (85.1%) is slightly higher than sensitivity (76.9%), suggesting the model is more
effective at correctly identifying negative cases while still maintaining good performance
in detecting unfavorable outcomes. The precision (74.1%) and F1-score (0.755) indicate
a reasonable trade-off between minimizing false unfavorable cases and maximizing true
detection of unfavorable cases. In Figure 5b, the mean AUC of 0.838 demonstrates the
CatBoost model’s strong discriminative power between unfavorable and favorable cases.
Despite some fold-to-fold variability (ranging from 0.750 to 0.911), the performance remains
robustly above chance, suggesting that CatBoost generalizes well to this patient group and
captures clinically relevant predictive patterns.

SHAP summary plots, presented in Figure 6, illustrate the contribution of individual
features in both the full cohort and survivor analyses, offering a clear visual representa-
tion of how varying feature levels impact model predictions. In the full cohort analysis
(Figure 6a), risk factors for unfavorable outcomes, including non-healing, re-ulceration,
amputation, and death, are summarized. The strongest predictors identified were the
elevated inflammatory markers (CRP, WBC, ESR), radiographic evidence of osteomyelitis,
a U-shaped association with triglycerides (both low and high levels), prior amputation,
shorter diabetes duration, higher LDL-C, lower BMI, and reduced eGFR. In the survivor-
only analysis (Figure 6b), prior amputation was the most powerful predictor, followed by
lower BMI, U-shaped triglycerides, elevated inflammatory markers (CRP, WBC and ESR),
reduced eGFR, radiographic evidence of osteomyelitis, higher total and LDL-C choles-
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terol, younger age, and shorter diabetes duration. Among the medications evaluated, only
metformin demonstrated a consistent, albeit modest, protective association in survivors,
with no corresponding effect in the overall cohort, whereas other antihyperglycemic agents
had minimal impact. In contrast, glycemic control, comorbidities, and foot examination
findings appeared to have less prognostic influence than the aforementioned factors in
our analysis.

 

 
(a) (b) 

Figure 5. Survivors’ cohort: (a) cumulative confusion matrix and (b) receiver operating characteristic
(ROC) curves for the CatBoost model.

  
(a) (b) 

Figure 6. SHAP (SHapley Additive exPlanations) summary plots for the CatBoost model: (a) whole
cohort and (b) survivors’ cohort. Each point represents a single patient. The horizontal axis displays
SHAP values, which indicate both the direction and magnitude of each feature’s impact on the
prediction of unfavorable outcomes. Features are ranked in descending order of overall importance,
with the most influential variables presented at the top. The color of each point represents the original
feature value (red = high, blue = low). Abbreviations: HbA1c—glycosylated hemoglobin; BMI—body
mass index; T. cholesterol—total cholesterol; HDL—high-density lipoprotein; LDL—low-density
lipoprotein; eGFR—estimated glomerular filtration rate; WBC—white blood cell count; CRP—C-
reactive protein; ESR—erythrocyte sedimentation rate; SGLT-2i—sodium–glucose cotransporter
2 inhibitors; Foot X-ray—plain foot radiographs obtained in two standard projections (anteroposterior
and lateral) to assess the presence of osteomyelitis.

The prognostic impact of the risk factors was illustrated using partial dependence
plots, which provide a detailed visualization of each factor’s independent effect on the
predicted outcome and yield deeper insight into their prognostic relevance (Figure 7). This
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analysis reinforced a U-shaped pattern for triglycerides, where the risk is higher at both
low and high triglyceride values. This pattern is present in both cohorts. Other factors
followed the previously described tendencies, with some variability seen in WBC for the
Survivor group, where the risk was the lowest in the normal range, with a slight elevation
in the low WBC range and significantly elevated risk at higher levels.

Whole cohort 

       
Survivors 

       
Triglycerides eGFR CRP BMI WBC ESR Diabetes 

duration 

Figure 7. Partial dependence plots (PDPs) illustrating the relationship between the values of key
predictors and the probability of unfavorable outcomes. PDPs show the marginal effect of selected
individual features on the model’s predicted probability of unfavorable outcomes while averaging
out the effects of all other variables. The horizontal axis represents the feature value, and the
vertical axis shows the corresponding predicted probability. Abbreviations: BMI—body mass index;
eGFR—estimated glomerular filtration rate; WBC—white blood cell count; CRP—C-reactive protein;
ESR—erythrocyte sedimentation rate.

4. Discussion
Previous studies have consistently identified classical risk factors for the development

of DFU, including neuropathy, peripheral artery disease (PAD), foot deformities, history
of ulceration or amputation, nephropathy, poor glycemic control, prolonged diabetes
duration, and advanced age [44,45]. Analyses of DFU outcomes remain heterogeneous
due to differences in study populations, methodologies, and outcome definitions [45–47].
The literature consistently demonstrates that classical predictors (PAD, poor glycemic
control, renal dysfunction, neuropathy, ulcer severity, and infection) are strongly associated
with adverse DFU outcomes, regardless of study design. In contrast, demographic and
systemic factors (age, sex, smoking, obesity, comorbidities) are more frequently highlighted
in meta-analyses and large-scale reviews [46–48].

This analysis was undertaken to address the clinical challenge of recognizing patients
with the highest risk for an unfavorable DFU outcome and which factors are the most
relevant for such an outcome. As death as a systemic outcome is different from localized
foot outcomes, the analysis of the two cohorts (all subjects and survivors only, respectively)
was expected to discern potential differences between these two types of outcomes. Overall,
patients with DFU are recognized to carry a markedly elevated mortality risk, a finding
reflected in our cohort, where death occurred in 27% of participants in just over 2 years
of observation. Meta-analyses report 5-year mortality rates of ~30% for DFU, rising to
46% after minor and 57% after major amputation, with even higher rates in patients with
comorbidities, particularly chronic kidney disease [49]. Another meta-analysis estimated
5-year mortality at nearly 50%, with cardiovascular disease and infection as leading causes
of death. Consistent predictors of mortality included older age, peripheral arterial disease,
chronic kidney disease, previous amputation, and cardiovascular disease [4]. Specific
causes of death were not assessed in this analysis.
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The frequency of unfavorable outcomes (53% in the whole cohort and 36% when
excluding the deaths) underscores the high morbidity and mortality associated with di-
abetic foot disease. These rates are similar to previously published data, where DFU
recurrence alone reaches ~40% at one year, ~60% at three years, and up to 65% at five years
after healing [2,12].

Systemic inflammatory markers in this study demonstrated substantial prognostic
value for adverse outcomes. Elevated CRP, WBC, and ESR were consistently associated
with unfavorable prognosis in both cohorts. These findings are in line with previous
studies reporting that elevated WBC and low albumin increase the risk of amputation [46],
while reduced hemoglobin and raised CRP, neutrophil-to-lymphocyte ratio (NLR), and
platelet-to-lymphocyte ratio (PLR) are linked to limb loss [16]. CRP has been identified as
an independent predictor of amputation [19], and large cohort studies further confirmed
that elevated CRP and ESR, together with increased WBC and anemia, independently
predict adverse outcomes [50].

In this cohort, radiologically confirmed osteomyelitis emerged as a strong prognostic
factor for adverse outcomes in the overall population. However, after excluding patients
who had died, its predictive significance somewhat decreased and was less pronounced
than that of prior amputation as well as BMI, systemic inflammatory markers, or renal
function. There may be several explanations for this. First, the presence of osteomyelitis
and elevated inflammatory markers may represent a systemic effect, better reflected with
the inclusion of death [49]. Second, the lower prognostic value of osteomyelitis may be due
to its heterogeneous clinical presentation and the limited sensitivity of radiography, as bone
biopsy with microbiological culture remains the diagnostic gold standard [8,51]. Reliance
on radiographic criteria alone may, therefore, have underestimated its prevalence and
prognostic impact, making it appear less predictive than systemic or host-related factors.

In the present study, triglycerides were the strongest lipid-related predictors of adverse
outcomes, exceeding total, HDL, and LDL cholesterol in prognostic value. This is in line
with previously published evidence that triglycerides have stronger prognostic value in
diabetic foot disease than traditional cholesterol fractions. Unlike LDL-C and HDL-C,
triglycerides directly reflect insulin resistance and metabolic dysregulation; additionally,
triglyceride-rich remnant lipoproteins contribute to endothelial dysfunction, oxidative
stress, and impaired wound healing [52]. Meta-analyses and cohort studies consistently
show that elevated triglycerides predict DFU development and amputation risk regardless
of diabetes type [53–56]. We observed a U-shaped association, where both elevated and low
triglyceride levels were linked to adverse outcomes: hypertriglyceridemia driving vascular
injury and very low levels reflecting malnutrition, catabolism, or severe illness, as similarly
reported in cardiovascular and critically ill populations [57,58]. Taken together, these data
reinforce our observation that triglycerides may represent a more clinically relevant lipid
marker for adverse DFU outcomes than traditional cholesterol fractions in such models,
reflecting a broader interplay between metabolic dysfunction, vascular injury, and impaired
wound healing.

A history of lower-limb amputation emerged as one of the most powerful predictors of
unfavorable outcomes, confirming its role as a critical prognostic factor in diabetic foot dis-
ease. The association remained robust in both samples, with its predictive value increasing
further in survivors, where it appeared as the strongest predictor. These observations are
consistent with prior reports demonstrating that previous tissue loss substantially increases
the likelihood of ulcer recurrence, subsequent amputations, and mortality [15,46,59,60].
This emphasizes the need for intensified follow-up and targeted preventive strategies in
this particularly high-risk subgroup of patients with diabetic foot disease.
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In this study, an obesity paradox pattern was evident: in the survivor-only analysis,
lower BMI was consistently associated with worse prognosis, whereas higher BMI appeared
to be protective. Poor nutritional status and systemic catabolism may partly explain why
lower BMI is associated with worse outcomes in diabetic foot disease. This paradox, widely
described in chronic conditions such as chronic kidney disease, heart failure, and chronic
obstructive pulmonary disease (COPD), highlights that underweight individuals often ex-
perience poorer outcomes due to malnutrition, sarcopenia, and systemic inflammation [61].
Consistently, a recent meta-analysis confirmed that lower BMI significantly increases the
risk of amputation in patients with DFU, suggesting that reduced body mass reflects dimin-
ished physiological reserve and resilience [46]. Importantly, vascular cohorts have shown
that higher BMI may sometimes be protective, likely reflecting greater nutritional reserve
and the capacity to withstand systemic stress [62].

Interestingly, shorter diabetes duration and younger age were unexpectedly associated
with unfavorable outcomes, particularly in the full-cohort analysis. Although longer
diabetes duration and older age are established risk factors for DFU development [60],
previous studies have shown that younger patients in tertiary care often present with
more severe ulcers, poorer glycemic control, and higher infection rates, reflecting more
aggressive disease progression [5,63,64]. Consistently, our patients with shorter diabetes
duration demonstrated a similarly adverse risk profile, suggesting that rapid progression to
severe DFU may indicate a particularly aggressive phenotype. As this cohort also consisted
of tertiary-care patients, referral bias may partly explain the worse outcomes observed in
this subgroup.

CKD is an established prognostic risk factor for DFU. Large cohort studies have
demonstrated that even moderate reductions in eGFR (<60 mL/min/1.73 m2) nearly dou-
ble the risk of developing DFU, while advanced CKD (eGFR < 30 mL/min/1.73 m2) confers
up to a four-fold higher risk compared with preserved renal function [65]. The risk of
lower-extremity amputation also rises sharply with CKD progression, particularly in stage
4–5 CKD and among patients receiving dialysis [66,67]. In line with these observations, this
work identified reduced eGFR as an independent prognostic factor for adverse outcomes
in the overall cohort. Dialysis patients were excluded to minimize prognostic confounding,
since their survival is often dominated by competing systemic risks. When deaths were cen-
sored, the prognostic impact of reduced eGFR became more evident, although it remained
less pronounced than prior amputation, BMI, and systemic inflammatory markers.

An interesting observation in our cohort was a weaker but consistent association
between metformin use and more favorable outcomes in survivors. This finding aligns
with prior evidence suggesting that metformin may reduce the risk of DFU development
and progression [68]. The biological plausibility of these findings may relate to metformin’s
pleiotropic effects, including AMPK activation, improved endothelial function, attenuation
of oxidative stress, and broad anti-inflammatory properties [69,70]. However, it is important
to note the potential for confounding by indication: metformin is less likely to be prescribed
in patients with multiple comorbidities, particularly in those with advanced chronic kidney
disease (CKD), where its use is contraindicated. Conversely, although insulin therapy has
previously been associated with incident DFU [71,72], no such association was observed in
this analysis, and no other antihyperglycemic agents demonstrated significant effects in
any of the cohorts.

The relatively low importance of HbA1c in our models likely reflects several factors. A
single baseline HbA1c at the time of ulcer presentation may not accurately capture longer-
term glycemic exposure or recent changes in glucose control. Subsequent intensification of
diabetes management (e.g., insulin initiation, inpatient stabilization) can further weaken
the association between baseline HbA1c and clinical outcomes. In addition, HbA1c is
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correlated with multiple metabolic variables, and in models that include stronger and
more proximate determinants of outcome—such as CRP, radiographic osteomyelitis, WBC
count, triglycerides, eGFR, and BMI—the independent predictive contribution of HbA1c
diminishes as its shared variance is absorbed by these more direct drivers.

This work had several limitations. First, the retrospective design introduces the
potential for residual confounding despite multivariable adjustments. Second, radiographic
diagnosis of osteomyelitis may have underestimated its true prevalence, as bone biopsy
remains the diagnostic gold standard. Finally, this study was conducted in a single tertiary-
care center and involved a limited sample size, which may restrict the generalizability of the
findings to broader diabetic populations and, thus, should be regarded as an exploratory
analysis. To mitigate the risk of overfitting, we applied internal validation using repeated
cross-validation and evaluated model performance using boosting algorithms, including
CatBoost and LightGBM. These findings provide preliminary evidence supporting the
relevance of these variables, and the modelling framework developed here will need to be
expanded and validated in larger cohorts to enable a more reliable estimation of predictive
performance and clinical utility. In summary, the routine assessment of triglycerides,
renal function, and inflammatory burden, combined with detailed documentation of prior
amputations and body composition, could enhance risk stratification in patients with
diabetic foot ulcers. Integrating these systemic markers into clinical practice may facilitate
earlier identification of frail, high-risk individuals and enable more targeted interventions
to reduce amputation rates, ulcer recurrence, and premature mortality.

5. Conclusions
In this high-risk cohort with DFU, a prior amputation, systemic inflammation, re-

nal dysfunction, and dyslipidemia were the strongest prognostic factors for unfavorable
outcomes. Triglycerides outperformed conventional lipid fractions, while lower BMI and
shorter diabetes duration paradoxically indicated worse outcomes, reflecting frailty and
accelerated disease progression. These findings emphasize that systemic and host-related
factors, rather than local foot features alone, are central to prognosis and should guide risk
stratification and management in diabetic foot disease.
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Abbreviations
The following abbreviations are used in this manuscript:

AMPK AMP-Activated Protein Kinase
AUC Area Under the Receiver Operating Characteristic Curve
BMI Body Mass Index
CatBoost Categorical Boosting
CI Confidence Interval
CKD Chronic Kidney Disease
COPD Chronic Obstructive Pulmonary Disease
CRP C-Reactive Protein
CV Cross-Validation
DFU Diabetic Foot Ulcer
eGFR Estimated Glomerular Filtration Rate
ESR Erythrocyte Sedimentation Rate
ESRD End-Stage Renal Disease
FN False Negative
FP False Positive
GLP-1RA Glucagon-Like Peptide-1 Receptor Agonist(s)
HbA1c Glycosylated Hemoglobin
HDL-C High-Density Lipoprotein Cholesterol
ICD-10-AM International Classification of Diseases, 10th Revision, Australian Modification
IQR Interquartile Range
IWGDF International Working Group on the Diabetic Foot
LDL-C Low-Density Lipoprotein Cholesterol
Median Second Quartile (50th percentile)
NLR Neutrophil-to-Lymphocyte Ratio
Q1 First Quartile (25th percentile)
Q3 Third Quartile (75th percentile)
PAD Peripheral Artery Disease
PDP Partial Dependence Plot
PLR Platelet-to-Lymphocyte Ratio
RF Random Forest
ROC Receiver Operating Characteristic
SD Standard Deviation
SGLT-2i Sodium–Glucose Cotransporter 2 Inhibitor(s)
SHAP SHapley Additive exPlanations
TC Total Cholesterol
T2D Type 1 Diabetes
T2D Type 2 Diabetes
TN True Negative
TP True Positive
TPE Tree-Structured Parzen Estimator
WBC White Blood Cell (count)
WHO World Health Organization
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