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A B S T R A C T

In this paper two techniques: the zero-crossing and the spectrum decomposition are implemented together to
obtain the guided waves phase velocity and their dispersion properties. This proposed hybrid technique has been
investigated in two different mediums: an homogenous using signals obtain by 2D finite element modeling and
experimental investigation and a non-homogenous environment using 3D finite element model. The results are
compared with those obtained by the semi-analytical finite element method (SAFE). It was demonstrated that in
the case of correctly selected filters the dispersion curves are reconstructed in approximately 90% for the Lamb
wave A0 mode, for the non – dispersive S0 mode up to 81% of the incident signal frequency bandwidth in a
homogeneous medium. In the case of non-homogenous CFRP plate the phase velocity dispersion curve of the A0

mode can be reconstructed even up to 96% incident frequency bandwidth.

1. Introduction

Nowadays composite structures are used in the most industries
fields due to their high strength and stiffness to light weight ratio.
However, undesirable issues such as delamination, impact damage, ply
gap, ply waviness, porosity, surface notches and others can appear in
composite structure during the manufacturing process or during ex-
ploitation [1,2]. Therefore, reliable inspection techniques need to be
used for structural safety. Non-destructive techniques (NDT) such as
radiography, visual inspection, ultrasonic testing, thermography,
shearography, tap testing, eddy currents, and others [1–3] are used for
inspection of composites. The main requirements are simplicity, ra-
pidity and reliability to identify, locate and characterize changes in the
composite structures [3,4]. One of the most versatile, directly related to
mechanical properties, sensitive to any changes, enabling to extract
detailed information and leading to certification is the ultrasonic testing
(UT) [1,2]. Already in 1990, Bar-Cohen has reported that ultrasonic is
one of the most adaptable NDT method to extract comprehensive in-
formation [1] and to detect easily and accurately alterations [2]. Lately,
(UT) methods based on application of Ultrasonic Guided Waves (UGW)
have been able to provide more emphasis and wider knowledge to be
one of the most encouraging tools for quantitative identification of
damage in large composite structures [5,6]. The main advantages of the
Lamb waves are their long distances propagation with high sensitivity
to small changes [7–9] and their ability to scan large area of objects or

structures under investigation [5,9]. Guided waves enable not only to
cover large object but they are also sufficiently sensitive to con-
centrated damage. However the task extracting informations about the
defect features is not easy due to complex properties of the guided
waves and this requires advanced signal processing techniques. The
velocity of the guided waves is one of the main parameter to estimate
the deviation or variation of the material properties. However, the
guided waves have an infinite number of dispersive modes and each of
them is described by two frequency dependent velocities: phase and
group. The dispersion curves are used to show the variations of the
velocities c as a function of frequency f. The variations of the guided
wave velocity can indicate the location and size of the defect [8].
Therefore, a signal processing technique enabling to reconstruct the
dispersion curves of the guided waves propagating in a given structure
is of a very important issue. Recently, many different techniques were
analyzed and their algorithms have been adapted to reconstruct the
group and phase velocity dispersion curves of guided waves [5].
However, most of them run into difficulties to assess the time depen-
dent changes of the frequency spectrum of the signal [10]. Therefore,
new methods are required to offer an enhanced time frequency analysis
of the guided wave signals.

The Ultrasonic Lamb waves are one type of the guided waves pro-
pagating in thin plates with parallel free boundaries [5]. The phase
velocity dispersion curves of the Lamb waves provide information
about dependency of the phase velocity cph on the product of the
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frequency f and the thickness of the plate d. In general, the dispersion
curves are different for different wave modes. Except for the horizontal
shear SH, all the others (the asymmetrical An and the symmetrical Sn)
are strongly frequency dependent. As the phase velocity is defined for
any particular frequency, the wavelength λ of the mode can be esti-
mated also [11,12]. The wavelength λ of the Lamb wave is very im-
portant since it defines the sensitivity to the size and the geometry of
the detect [13]. A great number of new or/and adapted methods in
various forms [5,14] have shown that the phase velocity dispersion
curve is an important parameter to identify the non-uniformity of
elastic properties or/and to locate the defects in unknown material
objects under testing.

This work presents an hybrid signal processing method that uses the
spectrum decomposition and the zero-crossing techniques for analysing
non-stationary signals. The proposed technique involves the analysis of
the wideband signals, the characterization of the dispersion, the re-
construction of the phase velocity dispersion curve segments of both
lowest fundamental modes of the Lamb waves. The aim of work is to
investigate the suitability of the proposed signal processing algorithm
in a dispersive media for the estimation of dispersive phase velocity and
for the reconstruction of this velocity dispersion curve segments in as
much as possible wider frequency ranges.

2. The proposed method

The zero-crossing technique was adapted and proposed to the
measurement of the Lamb wave phase velocity [15,16]. The advantage
of the proposed method is that parameters both in time and frequency
domains are calculated and related to each other as the segment of the
phase velocity dispersion curve. The results presented in [15–17] have
demonstrated that the proposed zero-crossing technique gives several
advantages such as the identification of the fundamental A0 and S0
modes, operating in low or high dispersion zones, the possibility to
reconstruct segments of the phase velocity dispersion curves of A0 and
S0 modes in the case of Lamb waves.

The physical mechanism of the phase velocity dispersion curve
measurement [16] according to the proposed zero-crossing technique is
based on at least two signals recorded by two receivers situated at two
different and relatively close positions xi and xi+1 (Fig. 1a). The
transmitter is attached at a fixed position and excited by a broadband
burst s(t). In general, these signals contains information about the phase
velocity cph(f) which needs to be extracted by signal processing.

The Lamb waves signal ui(t) at distance xi is defined by the out-of-
plane particle velocity on the surface of the plate [18]

= −u t S f H f( ) FT [ ( )· ( )],i
1 (1)

where FT−1 denotes the inverse Fourier transform, S(f) is the Fourier
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( ) is the transfer
function determining propagation of Lamb waves.

The proposed method presented in Ref. [16] is based on the delay
times tim and t(i+1)m of propagating waves estimated using the signals
recorded at different position xi and xi+1 and calculated according to
zero-crossing algorithm (Fig. 1,b). The number of measured zero-
crossing instants m=1,2,…,M, where M is the total number of zero-
crossing instants under analysis. Subsequently, the phase velocity cphm
of the propagating wave at a given distance can be estimated according
to
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where Δxi is the distance between two neighboring positions, Δtim is the
delay time difference defined between instants corresponding to the
same phase points in two signals measured at different positions. The
delay time differences Δtim calculated according to zero-crossing delay
times tim and t(i+1)m. The frequencies fm to which correspond the

estimated phase velocities cphm are calculated at a half period duration
between two neighboring zero-crossing points m and m+1 as reported
in Ref. [16]:
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The D(fm, cphm) set of phase velocity and frequency pairs represents
the segment of the dispersion curve [17]. The number of studies were
conducted using this proposed measurement method including mod-
elled signals propagating in different environments, experimental in-
vestigation [15,16] and assessment of the quantitative and the quali-
tative characteristics of this technique [17]. However, in all
investigations, it has been showed that the proposed measured method
has one basic limitation. The phase velocity dispersion curves are re-
constructed only in a relatively limited bandwidth around the central
frequency of the signal. This means that not all signal frequency spectra
have been exploited and a part of the information has been lost. To
solve this limitation and to reconstruct the guided waves phase velocity
dispersion curves in as much as possible wider frequency ranges use of
the spectra decomposition technique has been proposed.

In general, any investigated signal s(t) can be broken down by tri-
gonometric functions using the Fourier integral [5]:

∫= =
−∞

∞ − −S jω s t e dt S ω e( ) ( ) ( ) .jωt jϕ ω( )
(4)

where ω = 2πf – angular frequency, f – frequency, = −j 1 ,
= +e cosωt jsinωtjωt , S(ω) – amplitude frequency response, φ(ω) –

phase frequency response. The result of such decomposition is the fre-
quency characteristic (spectrum) of the signal. The modulus of the
complex spectrum represents the amplitudes of the different frequency
components. In general, such spectrum means that the dominant fre-
quency components are concentrated in frequency bandwidth around
the maximum of the spectrum. Therefore, in the case of the analysis
without filtering the phase velocity dispersion curve will be re-
constructed in the narrow bandwidth around the central frequency. So,
in order to increase the sensitivity of the signal processing technique to
the frequency components with small amplitudes the frequency

Fig. 1. The set-up of signal acquisition (a) and the waveform of received signals ui(t) and
ui+1(t) (b).
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components corresponding the higher amplitudes need to be filtered
out (Fig. 2).

So, the main idea of the modified zero-crossing algorithm is to de-
compose the measured signals ui(t) at the different distances into a set
of the band-limited signals uik(t). This decomposition is obtained by
filtering the signals ui(t) using bandpass filters with narrower band
comparing to the incident spectrum bandwidth. Then according to zero-
crossing algorithm the delay times timk and t(i+1)mk are estimated for
each filtered signal uik(t). In this way, the phase velocities cphmk and the
frequencies fmk are calculated and the obtained sets (fmk, cphmk) can be

presented as segments of the phase velocity dispersion curve. It can be
assumed that segment of dispersion curve obtained using one of the
filters will be reconstructed in relatively narrow bandwidth however by
scanning the central frequency of the filter in wide frequency ranges
will enable to cover big part of incident spectrum.

The main steps of the phase velocity dispersion curve reconstruction
algorithm can be presented as follows:

• The frequency spectrum of two neighbouring signals are calculated:

= =+ +U f u t U f u t( ) FT[ ( )] ( ) FT[ ( )],i i i i1 1 (5)

where u t( )i and +u t( )i 1 are the signals measured at two distances x t( )i
and +x t( )i 1 ; FT denotes the Fourier transform.

• This pair of frequency spectra are filtered by k bandpass Gaussian
filters with predefined parameters:

= =+ +U f U f B f U f U f B f( ) ( )· ( ) ( ) ( )· ( )ik i k i k i k( 1) 1 (6)
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represents the frequency response of
k-th bandpass filter, k=1,2,…K, K is the total number of filters, fL and
fH defines the frequency ranges in which the central frequencies of the
filters are varied; ΔB is the filter bandwidth; = −

−df f f
K 1
H L is the step in

frequency domain between central frequencies of two neighbouring
filters [19].

• The filtered signals are reconstructed using inverse Fourier trans-
form:

= =−
+

−
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1
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1
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• The zero-crossing instants timk and t(i+ 1)mk for each filtered

Fig. 2. Frequency spectrum of the Lamb wave signal and of the band pass filters used in
the analysis.

Fig. 3. The B–scan image of the A0 mode of Lamb wave signals propagating in the 2mm thickness aluminium plate (a), the waveform of the signal at the 100mm distance (b) and the
frequency response of this signal (c) (fL= 100 kHz, fH=500kHz, ΔB=80 kHz).
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signal uik(t) and u(i+ 1)k(t), are measured accordingly technique
defined in [16,17], where = ÷m M1 is the number of the zero-
crossing instants in the signal and M is the total number of zero-
crossing instants under analysis.

• The phase velocity is calculated using the expression

= −
−

+

+
c x x

t t
;phmk

i i

i mk imk

1

( 1) (8)

• The equivalent frequencies to which the estimated phase velocity
values should be related are calculated according to the durations of
the half- periods of the first signal

=
−+

f
t t

0.5 .imk
i m k imk( 1) (9)

Usually this frequency does not coincide with the central frequency of
the used filter.

• The dispersion curve is defined as the set of velocities related to the
frequencies and it is obtained according Eqs. (8) and (9) (fmk, cphmk).

The proposed measurement technique has been verified on two
different media. In the first stage, the investigation was performed on
an homogenous medium using signals obtain by 2D finite element
model of aluminium and experimental investigation. In the second
stage, on a non – homogenous medium using signals obtained by 3D
finite element model of carbon fibber reinforced plastic plate. In both
cases, the obtained phase velocity dispersion curve segments are com-
pared with those calculated when using the semi-analytical finite ele-
ment SAFE method [20]. The SAFE method is selected as a reference
technique because when the elastic properties of the investigate mate-
rial are know it enables to estimate the dispersion curves for both iso-
tropic and anisotropic materials.

Fig. 4. The reconstructed phase velocities dispersion curves of the Lamb wave A0 mode: the theoretical dispersion curve (solid line) calculated using SAFE method, the measured values
(dots): a – using zero-crossing method; b – obtained with hybrid algorithm using 9 bandpass Gaussian filters (the bandwidth of the each filter ΔB=120 kHz); c – obtained with proposed
algorithm using 11 filters (ΔB=80 kHz); d – obtained with proposed algorithm using 21 filters (ΔB=40 kHz).

Table 1
Bandwidth of the frequencies covered by of the reconstructed phase velocity dispersion
curves (case of A0 mode in an aluminium).

Method Filter
bandwidth,
kHz

Frequency, kHz

Frequency
ranges, kHz

Bandwidths, kHz Bandwidths, %

Reference Unfiltered 286–319 33 8
Hybrid 120 152–430 278 70
Hybrid 80 136–463 327 82
Hybrid 40 130–490 360 90
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3. Demonstration of the hybrid method on different objects

3.1. Investigation of the proposed method using simulated signals

At first, the performance of the proposed technique was investigated
on modelled signals of the Lamb waves A0 mode propagating in 2mm
thickness aluminium plate. The signals have been calculated according
Eq. (1) and the phase velocity dispersion curve calculated using SAFE
method.

The parameters of the homogenous aluminium alloy plate used es-
timate the dispersion curve are: Density (ρ=2780 kg/m3), Young
modulus (E=71.78 GPa), Poisson‘s ratio (ν=0.3435) [16]. The 3 –
period (300 kHz) harmonic bursts with Gaussian envelop was used as
the incident signal. Such frequency was selected because A0 mode
posses strong dispersion. The signals of the Lamb waves A0 mode are
calculated at distances starting from 0mm up to 140mm with 0.1 mm
step. Totally, 1401 signals are obtained and used for the phase velocity
dispersion analysis. All these Lamb wave signals are presented in Fig. 3a
in the form of the B – scan image. A signal at the distance 100mm and
it‘s frequency spectrum are presented in Figs. 3b and 3c.

The presented frequency spectrum determines:

• The limits of the frequency ranges of the dispersion curves expected
to be reconstructed;

• The frequency range for spectrum decomposition technique;

• The bandwidth of the filters;

Fig. 5. Theoretical dispersion curve (solid line) calculated using the SAFE method, mea-
surement values of the hybrid method (circles) and measurement values of zero-crossings
(dots) in the case of modelled signal analysis of the Lamb waves S0 mode propagating in
2mm thickness aluminium.

Fig. 6. B–scan image of the A0 mode of Lamb wave experimental signals propagating in the 2mm thickness aluminium plate (a), waveform of the signal at the 130mm distance from the
excitation point (b) and frequency response of this signal (c) (fL= 0 kHz, fH=420 kHz, ΔB=280 kHz).
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• The number of the filtering operations.

As it can be seen from the spectrum presented in Fig. 3(c), the
frequency bandwidth at – 40 dB level is in the range 100–500 kHz. It
means that the reconstructed phase velocity dispersion curve should
involve all these frequencies and the filtering has to be perform in this
range. The frequency bandwidth of the analyzed signal at 6 dB level is
2ΔB=160 kHz Fig. 3(c). In order to reconstruct the segment of the
dispersion curve, in as much as possible wider frequency ranges, filters
with three different bandwidth have been selected for analysis: 40 kHz
(25%), 80 kHz (50%) and 120 kHz (75%). The selected filter bandwidth
determines the number of the filters to be used in the processing. In the
case of 40 kHz filter bandwidth the number of filters was 21, using the
80 kHz filter bandwidth 11 and using 120 kHz filter bandwidth only 9
filters. The results obtained using previous zero-crossing technique and
spectrum decomposition method with filter possessing in different
bandwidths and the dispersion curve obtained by SAFE method are
presented in Fig. 4.

The comparison of the results obtained by the proposed hybrid
technique and those of a previous version of the reference zero-crossing
technique are presented in Table 1. It can be seen that when using zero-
crossing technique, the phase velocity dispersion curve is reconstructed
in frequency range of 286–319 kHz which is only 8% of signal initial
bandwidth. Meanwhile, the proposed spectrum decomposition

Fig. 7. Reconstructed phase velocities dispersion curves of the Lamb wave A0 mode: theoretical dispersion curve (solid line) calculated using SAFE method, measured values (dots): a –
using zero-crossing method; b – obtained with hybrid algorithm using 4 bandpass Gaussian filters (the bandwidth of the each filter ΔB=210 kHz); c – obtained with proposed algorithm
using 6 filters (ΔB=140 kHz); d – obtained with proposed algorithm using 12 filters (ΔB=70 kHz).

Table 2
Bandwidth of the frequencies covered by of the reconstructed phase velocities dispersion
curves of the A0 mode in an aluminium plate when using experimental signals.

Method Filter
bandwidth,
kHz

Frequency, kHz

Frequency
ranges, kHz

Bandwidths, kHz Bandwidths, %

Reference Unfiltered 145–315 170 43
Hybrid 210 187–345 158 40
Hybrid 140 110–370 260 65
Hybrid 70 77–445 368 92

Fig. 8. The 3D finite element model to obtain the signals of the Lamb waves A0 mode
propagating in a thin CFRP plate.
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approach enables to reconstruct the phase velocity dispersion curve in
essentially wider frequency range covering almost the whole bandwidth
of the incident signal. However, the frequency ranges in which the
dispersion curve is reconstructed depend on the bandwidth of the filters
used in the spectrum decomposition approach. For 120 kHz filter, 70%
coverage of incident bandwidth was achieved. Foremost results were
attained in the case of narrowest filter (40 kHz bandwidth) when the
reconstructed dispersion curve covers 90% of the initial bandwidth. So,
it follows that the narrow filters are more efficient, but this leads to
large number of filters which engender more calculation resources and
longer processing time.

Usually non-dispersion signals are easier to measure and to figure
out since the waveform does not change during propagation. But the
proposed hybrid method exploits the dispersive character of the wave
to reconstruct the dispersion curve. The question which can arises is
whether the frequency decomposition technique will be effective for the
modes having the small dispersion. In order to study the performance of
the proposed hybrid method in the case of low dispersion, the propa-
gation of a symmetric mode S0 was analyzed. The signals have been
generated in the same 300 kHz frequency range. In that frequency
range, S0 mode possess very low dispersion [21].

For the reconstruction of the dispersion curve segment, a 80 kHz
(50%) filter is selected for analysis. The results obtained for the case of
the Lamb waves S0 mode are presented in Fig. 5.

As it can be seen, similar regularities as in the case of the A0 mode
are obtained. The zero-crossing technique enables to reconstruct the
phase velocity dispersion curve only in a very narrow 32 kHz frequency
range which represents only 8% of the incident bandwidth. Meanwhile,
using the spectrum decomposition technique the reconstruction totally
was achieved by filtering the signals frequency spectra the frequency

values of the S0 mode in a 323 kHz frequency range which means 81%
of incident bandwidth. So, the proposed hybrid technique has also re-
vealed enhanced performance in low dispersion S0 mode.

3.2. Investigation of the proposed method using experimental signals

The proposed signal processing algorithm has been confirmed ex-
perimentally by carrying measurements on aluminium plate. The ex-
periment set-up, the geometry of the object, the excitation signal are
presented in previous works [22]. The signals of the Lamb waves A0

mode are calculated at distances from 60mm up to 200mm with
0.1 mm step from the excitation point. Totally, 1401 signals are ob-
tained and used for the phase velocity dispersion analysis. The B – scan
image of all of the Lamb waves A0 mode signals used in the in-
vestigation, the waveform of the signal at 130mm distance from the
excitation point and the frequency spectrum of this signal are presented
in Fig. 6.

According to the frequency spectrum of the analyzed A0 mode signal
Fig. 6(c), the bandwidth at – 40 dB levels is in the range of 0–420 kHz,
the frequency bandwidth at 6 dB level is 2ΔB=280 kHz. Similar filters
as in the case of modelling were use with bandwidth 70 kHz (25%),
140 kHz (50%) and 210 kHz (75%). According to the selected filter
bandwidth, the number of the filters used in processing is different. In
the case of 70 kHz filter bandwidth the number of filters was 12, with
140 kHz the number was 6 and with 210 kHz it was only 4 filters. The
measurement results using different bandwidths and different sets of
the filters are obtained and compared with the dispersion curve ob-
tained by SAFE method (Fig. 7).

The results obtained by the hybrid technique and the previous
version of the reference zero-crossing technique are presented in

Fig. 9. B–scan image of the A0 mode signals propagating in CFRP plate (a), waveform of the signal at the 70mm distance (b) and frequency spectrum of this signal (c) (fL= 100kHz,
fH=700kHz, ΔB=kHz).
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Table 2. The table has outstood that when using zero-crossing technique
the phase velocity dispersion curve is reconstructed in frequency range
of 145–315 kHz, 43% of initial bandwith of the signal. Meanwhile, the
spectrum decomposition approach enables to reconstruct the phase
velocity dispersion curve in essentially wider frequency range – in the
case of 70 kHz filter which means 92% of incident bandwidth was
achieved. Foremost results were achieved when using narrowest filter
bandwidth, so the results demonstrate the same regularities as those
obtained with modelled signals.

3.3. Investigation of the proposed method using the modelled signals
propagating in CFRP plate

In the second stage, the method was completed on an anisotropic
material. In order to obtain signals a 3D finite element model of the
Carbon Fibber Reinforced Plastic (CFRP) have been created [23]. In
general, such plates are widely used as a base material for manu-
facturing of components with complicated geometry by gluing several
plates in layers and shaping them to required geometry [23]. The nu-
merical models give signals relatively close to the experimental ones
including presence of several modes and influence of component
boundaries. Using the developed model the propagation of the Lamb
waves A0 mode was investigated. The geometry of the 3D model of the
CFRP plate and the position of the excitation zone are shown in Fig. 8.

The carbon fibres were oriented along axis z. The density of the
CFRP plate was assumed to be 1570 kg/m3. The elastic coefficients have
been defined by the following stiffness matrix

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

C GPa

13.49 6.67 6.42 0 0 0
6.67 13.39 6.42 0 0 0
6.42 6.42 145.1 0 0 0

0 0 0 5.3 0 0
0 0 0 0 5.3 0
0 0 0 0 0 3.36

· .CFRP

(10)

In order to excite the A0 mode signals, a tangential force was applied
to one of the plate edges. The excitation zone was situated in the centre

Fig. 10. Reconstructed phase velocities dispersion curves of the Lamb wave A0 mode: theoretical dispersion curve (solid line) calculated using SAFE method, measured values (dots): a –
using zero-crossing method; b – obtained with hybrid algorithm, bandwidth of the each filter ΔB=150 kHz; c – ΔB=100 kHz; d – ΔB=50 kHz.

Table 3
Bandwidth of the frequencies covered by of the reconstructed phase velocities dispersion
curves of the A0 mode in a CFRP plate.

Method Filter
bandwidth,
kHz

Frequency, kHz

Frequency
ranges, kHz

Bandwidths, kHz Bandwidths, %

Reference Unfiltered 348 – 484 136 23
Hybrid 150 181 – 611 430 72
Hybrid 100 122 – 670 548 91
Hybrid 50 111 – 689 578 96
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of one of the plate edges and it was 10mm in length along x axis
(Fig. 8). The waveform of the excitation signal was the 3 periods,
400 kHz burst with the Gaussian envelop.

The sampling in the spatial domain was dx=0.1mm and the
guided waves were modelled during 70 µs time interval recorded at
distances starting from 0mm up to 70mm. The B – scan image of the
normal component of particle velocity of the Lamb wave A0 mode on
the top surface of the plate along central line is presented in Fig. 9.

Totally 701 signals were used in the analysis. The waveform of the
signal at 70mm distance from the exitation point is presented in Fig. 9b
and the frequency spectra of this signal are presented in Fig. 9c.

The frequency bandwidth of A0 mode signal at – 6 dB level is ap-
proximately 2ΔB=200 kHz, The frequency ranges at – 40 dB level are
from 100 kHz up to 700 kHz. As in previous analysis filters with three
different bandwidths were used: 50 kHz (25% of incident spectrum),
100 kHz (50%) and 150 kHz (75%). The obtained results are presented
in Fig. 10. For comparison, the theoretical dispersion curve calculated
using SAFE method is showed also. The frequency ranges in which the
dispersion curves were reconstructed are recorded in Table 3.

In general, similar regularities to those obtained by the analytical
model and experimental investigation can be observed. At first, the
dispersion curves in the case of any used filters have been reconstructed
in basically wider frequency bandwidth comparing to the reference
method. The second, is that narrower filters enable to achieve better
coverage of frequency bandwidth. In the case of filter with 150 kHz
bandwidth the coverage was achieved 72% of incident spectrum and in
the case of 50 kHz – even 96%. It can be noticed also that at higher
frequency some systematic error can be observed between re-
constructed and theoretical phase velocity values. Since such error was
not observed in the case of the signals obtained by the analytical model
it can be assumed that these errors are consequence of numerical dis-
persion caused by integration scheme used in the finite element model
[24].

4. Conclusions

The new tool is based on two techniques: the zero-crossing and the
spectrum decomposition that are combined together. This hybrid
method extends the possibilities of the previously presented zero-
crossing technique for the reconstruction of the Lamb wave phase ve-
locity dispersion curve segments. The presented signal processing al-
gorithm is verified in two different mediums: isotropic-homogenious
aluminium plate using modelled and experimental signals and aniso-
tropic-non-homogenious CFRP plate using modelled signals. It was
shown that the developed method enables to evaluate the dispersion
and to reconstruct the phase velocity dispersion curve segments both in
the case of strong and weak dispersion. Furthermore, it permits to re-
construct the dispersion curve in approximately 96% of the whole in-
cident signal frequency bandwith. The comparison of the proposed
spectrum decomposition technique with zero-crossing as reference
method have shown that the new method enables to reconstruct the
dispersion curve in essentialy wider frequency ranges by covering even

frequencies represented in frequency spectrum by very low amplitudes.
In the case of the non-dispersive Lamb waves symmetric S0 mode the
phase velocity dispersion curve was reconstructed in ten times wider
frequency range comparing to the reference method.
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