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This paper introduces a distributed service-oriented system, which is developed to provide ECG (electrocar-
diogram) monitoring, analysis and storage services. The Service-Oriented Architecture system design is in-
troduced for ECG signal transmission and processing. The implementation of cloud-based web-services and 
overall system architecture is described. The presented system includes a T-shirt with five electrodes intended 
for the acquisition of the signal. The ECG data for the experiment were recorded while the participant was 
moving. The signal replicates real conditions and the ECG data contain different high and low frequency noise. 
Therefore, this paper includes analysis of data filtering methods, model selection and ECG parameter calcu-
lation algorithms. The DWT algorithm was selected for the high frequency noise reduction and the BEADS 
method was used for trend removal. It was experimentally identified that these algorithms are effective and 
can be used in the system under development. The tests covering overall system were performed on an Amazon 
cloud computing infrastructure. The results are presented together with a discussion of various constraints of 
service-oriented performance.
KEYWORDS: Service-Oriented Architecture, high performance computing, ECG analysis, signal processing.

1. Introduction
With the increase of healthcare services in non-clinical 
environments using vital signs provided by wearable 
sensors, the need to process and analyse the physiolog-
ical measurements are growing significantly [18]. An 

integrated solution of different sensors, smart inter-
faces, modelling, and data analysis technique should 
warrant that the created system is comfortable and ef-
fective for assessing the individuality and dynamics of 
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a functional state during the daily-life activities and for 
the control of the exercise intensity.
To collect the data of the signal, a wearable device with 
five electrodes inserted into it, was used. Each of them 
contains different low and high frequency noise. This 
requires identifying and filtering out irrelevant sensor 
signals. Services built on top of the data collected by 
wearable devices need to provide useful information in 
real time calculations. That requires storage and pro-
cessing of efficient (near) real-time data.
The extraction of parameters from the ECG signal is 
important, because the decision-making algorithm 
incorporates the evaluation of the ECG parameters. 
Recording the ECG signal at rest is an easy task. How-
ever, the records contain various origin noise during 
physical activity. Since storing the original signals 
takes too much space on a server [34], the parameter 
values may also be used as a compression of the ECG 
signal. This problem becomes important when the 
amount of the data increases. Future works will in-
clude methods to overcome the problem.

2. Related Works
Service-Oriented Architecture (SOA) systems for 
health monitoring are popular in health centres, clin-
ics and smart home environments. These systems are 
used by elderly people, patients, sportsmen, etc. The 
most popular framework in a remote health moni-
toring system contains a three-tier architecture: a 
Wireless Body Area Network (WBAN), communica-
tion and networking system and a service layer. For 
instance, one of the suggestions was to use a system 
which contains wearable sensors to measure various 
physiological parameters, such as blood pressure and 
body temperature [6]. There are the health monitor-
ing systems, utilizing similar cloud-based medical 
data storage. One of such systems [33] is used by doc-
tors to access the stored data online using content 
service application. The electronic remote health 
monitoring systems sometimes can replace the con-
ventional health care methods. However, integration 
of the Internet of Things (IoT) paradigm into these 
systems can further increase intelligence, flexibility 
and interoperability [31]. A device which utilizes the 
IoT is uniquely addressed and can be identified any-
time and anywhere through the Internet. IoT-based 

devices in remote health monitoring systems can au-
tomatically connect and exchange the information 
with each other or with health institutes through the 
Internet. This allows to simplify the set-up and ad-
ministration tasks significantly. In literature, there 
are some examples of the systems that can send au-
tomatic alarms to the nearest healthcare institute 
when supervised patient gets into critical accident 
[7]. In this paper, the proposed training system is also 
a type of health care system. In production, there is 
only one similar product, named QardioCore [29]. It 
evaluates the heart condition using ECG signal anal-
ysis and makes training intensity suggestions. Other 
products only evaluate the heart rate (HR). The heart 
rate (HR) is widely used to control workloads [15], but 
it does not reflect many other important physiologi-
cal processes that ensure safety and effectiveness of 
physical activity. To personalize user health status, 
the monitoring system must efficiently process data 
of the sensors and visualize the holistic view (based 
on the complex systems theory [34]). Furthermore, 
the system should give feedback for the user about 
individualized intensity and duration of the training. 
The complexity of a signal (in a particular case, some 
characteristics of electrocardiogram (ECG) signal) 
may reflect human functional state and healthiness.
A variety of methods for the automated ECG analy-
sis have been developed in the past few decades to 
simplify the monitoring task. The adaptive filtering 
[28], singular value decomposition (SVD) [12], inde-
pendent component analysis (ICA) [37], neural net-
works [4], wavelet transform [14] are the most pop-
ular ones. However, almost all of these methods are 
not suitable for wearable sensors and real-time ECG 
filtering. Adaptive filtering and SVD methods are 
simple and fast in operations. Nevertheless, these 
methods fail if the data contain too much high and 
low frequency noise while the participant is moving. 
Wavelet transform and ICA methods are effective 
in eliminating the common ECG noises. However, 
both methods have high computational complexity, 
which is rather challenging to achieve in real-time 
ECG filtering. The methods with Neural Network 
algorithms require a lot of time for the ECG noise 
training and are not appropriate enough for individ-
ualized ECG filtering. In this paper, a Discrete Wave-
let Transform (DWT) [8] method was selected for 
the high frequency noise reduction and the BEADS 
algorithm [26] for the trend removal.
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3. Service-Oriented Architecture for 
ECG Monitoring
In this paper, the implementation of the minimal ECG 
monitoring system, which includes cloud-based ECG 
processing, was selected. It consists of the following 
functional units:
 _ A cardiograph device with its sensors, enabled to 

capture human state and provide information to a 
logging device located nearby;

 _ A logging device which collects information from 
the sensors and transmits it to a remote computer 
(server);

 _ A remote computer which receives, stores, analyses 
the data and provides feedback.

The implementation of these functional units and 
their relations are presented in Fig. 1. The arrows 
show the component usage relation.

Figure 1 
Service-Oriented Architecture system components

 

 

 

The cardiograph node includes the cardiograph de-
vice and cardiograph sensors. The cardiograph ac-
quires cardio signals using its sensors, converts them 
into digital data and transmits them to smartphone 
application using Bluetooth connection.
The logging device can be specially designed hardware 
and software or some general-purpose device which 
supports communication means required by cardio-
graph and remote computer. For this research, a smart-
phone has been chosen. Besides acting as a communica-
tion bridge between cardiograph and remote computer, 
the smartphone serves as the tool to provide feedback.

3.1. Services for ECG Monitoring System
The components of cloud-based services are de-
scribed in this section, and it is the main part of the 
whole ECG system providing web services to store, 
analyse data and
provide the results, influencing all the other compo-
nents. Cloud services consist of several software com-
ponents, which can be used as distributed resources 
to provide the scalability of the system.

3.2. Server-Side Software Architecture
The simulation of complex cyber-physical systems is 
often regarded as expensive [38] in terms of the com-
putational power. Therefore, the system which, on 
one side, is flexible and does not require exceptional 
computer power to handle service requests and, on the 
other side, may be implemented using distributed com-
puter resources or other calculation capability (e.g. su-
percomputer for parallel calculations), was designed.
A system deployment scheme is provided in Fig. 2. 

Figure 2 
A web service system deployment scheme

 

 

 

 

 

The system uses two different software components 
to provide services for the following client software:
 _ ECG Service. This software is communicating with 

the client’s software to provide actual services, 
based on the Representational State Transfer 
(REST) implementation. It is used to provide 
services, but does not perform data analysis 
operations itself. The main functionalities of the 
service are to receive ECG data, call Data Analysis 
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Environment algorithms and provide the results of 
the ECG data analysis to the client’s software.

 _ Data Analysis Environment. The software 
performs the analysis of the ECG data provided.

The system can run many parallel data analysis envi-
ronment instances and control them. Therefore, the 
system is scalable, i.e. the overall performance of the 
system can be improved by assigning more computa-
tion resources. 
Scalability is very important for the system, because 
it gives the possibility to control the load and effec-
tively use the cloud computing resources. For exam-
ple, more computing power can be acquired for the 
short periods of time, when the system is handling 
an increased number of simulation requests. Particu-
larly, using the cloud computing, dynamic scalability 
becomes more attractive and practical because of the 
unlimited resource pool [16].

3.3. Data Analysis Environment
Data Analysis Environment (see Fig. 3) in the pre-
sented ECG monitoring system concept refers to 
a subsystem, consisting of MATLAB software and 
scripts, designed for the ECG parameter calculation. 
All the scripts are included in the package named Anal-
ysis Scripts. This package uses MATLAB libraries as 
well as some custom libraries, helping to implement 
BEADS algorithm. The Analysis scripts package in-
cludes the following functionalities: Low Frequency 
Filter, High Frequency Filter, and Parameter Acquisi-
tion. 

4. The ECG Processing Algorithms
The electrocardiogram (ECG) is a non-invasive 
measure of the cardiac electrical activity recorded 
by electrodes attached to the skin. Each heartbeat 
is an electrical impulse (“wave”) traveling through 
the heart [3]. Usually, ECG signals are taken in sta-
tionary condition and the transmission of ECG of-
ten introduces noise due to poor channel conditions 
[3]. Despite signal variability, the signal noise comes 
from many sources, such as power line interfaces, 
muscular artefacts, electrode contact noise, base-
line wanderings due to respiration, instrumentation 
noise generated by electronic devices, etc. [13], [19]. 
The ECG signal for medical and diagnostic purposes 
must be free from undesired disturbances and noise. 
Our task is to analyse these signals when the person 
is moving and doing exercise. The electrodes are em-
bedded into T-shirts in order to reduce the noise by 
direct contact with the body surface. The ECG signal 
should be sampled with frequency of below 500 Hz, 
otherwise, it is not suitable for implementation in 
portable device (mobile) systems due to high com-
putational demands [19].
There are three main problems in the initial ECG sig-
nal data analysis:
 _ Data trend removal. The trend in the ECG signal is 

understandable as low frequency noise (baseline). 
The trend appears as the result of muscle move-
ment during an ECG recording.

 _ Noise reduction. In this case, it is understandable as 
a high frequency filter. High frequency noise is the 
result of electric uncertainty recording to ECG signal.

 _ Parameters calculation and data compression for 
the storage.

4.1. Data Filtering

The trend of the ECG signals is low when the per-
son is not moving, and it could be removed by using 
low-order polynomial methods [2] or data could be 
subtracted from each time-series signal object. In 
this paper, the trend is considered as a low-frequency 
noise, which is not stationary or linear. It is assumed 
that noisy ECG data y(n) can be modeled as:
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Figure 3 
A general overview of the Data Analysis Environment
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where f  is a low-pass signal, x  is a sparse-derivative 
signal, and w is a stationary white Gaussian noise 
[36]. For the data like y(n), it is not suitable to use nei-
ther low-pass filtering, nor sparsity-based denoising 
methods. However, a combination of these two meth-
ods is found to be suitable [35].  
The high-pass digital filter can be characterized by its 
transfer function which has the form:
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where the order of the filters is greater than N, [22]. 
The low pass filter L can now be defined as:
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where I is the identity matrix. The combined methods 
of conventional low-pass filtering and sparsity-based 
denoising are usually complex and require long last-
ing calculations. The Baseline Estimation and De-
noising with Sparsity (BEADS) [26] algorithm is used 
for trend removal of the ECG signals in the system. 
The BEADS trend removal algorithm is based on data 
baseline (or low-frequency noise wave) detection and 
its removal. 
This algorithm requires some definitions. The filters  
L and H were taken with zero-phase, non-causal and 
recursive. There are two specification parameters of 
the filter: its order 2d and its cutoff frequency fc [35], 
[26]. Moreover, by using the commutative property of 
Linear, Time-Invariant (LTI) systems, the filter H is 
defined as
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where A and B are the finite matrices and they are not 
exactly commutative [35], [26]. Furthermore, if x = v, 
the cost function can be defined as:
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where c(v) is a scalar that does not depend on x and  
λi ≥ 0 are regulation parameters, Di is the order-i dif-
ference operator, Г(x, r) is a diagonal matrix that de-
pends on asymmetric parameter r [8]. Furthermore,  
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depends on penalty function φ. For example, if φ(x) = 
|x|, then 

 

[�(���)] = �
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����(���) 35, 26.  [35], [26].
The cost function G(x, v) is needed in order to find the 
data baseline. Minimizing G(x, v) with respect to  the 
following solution:
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where � � ��� � ��(∑ �����[�(���)]������ )�. 
 The T-shirts have five electrodes that are inserted 
into different places and three ECG leads are record-
ed from these electrodes. All recorded signals from 
the ECG registration device are sent as a data set to 
the smart phone. There are many different exercises 
that participant might perform, so the trend might 
also vary. 
ECG simulator data were used for calculation ver-
ification to check if BEADS algorithm works fine. 
Each value of the signal is taken every 2 ms at 500 
Hz frequency.  The simulator generates 150 bpm 
sinusoids (pure ECG signal). The low and high fre-
quency noise was added to the simulated electrocar-
diogram. The BEADS algorithm was compared with 
other algorithms (Butterworth filter [17], Fast Fou-
rier Transform algorithm (FFT) [10] and Finite Im-
pulse Response filter (FIR) [21]). In addition, random 
Gaussian values with scalar 10 (which means the sig-
nal-to-noise ratio per sample, dB) were enclosed as a 
high frequency noise and the sinusoid: 

5 
 

 �(�) = 0.3 ∙ sin(0.9 ∙ � ∙ �) + 0.001 ∙ ����  

as a low frequency noise (trend). Here rand is random 
scalar values with standard normal distribution. The 
simulated ECG signal is presented in Fig. 4. 
The BEADS algorithm has the asymmetry parame-
ter  which could vary. During analysis, it was noticed 
that the best  value is from 1 to 6 due to low Root Mean 
Square Error (RMSE) values. 
Furthermore, the 9-th order Butterworth filter [17] 
was selected for error comparison. The normalized 
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frequency may vary from 0 to 1. However, the values 
from 0 to 0.5 for low-pass filtering are taken. The 
RMSE was taken as a measurement to find the best 
frequency in the BEADS and Butterworth methods.

Figure 4 
Simulated ECG signal

 

 

The results are presented in Table 1. The best fre-
quency from the table is fc = 0.01. The Butterworth fil-
ter causes small RMSE values. However, the BEADS 
algorithm is more accurate (Table 1).

fc RMSEBEADS RMSEButterworth

0.01 0.1 0.15

0.02 0.12 0.13

0.04 0.14 0.14

0.05 0.14 0.15

0.07 0.15 0.16

0.08 0.15 0.16

0.1 0.15 0.16

0.11 0.15 0.17

0.13 0.16 0.17

… … …

0.5 0.16 0.17

Table 1 
A comparison of BEADS and Butterworth

Fig. 5 shows how the BEADS algorithm works when 
a person with a special T-shirt is walking. The asym-
metry ratio r = 2, filter order d = 1, and filter cut-off fre-
quency fc = 0.01 are the values in this example.
The BEADS algorithm works fine and the residuals 
(original data minus baseline minus baseline-cor-
rected data) are low (see Fig. 5). However, the com-
plexity is also important because the real-time results 
are necessary during the exercises.

Figure 5 
The trend removal from the ECG signal using the BEADS 
algorithm: a) original signal; b) baseline (black) and 
original signal (grey); c) signal after the BEADS algorithm; 
d) residuals

 

 

 
Fig. 6. Complexity of BEADS algorithm. 

 

 

Figure 6 
Complexity of BEADS algorithm
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The run-time of BEADS for N-point data is present-
ed in Fig. 6. Sometimes the run time may reach as 
much as 30 s. The reason behind this variability is 
that BEADS calculates coefficients of the high-pass 
filter, while cost function (1.5) does not reach the de-
sired low value. The inverse matrices (see (1.7)) are 
found during these calculations. In some cases, it is 
complex to calculate the inverse matrices and it re-
quires more time. This causes the peaks, which can 
be seen in Fig. 6. The run-time average of 50 itera-
tions (thicker line) shows that the complexity of the 
BEADS algorithm is linear. 
The BEADS algorithm was used to reduce the low fre-
quency noise (trend removal). The ECG signal also 
has a high frequency noise (as it was mentioned be-
fore) which was not reduced by the BEADS algorithm.
Fast Fourier Transform (FFT) is one of the most 
popular methods to reduce high frequency noise. 
However, this technique fails to provide the infor-
mation about exact location of frequency compo-
nents in time [10]. The Discrete Wavelet Transform 
(DWT) algorithm was chosen for ECG signal anal-
ysis. The DWT algorithm is appropriate to be used 
for non-stationary signals (like ECG) because it de-
composes the signal into a frequency time scale [13]. 
This method is based on wavelet transformation, in 
which copies of the main pattern (“mother wavelet”) 
are scaled and shifted [13]. Each analysing wavelet 
has its own time duration and time location [10]. 
The mother wavelet in DWT is discretized and can 
be written as follows:

7 
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1
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where b  is a translation parameter of prototype wave-
let ψ(t), and a is a scale parameter, obtained by means 
of dilation [14], [13].
The optimal wavelet function must be selected in or-
der to achieve the best noise free signal. Furthermore, 
the best threshold selection rule and decomposition 
level should be found. The DWT algorithm has the fol-
lowing three steps [8], [5]:
 _ The DWT is applied on a noisy signal.
 _ The thresholding process is applied. The wavelet 

coefficients are filtered by throwing them away 
(resetting to zero) during this process. The idea of 

this thresholding process is based on an assumption 
that the noise is generated by small-value wavelet 
coefficients, while the large coefficients compose 
the actual signal.

 _ The remaining coefficients are back-converted in 
time domain (Inverse Discrete Wavelet Transform 
(IDWT)).

The DWT algorithm contains many arithmetic op-
erations and requires a large memory storage. This 
is not desirable for real-time calculations. It is not 
practical to directly compute the DWT for the entire 
signal. That is why the three-level wavelet de-nois-
ing process [8] was used.
The same simulated data (see Fig. 4) were taken 
for the comparison of high-pass filters and parame-
ter analysis. However, in this case, the data have no 
trend. It was removed in the previous step with the 
BEADS algorithm.
The right wavelet should be selected to find the best 
solution with the DWT algorithm. The Daubechies 
wavelets, based on the work of Ingrid Daubechies, 
are a family of orthogonal wavelets defining a 
discrete wavelet transform, [13]. Each wavelet 
type of this class has a scaling function generat-
ing an orthogonal multiresolution analysis. Each 
Daubechies wavelet generates different filtering 
coefficients. 
The higher order leads to better errors but it requires 
long lasting calculations. If more calculations are re-
quired, the model might become insufficient for real 
time analysis. In this paper, 3400 data points were 
analysed to find the best wavelet. The RMSE was 
used to measure the accuracy of DWT with different 
wavelets (Table 2). The timing is important for re-
al-time data analysis. For this purpose, the calcula-
tion time is presented in Table 2.
The DWT algorithm gives the optimal results with 
wavelets “db11” and “db12”: the RMSE values are 
similar with errors of higher order Daubechies coef-
ficients. Further calculations reduce RMSE slightly. 
In addition, Daubechies wavelet with the higher or-
der causes minor changes in duration time. Howev-
er, as was mentioned before, the higher order of these 
coefficients makes the model more complex and that 
is undesirable for the real-time calculations. The 
“db11” will be used for the calculations below.
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Daubechies RMSE Duration, s

‘db5’ 0.0579 0.4900

‘db6’ 0.0574 0.6110

‘db7’ 0.0570 0.8690

‘db8’ 0.0568 0.9680

‘db9’ 0.0564 0.7060

‘db10’ 0.0562 0.7760

‘db11’ 0.0559 0.8279

‘db12’ 0.0561 0.6070

‘db13’ 0.0558 1.0760

‘db14’ 0.0561 1.7529

‘db15’ 0.0558 0.7558

‘db16’ 0.0557 1.1080

‘db17’ 0.0555 0.5440

‘db18’ 0.0555 0.7219

‘db19’ 0.0555 0.8588

‘db20’ 0.0555 0.6396

‘db21’ 0.0555 0.6336

‘db22’ 0.0555 0.7249

Table 2
 The errors of the DWT algorithm and calculation time for 
different Daubechies wavelets

The DWT algorithm was compared with Butterworth 
to see which algorithm is more efficient. The DWT al-
gorithm and Butterworth filter give different results. 
To compare which one was better, the RMSE values 
were calculated:

 

 
��������������� = 0.1206, 
������� = 0.0559. 

RMSE shows that the DWT algorithm reduces the 
noise better (with lower errors).
A DWT filtering example with real data (from Car-
dioscout multi ECG registering device) is shown in 
Fig. 7. The first graph shows the ECG data when the 
participant is walking (the trend is already removed), 
while the second part of this figure shows denoised 
data with DWT.

4.2. ECG Parameters Calculation
Automatic R-wave recognition is the first processing 
task of the ECG signal. Later, the QRS complex and 
other ECG parameters can be measured. The QRS 
complex (see Fig. 8) includes recognition of their posi-
tion in time and time interval between them [23]. The 
QRS complex has the best ratio of signal/noise char-
acteristics. The main detection algorithms of the QRS 
complex are based on the first or both first and second 
order derivative calculation for signal and digital fil-
tering. Most of the time local extreme signal detection 
logic has additional rules that can be applied to reduce 
the number of false crawls. Wavelet transform [20], 
filter banks [1], neural networks, adaptive filters, Hid-
den Markov Models (HMM), mathematical morphol-
ogy operators, genetic algorithms, Hilbert, length and 
energy transformations, syntactic methods, MODB 
algorithms (based on several signal values of deriva-
tive product) [23] can also be used for QRS detection. 
Most of these methods require substantial computing 
resources, have a big delay, are sensitive to noise and 
sudden signal change [9], so the commonly used al-
gorithm remains the Pan-Tomkinson algorithm [27] 
based on the calculation of derivatives. 
As was mentioned before, the ECG is used to measure 
the heart rate and regularity of heartbeats. It shows 

Figure 7 
Detrended ECG signal and filtered with DWT
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Figure 8 
ECG parameters

 

 

 

 

 

the size and position of chambers. Heart diseases or 
damages could also be detected [3] from ECG. The 
ECG signal has a distinct and characteristic shape 
which is given in Fig. 8.
The purpose of this part of the ECG processing is to 
find P and T waves, QRS complex, AST and DJT pa-
rameters (see Fig. 8). Their calculation is based on 
local extrema and twist points search in RR interval. 
These parameters will be used in future works to de-
sign the decision-making algorithm. The following 
parameters were chosen by recommendations of 
sport’s medicine specialists:
 _ The P wave appears because of the contraction 

in the left and right atria. This wave may be even 
absent from some ECG recordings [24]. The 
normal shape of a P wave does not include any 
peaks. Furthermore, it can be positive, negative or 
biphasic [25].

 _ The QRS complex duration is necessary for the 
many medical instruments. This complex is made 
by the contraction of the left and right ventricles. 
Q, R, and S waves involve more muscle mass and 
are stronger than the P waves. That is why they 
have larger fluctuation in the graph [10], [30].

 _ The T wave is necessary for a variety of diagnostic 
tasks (acute coronary syndrome, acute myocardial 
infarction, and potentially fatal arrhythmias). 
This wave is caused by the repolarization of the 
ventricles [10], [11].

 _ The JT duration (DJT) reflects the metabolism 
of the heart. However, when the QRS duration is 

increased (which contributes to QT prolongation), 
it has been proposed that the JT interval duration 
is a more appropriate measure of ventricular 
repolarization than the QT duration.

 _ The ST segment represents the interval between 
ventricular depolarization and repolarization. 
This segment in the first stage is the flat, 
isoelectric section of the ECG between the end 
of S wave (the J point) and the beginning of the 
T wave. Myocardial ischaemia, or infarction, 
is the most important cause of the ST segment 
abnormality (elevation or depression). This 
parameter is noted as AST in Fig. 8 [10].

All calculations during the parameter search in Fig. 9 
were executed with detrended and high-pass filtered 
data. In some cases, it is difficult to find the parame-
ters because small parts of the data may still contain 
noise. These values are taken as average from three 
previous parameter values.
The effective ECG signal compression demand is 
quite high, assuming the fact that every year millions 
of electrocardiograms are recorded and remote trans-
mission that uses the network grows. Effective data 
compression is needed in many practical applica-
tions: ECG data storage, ambulatory monitoring sys-
tems, ECG data transmission network. The data com-
pression techniques are divided into those containing 
compressed data with reconstructed into the original 
signal and the methods with higher compression ratio 
achieved by allowing certain errors in reconstruct-
ing the signal [32]. The efficiency of the ECG signal 
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compression can be measured by the ratio between 
the compressed data and primary data (compression 
ratio CR), primary and compressed data size, time to 
compress and restore data and error, often referred to 
as a percentage of the average square difference (per-
cent mean-square difference – PRD).

5. Performance of the Cloud-Based 
Solution
The calculation of the ECG parameters is a resource 
intensive task. It is necessary to evaluate the perfor-
mance of the solution to see if it can be applied prac-
tically. Two experiments were performed to see how 
the system handles the load.
The Amazon cloud computing services were used 
with preconfigured four machines in the experiments. 
Each machine contained one virtual CPU (Intel Xeon 
CPU E5-2676 v3, single core, 2.40 GHz), and 1GB 
memory. The load balancing mechanism is provided 
by the Amazon services. The Apache JMeter tool was 
used for the experiments.
The JMeter tool was set up to create thread group 
with ramp-up period equal to 10 s and duration set to 
180 s. 
The number of threads (users) was increased from 10 
to 400 with step 10. Each request was sending 42.5 

 

Figure 9 
ECG waves (QRS complex, P and T waves, J wave)

kilobytes. Requests were delayed with constant tim-
er, which was set to 10000 ms. The average response 
time was calculated from interval [60s; 120s]. This in-
terval was chosen, because the system must have be-
come stable before calculating average response time. 
A straight forward approach was used in the first ex-
periment – the requests were generated continuous-
ly, increasing the amount of the requests per second, 
until the system starts degrading. The results are pro-

Figure 10 
Performance of the solution for continuously generated 
requests
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vided in Fig. 10. It shows that the solution, distributed 
on 4 machines (with given hardware specifications) 
can handle up to 16 requests per second. The system 
degrades with bigger load and becomes unusable. To 
determine how many users are needed to produce the 
desired requests per second (RPS), the following for-
mula can be used: 
 

 
(9)

This metric allows to see how the system performs 
on stress loads; it does not show how many users our 
system can handle when implementing our use case. 
In our use case, each user sends a request every 10 
seconds. Therefore, this behaviour was simulated us-
ing the Apache JMeter tool. The results are provided 
in Fig. 11. It shows that the solution, distributed on 
4 machines (4 instances) can handle up to 170 users 

Figure 11 
Performance of the solution when simulating practical 
application

 

 

 

without degrading behaviour. The system degrades 
linearly with bigger number of users. 

6. Conclusions 
Medical systems are increasingly being implemented 
as cloud-based services to use the benefits of cloud 
computing. Our task was to study the effectiveness 
of cloud-based solution designed for near real-time 
ECG signal analysis to replace legacy systems. For 
that purpose, a system, which includes service-ori-
ented architecture solution as well as algorithms for 
the ECG signal analysis, was created.
The study of the implemented algorithms shows that: 
 _ The BEADS algorithm with normalized frequency   

fc = 0.01 and asymmetry r from 1 to 6 is the best 
trend removal method for analysed ECG signal. 

 _ The DWT algorithm was selected for ECG signal 
noise reduction. The best results were found with 
Daubechies wavelet ‘db11’ and they caused just   
0.0559 RMSE error.

The study of the cloud-based solution shows that: 
 _ The performance of the proposed cloud-based 

solution with four dedicated virtual machines 
allows serving approximately 250 concurrent 
users for the given use case. 

 _ The efficiency is sufficient for the most use cases, 
although the improvement on architectural and 
algorithm levels is needed.

The future works will contain data compression, au-
tomated health evaluation and training methodology 
system using decision making algorithms.
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Summary / Santrauka

This paper introduces a distributed service-oriented system, which is developed to provide ECG (electrocardio-
gram) monitoring, analysis and storage services. The Service-Oriented Architecture system design is introduced 
for ECG signal transmission and processing. The implementation of cloud-based web-services and overall system 
architecture is described. The presented system includes a T-shirt with five electrodes intended for the acquisi-
tion of the signal. The ECG data for the experiment were recorded while the participant was moving. The signal 
replicates real conditions and the ECG data contain different high and low frequency noise. Therefore, this pa-
per includes analysis of data filtering methods, model selection and ECG parameter calculation algorithms. The 
DWT algorithm was selected for the high frequency noise reduction and the BEADS method was used for trend 
removal. It was experimentally identified that these algorithms are effective and can be used in the system under 
development. The tests covering overall system were performed on an Amazon cloud computing infrastructure. 
The results are presented together with a discussion of various constraints of service-oriented performance.

Straipsnyje pristatoma saityno paslaugų sistema, skirta EKG (elektrokardiogramos) signalo stebėsenai, ana-
lizei ir saugojimui. Pateikiama ir aprašoma į saityno paslaugas orientuota sistemos architektūra, realizuojanti 
EKG signalo perdavimą ir apdorojimą debesų kompiuterijos priemonėmis. Signalo registravimui naudojami 
išmanūs marškinėliai su penkiais integruotais elektrodais. EKG duomenys buvo įrašomi treniruotės metu, 
kai eksperimento dalyvis atlikinėjo įvairius fizinius pratimus. Tokiu būdu gautas signalas yra panašus į rea-
liomis sąlygomis išgaunamą signalą, kuris turi aukšto ir žemo dažnio triukšmą. Straipsnyje aprašomi signalo 
filtravimo algoritmai, atliekama jų analizė ir aprašomi EKG parametrų skaičiavimo algoritmai. Aukšto dažnio 
triukšmo sumažinimui parinktas DWT algoritmas, o žemo dažnio triukšmo pašalinimui – BEADS metodas. 
Eksperimento metu buvo nustatyta, kad šie algoritmai yra efektyvūs ir tinkami kuriamai sistemai. Buvo atlikti 
našumo testai sistemai, įdiegtai „Amazon cloud“ debesų kompiuterijos infrastruktūroje. Straipsnyje pristato-
mi rezultatai ir diskusija, susijusi su tokios realizacijos sistemos našumu. 


