

The evaluation of bonding quality through multidimensional data

Elena Jasiūnienė, Vaidotas Cicėnas, Gawher Ahmad Bhat

Ultrasound Research Institute; Kaunas University of Technology (KTU), Kaunas, Lithuania

Abstract: Adhesive bonded structures have attracted significant interest from various industries including those involved in transportation such as the aerospace, rail, marine, and automotive. due to their advantageous properties. Adhesives possess the capability to join complex structures and dissimilar materials, distribute load homogenously by offering high strength-to-weight ratio. However, the use of adhesive bonds is constrained by the absence of reliable techniques for their non-destructive evaluation.

The aim of this study is to enhance the reliability of nondestructive testing of adhesive joints by means of the multidimensional data fusion of the ultrasonic and radiographic data to broaden their application areas. Data fusion can be defined as a process of combining data from various sources to generate more complete and accurate data thereby improving accuracy.

In this study adhesive joints featuring various types of bonding defects were investigated employing radiography and conventional pulse-echo ultrasonic techniques. Subsequently, a data fusion was implemented integrating the data acquired by different techniques. The investigation also involved the development and refinement of advanced data processing techniques, particularly designed for data fusion applications.

The work highlights the necessity of a comprehensive non-destructive evaluation to assess the quality of the adhesive bonds. Consequently, the application of multi-dimensional data fusion of radiographic and ultrasonic data has yielded more comprehensive results.

Keywords: data fusion, nondestructive evaluation, Ultrasonic testing, Radiographic Inspection, Adhesive bonded structures

The evaluation of bonding quality through multidimensional data fusion

Elena JASIŪNIENĖ*, Vaidotas CICĖNAS, Gawher Ahmad BHAT

Lithuania KAUNAS

~410 500

POPULATION

KAUNAS

Kaunas University of Technology

KAUNAS UNIVERSITY OF TECHNOLOGY

9

FACULTIES

ACADEMIC STAFF:

8

INSTITUTES

>1000

2

INTEGRATED CENTRES OF RESERCH, STUDIES AND BUSINESS

STUDY PROGRAMS:

108

>7400

NUMBER OF

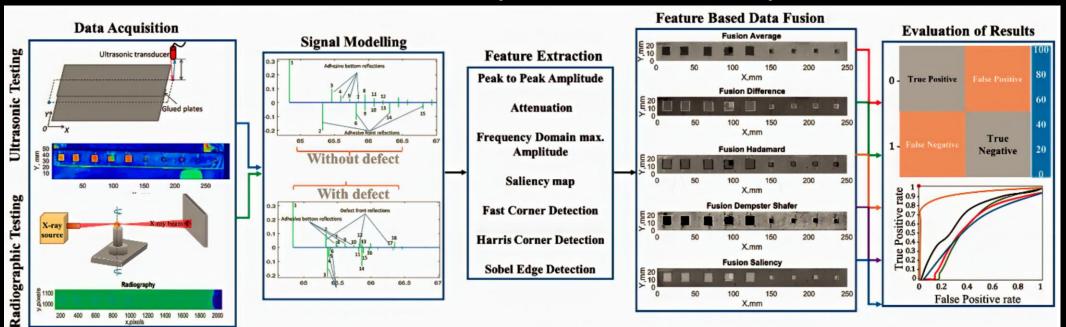
STUDENTS:

OF ALUMNI ARE IN EMPLOYMENT WITHIN 12 MONTHS

23

STUDENT ORGANIZATION

CAMPUS IN 3 CITIES


82 %

Bonding quality evaluation Multi-dimensional data fusion

ktu

OBJECTIVE

to enhance the reliability of non-destructive evaluation for adhesively bonded aerospace components by development of novel multidimensional data fusion techniques, which will combine the information obtained by ultrasonic and X-ray NDT methods

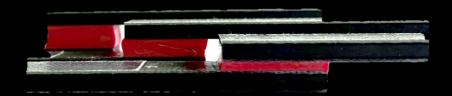
Jasiūnienė, E.; Yilmaz, B.; Smagulova, D.; Bhat, G. A.; Cicėnas, V.; Žukauskas, E.; Mažeika, L. Non-destructive evaluation of the quality of adhesive joints using ultrasound, X-ray, and feature-based data fusion // Applied sciences. Basel: MDPI. ISSN 2076-3417. 2022, vol. 12, iss. 24, art. no. 12930, p. 1-20. DOI: 10.3390/app122412930.

Adhesive bonds in aicrafts

ktu

Adhesive bonds are used extensively, but only in secondary structures

Object of interest - Adhesive joints

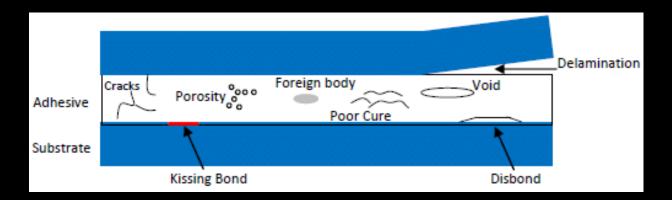

ktu

Advantages of adhesive joints:

- ✓ Can join wide range of materials
- ✓ Allow joining dissimilar materials
- ✓ Distributes stress more evenly enhanced fatigue resistance
- Excellent load bearing capacity
- Can simplify assembly process faster production, reduced costs
- Weight reduction
- ✓ More environmentally friendly

Disadvantages of adhesive joints:

- Sensitivity to aging, degradation
- Sensitivity to temperature
- Surface preparation
- Strength variability

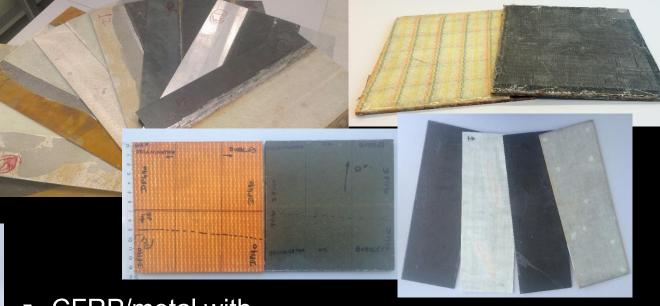

Defects in adhesive joints

ktu

- Disbonds
- Inclusions
- Voids/porosity
- Weak bond due to surface contamination
- Weak joint due to improper curing conditions

Reliable NDT techniques are required to detect all types of defects or weak bonds

Why assessing the quality of adhesive bonds is not simple?


Adhesive bonds investigated

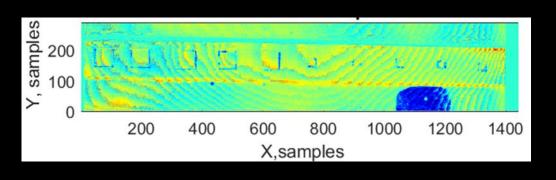
ktu

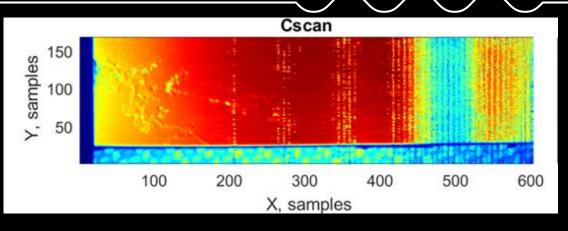
 Aluminumaluminum lap joints provided by COTESA GmbH; FL Technics.

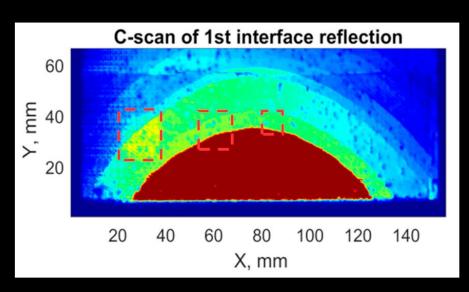
FC 2 THE STATE OF BOTH AND STA

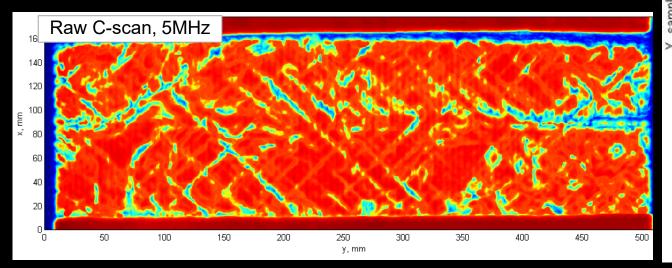
Composite-metal samples provided by AP&M;
 ITA; Walker Technical Resources; FL Technics

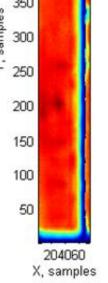
 CFRP/CFRP lap joints provided by COTESA GmbH; FL Technics CFRP/metal with pins samples provided by Swerea SICOMP AB

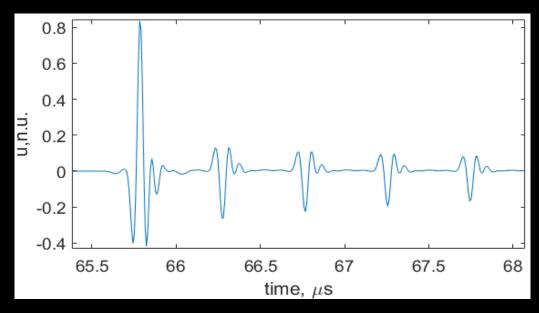


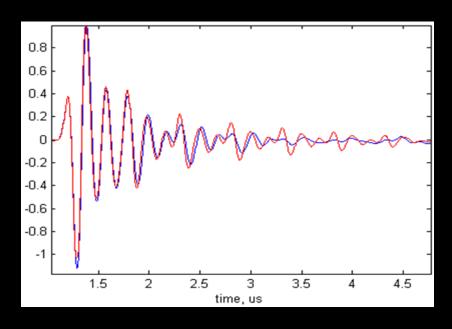

Adhesive bonds, unprocessed results


ktu


Cscan:318:41

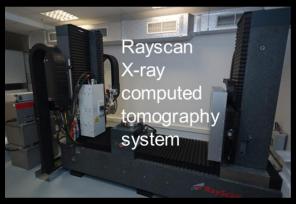

t1adhtop:t2adh

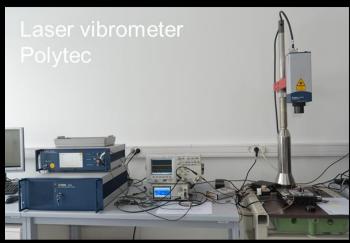




Inspection – simple sample vs adhesive joint

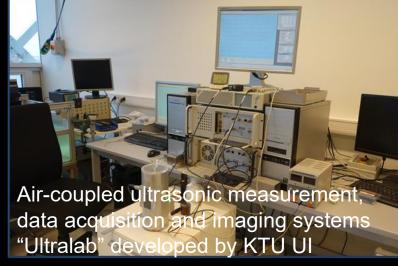
Simple structure

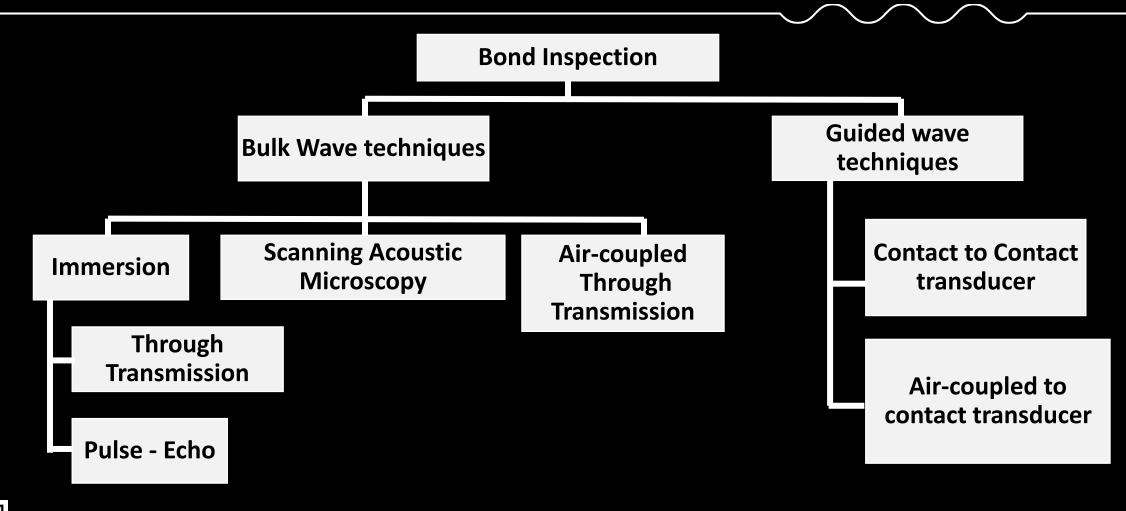

Adhesive joint


Data aquisition

Ultrasound institute, research infrastructure

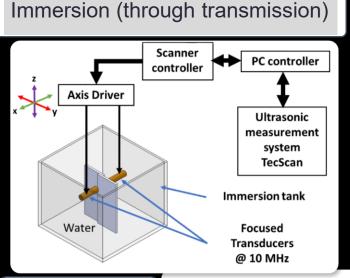
ktu

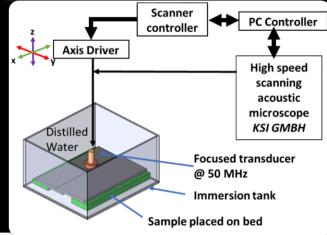




And much more

Bond quality evaluation using ultrasonics




Bond quality evaluation using ultrasonics

ktu

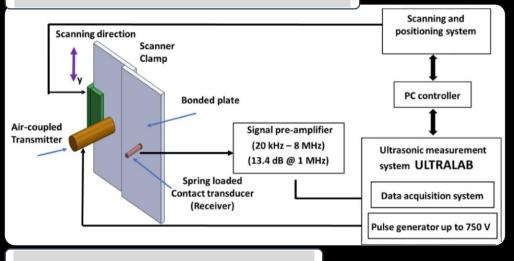
Bulk Wave techniques

Scanning Acoustic Microscopy

Scanning direction

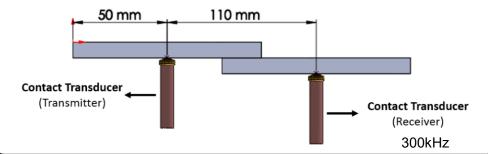
Scanning direction

Scanning and positioning system


Air-coupled Receiver (20 kHz – 8 MHz) (13.4 dB @ 1 MHz)

Scanning and positioning system

PC controller


Ultrasonic measurement system ULTRALAB

Air-coupled to contact transducer

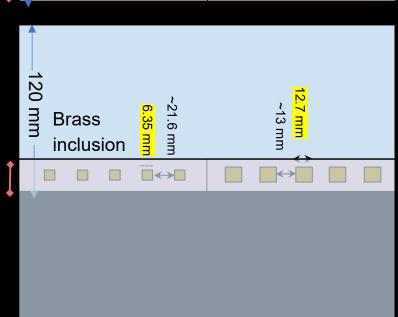
Guided Wave techniques

Contact to contact transducer

Air-coupled

through transmission

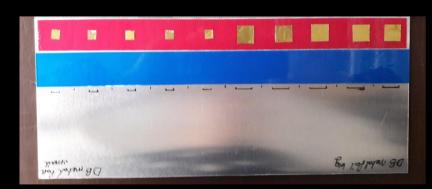
Yilmaz, B; Asokkumar, A; Jasiūnienė, E; Kažys, R J. Air-coupled, contact, and immersion ultrasonic non-destructive testing: comparison for bonding quality evaluation // Applied sciences. Basel: MDPI. ISSN 2076-3417. 2020, vol. 10, iss. 19, art. no. 6757, p. 1-22. DOI 10.3390/app10196757

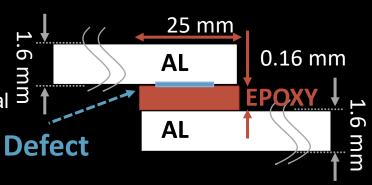

Data acquisition system

Pulse generator up to 750 V

Samples

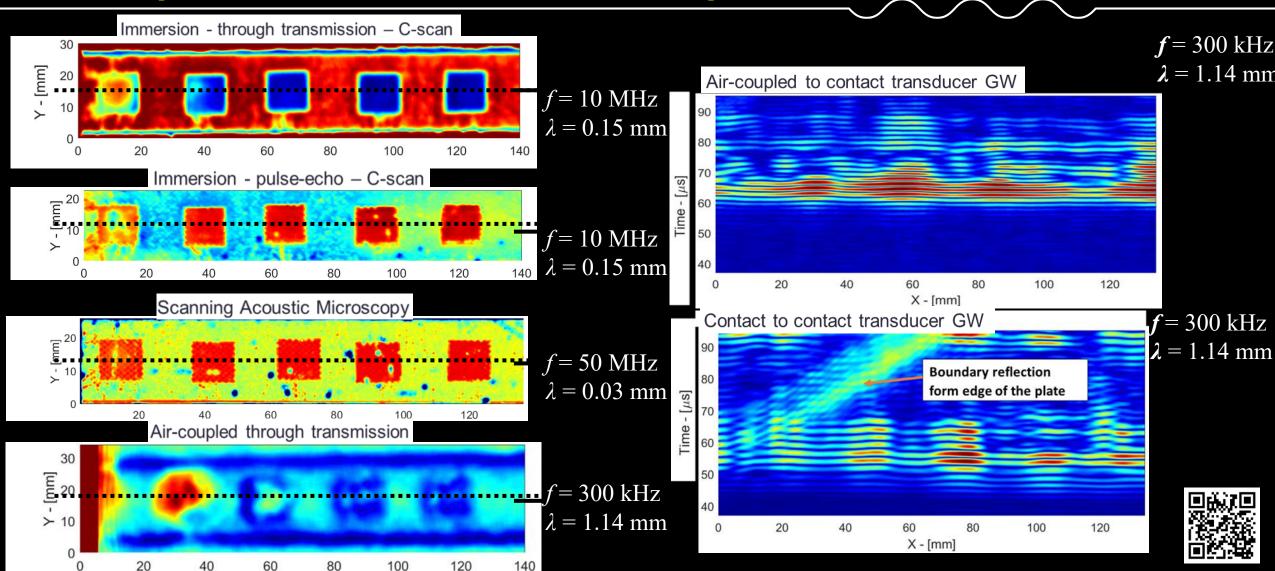
ktu



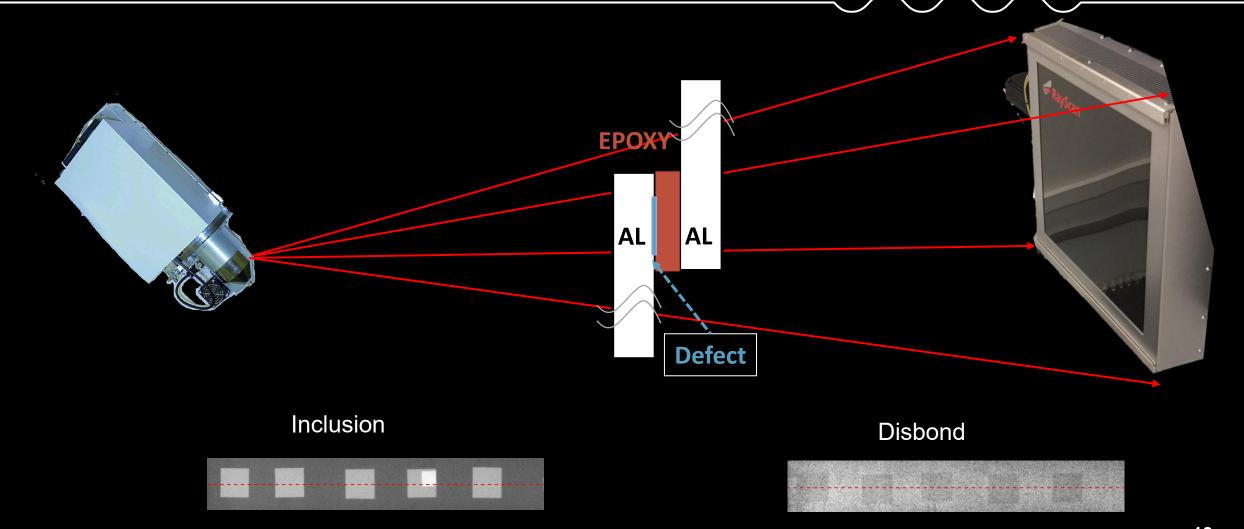

Adhesive single lap joints

Adherent type - Aluminum

Adhesive – 3M Scotch-Weld AF163 structural adhesive epoxy film:

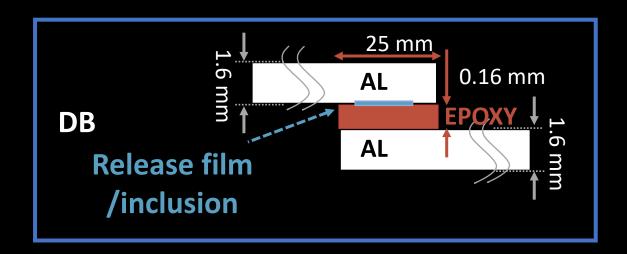

Bonding quality:

- PB Perfect bond
- DB artificial disbond
- Brass film inclusion
- Weak bonds :
 - WB-RA due to release agent
 - WB-FC due to faulty curing



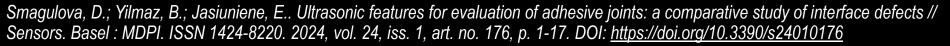
Bond quality evaluation: comparison of ultrasonic techniques

Radiography

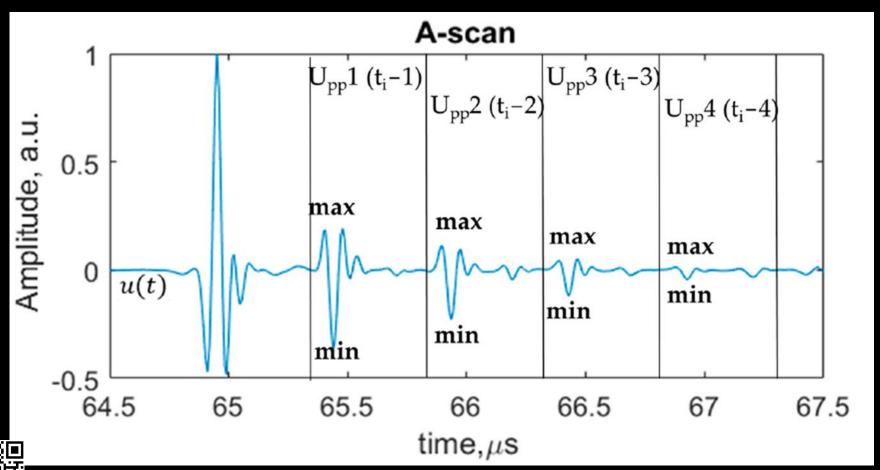

Feature extraction

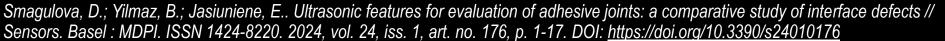
- Aluminum 2024 adherend
- 3M Scotch-Weld AF163 structural adhesive epoxy film

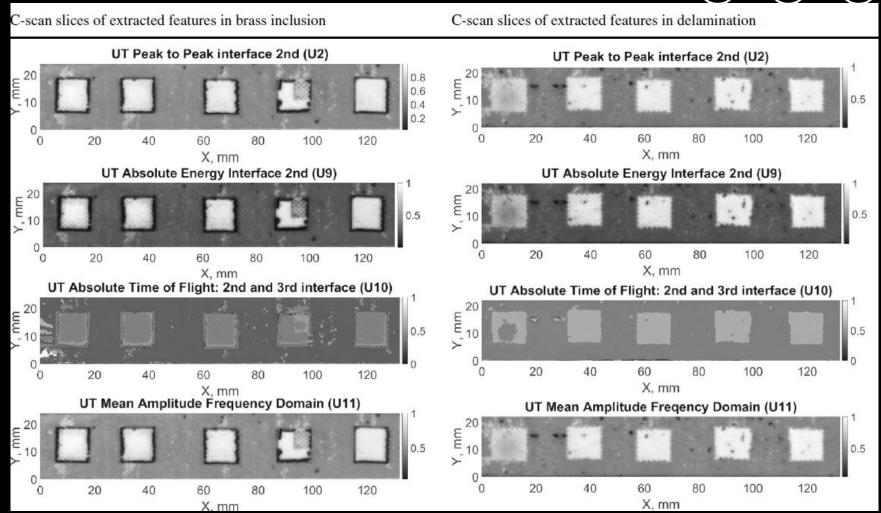
Bonding qualities:


DB: Debonding - two-fold Wrigtlon 4600 release film

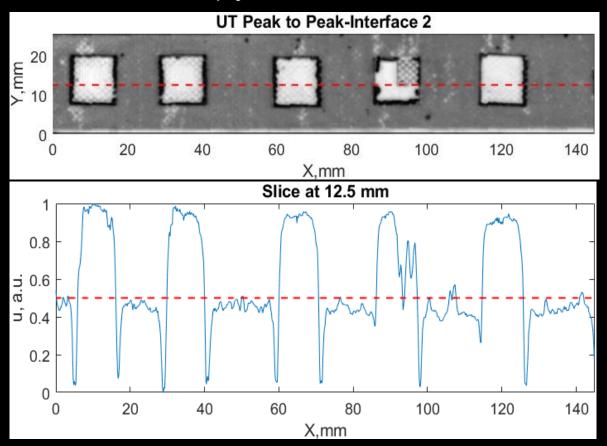
No	Ultrasonic Feature	Mathematical Expression
1	Peak-to-peak amplitude, U_{pp}	$U_{pp} = \max(u(t)) - \min(u(t)), t \in t_n \div t_{n+1},$ n = 1,2,3,4 (interface reflections)
2	Ratio coefficients, K_1 , K_2	$K_1 = \frac{U_{pp_n}}{U_{pp_{n+1}}}, K_2 = \frac{U_{pp_{n+1}}}{U_{pp_n}}$
3	Attenuation, α	$\alpha = 20log_{10} \frac{U_{pp_n}}{U_{pp_{n+1}}}$
4	Maximum amplitude at frequency domain, U_{fmax}	$U_{fmax} = \max(\operatorname{FT}(u(t))), t \in t_n \div t_{n+1}, \operatorname{FT-Fourier Transform}$
5	Absolute Energy, A	$A = \sum_{t_n}^{t_{n+1}} U_{p-p}^2$
6	Frequency value at the maximum amplitude, f_{Umax}	$f_{Umax} = FT(u(t)), t \in t_n \div t_{n+1}$
7	Absolute time of flight difference, Δt	$\Delta t = t_{n+1} - t_n $
8	Kurtosis, k	$k = \mathrm{FT} \frac{E\left(u(t_n \div t_{n+1}) - \mu\right)^4}{\sigma^4},$ μ —is a mean of $\left(u(t_n \div t_{n+1})\right)$, σ is a standard deviation, E is the expected value of the quantity $\left(u(t_n \div t_{n+1}) - \mu\right)^4$
		A (' () A / '



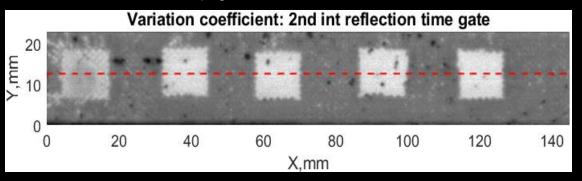

No	Ultrasonic Feature	Mathematical Expression
9	Mean value of the amplitude in frequency domain, u_{fmean}	$u_{fmean} = \sum_{i=1}^{N} \mathrm{FT}\Big(\frac{u_i(t)}{N}\Big),$ $t \in t_n \div t_{n+1}, u_i$ —is each datum of amplitudes at selected time interval, N —is a number of observations
10	Skewness, s	$s = \mathrm{FT} \frac{E\left(u(t_n \div t_{n+1}) - \mu\right)^3}{\sigma^3}$ μ —is a mean of $(u(t_n \div t_{n+1}))$, σ is a standard deviation, E is the expected value of the quantity $(u(t_n \div t_{n+1}) - \mu)^3$
11	Standard deviation value in time domain, σ	$\sigma = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}u_i(t) - \overline{u(t)}}$ u_i —is each data of amplitudes at selected time interval, $\overline{u(t)}$ —is a mean value, N —is a number of observations
12	Standard deviation value in frequency domain, σ_f	$\sigma_f = \text{FT} \cdot \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} u_i(t) - \overline{u(t)}}$
13	Variation coefficient in time domain, cv	$cv = \frac{\sigma}{u_{mean}}$
14	Variation coefficient in frequency domain, cv_f	$cv_f = \mathrm{FT}\Big(rac{\sigma_f}{u_{fmean}}\Big)$

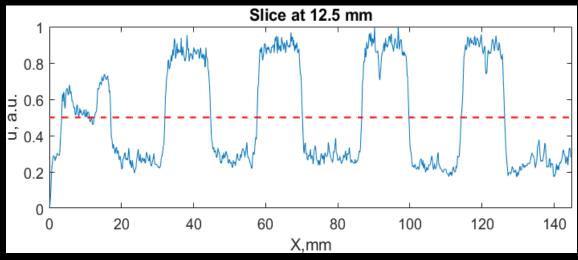


Symbol	Features	Equations
U1-U3	Peak-to-peak amplitude at interface (1st; 2nd and 3rd)	$UT_{p2p} = \log_{10}(\max(U_T(t)) - \min(U_T(t)))$
U4-U5	Attenuation between interface (1st and 2nd; 2nd and 3rd)	$_{UT_{\alpha}} = -\frac{1}{t_{k}} \log_{10} \left(\frac{UT(t_{k})}{UT(t_{0})} \right)$
U6-U7	Frequency domain max amplitude at interface (1st and 2nd)	$UT_{fmax} = \log_{10} FT \left(UT(t) \right)$
U8-U9	Energy of signal at interface (1st and 2nd)	$UT_{\varepsilon} = \sum_{t_n}^{t_{n+1}} U_{p-p}^{2}$
U10	Absolute time of flight difference between 2 nd and 3 rd interface	$\Delta t = t_{n+1} - t_n $
U11	Mean value of the amplitude in frequency domain at 2 nd interface	$u_{fmean} = \sum_{i=1}^{N} FT\left(\frac{u_i(t)}{N}\right)$
U12	Standard deviation value in time domain at 2 nd interface	$SD_t = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} u_i(t) - \overline{u(t)}}$
U13	Standard deviation value in frequency domain at 2 nd interface	$SD_f = FT \cdot \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} u_i(t) - \overline{u(t)}}$
U14	Variation coefficient in frequency domain at 2 nd interface	$VC_f = FT\left(\frac{SD_f}{u_{fmean}}\right)$

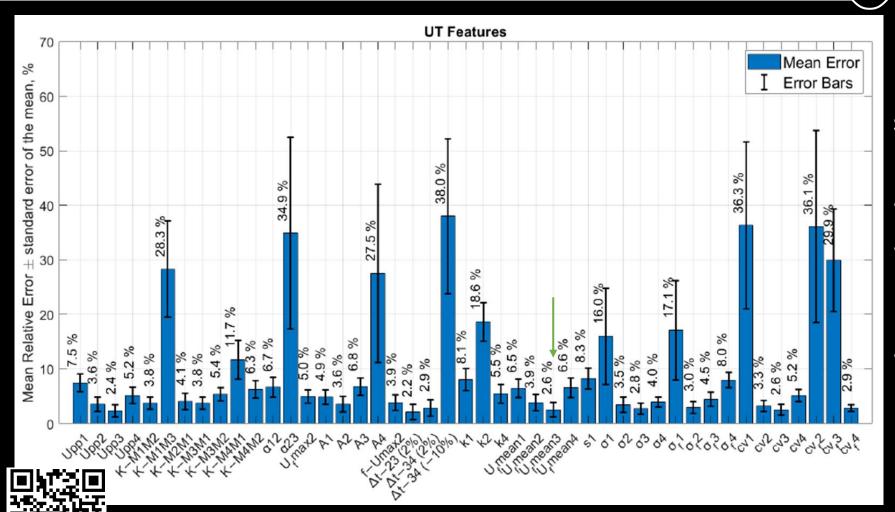


Bhat, G. A.; Smagulova, D.; Jasiūnienė, E.. Improved defect sizing in adhesive joints through feature-based data fusion // Journal of nondestructive evaluation. New York : Springer. ISSN 0195-9298. eISSN 1573-4862. 2025, vol. 44, iss. 1, art. no. 14, p. 1-16. DOI: 10.1007/s10921-024-01146-w


ktu


-6dB threshold sizing method

Aluminum lap joint with brass inclusions


Aluminum lap joint with delaminations

Performance evaluation

ktu

Ultrasonic features that showed highest performance:

- absolute time of flight Δt ,
- standard deviation value in time and frequency domains σ and σ_f ,
- variation coefficients in the time and frequency domain cv and cv_f .

S	Features	Equations
ym		
bol		
1 X	Amplitude	$S_p \to x = \begin{cases} x_1 (x_k y_l), & \text{if } p \neq x \\ similar, & \text{if } (I_p - t) \leq I_p \leq (I_p + t) \end{cases}$
X 2	Features from Accelerated Segment Test (FAST)	$S_p \to x - Similar$, $tf(t_p - t) \le t_p \le (t_p + t)$ $S_p \to x - \text{pixel intensity transformation}$, $tf(t_p - t) \le t_p \le (t_p + t)$ for corner detection,

Data fusion

Bhat, G. A.; Smagulova, D.; Jasiūnienė, E.. Improved defect sizing in adhesive joints through feature-based data fusion // Journal of nondestructive evaluation. New York: Springer. ISSN 0195-9298. eISSN 1573-4862. 2025, vol. 44, iss. 1, art. no. 14, p. 1-16. DOI: 10.1007/s10921-024-01146-w

Jasiūnienė, E.; Yilmaz, B.; Smagulova, D.; Bhat, G. A.; Cicėnas, V.; Žukauskas, E.; Mažeika, L. Non-destructive evaluation of the quality of adhesive joints using ultrasound, X-ray, and feature-based data fusion // Applied sciences. Basel: MDPI. ISSN 2076-3417. 2022, vol. 12, iss. 24, art. no. 12930, p. 1-20. DOI: 10.3390/app122412930.

Yilmaz, B.; Ba, A.; Jasiuniene, E.; Bui, H.; Berthiau, . Evaluation of bonding quality with advanced nondestructive testing (NDT) and data fusion // Sensors. Basel: MDPI. ISSN 1424-8220. 2020, vol. 20, iss. 18, art. no. 5127, p. 1-17. DOI: 10.3390/s20185127

Ultrasonic vs Radiography

ktu

Ultrasonic:

ADVANTAGES

- Sensitive to elastic properties and density
- ✓ Good at detecting planar defects, such as lack of bonding/delamination

DISADVANTAGES

- Challenges inspecting anisotropic, materials
- Orientation sensitivity
- Challenges inspecting weak bonds

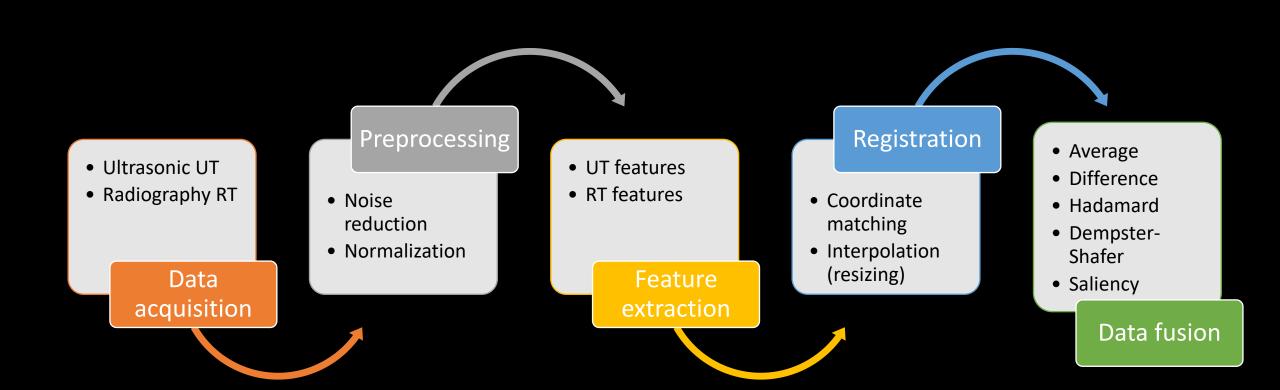
Radiography

ADVANTAGES

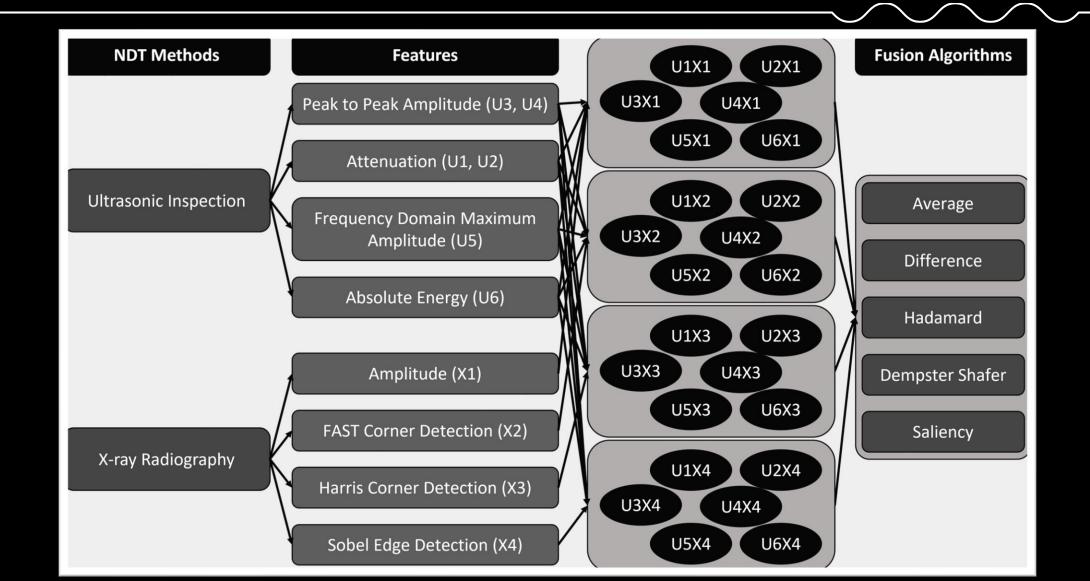
- Sensitive to changes in density
- ✓ Good at detecting volumetric defects
- ✓ Good at detecting inclusions

DISADVANTAGES

- Difficulties inspecting thin objects
- Limited performance on planar defects
- Orientation sensitivity
- Challenges inspecting weak bonds

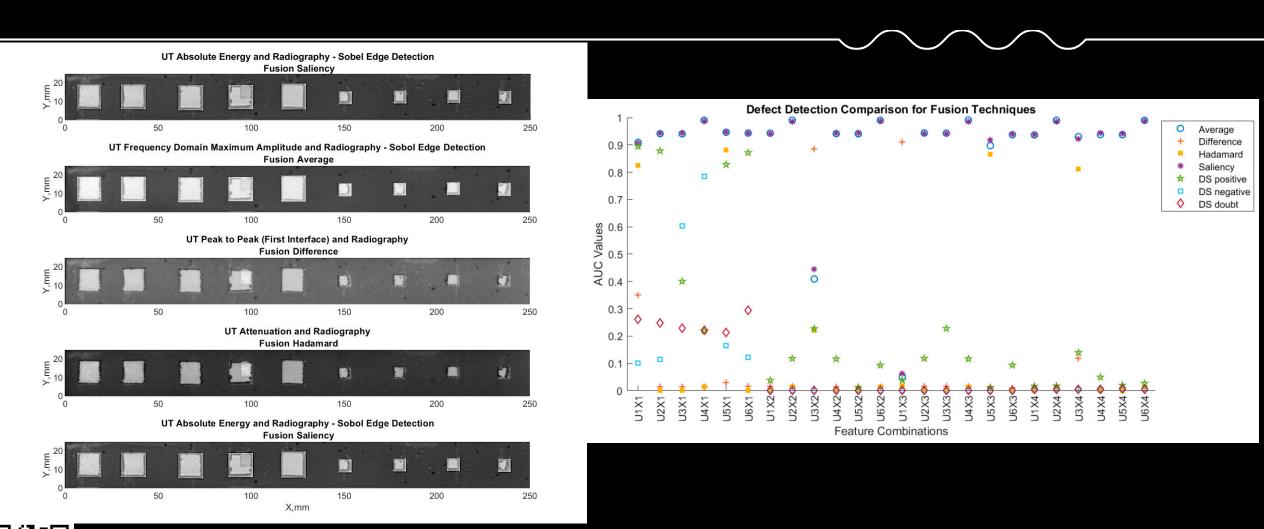

Data fusion

ktu


Data fusion is the process of integrating and combining data from multiple sources to produce more comprehensive and accurate information.

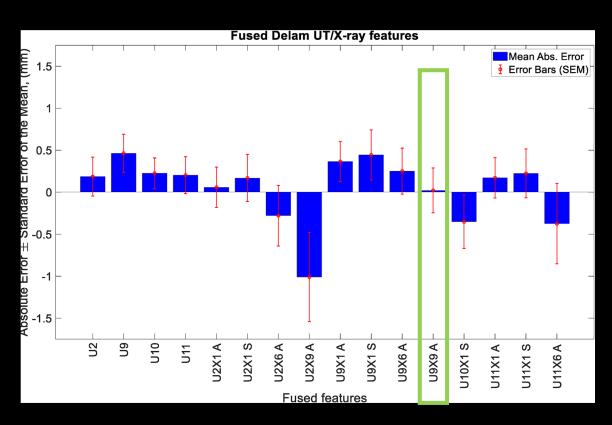
- Improved accuracy
- Reduced uncertainty

Data fusion steps

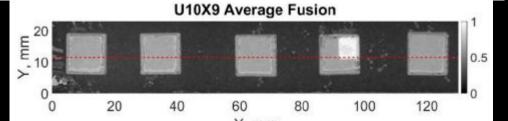


Workflow of data fusion

Data fusion



Jasiūnienė, E.; Yilmaz, B.; Smagulova, D.; Bhat, G. A.; Cicėnas, V.; Žukauskas, E.; Mažeika, L. Non-destructive evaluation of the quality of adhesive joints using ultrasound, X-ray, and feature-based data fusion // Applied sciences. Basel: MDPI. ISSN 2076-3417. 2022, vol. 12, iss. 24, art. no. 12930, p. 1-20. DOI: 10.3390/app122412930.


Data fusion

Fused Brass UT/X-ray features Mean, (mm) 2.5 U10X9 A U11X1 B U11X9 B U10X1 B U10X6 A U11X1 B U11X1 U9X6 A U9X6 S U9X1 A U9X1 S Fused features

Bhat, G. A.; Smagulova, D.; Jasiūnienė, E.. Improved defect sizing in adhesive joints through feature-based data fusion // Journal of nondestructive evaluation. New York: Springer. ISSN 0195-9298. eISSN 1573-4862. 2025, vol. 44, iss. 1, art. no. 14, p. 1-16. DOI: 10.1007/s10921-024-01146-w

Conclusions

- Adhesive-bonded joints are highly advantageous for various aerospace applications;
- □ Reliable NDT techniques are required for the inspection of adhesive joints;
- Feature extraction enables to get more reliable results;
- Data fusion has the potential to improve the evaluation of adhesive bonds;

Acknowledgment

ktu

This research has received funding from the

Research Council of Lithuania (LMTLT), agreement No S-MIP-22-5 project MINDFULL

European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant No. 722134

Thank you for your attention

Do you have questions? Would you like to collaborate?

elena.jasiuniene@ktu.lt