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1. INTRODUCTION 

Organic electroluminescent (EL) materials have many advantages when 

compared with their inorganic counterparts and, therefore, they have a wide range 

of potential applications in communications, information display, illumination, and 

so on. Phosphorescent organic light-emitting diodes (PHOLEDs) that contain late 

transition-metal complexes as emitters are particularly attractive due to their 

ability to harvest singlet and triplet excitons, which makes it possible to achieve an 

internal quantum efficiency of 100%. To suppress concentration quenching, a 

phosphorescent emitter is usually dispersed in a suitable host to obtain a high 

photoluminescent (PL) quantum yield. Developing a host with a suitable triplet 

energy level (ET), charge-transporting ability, and thermal and film stability is thus 

the key to improving the performance of PHOLEDs. 

A good host used in PHOLEDs should have the following characteristics: 

 an ET value higher than that of the phosphorescent guest, which facilitates 

efficient energy transfer from the host to the guest and prevents reverse energy 

transfer from the guest back to the host; different phosphorescent emitters require 

the hosts with their corresponding ET values; 

 appropriate values of highest occupied molecular orbital (HOMO) energy 

and lowest unoccupied molecular orbital (LUMO) energy to facilitate charge 

injection from the adjacent hole-transporting and electron-transporting layer (HTL 

and ETL), which is also the key to balance the transporting of holes and electrons; 

 high glass-transition temperatures (Tg) and thermal-decomposition 

temperatures (Td) confer better device endurance;  

 appropriate film-forming and morphological stability.  

In this regard, there is a contradictory issue as to how to simultaneously 

optimize the photophysical and electric performance of PHOLEDs. Generally, a 

highly crystalline film is helpful to transport carriers, but it may also lead to PL 

quenching. To meet these requirements and optimize the parameters which 

determine the device performance, intramolecular charge-transfer, charge 

mobility, and energy level must all be fully considered when new hosts are 

synthesized. 

In this field, one representative example is the well-known poly(N-

vinylcarbazole) (PVK) (Eg = 3.5 eV) for which the polymer bandgap is similar to 

that of the carbazole moiety. Carbazole is among the most stable wide bandgap 

molecules which has been extensively studied for the design of low molecular 

weight or oligomeric hosts, fully justifying the development of polymeric host 

with this molecule. The appealing features of PVK include a high glass transition  
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temperature (Tg = 200oC), a high triplet energy level (ET = 2.5 eV), good 

solubility in common organic solvents and excellent film-forming properties, 

rendering this polymer of great interest for PHOLEDs. However, PVK is 

characterized by a hole-dominated transportation, limiting its scope of usability. 

Another drawback is that PVK is also prone to exciplex formation, lowering 

device performances.  

Chromophores containing carbazolyl moieties were synthesized using 

rigid and flat structures of aromatic linkage for connecting the rings of carbazole 

in low-molecular-weight hosts. Compounds are prepared by changing the 

connection positions of substitution and are widely used as effective hosts for 

phosphorescent organic light emitting diodes. A shortage of such hosts is a big 

tendency to crystallize, thus the devices can not be formed by spin coating. Due 

to a high demand and necessary complex characteristics, host materials of a new 

structure which could be formed from solutions are intensively synthesized and 

applied for phosphorescent devices.  

The aim of this work is the synthesis and characterization of new low-

molecular-weight compounds which have electronically isolated chromophores 

as well as bipolar derivatives as potential host materials, and the application of 

these derivatives in multilayer light-emitting diodes. 

The tasks proposed to achieve the aim: 

1. To synthesize carbazole derivatives which have carbazolyl, 

phenylindolyl, indan-1,3-dione moieties.  

2. To synthesize carbazole and triphenylamine compounds containing 1-

phenylphenanthro[9,10-d]imidazolyl moieties. 

3. To investigate the thermal and optoelectronic characteristics of the 

synthesized compounds. 

4. To apply the obtained compounds in organic light-emitting diodes and 

describe their characteristics of the obtained devices. 

The main statements of the doctoral thesis: 

1. Branched derivatives containing electrically isolated carbazole 

fragments are hole-transporting hosts, which are suitable for emitting 

layers of phosphorescent organic light-emitting diodes. 

2. Carbazole and triphenylamine-based compounds containing 1-

phenylphenantro[9,10-d]imidazole fragments demonstrate good charge 

transporting properties and are suitable host materials for red 

phosphorescent light-emitting diodes. 

3. Carbazole-based compounds containing phenylvinyl, phenylindolyl or 

indan-1,3-dione moieties demonstrate good thermal and morfological 
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stability, suitable charge transporting properties and could be used as 

electroactive layers in various organic light-emitting diodes. 

The scientific novelty of the work: 

1. New carbazole-based derivatives containing different electronically 

isolated fragments in their structures were synthesized and 

characterized. These compounds were effective host materials for 

organic light-emitting diodes. This was confirmed by the use of these 

compounds in effective green and blue phosphorescent light-emitting 

diodes.  

2. Carbazole and triphenylamine compounds containing 1-

phenylphenanthro[9,10-d]imidazole fragments were synthesized and 

characterized. It was confirmed that these compounds are effective 

hosts for red electrophosphorescenct organic light-emitting diodes.  

Validity of the research results. The research results were presented in 

five scientific publications which correspond to the list of Clarivate Analytics 

Web of Science. The results of this research were presented in nine international 

and one national conference.  

Structure of the doctoral dissertation. The doctoral dissertation consists 

of an introduction, three chapters, conclusions, a list of references (172 entries) 

and a list of scientific publications. The data of the doctoral dissertation is 

presented in 100 pages, including 28 figures, 5 schemes, 97 structures of 

compounds and seven tables.  

Personal input of the author. The author has designed, synthesized, 

purified and characterized the compounds described in Chapter 3. The author 

also performed the melting point and infrared spectroscopy measurements and 

analysed the obtained results. The structures of the obtained compounds, their 

thermal properties, photophysical properties and ionization potential 

measurements were analysed in collaboration with the colleagues from the 

Department of Polymer Chemistry and Technology, Kaunas University of 

Technology; the obtained results were analysed by the author. OLEDs were 

fabricated and characterised in the group of Prof. J.H. Jou from National Tsing 

Hua University (Taiwan), in the group of Prof. C.H. Chang from Yuan-Ze 

University (Taiwan) and in the group of Prof. B. Zhang from Changchun 

Institute of Applied Chemistry, Chinese Academy of Science (China). The 

results of the OLEDs were analysed by the author. 
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2. THE MAIN RESULTS 

2.1. Synthesis and characterization of carbazole- and phenylindole-based 

derivatives 

The synthesis of the carbazole- and phenylindole-based derivatives was 

carried out by the synthetic route shown in Scheme 1. 
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Scheme 1 

9-(6-Bromohexyl)carbazole (1) was prepared by reacting 9H-carbazole 

with an excess of 1,6-dibromohexane under basic conditions as described 

previously [1]. A part of compound 1 was reacted with 2-phenylindole to yield a 

low-molecular-weight host material 4. 

9H,9′H-[3,3′]Bicarbazole (2) was obtained by the chemical oxidation of 

9H-carbazole in the presence of FeCl3 [2]. Derivative 2 was reacted with an 
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excess of 1,6-dibromohexane to yield 9,9′-bis(6-bromohexyl)[3,3′]bicarbazole 

(3), which was then used to prepare the branched host material 6. 9H,9′H-

[3,3′]bicarbazole (2) was also reacted with an excess of 9-(6-

bromohexyl)carbazole (1) to afford the carbazole-based host material 5. 

The behavior of materials 4–6 under heating was studied using differential 

scanning calometry (DSC). All the derivatives were obtained as crystalline 

material by re-crystallising the solutions; however, they readily formed glasses 

when their melt samples were cooled on a stand in air or with liquid nitrogen. 

The DSC thermograms of compound 5 are shown in Figure 1 as examples. When 

the crystalline sample was heated, the endothermic peak caused by melting was 

observed at 178°C (Tm). When the melt sample was cooled down and reheated, 

the glass-transition phenomenon was observed at 71°C and no peaks due to 

crystallisation and melting appeared with further heating. 

 

 

Fig. 1. DSC curves of material 5. Heating rate: 10°C/min. 

The sample of compound 4 melted at 114°C in the first heating scan and 

glass transition occurred at 31°C in the second heating scan. The crystalline 

sample of branched derivative 6 demonstrated similar behavior. During the first 

heating it melted at 152°C and formed glass (Tg = 64°C) upon cooling. 

Ionization potentials (Ip) of thin amorphous layers of the derivatives were 

determined from electron photoemission spectra of the layers. The layer of 

material 4 demonstrated the highest Ip of 5.95 eV. The Ip values of the layers of 

materials 5 and 6 were close to 5.75 eV. As it could be expected, the Ip value for 

the film of material 4 was similar to that of other derivatives containing 

unsubstituted carbazole or indole rings (Ip > 5.9 eV) [3, 4]. The experimentally 

determined ET were 2.61 eV, 2.81 eV and 2.60 eV for materials 4, 5 and 6, 

respectively. The ET values were calculated from the emission peak maximums 

of low temperature (77 K) phosphorescence spectra, which were at 474 nm, 440 

nm and 476 nm for the materials 4, 5 and 6, respectively.  

To evaluate the performance of the new host materials, phosphorescent 

green and blue OLEDs were fabricated by using green triplet emitter tris(2-
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phenylpyridine)iridium (Ir(ppy)3) and blue triplet emitter iridium(III)[bis(4,6-

difluorophenyl)-pyridinato-N,C2]picolinate (FIrpic), correspondingly, as the 

guests. The structure of the multilayer devices was indium tin oxide (ITO)/ 

poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT:PSS)/ 4, 5 or 

6 host doped with a corresponding guest/ 1,3,5-tris(2-N-

phenylbenzimidazolyl)benzene (TPBi)/ lithium fluoride (LiF)/ aluminium (Al).  

The low molecular-weight host 4 was firstly used in concentration-

dependent OLED experiments with the amount of the green guest Ir(ppy)3 

ranging from 1 to 10 wt%. Figure 2 shows the characteristics of the devices. The 

OLEDs exhibited turn-on voltages of 5−6 V, current efficiencies of 8.5−23 cd/A 

and maximal brightness of 2,670–13,660 cd/m2. The green device containing 3 

wt% of Ir(ppy)3 exhibited the best performance among all the devices with the 

current efficiency of 20.9 cd/A and power efficiency of 6.8 lm/W at 100 cd/m2. 

At higher brightness, such as 1,000 cd/m2, which is used for illumination 

applications, this OLED also showed the greatest current efficiency of 21.9 cd/A 

(5.6 lm/W).  
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Fig. 2. OLED characteristics of compound 4-based green host devices with Ir(ppy)3 guest 

To evaluate the performance of derivative 4 as host of blue devices, 

phosphorescent OLEDs were fabricated by using blue emitter FIrpic as the guest. 

Host 4 was used in concentration-dependent experiments with the doping amount 

ranging from 5 to 20 wt%. The OLEDs exhibited turn-on voltages of 4.9−5.5 V, 

maximum current efficiencies of 6−14.2 cd/A and maximum brightness of 720–

1400 cd/m2. The device exhibited the best overall performance when using 15 

wt% of FIrpic as the guest, including a turn-on voltage of ca. 5 V, a maximum 

current efficiency of 14.2 cd/A and maximum brightness of 1,160 cd/m2. 

Efficiency roll-off at higher currents, which is typical in phosphorescent OLEDs, 

was also observed here; yet at brightness of 100 cd/m2, an efficiency of about 9.4 

cd/A (4 lm/W) could still be obtained. 

Host materials 5 and 6 were also tested as components of green 

phosphorescent OLEDs in concentration-dependent experiments with the amount 

pf Ir(ppy)3 guest ranging from 1 to 10 wt%. The devices containing compound 5 
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as a host demonstrated reasonably superior performance relative to that of 

OLEDs containing compound 6 as a host. The OLEDs with host 5 exhibited 

rather low turn-on voltages of 3.1−3.2 V, power efficiencies of 5.2−16.4 lm/W 

and current efficiencies of 7.3−19.8 cd/A at 100 cd/m2. The device containing 5 

wt% of Ir(ppy)3 exhibited the best overall performance with the current 

efficiency of 8.2 cd/A and power efficiency of 4.2 lm/W at higher brightness, 

such as 1,000 cd/m2, used for illumination applications. The maximum 

luminance of the device exceeded 2,500 cd/m2. The triplet energies of 

phenylindole- containing materials 4 and 6 were lower. Reverse energy transfer 

from the guest back to the host could be possible in this case. It appears that 

carbazolyl-based host 5 demonstrated better performance in the similar 

PHOLED devices due to this reason. 

2.2. The synthesis and characterization of branched dervatives containing 

electrically isolated carbazole fragments 

Carbazole-type host materials, 2-[4-(carbazol-9-yl)butyloxy]-9-[4-

(carbazol-9-yl)buty]carbazole (9), 2-[5-(carbazol-9-yl)pentyloxy]-9-[5-

(carbazol-9-yl)pentyl]carbazole (10) and 2-[6-(carbazol-9-yl)hexyloxy]-9-[6-

(carbazol-9-yl)hexyl]carbazole (11), were synthesized using rather simple 

alkylation methods as shown in Scheme 2.  

H
N

Br-R-Br N

R-Br

N

R

N

O
R

N

H
N

OH

KOH, TBAHS

R: 7,9 - C4H8         

   8,10 - C5H10        

   1,11 - C6H12

1, 7, 8 9-11
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Scheme 2 

The key starting materials, 9-(bromoalkyl)carbazoles (1, 7, 8) were 

prepared from the commercially available 9H-carbazole and an excess of 

corresponding dibromoalkane under basic conditions using tetra-n-butyl 

ammonium hydrogen sulfate (TBAHS) as the phase transfer catalyst. 

Compounds 1, 7, 8 were reacted with 2-hydroxycarbazole under basic conditions 

to afford the carbazolyl containing derivatives 9–11 as host materials. The newly 

synthesized derivatives were confirmed by 1H NMR, 13C NMR, IR spectroscopy 

and mass spectrometry.  
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When measured using DSC, host material 9 showed a glass transition 

temperature of 64°C, while 58°C were noticed for material 10 and 20°C for 

material 11 (Table 1).  

Table 1. Photophysical, electrochemical and thermal characteristics of carbazole-based 

host materials 9–11.  

Compound λabs
a, 

(nm) 

λem
b, 

(nm) 

λphos
c, 

(eV) 

ET 
d, 

(eV) 

HOMOe, 

(eV) 

LUMOf, 

(eV) 

Tg
g, 

(◦C) 

Tm
g, 

(◦C) 

Td
h, 

(◦C) 

9 345 356, 

368 

420 2.95 5.48 1.95 64 198 361 

10 345 368 420 2.95 5.48 1.95 58 124 345 

11 345 369 420 2.96 5.47 1.96 20 - 338 
a absorption maxima in tetrahydrofuran (THF) (c = 10-5 mol/l). b emission maxima of fluorescence in 

THF (c = 10-5 mol/l). c emission maxima of phosphorescence in THF (c = 10-5 mol/l) at 77 K. d 
Estimated from the peak of phosphorescence spectrum at 77 K. e HOMO values are measured by the 

cyclic voltammetry (CV) method. f The energy of LUMO could be obtained by subtracting the 

optical bandgap (Eg) from the HOMO energy level. g Determined by DSC (scan rate 10˚C/min, N2 
atmosphere). h Analysed using thermogravimetric analysis (TGA) (5% weight loss, scan rate 

20˚C/min, N2 atmosphere). 

 

The slightly higher Tg of host 9 indicated a strong intermolecular 

interaction of carbazole units owing to the short-chain alkyl ether and alkyl 

junctions. When investigated using TGA, host 9 exhibited a thermal 

decomposition temperature of 361°C, corresponding to a 5% weight loss, while 

compounds 10 and 11 decomposed at 345°C and 338°C, respectively. The 

higher Tg and Td characteristic of host 9 facilitates a relatively better film 

integrity during the entire fabrication process, especially during solvent removal 

[5, 6]. 

The data of ultraviolet-visible (UV-vis) and PL spectra of materials 9–11 

are shown in Table 1. The experimentally determined triplet-energies were 2.95 

eV, 2.95 eV, and 2.96 eV for materials 9, 10 and 11, respectively, which were 

calculated from the first phosphorescent emission peak of low temperature (77 

K) PL spectra at 420 nm, 420 nm and 419 nm, as shown in Figure 3. 
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Fig. 3. PL spectra of the newly synthesized hosts 9, 10, and 11 measured in THF at 

77 K 

Most importantly, the triplet-energies of these three host materials are 

extensively higher than those of the green emitter, Ir(ppy)3, which exhibited a 

triplet-energy value of 2.57 eV [7, 8]. These host materials should enable the 

occurrence of effective energy transfer from host to guest and exciton 

confinement on guest, resulting in good device efficiency [9, 10, 11, 12]. Both 

photophysical and electrochemical properties of all three compounds remained 

almost unchanged by increasing the length of alkyl and alkyl ether linkages.  

The electrochemical properties of the carbazole-type host molecules 9–11 

were measured by using cyclic voltammetry. The HOMO energy levels were 

estimated to be 5.48 eV, 5.48 eV, and 5.47 eV for 9, 10, and 11, respectively, 

using the oxidation potential. The LUMO energy levels of the emitters were 

calculated to be 1.94 eV, 1.94 eV, and 1.95 eV for 9, 10, and 11, respectively 

(Table 1). 

Derivatives 9, 10 and 11 were applied in OLEDs as host materials for 

green phosphorescent Ir(ppy)3 emitter. The devices were composed of a 125 nm 

ITO anode layer, a 35 nm PEDOT:PSS hole injection layer, a 20 nm emissive 

layer with the Ir(ppy)3 emitter doped in a corresponding host, a 32 nm TPBi 

ETL, a 1 nm LiF layer, and a 100 nm Al cathode layer. The efficiency of the 

device was extensively dependent on doping concentration of the green emitter. 

Taking the device based on host 9 as an example, the power efficiency at 1,000 

cdm-2 increases from 14.1 to 30.3 lmW-1 as the doping concentration increases 

from 5 to 25 wt %. The resulting device shows the highest efficiency among all 

studied concentrations, as 25 wt% guest was doped into host 9. However, as the 

concentration is increased to 30 wt%, the power efficiency begins to decrease. 

This may be attributed to the concentration-quenching efficiency roll-off, 

resulting from the self-segregation of the emitter at high concentrations.  

When material 11 was employed as the host, the resultant device exhibited 

the power efficiency of 15.9 lmW-1 (23.1 cdA-1), at 1,000 cdm-2, with a 5 wt% 

doping concentration of Ir(ppy)3 guest. The efficiency increases as the dopant 
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concentration increases from 5 to 20 wt%. At 20 wt%, the power efficiency was 

23.3 lmW-1 (35.9 cdA-1). As dopant concentration further increased to 35 wt%, 

the efficacy droped to 18.7 lmW-1 (31.1 cdA-1). The device which contained host 

10 showed the best efficacy of 29.1 lmW-1 (35.9 cdA-1) with a 30 wt% doping 

concentration of Ir(ppy)3. Compared to that of compound 11, the higher 

efficiency exhibited by the device which contained host 10 may result mainly 

from the fact that material 11 showed poor film integrity owing to relatively 

much lower Tg (20 0C). 

2.3. Synthesis and characterization of carbazole and triphenylamine 

compounds containing 1-phenylphenanthro[9,10-d]imidazolyl fragments  

The synthesis of 1-phenylphenanthro[9,10-d]imidazole-based host 

materials (14, 17, 18) was carried out following a multi-step synthetic route as 

shown in Scheme 3.  
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Scheme 3 

9-Hexylcarbazole (12) was firstly synthesized by reacting 9H-carbazole 

with an excess of 1-bromohexane under basic conditions in acetone. 3-Formyl-9-

hexylcarbazole (13) was then prepared from compound 12 by employing the 



15 
 

Vilsmeier-Haack formylation procedure [13]. 4-(Diphenylamino)benzaldehyde 

(15) and 4,4'-diformyltriphenylamine (16) were obtained from triphenylamine by 

using the Vilsmeier-Haack formylation procedure [13] in chloroform or 

dichloromethane, respectively. The objective materials, i.e. 2-(9-

hexylcarbazolyl-3-yl)-1-phenylphenanthro[9,10-d]imidazole (14), 2-[4-(N,N-

diphenylamino)phenyl]-1-phenylphenanthro[9,10-d]imidazole (17) and bis[4-(1-

phenylphenanthro[9,10-d]imidazol-2-yl)phenyl]-N-phenylamine (18) were 

prepared by the reactions of aldehydes 13, 15 or 16 with an excess of 9,10-

phenanthrenequinone, aniline and ammonium acetate in acetic acid. The 

synthesized derivatives were identified by mass spectrometry, 1H NMR, 13C 

NMR and IR spectroscopy.  

The behaviour of the objective materials 14, 17, 18 under heating was 

studied by using DSC and TGA under a nitrogen atmosphere. The data are 

summarized in Table 2 and presented in Figure 4. It was established that all the 

analysed compounds demonstrated high thermal stability. The onsets of mass 

loss were at 386°C for compound 14, at 414°C for compound 17 and at 448°C 

for compound 18, as confirmed by TGA with a heating rate of 10oC/min. the 

research revealed that triphenylamine-based derivatives (17 and 18) 

demonstrated slightly higher thermal stability than that of 9-alkylcarbazole 

containing material 14. 

 Compounds 14, 17, 18 were obtained as crystalline materials after 

synthesis as confirmed by DSC; however, some of them could be converted to 

amorphous materials by cooling the melted samples. Derivative 17 demonstrated 

a very strong tendency to crystallize. DSC thermo-grams of the compound are 

shown in Figure 4(a). When the crystalline sample was heated during the 

experiment, an endothermic peak caused by melting was observed at 285°C. 

When the melt sample was cooled down, its crystallization (Tcr) was observed at 

223°C to form the same crystals which were obtained by crystallization from the 

solution. 

Compounds 14 and 18 demonstrated different behaviour during the DSC 

experiments. The thermo-grams of compound 18 are shown in Figure 4(b) as an 

example. When its crystalline sample was heated, melting was observed at 

318°C followed by fast crystallization at 321°C to form a new crystalline 

modification, which melted at 361°C. When the melt sample was cooled down, it 

formed an amorphous material with high Tg of 184°C. Compound 14 

demonstrated analogous behaviour during the DSC test. When its crystalline 

sample was heated during the experiment, melting was observed at 152°C 

followed by recrystallization at 166°C. The new crystalline modification then 

melted at 204°C. When the melt sample was cooled down, it formed an 

amorphous material with glass transition temperature of 52°C. 
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Fig. 4. DSC curves of compounds 17 (a) and 18 (b). Heating rate: 10°C/min. 

Ip's of thin amorphous layers of the derivatives were determined from 

electron photoemission spectra of the layers. The layer of material 14 

demonstrated the highest Ip of 5.35 eV. The Ip value of the layer of compound 18 

was close to 5.3 eV. The layer of material 17 demonstrated the lowest Ip of 5.1 

eV (Fig. 5(a)). 

Figure 5(b) shows the UV-vis absorption spectra and the PL spectra of the 

materials dissolved in dichloromethane recorded at 300 K and 77 K. The PL 

spectra measured at 77 K aimed to characterize the triplet energy of the 

compounds. 
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Fig. 5 (a). Electron photoemission spectra of thin layers of materials 14, 17 and 18; (b) 

absorption spectra, fluorescence spectra and phosphorescence spectra (at 77 K) of the 

compounds in dichloromethane (c = 10-5 mol/l) 

In the UV-vis absorption spectra, each material exhibited a peak at around 

260 nm, which is related to the absorption bands of the imidazole moiety in the 

three compounds [14]. Notably, absorption peaks appeared at around 360 nm in 

compounds 17 and 18, whereas no peak appeared for compound 14, indicating 

that the absorption bands could originate from the triphenylamine moiety [15]. 

On the other hand, compound 14 exhibited the highest-energy fluorescence and 
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phosphorescence peaks at around 404 nm and 504 nm. Comparing the molecular 

structure of material 14, an extension of conjugation length design was 

introduced in the molecules of 17 and 18. The fluorescence (and 

phosphorescence) peaks of compounds 17 and 18 were respectively red-shifted 

to 423 nm (514 nm) and 426 nm (517 nm). Furthermore, both compounds 17 and 

18 had similar spectral profiles demonstrating that the additional imidazole 

moiety in compound 18 did not significantly affect its photophysical properties. 

The triplet energy gap of each material was higher than those found in orange or 

red phosphors, thus enabling their use as host materials for red PHOLEDs 

applications. The corresponding photophysical and thermal properties are 

summarized in Table 2. 
 

Table 2. Photophysical and thermal properties of compounds 14, 17 and 18 

 λabs
a, 

(nm) 

λfluo
b, 

(nm) 

λphos
c, 

(nm) 

ET 
d, 

(eV) 

Ip
e, 

(eV) 

Tm
f, 

(◦C) 

Tg
f, 

(◦C) 

Tcr
f, 

(◦C) 

Td
g, 

(◦C) 

14 265, 279, 

332, 367 

404 504 2.46 5.35 152, 

204h 

52 166 386 

17 258, 359 423 514 2.41 5.1 285 - 223 414 

18 263, 283, 

376 

426 517 2.40 5.3 318, 

361h 

184 321 448 

a absorption maxima in dichlormethane (c = 10-5 mol/l). b emission maxima of fluorescence in 

dichlormethane (c = 10-5 mol/l). c emission maxima of phosphorescence in dichlormethane (c = 10-5 
mol/l) at 77 K. d Estimated from the peak of phosphorescence spectrum at 77 K. e Estimated from the 

electron photoemission spectra. f Determined by DSC (scan rate 10°C/min, N2 atmosphere). g 

Analysed using TGA (5% weight loss, scan rate 20°C/min, N2 atmosphere). h The materials have two 
different crystalline modifications. 

 

Considering the triplet energy gaps of compounds 14, 17 and 18 (i.e. 2.46 

eV, 2.41 eV and 2.40 eV), we fabricated red phosphorescent OLEDs with a 

simplified tri-layer architecture and investigated their EL characteristics. 

Generally speaking, a host material should possess a triplet energy gap higher 

than that of the guest to ensure sufficient energy transfer as well as exciton 

confinement [16]. Furthermore, the emission of the host material and the 

absorption spectrum of the guest should have an adequate spectral overlap for 

iso-energetic transitions. In this study, a highly efficient red phosphor, bis(2-

methyldibenzo[f,h]quinoxaline) (acetylacetonate) iridium (III), [Ir(MDQ)2acac], 

was chosen as the emitter because of its high quantum yield and adequate energy 

bandgap [17]. On the other hand, to evaluate the performance of the fabricated 

materials, three commercially available host materials suitable for red-emitting 

guests were used for comparison, including 2,6-dicarbazolo-1,5-pyridine (PYD-

2Cz), 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA), and 4,4'-bis(N-

carbazolyl)-1,1'-biphenyl (CBP) [18, 19, 20].  
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Furthermore, di-[4-(N,N-ditolyl-amino)-phenyl] cyclohexane (TAPC) and 

1,3-bis[3,5-di(pyridin-3-yl)phenyl]benzene (BmPyPhB) were respectively 

selected as the HTL and ETL due to their excellent carrier-transport capabilities 

and adequate energy gaps [21, 22]. The tested device with a tri-layer architecture 

was configured as ITO/TAPC (40 nm)/ host doped with 2 wt.% of Ir(MDQ)2acac 

(30 nm)/ BmPyPhB (40 nm)/ LiF (0.8 nm)/ Al (150 nm), where the LiF and Al 

were used as the electron injection layer and the cathode, respectively. The host 

materials for devices A–E were as follows: PYD-2Cz, TCTA, CBP, 14, 17, and 

18.  

All devices showed pure Ir(MDQ)2acac phosphorescence, except for 

device A, which showed an additional TCTA residual emission, indicating a lack 

of doping concentration of the emitter in the TCTA host. Overall, the emission 

peaks could be divided into two types. The emission peaks for devices with 

TCTA, PYD-2Cz, and CBP hosts were located at around 600 nm, while devices 

with the synthesized host materials exhibited red-shifted peaks (~611 nm) as 

well as wider spectral profiles. Considering the doping concentration of 

Ir(MDQ)2acac, molecule stacking could be excluded as the cause of the red-

shifted spectra. Instead, the saturated red emissions in devices D–F resulted from 

the environmental polarity of solid films, making these fabricated compounds 

more appropriate for use as hosts in red-PhOLEDs with a saturated red emission, 

thus reducing the difficulty of developing materials for use as red emitters. The 

CIE coordinates of both devices E and F were recorded at (0.62, 0.38).  

Conditionally low efficiency (5.5%, 8.5 cd/A and 6.5 lm/W) of device D 

was attributed to the poor carrier-transport ability of compound 14. A similar 

efficiency was obtained in device B with the TCTA host, but for the opposite 

reason. Higher hole mobility of the TCTA host resulted in the accumulation of 

redundant holes in the emitting layer, leading to carrier imbalance. On the other 

hand, the performance of devices E (17) and F (18) responded very favourably. 

Devices E and F exhibited the peak of EL efficiencies of up to 15.9% (21.5 cd/A 

and 29.9 lm/W) and 12.4% (18.3 cd/A and 23.9 lm/W), respectively. These 

results indicate that the gradually improved carrier-transport capabilities for 

compounds 17 and 18 could result in devices easily achieving the carrier balance 

in a simplified tri-layer architecture. In addition, although the spectral overlap 

between Ir(MDQ)2acac and compound 17 (or 18) is rather low as compared to 

that of the other hosts, there was no need to raise the doping concentration to 

achieve an effective exothermic energy transfer. In contrast, device C with the 

commonly used bipolar CBP host only produced a peak external quantum 

efficiency (EQE) of 10.4%, which is much lower than that of devices E (17) and 

F (18). Furthermore, the respective EQEs of devices E and F recorded at 100 

(and 1000) cd/m2 remained as high as 14.8% (12.7%) and 12.4% (12.1%).  
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2.4. Synthesis and characterization of carbazole-indan-1,3-dione-based 

derivatives 

The synthesis of indan-1,3-dione-carbazole-based host materials (22–23) 

was carried out by a multi-step synthetic route as shown in Scheme 4.  

1,6-Di-(9-carbazolyl)hexane (19) as the key starting material was 

synthesized by reacting 9H-carbazole with 1,6-dibromhexane under basic 

conditions in acetone. 3-Formyl-9-[(9-carbazolyl)hexyl]carbazole (20) and 1,6-

di-(3-formylcarbazol-9-yl)hexane (21) were prepared from the twin compound 

20 by using the Vilsmeier-Haack procedure [13]. 3-(1,3-Dioxoindan-2-

ylmethylene)]-9-[(carbazol-9-yl)hexyl]carbazole (22) and 1,6-di{[3-(dioxoindan-

2-ylmethylene)carbazol-9-yl}hexane (23) were prepared by reacting compounds 

20 or 21 with an excess of indan-1,3-dione in 1,4-dioxane or ethanol, 

respectively. The newly synthesized derivatives were confirmed by mass 

spectrometry, 1H NMR, 13C NMR, and IR spectroscopy. 
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Scheme 4 

The behaviour of the synthesized materials 22 and 23 under heating was 

studied by DSC and TGA under a nitrogen atmosphere. TGA analysis showed 

that the studied materials have very high thermal stability, and their Td are in the 

range of 398–402°C. The thermal resistance of these derivatives depend on their 

chemical substitution to a very slight extent. For example, compound 23 

containing two 1,3-dioxoindan-2-ylmethylene groups has the highest Td (402°C), 
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however the value is rather close with that of the mono-substituted derivative 22 

(Td = 398°C). 

DSC experiment confirmed that both derivatives were obtained as 

crystalline materials by re-crystallisation from solutions; however, they readily 

formed glasses with high glass transition temperatures when their melt samples 

were cooled on a stand in air or with liquid nitrogen. The DSC thermograms of 

compound 22 are shown in Figure 6 as an example.  
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Fig. 6. DSC curves of material 22. Heating rate: 10°C/min. 

When the crystalline sample was heated, the endothermic peak due to 

melting was observed at 188°C. When the melt sample was cooled down and 

reheated, the glass-transition phenomenon was observed at 80°C and no peaks 

due to crystallisation and melting appeared with further heating. The crystalline 

sample of twin derivative 23 demonstrated the analogues behaviour. During the 

first heating, it melted at 275°C and formed amorphous material with Tg of 

114°C upon cooling. The results demonstrate that new host materials could form 

thin amorphous films suitable for OLED devices. DSC analysis also revealed 

that the thermal transitions of the derivatives depended on their chemical 

structures. For example, the Tg value of di-substituted compound 23 was found 

to be considerably higher than that of derivative 22 having only one 1,3-

dioxoindan-2-ylmethylene group in its structure. 

The Ip of thin amorphous layer of derivative 23 was determined from 

electron photoemission spectra of the layer. The layer of material 23 had Ip of 5.7 

eV. The Ip value of the layer of derivative 22 could not be observed by 

spectroscopy. The experimentally determined triplet energies were 2.57 eV and 

2.44 eV for materials 22 and 23, respectively. The values were calculated from 

the first emission peaks (482 nm and 508 nm) of low temperature (77 K) 

phosphorescent spectra.  

To evaluate the performance of the new host materials 22 and 23, blue 

phosphorescent OLEDs were fabricated using blue emitter FIrpic as the guest. 
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The structure of the multilayer devices was: ITO/ PEDOT:PSS/ host 22 or 23 

doped with FIrpic/ TPBi/ LiF/ Al. In all the formed devices containing hosts 22 

or 23, the electro-phosphorescence was found to originate only from the guest at 

different bias voltages. No host and doped transport molecular emission was 

visible from the OLED devices, indicating an efficient energy transfer or charge 

transfer from the hosts to the guest as well as the sufficient injection of both 

holes and electrons into the emitting layer. 

The OLED prepared using the di-substituted twin derivative 23 exhibited a 

turn-on voltage of 5.2 V, maximum brightness of 115 cd/m2 and photometric 

efficiency of 2.17 cd/A. The device prepared using the mono-substituted 

derivative 22 as the host exhibited better overall performance with low turn-on 

voltage of 5.0 V, maximum brightness of about 220 cd/m2 and maximal 

photometric efficiency of about 2.7 cd/A. For the technically important 

brightness of 100 cd/m2, the efficiency of the device containing host 22 was 

above 2.5 cd/A. It should be pointed out that these characteristics were obtained 

in non-optimized test devices under ordinary laboratory conditions. The device 

performance may be further improved by an optimization of the layer thickness 

and processing conditions. 

2.5. Synthesis and characterization of twin compounds containing 

phenylvinyl-substituted carbazoles  

The synthesis of twin derivatives (24–26) containing 2-phenylvinyl-

substituted carbazole rings was carried out by a multi-step synthetic route shown 

in Scheme 5.  
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Scheme 5 

9H-carbazole was firstly used to prepare 1,6-di(9-carbazolyl)hexane (19) 

using the procedure described in chapter 2.4. The key material, i.e. 1,6-di-(3-

formylcarbazol-9-yl)hexane (21) was then synthesized from the twin carbazole-

based derivative 19 with the Vilsmeier-Haack reaction [13]. The twin derivatives 

24–26 were prepared by reacting  the formylcarbazol-9-yl-containing dimer 21 

with an excess of diethyl benzylphosphonate, diethyl 4-

metoxybenzylphosphonate or diethyl 4-methylbenzylphosphonate, 

correspondingly. The synthesized compounds were identified by mass 

spectrometry, 1H NMR, 13C NMR and IR spectroscopy. The data were found to 

be in good agreement with the proposed structures. Derivative 24 was obtained 

as a mixture of cis- and trans-isomers. Derivatives 25 and 26 were obtained as 

trans-isomers.  

The behavior of the synthesized materials 24–26 under heating was 

studied by DSC and TGA under a nitrogen atmosphere. The results are presented 

in Table 3. 
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Table 3. Thermal characteristics of the analysed materials 24–26 

Material Tm
a, 

(oC) 

Tg
 a, 

(oC) 

Tcr
 a, 

(oC) 

Td
 b, 

(oC) 

24 202 74 137 411 

25 - 109 - 412 

26 176 119 - 419 
a Determined by DSC (scan rate 10°C/min, N2 atmosphere). b Analysed using TGA (5% weight loss, 

scan rate 20°C/min, N2 atmosphere). 

 

TGA analysis have showed that the analysed materials have a very high 

thermal stability, and their Td values are in the range of 411–419°C. The thermal 

resistance of these derivatives barely depend on their chemical composition. For 

example, material 26 containing methylphenyl groups has the highest Td 

(419°C); however, the value is rather close with those of derivatives 24 (Td = 

411°C) or 25 (Td = 412°C). 

The thermal transitions of derivatives 24–26 under heating was studied by 

DSC. The values of Tm, Tg and Tcr of the compounds are presented in Table 3. 

Derivative 25 containing methoxyphenyl groups was obtained after synthesis as 

amorphous material with a rather high Tg of 109°C. Compounds 24 and 26 were 

obtained as crystalline materials after synthesis; however, they could also form 

amorphous materials upon cooling of the melt. When the crystalline sample of 

material 26 was heated during the DSC test, the endothermic peak due to melting 

was observed at 176°C. When the melt sample was cooled down and reheated, 

the glass-transition was observed at 119°C and no peaks caused by 

crystallization and melting appeared with further heating. 

The crystalline sample of compound 24 demonstrated different behaviour. 

The DSC thermograms of material 24 are shown in Figure 7. The crystalline 

sample melted at 202°C during the first heating and formed glass upon cooling. 

When the amorphous sample was reheated, the glass-transition was observed at 

74°C, and an exothermic peak due to crystallisation was observed to produce 

crystals at 137°C with further heating , which melted at 202°C. It could be 

observed that compound 24 formed similar crystalline modifications by 

crystallization from the solution and from the melt.  
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Fig. 7. DSC curves of material 24. Heating rate: 10oC/min. 

DSC analysis has shown that the thermal transitions of derivatives 24–26 

depend strongly on their chemical structure. For example, the Tg value of 

material 24 is considerably lower than those of derivatives 25 and 26. The 

crystalline derivatives 24 and 26 demonstrate very different behaviour during 

their heating and cooling cycles and show rather different values of Tm. 

Ip's of layers of the materials synthesized were measured by using the 

electron photoemission method. The photoemission spectra of thin amorphous 

layers of compounds 24–26 as well as the values of Ip for the layers are presented 

in Figure 8.  
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Fig. 8. Electron photoemission spectra of the layers prepared using materials 24–26 and Ip 

It could be seen that values of Ip of the newly synthesized compounds 

depend on the nature of substituents attached to the carbazole core. Phenyl-

substituted derivative 24 demonstrated the lowest Ip of 5.05 eV. The layers of 

materials 25 and 26 showed higher Ip values, which are in the range 5.35–5.45 

eV. The Ip of all the synthesized materials are notably lower than those of 

derivatives having unsubstituted carbazole rings (Ip ~ 5.9 eV) [23]. These results 

demonstrate that electroactive layers of materials 24–26 should demonstrate 
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better hole injecting and transporting properties in optoelectronic devices than 

that of materials with electronically isolated carbazole rings. 

To investigate the hole-transporting properties of layers of derivatives 24–

26, EL OLED devices were fabricated with a configuration of ITO/ HTL/ tris-(8-

hydroxyquinoline)aluminum  (Alq3)/ LiF/ Al. In the OLED devices 24–26 were 

used as HTL materials, Alq3 was used both as a light emitting and electron 

transporting material, ITO and LiF/Al were used as an anode and cathode, 

respectively. A reference device of the structure ITO/ PEDOT:PSS/ Alq3/ LiF/ 

Al was also fabricated for comparison. Here the commercially available 

PEDOT:PSS was used as HTL material.  

All the formed devices emitted bright green luminescence (λmax = 512–520 

nm) in agreement with the PL spectrum of Alq3. As an example, the EL spectrum 

of the device containing HTL of material 24 is shown in Figure 9. The results 

clearly show that charge recombination occurs in the Alq3 layer in all devices. 

Emission from the exciplex species at the longer wavelength formed at the 

interface of HTL or ETL was not seen from the OLED devices, which generally 

occurs in EL OLEDs containing planar molecules as the HTL derivatives. 
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Fig. 9. EL spectrum of the OLED device: ITO/24/ Alq3/LiF/Al 

Figure 10 shows current density – voltage and luminance – voltage 

characteristics as well as the luminous efficiencies for the OLED devices 

containing HTL materials  24–26. It was observed that the HTL of these 

derivatives demonstrate slightly different hole transporting properties in the 

devices due to their different hole injection properties. OLED devices in general 

exhibit rather low turn-on voltages of 2.6–3.8 V, a photometric efficiency of 2.0–

2.34 cd/A, and a maximum brightness of about 5950–7380 cd/m2 at 9–11 V. The 

characteristics observed for all devices are notably superior to those of reference 

device containing widely used PEDOT:PSS as HTL material. 
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Fig. 10. OLED characteristics of the devices with the configuration: ITO/ 24, 25, 

26 or PEDOT:PSS/ Alq3/ LiF/ Al 

Among the formed OLEDs, the device containing hole-transporting 

material 26 exhibited the best overall performance, i.e. maximum brightness of 

7380 cd/m2 and maximal photometric efficiency exceeding 2.3 cd/A. Taking the 

device at 1,000 cd/m2, for example, the photometric efficiency was increased 

from 1.8 to 2.34 cd/A, an increment of 23%, as compared with that of 

PEDOT:PSS-based device. It should be pointed out that these characteristics 

were obtained in test devices under ordinary laboratory conditions. The device 

performance may be further improved by an optimization of the layer thickness 

and processing conditions [24]. 
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      3. CONCLUSIONS 

1. Carbazole- and phenylindole-based compounds were synthesized, their 

structures were verified by 1H NMR spectroscopy and mass spectrometry. 

It was established that these compounds are capable of glass formation; 

glass transition temperatures range from 31°C to 71°C. The ionization 

potentials of these materials are in the range of 5.75–5.95 eV. These 

materials have been confirmed as suitable hosts for green and blue 

phosphorescent organic light emitting diodes. The green device exhibited 

the best performance with the current efficiency of 20.9 cd/A and the 

power efficiency of 6.8 lm/W at 100 cd/m2. 

2. Branched compounds containing three electrically isolated carbazole 

fragments were synthesized and characterized. Their thermal, optical, 

photophysical and photoelectrical properties were investigated. The 

synthesized compounds are capable of glass formation (Tg = 20–64°C). 

Their thermal decomposition temperatures range from 338 to 361°C. 

These materials are suitable as hosts for effective green phosphorescent 

organic light emitting diodes. The most efficient device showed a power 

efficiency of 51 lm/W and a current efficiency of 52 cd/A at 100 cd/m2 or 

30 lm/W and 40.7 cd/A at 1,000 cd/m2. 

3. 1-Phenylphenanthro[9,10-d]imidazole-based derivatives having carbazole 

or triphenylamine fragments were synthesized and characterized. These 

compounds demonstrate high thermal stability and glass-forming ability. 

Glass transition temperatures of the synthesized molecular glasses range 

from 52 to 184°C, and their thermal decomposition temperatures with 5% 

weight loss range from 386 to 448°C. Electron photoemission spectra of 

thin layers of the materials showed ionization potentials in the range of 

5.1–5.35 eV. It was confirmed that these materials are suitable as hosts 

for effective red phosphorescent organic light emitting diodes. The most 

efficient device showed a power efficiency of 29.9 lm/W and a current 

efficiency of 21.5 cd/A. Efficiencies of the device were about 35–67% 

higher than those of devices containing commercial host materials. 

4. New carbazole-indan-1,3-dione-based compounds were synthesized and 

characterized. These materials form glasses with the glass transition 

temperatures ranging from 80 to 114°C. Their thermal degradation 

temperatures range from 398 to 402°C. Thus these materials can be host 

materials for blue phosphorescent organic light emitting diodes. One of 

the blue OLED devices demonstrated a rather low turn-on voltage of 5.0 

V, maximum brightness of about 220 cd/m2 and a maximum luminance 

efficiency of 2.7 cd/A 

5. Twin compounds containing two phenylvinyl-substituted carbazole rings 

were synthesized and characterized. The glass transition temperatures of 
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the amorphous materials were in the range of 74–119°C and the thermal 

degradation temperatures of these materials were in the range of 411–

419°C. Layers of these compounds demonstrated low Ip values, which are 

in the range of 5.35–5.45 eV, and the materials were suitable as hole 

transporting layers for organic light emitting diodes. A device containing 

Alq3 emitter and hole transporting layer of 1,6-di{3-[2-(4-

methylphenyl)vinyl]carbazol-9-yl}hexane exhibited the best overall 

performance, low turn-on voltage of 2.6 V, the maximum brightness of 

7380 cd/m2 and maximal photometric efficiency exceeding 2.3 cd/A. The 

efficiency was higher by 23% as compared with that of hole transporting 

layer of commercial poly(3,4-ethylenedioxythiophene): 

poly(styrenesulfonate) containing device.  
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REZIUMĖ 

Organinės šviesos diodų emiterių medžiagos turi daugybę pranašumų prieš 

neorganinius analogus, todėl jos gali būti plačiai naudojamos komunikacijos 

prietaisuose, informaciniuose ekranuose, apšvietimo prietaisuose ir kt. 

Fosforescuojantys organiniai šviesos diodai, turintys pereinamųjų metalų 

kompleksų emiterius, yra patrauklūs dėl gebėjimo šviesos emisijai panaudoti ir 

singletinius, ir tripletinius eksitonus, kurie suteikia galimybę pasiekti 100 % 

vidinį kvantinį efektyvumą. Norint gauti didelę prietaisų kvantinę išeigą, 

fosforescuojantys emiteriai paprastai yra disperguojami atitinkamoje matricoje 

tam, kad būtų nuslopintas fotoliuminescencijos (FL) gesinimas. Norint pagerinti 

fosforescuojančių organinių šviesos diodų veiksmingumą, reikia susintetinti 

matricas, kurios turėtų reikiamų savybių kompleksą: turėtų tinkamas tripletinės 
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būsenos energijos (ET) vertes, pasižymėtų gera krūvio pernaša ir terminiu bei 

morfologiniu plėvelių stabilumu.  

Matricos, naudojamos fosforescuojančiuose organiniuose šviesos 

dioduose, įprastai turi pasižymėti šiomis charakteristikomis:  

 matricos ET turi būti didesnė už fosforescuojančio emiterio. Tai 

užtikrina efektyvų energijos perdavimą iš matricos į emiterį ir užkerta 

kelią atvirkštiniam energijos perdavimui iš emiterio atgal į matricą. 

Skirtingiems fosforescuojantiems emiteriams reikia skirtingų matricų su 

atitinkamomis ET vertėmis;  

 tinkamos aukščiausios užimtos molekulinės orbitalės (HOMO) 

energijos lygmenų ir žemiausios neužimtos molekulinės orbitalės 

(LUMO) energijos lygmenų vertės, kurios palengvina krūvininkų 

injekciją iš gretimų skylių pernašos ir elektronų pernašos sluoksnių 

(HTL ir ETL); tai yra būdas subalansuoti skylių ir elektronų pernašą;  

 aukšta stiklėjimo temperatūra (Ts) ir terminės destrukcijos pradžios 

temperatūra (Td) lemia ilgesnį prietaiso naudojimo laiką; 

 geros plėvėdaros savybės ir morfologinis sluoksnių stabilumas.  

Šiuo atžvilgiu kyla prieštaringi klausimai, kaip optimizuoti fotofizikines ir 

elektrines fosforescuojančių organinių šviesos diodų charakteristikas. Paprastai 

kristalinė plėvelė pasižymi gera krūvininkų pernaša, bet ji skatina FL gesinimą. 

Norint optimizuoti prietaisų parametrus, turi būti atsižvelgta į prieš tai paminėtus 

reikalavimus, keliamus sintetinant naujas matricas, kurios nulemia prietaiso 

ilgaamžiškumą, tarpmolekulinę krūvio pernašą, krūvininkų dreifinį judrį ir ET 

lygį. 

Šioje srityje gerai žinoma polimerinė matrica – poli(N-vinilkarbazolas) 

(PVK), kurios optinis draustinių energijų tarpas (Eg = 3,5 eV) yra panašus į 

nepakeisto karbazolo. Paminėtina, kad karbazolas yra vienas iš stabiliausių 

junginių, turintis platų draustinės juostos tarpą, todėl yra intensyviai tyrinėjamas 

sintetinant ir mažos molekulinės masės, ir polimerines matricas. PVK matrica 

pasižymi aukšta stiklėjimo temperatūra (Ts = 200 oC), didele tripletinės būsenos 

energijos verte (ET = 2,5 eV), geru tirpumu įprastuose organiniuose tirpikliuose ir 

geromis plėvelių formavimo savybėmis, todėl plačiai naudojama 

fosforescuojančiuose organiniuose šviesos dioduose. Tačiau PVK yra 

apibūdinama kaip skyles pernešanti medžiaga, tai apriboja jos taikymo 

galimybes. Kitas šio polimero trūkumas yra tai, kad jis linkęs formuoti 

eksipleksus, kurie taip pat sumažina prietaisų efektyvumą. 

Mažos molekulinės masės matricose naudojant karbazolilfragmentus buvo 

susintetinta daug chromoforų, kuriuose panaudotos standžios ir plokščios 

struktūros aromatinės jungtys karbazolo fragmentams sujungti. Keičiant jungties 

pakaitų pozicijas, buvo gaunami junginiai, kurie plačiai naudojami kaip 

efektyvios matricos fosforescuojantiems organiniams šviesos diodams. Dažnas 

tokių matricų trūkumas yra didelis polinkis kristalizuotis, todėl prietaisų 
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negalima suformuoti liejimo iš tirpalų būdu. Dėl didelio tokių matricų poreikio ir 

kompleksinių charakteristikų trūkumo naujos struktūros matricų medžiagų, kurių 

sluoksnius galima suformuoti liejant tirpalus, sintezei ir panaudojimui šiuo metu 

mokslininkai skiria daug dėmesio. 

Darbo tikslas – susintetinti naujos struktūros mažamolekulius junginius – 

potencialias matricas, turinčias elektroniškai izoliuotus chromoforus arba 

bipolinę sandarą, ištirti šių junginių savybes ir juos panaudoti 

daugiasluoksniuose organiniuose šviesos dioduose. 

Tikslui pasiekti išsikelti šie darbo uždaviniai: 

1. Susintetinti karbazolil-, fenilindolil-, fenilvinil- ir indan-1,3-diono 

fragmentus turinčius karbazolo darinius.  

2. Susintetinti 1-fenilfenantro[9,10-d]imidazolilfragmentus turinčius 

karbazolo ir trifenilamino junginius.  

3. Ištirti gautų junginių termines ir optoelektronines savybes.  

4. Susintetintus junginius panaudoti organiniams šviesos diodams 

formuoti ir charakterizuoti gautus prietaisus. 

Pagrindiniai ginamieji disertacijos teiginiai 

1. Šakoti dariniai, turintys elektroniškai izoliuotus karbazolilfragmentus, 

yra skyles pernešančios matricos, tinkamos efektyviems 

fosforescuojančių organinių šviesos diodų emisiniams sluoksniams 

formuoti.  

2. 1-Fenilfenantro[9,10-d]imidazolilfragmentus turintys karbazolo ir 

trifenilamino junginiai pasižymi teigiamųjų krūvininkų pernašos 

savybėmis ir yra tinkami kaip matricų medžiagos raudona šviesa 

elektrofosforescuojantiems organiniams šviesos diodams formuoti. 

3. Fenilvinil-, fenilindolil- arba indan-1,3-diono fragmentus turintys 

karbazolo junginiai pasižymi geru terminiu bei morfologiniu 

stabilumu ir tinkamomis skylių pernašos savybėmis, todėl gali būti 

naudojami kaip elektroaktyvūs sluoksniai įvairiuose organiniuose 

šviesos dioduose.  

Mokslinio darbo naujumas 

1. Susintetinti ir ištirti nauji karbazolo junginiai, turintys įvairius 

elektroniškai izoliuotus fragmentus. Šie junginiai yra efektyvios 

matricos organiniams šviesos diodams. Tai leidžia patvirtinti jų 

panaudojimas efektyviuose fosforescuojančiuose žalios ir mėlynos 

šviesos prietaisuose.  

2. Susintetinti ir ištirti nauji 1-fenilfenantro[9,10-d]imidazolilfragmentus 

turintys karbazolo ir trifenilamino junginiai. Šie junginiai yra 
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efektyvios elektrofosforescuojančių šviesos diodų emisinių sluoksnių 

matricos. Jie buvo panaudoti raudonai šviečiančiuose prietaisuose.  

Disertacijos tyrimų rezultatų aprobavimas 

Pagrindiniai darbo rezultatai yra paskelbti 5 moksliniuose straipsniuose, 

įtrauktuose į Clarivate Analytics Web of Science duomenų bazės sąrašą. 

Rezultatai taip pat buvo pristatyti 1 nacionalinėje ir 9 tarptautinėse 

konferencijose.  

Disertacijos apimtis ir struktūra 

Bendra darbo apimtis – 100 puslapių. Disertaciją sudaro įvadas, literatūros 

apžvalga, eksperimentų metodikos ir tyrimo rezultatų aptarimo skyriai, išvados, 

literatūros ir publikacijų darbo tema sąrašai. Darbe yra pateiktos 5 schemos, 28 

paveikslai, 7 lentelės, 97 junginių struktūros ir 172 šaltinių literatūros sąrašas.  

Autorės indėlis 

Autorė sukūrė, susintetino, išgrynino ir apibūdino visus disertacijoje 

aprašytus organinius puslaidininkius, atliko lydymosi temperatūros ir 

infraraudonosios spektroskopijos matavimus ir išanalizavo jų rezultatus. Junginių 

terminių ir fotofizikinių savybių, jonizacijos potencialo matavimus atliko Kauno 

technologijos universiteto Polimerų chemijos ir technologijos katedros tyrėjai. 

Šiuos rezultatus išanalizavo ir aprašė autorė. Organiniai šviesos diodai buvo 

sukonstruoti ir charakterizuoti Taivano Tsinghua universiteto prof. J. H. Jou 

mokslininkų grupėje, Taivano Yuan Ze universiteto prof. C. H. 

Chang mokslininkų grupėje ir Kinijos mokslų akademijos Changchun 

taikomosios chemijos instituto prof. B. Zhang mokslininkų grupėje; šių prietaisų 

savybes analizavo autorė.  
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