
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.2(31)

PARSE TREE POSITION MEASURING IN DISTRIBUTED GENETIC
PROGRAMMING

Dalius Rubliauskas, Giedrius Paulikas, Bronislovas Kilda
Kaunas University of Technology, Department of Practical Informatics

Studentų 50, Kaunas

Abstract. Distributed genetic programming (GP) is a step forward in optimization of the GP algorithm, but it
suffers from the difficulties of setting the proper distribution parameters. One of the most important parameter –
classes, responsible for the migration among subpopulations, can be put under the control of flocking. The challenge in
applying flocking to distributed GP lies in measuring the positions and distances between the program parse trees. This
paper discusses the details of possible methods for measuring the tree position, paying the most attention to resulting
distance values that are of the primary goal for a successful combination of distributed GP and flocking.

1. Indroduction

Genetic programming (GP) is an evolutionary
search strategy. It is derived from the genetic algo-
rithms (GA), adopting them to search for computer
programs. GP is a versatile and powerful technique to
solve tasks with known domain and expected results,
but when the way to achieve these results is unknown.
It's an algorithm for creating algorithms and is one of
the methods used for automated programming.

Being an evolutionary strategy (all they are based
on the Darwinian natural selection), GP suffers from
the massive amount of the required computations, and,
consequently, long run time. Since we prefer to get the
solution to a problem as fast as possible (this is espe-
cially important to real life problems), GP algorithm
can be accelerated by employing the technique, widely
used in nature to speed up brain activities – the distri-
bution of computations. Genetic programming, as well
as all genetic algorithms, is well suited for paralleli-
zation: each individual (computer program in GP case)
can be processed separately most of the time.

An observation of natural processes gives one
more improvement of the GP algorithm. It was noticed
that the algorithm performs even better when the
individuals are distributed not globally, but to partially
isolated chunks. Each part runs the GP algorithm
almost independently, just with some information
migration at fixed time intervals. Due to similarity to
wild life evolution in isolated islands, this genetic
algorithm parallelization method is called island
model or distributed GP.

The problem with distributed genetic program-
ming lies in the complicated selection of distribution
parameters. These parameters denote how individuals

must be divided into subpopulations and what level of
information migration is needed among subpopula-
tions. The parameters of the distributed GP add ano-
ther level of required optimizations on parameters of
the sequential genetic algorithm (e.g. genetic operator
probabilities, population size, selection strategy) and
the best values may vary from task to task. They
usually are left for human operator competence, but
since the whole run of the GP algorithm is needed to
justify if parameters are well chosen (which is a
lengthy process), some automated technique would be
desirable.

Here comes another nature inspired algorithm,
which can be applied to facilitate the selection of
distribution parameters. It’s called flocking and is used
to simulate life-like behavior, observed in movement
of animal parties (e.g. flocks of birds or schools of
fish). The flock motion is controlled by the 3 main
rules [3]
 1. Separation - avoiding collisions with flock-mates.
 2. Alignment - steering to the average direction of

flock neighbors.
 3. Cohesion - moving to the average position of

flock neighbors.
Some researchers report a successful application

of flocking rules as the search algorithm (particle
swarm optimization) [4]. This search is similar to the
exploration of the unknown feeding territory done by
the party of animals. Each animal covers only a small
area, but when it spots some food, it moves in that
direction and eventually the whole flock gets affected
by that behavior and tends to search the areas around
the place where the food was found. As a result the
flock moves in a hardly predictable manner, even

24

Parse Tree Position Measuring in Distributed Genetic Programming

though the ultimate goal is to find food, and explores
vast areas, giving the priority to the more promising
regions.

All earlier researchers of the distributed GP and
flocking analyzed these algorithms as separate entities,
without attempts to combine them together. This paper
suggests to join both search strategies, making the
flocking a supplement for the distributed GP. As we
will see further in the article, the fundamental task for
this combination of the two algorithms is the
assessment of the position of the program parse tree in
the search space.

If we assume the whole population of individuals
in the distributed GP as the flock of subpopulations,
flocking rules can by adapted to control subpopula-
tions. The distribution parameters can be separated
into two main sections:
 1. Division parameters direct how many and what

size subpopulations are created.
 2. Migration parameters govern the information

exchange among subpopulations: exchange
frequency, rate, selection of migrating
individuals, etc.
As for the first parameter type, in the static distri-

bution where subpopulations count and their sizes are
set at the beginning of the genetic algorithm run, the
flocking won't be much of use. To control these para-
meters, at least subpopulations of a volatile size are
required. But since variable dynamic subpopulations
aren't proved to be useful [2], such experiments are
better left to be carried out in case flocking performs
successfully in controlling other distribution para-
meters.

The second type of parameters is obviously fit to
be adjusted by flocking rules, because they reflect the
mutability of subpopulations. Internally, this mutabi-
lity is controlled by GP rules that can be thought as the
animal motivation to find food. But this controls only
how the subpopulation moves through the search
space by itself, without external impact from other
subpopulations. When subpopulations communicate
with each other by the means of migration, their cove-
rage of the search space (or the location in the search
space) is changed from external sources. Migration
parameters control how this external effect is applied
among neighboring subpopulations. By changing
these parameters we can drive the subpopulation in the
desired direction through the search space. That's
where the flocking theory is used – to manipulate the
influence subpopulations of the distributed GP make
to each other.

Flocking usage grants one more merit for distri-
bution control – migration topology must not be
specified beforehand. Subpopulations, as well as their
positions, change under the influence of genetic
operations and migration input. Neighboring sub-
populations are the ones with the smallest distance
between them, so before the migration takes place,

each subpopulation must find a required number of
neighbors according to the current situation.

In the second part of this article we explore
elements of five different ways (two indirect and three
direct) to measure the position of the parse tree, ana-
lyzing the speculative merits and drawbacks of each of
them. The last part contains the results of the experi-
ment, which compares the distance measures derived
from the application of the earlier discussed methods.
The results show that indirect methods of position
evaluation render more diverse distance measures, so,
they should be used when smaller migration rates are
required. The direct evaluation strategies give similar
results and should be considered as interchangeable.

2. Position measuring strategies

As it is discussed in [1], the individual location in
a hypothetical problem search space corresponds to
positions required to be able to apply flocking rules.
Here we talk about an individual, though what we
really need is the subpopulation position. But since the
subpopulation is nothing more than a collection of
individuals, it seems natural first to measure positions
of each individual and then calculate the average of
the whole subpopulation. Still, the measurable posi-
tions must be calculated for individuals of the
subpopulation, and that's what composes the difficulty
of using flocking for the distributed GP. The real
position of an individual, represented by the program
parse tree, is the tree itself, which is rather compli-
cated as the measure to be used in calculations. So we
have two options: either to try using the raw (parse
tree) individual position, or convert this position to
some more manageable form. Conversion here basi-
cally means getting rid of the parse tree hierarchy.
Actually, the hierarchical structure of the position isn't
much of an obstacle for calculations (if not speaking
about the amount for needed computations), but it's
not clear how the hierarchy of the tree reflects the
importance of nodes in designating place in the search
space. So the linear position measure is desirable.

Here we'll discuss details of different possibilities
for assessing GP individual position, starting from the
simplest and finishing with more complicated and
computation intensive.

The first two are indirect strategies; they are
based on individual phenotype evaluation.

1. Fitness. That's the most straightforward stra-
tegy to measure the individual position; it doesn't
require any additional computations besides the fitness
evaluation, which is one of the most important aspects
of the GP algorithm. Fitness maps each individual to a
value (usually the floating point number) in a single
dimension, so the position can be easily processed by
flocking rules. The important drawback of using fit-
ness as an individual position measure in the fact that
the fitness value doesn't carry information about the
individual itself, but rather about how successful that

25

D. Rubliauskas, G. Paulikas, B. Kilda

program solves the given task. So two individuals
with equal fitness values (and consequently equal
positions) can have nothing in common when we look
at their parse trees. Though, even if fitness isn't the
right measure in strict sense, it's the value that governs
the propagation of individuals to higher generations
and that can be enough to organize the movement of
the individual among subpopulations. There are
several common fitness evaluations (raw,
standardized, adjusted, normalized) and any of these
can be used to evaluate the position of the individual.
The one used for the parent selection in genetic
operators probably should be preferred, since it
emphasizes the differences among individuals that are
best for the problem being solved.

2. Fitness cases. That’s another indirect position
measuring strategy, based on the performance of the
individual when solving the given problem. It is
applicable only when there is more than one fitness
case, since in case of a single data set we immediately
get the fitness value after the evaluation of the parse
tree (see the "fitness" strategy above). When several
fitness cases are present, we get the potential to record
the results of the individual with each fitness case.
This strategy can be viewed as special, more precise
case of the "fitness" strategy, because it as well doesn't
measure the genotype of the individual. So some
information about the individual is lost when the
transition from the parse tree to the performance
assessment is carried out and different individuals can
get similar results only because they solved the same
fitness cases with comparable results. But, again, if
the individuals performed similarly for each fitness
case, then there are big chances that their parse trees
carry lots of analogous genetic information.

All the following evaluation strategies are direct,
based on the genotype of the individual.

3. Node items. This is the simplest attempt to
break the entire hierarchical structure of the tree to
simpler elements for easier calculations. Since the tree
is a collection of nodes with links among them, we
can try to neglect the links and count only how many
different nodes the tree has. That way we abandon one
important aspect of the location of the individual in
the search space, since node functions depend on the
place in the parse tree (we can't say that the functions
of the node in the tree root or the leaf are the same),
but achieve a simple multidimensional representation
of the position of the individual. Even if it is clear that
such a strategy captures only a small quantity of the
full complexity of the position of the tree, further
experiments may show that it's exactly the part that is
required to efficiently migrate individuals among
subpopulations.

4. Tree structure. The bare hierarchical structure
of the tree captures even less genotype information
than the "node items" strategy. Imagine an initial
population where trees are generated using the full
method and with the maximal tree depth, and all

functional node items have the same arity (e.g. 2,
which is common for arithmetic operations). Then we
get a number of equal binary trees, so at the beginning
all individuals have the same position evaluation. And
that's not going to change further in the run of the
algorithm, or will change only to some small extent,
because the trees were generated with the maximal
depth. Only mutation can change the structure of the
tree (crossover just swaps some randomly selected
branches), but the mutation probability is normally
very small. So we end up with the population of
individuals with constant equal positions. Even though
this is a bit extreme example (often the "half" tree
generation method is used and the initial depth of trees
is less than maximal), it shows that this position
evaluation strategy must be used with care.

Hierarchical links must be translated to some
linear structure that could be interpreted as an array of
position coordinates. The most straightforward way to
do this is to traverse the parse tree from top to bottom
and at each tree level write down the arities of each
node. The bottom-up approach is possible, too, but it's
more complicated and computation intensive, so we’ll
stick to the top-down way. The algorithm for the "tree
structure" position evaluation would look like this:

level := root
position := []
i := 0
repeat
 for each node in level
 position[i] := node arity
 i := i + 1
until tree has deeper levels

This measuring strategy tends to generate large
position coordinates, because the count of tree nodes
grows exponentially with every new level and the
linear position value is just a plain representation of
the whole parse tree. This rises computation require-
ments for the position evaluation. The consideration of
only the bare structure also looses a lot of genetic
information of the individual. Thus, theoretically this
strategy seems to be weaker than earlier mentioned
competitors.

5. Exact strategy. The last choice is to use the
individual parse tree without any mappings or trans-
formations. This way we get the precise individual
position and no further calculations for transformation
are required. The difficult part is in obtaining the ave-
rage position of the subpopulation and in calculating
the distance between two individuals. Average posi-
tion calculations weren't an obstacle in earlier strate-
gies, there the position was always transformed to a
linear representation. Here, to figure the average sub-
population position, we need to form a single parse
tree with the structural and node item information of
all individuals. As functional tree node items can have

26

Parse Tree Position Measuring in Distributed Genetic Programming

different arities, the suggested technique is to form a
tree of the maximal allowed depth with each node
having the maximal arity of all functional items, used
in this problem. The node of this newly created tree
records what items subpopulation individuals have in
corresponding nodes (each node has a hash map with
item counts). When individual parse trees are applied
to this template, their branches are aligned by the left
side.

The second problem of “exact strategy” is the
distance assessment. But, even if the position mea-
sures are hierarchical (tree templates filled with the
information from each individual of the subpopu-
lation), they all have the same structure and that fact is
beneficial for further calculations. We don't need to
flatten the acquired measure in order to get the dis-
tance, the hash maps can be compared node by node.

Distance calculations, applied to complex struc-
tured position measures, on the contrary to the linear
ones, have some aspects that should be considered.
The distance between two measures of linear coor-
dinate arrays with members of an equal significance
can be calculated as Euclidean distance:

∑
=

−=
n

i
ii yxyxd

1

2),(, where x and y are posi-

tions with n coordinates.
But when the nodes have parent-child relations,

these bonds can (or even must) be taken into account.
This applies to "tree structure" and "exact" position
evaluation strategies. Parent-child relations can be

rated by introducing the weight to tree levels. A sug-
gested scheme would be to divide the input of each
level by some coefficient, e.g. 2. So, the root level will
supply the full distance value to the Euclidean
distance value, the first level – only half of the value,
second one fourth and so on. If the tree is flattened as
in "tree structure" case, this level weight correction
should be applied during the flattening phase.

3. Distance measures

In order to obtain a better understanding of dis-
tance measures, generated by different position assess-
ment strategies, there was developed the traditional
GP system with all earlier mentioned position evalua-
tion strategies [5]. During the experiment, each
program parse tree was processed by all strategies.
Nine trees were generated randomly for the symbolic
regression of the mathematical expression a .
The parse trees were constructed of 3 variable nodes
(a, b and c) and 4 functions with arity of two (+, -, *,
/), the maximal allowed depth of the parse tree was set
to 5 levels. The fitness of the individual was evaluated
by 10 fitness cases, filling variables with values ran-
domly drawn from the range [0, 1). Then the distance
from the first tree to the other eight trees was calcu-
lated, thus getting the matrix with seven strategies for
the position evaluation and eight distances for each
strategy. The parse trees and resulting Euclidean
distances are given in Table 1 and Figure 1.

cb −+2

Table 1. Randomly generated trees

No. Pre-order tree representation
1 (* (+ (* c a) a) (* b c))
2 B
3 (/ (- (- (- b b) (* b a)) (+ b a)) (+ c a))
4 (/ (+ c (+ (* c a) (- c a))) c)
5 (/ b a)
6 (+ a (- c (* b (/ c c))))
7 A
8 (/ b c)
9 (- a (* a a))

4. Conclusions

Figure 1 indicates differences between indirect
and direct measuring strategies: indirect methods tend
to represent individuals as more disseminated in the
search space, while direct methods report less distance
diversity. Most direct strategies (except the weighted
tree structure) have similar patterns of the distance
distribution. Both weighted direct measures give
distinguished results, probably due to an inadequate
selection of weights for tree levels. So, what position
evaluation strategy is selected may depend on the

demands of the task: indirect measures should be
chosen when more distance diversity is required. For
flocking more diversity means less neighbors and,
consequently, smaller migration rates. Until further
experiments regarding the position measuring impact
on the results of the distributed GP will clarify the
advantages and disadvantages of each strategy, the
choice is up to the human algorithm operator, who
must take into account the distribution requirements of
the problem being solved.

27

D. Rubliauskas, G. Paulikas, B. Kilda

28

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9

Tree no.

D
is

ta
nc

e

fitness
fitness cases
node items
tree structure
weighted tree structure
exact
weighted exact

Figure 1. Distance from tree no. 1

References
 [1] D. Rubliauskas, G. Paulikas. Flocking in Distributed

Genetic Programming. Information technology and
control, Vol.29, 2003, 14-18.

 [2] F. Fernandez, M. Tomassini, W.F. Punch III, J.M.
Sanchez. Experimental Study of Multipopulation Ge-
netic Programming. 2000, 11 p.

 [3] C. Reynolds. Boids, 1986,
 http://www.red3d.com/cwr/boids.

 [4] J. Kennedy, R. Eberhart. Particle Swarm Optimi-
zation. IEEE Int'l. Conf. on Neural Networks, 1995.

 [5] A. Tatsukawa. Ruby/GP documentation, 2004,
http://akimichi.homeunix.net/~emile/aki/program/gp/.

http://www.red3d.com/cwr/boids
http://akimichi.homeunix.net/~emile/aki/program/gp/

