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INTRODUCTION

The simulation of wave propagation in elastic or acoustic media is
important in various engineering applications, such as the structural response to
dynamic excitation, design and numerical validation of algorithms of ultrasonic
measurements, forecasting the extremities of pressure waves and locating the
cracks which influence the properties of propagating waves, the simulation of
seismic waves traveling through the Earth’s layers, etc.

At the first glance, the simulation of such wave propagation processes is
simple and straightforward. The propagation of small amplitude waves in elastic
or acoustic media is mathematically formulated as linear partial differential
equations of continuum mechanics, which can be numerically solved by
discretization in space and time. The numerical schemes of wave simulation are
based on finite difference method (FDM) or finite element method (FEM) which
are well known since 1960—70. Their mathematical principles remained essentially
unchanged until now. The numerical wave propagation simulation tools were
included into general-purpose FEM software ANSYS, MSC, ABACUS,
COMSOL, etc., as well as into specialized wave propagation analysis software
WAVE2000 and WAVE3000.

Though mathematically and programmatically simple, numerical wave
propagation models still have an inherent “weak spot”. They tend to distort the
shapes of propagating waves when the space step of the computational grid is too
big. The fact that such wave shape distortions may seem physically realistic is
disturbing to researchers. Very often they may imitate wave diffractions caused
by certain internal inhomogeneity of the media. The general recommendation is
that the computational grid intended for the simulation of wave propagation should
contain not less than 17-20 finite elements (FE) per wavelength. However, the
computation practitioners mostly treat this estimation as strongly non-
conservative and choose even denser meshes of ~30 FE per wavelength. An
additional disturbance is that the wave of a certain wavelength may generate
shorter wave components in the course of propagation and interaction with the
media, due to reflection, diffraction and other physical effects. Therefore, the mesh
density suitable for simulation of the initial wave may appear as too rough for the
wave components appearing in the course of simulation. As a consequence, errors
may be produced. Despite different interpretations of the above-mentioned errors
as “numerical noises”, “diffraction from mesh nodes”, etc., they always appear
due to too rough computational meshes.

A versatile method for identifying the numerical errors is convergence
analysis, where the same physical situation is simulated by using markedly
different mesh refinements. However, such approach is costly and problematic, as
wave propagation computations are often performed “at the limit” of available
computational resources.



Planar shear wave simulation in steel plate of dimensions 10x10cm at
frequency 10MHz (ultrasonic waves) can be considered as an example. The wave
propagation speed being ~3000 m/s and the wavelength 0.03mm, ~300
wavelengths along the plate must be fitted. The requirement of 20-30 elements
along the wavelength may be satisfied by ~0.1mm element size, which results in
~10000x10000 mesh dimensions for this “simple” simulation task. This means
that we have 108 equations for the acoustic wave, and twice as many for the elastic
wave.

Therefore, the most important problem arising in numerical simulations of
short wave propagation is a very high demand for computing resources in case
waves are short compared to the dimensions of the computational domain. The
development of higher order finite elements ensuring the convergence of the
solution at 2—3 times rougher grid may reduce the dimensions of the simulation
problem by 10-30 times. This work aims to create new highly convergent finite
elements for acoustic and elastic wave numerical models.

Research object

The research object is efficient numerical models for high-precision
simulations of elastic and acoustic waves, the wavelengths of which are much
smaller than the size of the computational wave propagation domain.

Research aim

The aim of the research is to create algorithms for synthesis and to
investigate the properties of higher precision order elastic and acoustic continuum
finite elements, which may lead to significant reduction of computational
resources required for accurate modeling and simulation of short propagating
waves.

Research tasks

1. To identify the sources of phase velocity numerical errors in FE models
and to analyze the known techniques for their reduction;

2. To synthesize 1D and 2D minimum phase velocity error finite elements
with a diagonal mass matrix by applying the synthesis technique of
optimally corrected modes

3. Toinvestigate the convergence of wave propagation models based on the
synthesized elements in non-homogenous and branched 1D networks;

4. To investigate the convergence of wave propagation models based on the
synthesized elements in non-homogenous acoustic and geometrically
complex elastic 2D domains;

5. To verify the created finite elements and investigate the advantages and
performance of models assembled from the elements in comparison with
the models composed of conventional finite elements.



Scientific novelty

A new algorithm based on the modal synthesis approach of optimally
corrected modes has been developed in this work. This enabled to obtain the finite
element models of significantly broader close-to-accurate modal frequency range
compared to earlier models. Although the principal approach to the element
synthesis was known before, its main drawback has been overcome in this work.
The mass matrices of the new elements are diagonal and can be directly applied in
numerical schemes of explicit dynamic analysis.

Practical relevance

Compared to the previously known elements obtained by mode synthesis,
the elements created in this work can be directly applied in the explicit dynamics
analysis software. The calculations of real objects have been performed by
investigating ultrasonic measurement schemes based on the principles of wave
propagation.

Approbation of the research results

The main results of the dissertation are represented in six scientific
publications: two in the periodical scientific journals (ISI Web of Science) and
four in international conference proceedings.

1. FINITE ELEMENT MODELS FOR SHORT WAVE SIMULATION

Two different concepts of dispersion appear by simulating a wave with
finite element models (FEM) — mechanical and numerical (Moser, Jacobs, & Qu,
1999). Mechanical dispersion is caused by natural processes, while separate
components of a traveling wave move at different velocities, thus the shape of the
pulse changes in time. The damping in the model of short wave simulation is
usually neglected, therefore mechanical dispersion is non-present in the model.
(Ihlenburg & Babuska, 1995). However, the simulation of waves in finite element
models always cause numerical errors which impact the traveling pulse similarly
to mechanical dispersion. Usually, these errors are called numerical dispersion

(Fig. 1).



Model discretization causes the During simulation the traveling pulse

First5 modes of straight waveguide node to have different velocities accumulates numerical errors causing the
(resonant shapes)

Jor each mode distortion of the shape of the pulse
(numerical dispersion)

Excited pulse in straight
waveguide

—act pulss shape

Any excited pulse is expressed as a
superposition of resonant modes

Fig. 1 The representation of numerical dispersion in FE model

Oscillation at any location of the structure of FEM is expressed as a
superposition of the model modes. Numerical errors of modes cause different
velocity of observed point in a traveling pulse of separate modes, and, depending
on the errors of modes, the shape of simulated pulse is slightly distorted in each
simulation iteration. In the time-domain simulation, this error tends to accumulate
and the distortion of the simulated pulse increases. Usually, these errors are
eliminated by using a very dense mesh for FE model, but for short wave simulation
this solution causes a huge demand of computational resources.

Typically, in order to reduce the computational resources necessary for
wave simulation a thinner mesh model is used; it employs a wider range of close
to exact mode frequency of the model obtained by manipulating the FE integration
points, using higher order form functions, or the simulation is performed using
modified integration schemes. Recently, a number of studies were carried out in
this field. It is shown (Yue & Guddati, 2005) that the reduction of numerical
dispersion is possible due to the use of the Gauss or Gauss-Labatt integration
points for the construction of FE. Better properties of convergence in the model
are obtained using generalized mass matrices and non-uniform distances between
integration points in FEM, while the Labatt or Chebyshev abscises can be used for
optimal solution (Mirbagheri, Nahvi, Parvizian, & Dduster, 2015). The
minimization of bandwidth of the matrices in 1D higher order element is possible
using a template, when several different types of minimization parameters, such
as weighting coefficient of different form function or element inner nodes
locations, are combined (Khajavi, 2014). When assembling 2D FE models of
triangle elements, better convergence is obtained by shifting the element form
function integration points from conventional position (Li, He, Zhang, Liu, & Li,
2016). The filtration of numerical errors is possible in additional numerical
integration step where numerical dispersion is assessed (Noh & Bathe, 2013).
Several studies are based on lumped mass redistribution in the diagonal of higher
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order element mass matrix (He, Li, Liu, Li, & Cheng, 2016; Zuo, Li, Zhai, & Xie,
2014).

Another way to reduce the necessary computational resources for wave
simulation can be achieved using the mode synthesis technique, where mode
synthesis allows a complex structure to be represented with less degree of
freedom, d.o.f. (Jie, Xin, & Gangtie, 2015). In most cases, the model is obtained
directly from the equations describing the entire model. An attempt to assemble
the whole model containing different areas obtained using the mode synthesis
technique, leads to poor results. The algorithm presented in Barauskas &
Barauskiene, 2004 was proposed to achieve the higher order one-dimensional
synthesized 1D finite element by modifying element modes in such way that the
number of nodes per unit of wavelength is significantly smaller in comparison to
to models of synthesized and conventional elements. Further research in this field
is carried out to obtain a synthesized element with similar convergence properties
and diagonal mass matrix.

2. THE SYNTHESIS OF THE FINITE ELEMENT

The finite element model of wave propagation in elastic bodies can be
presented in the form of general structural dynamic equation system:

[M]{U} + [C]{U} + [K]{U} = {F(D}; ()

where [M], [C] and [K] are mass, damping and stiffness matrices,
respectively, {U}is the nodal displacement vector and {F(t)} is the excitation
force vector.

In the case of small damping, the influence of the damping matrix on the
eigenvalues and eigenvectors of the model is also small, therefore we assume that
[C] = [0] while the element matrices are calculated. Alternatively, small damping
can be presented in a proportional form [C] = a[M] + B[K], where a,B are
coefficients.

Modal frequencies (MF) and modal shapes (MS) of the structure are
obtained by solving the eigenvalue problem as:

(K] - w?[MD{y} = {0} @

where w — modal frequency, {y} — modal shape.

Real symmetric structural matrices [M] and [K] ensure the solutions of (2)
as n structural modes w;, {y;},i =1,..,n. The fundamental properties of
structural modes provide that matrices [M] and [K] can be expressed in terms of
normalized MS and MF as

M] = ([YI) ' [Y]? (CRY
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[K] = ([YI") ™' [diag(w,?, 0,7, .., 0, )][Y] 3.1

where [Y] = [{y1}, {¥2}, ..., {¥.}, ] is the matrix of MS.

This means that the matrices of an element or a structure can be generated
by directly referring to the known or desired values of MF and MS. In this case,
we knew the first exact MF and MS of the investigated domain, the NDE of the
structural model created as (3.1) equals zero for all wave frequencies within the
range of the employed MF. However, in most cases it is hardly possible to
calculate the necessary number of modes of the whole domain, thus such an
approach is of poor practical value. The approach regains practical value in cases
when the matrices of the computational domain are assembled of matrices of
subdomains which are synthesized by using the appropriate MF and MS. Such
subdomains are referred to as synthesized finite elements (SE).

-nurnber of node s of synthesized elerment
- number of synthesized elements in sample domain

s =

Process of synthesis

Initial approxim ation

Dense mesh FE model of same dimension as Updating matric []
synthesized element is assembled from

conventional elements

Carrecting the
upclated matrix

Eigenwalue problem is solved for dense me sh FE
model and the construction modes of the model
are obtained

sample domain is no
‘ assembled from
synthesized elements

Initial approximation element is obtained from
first N modes of dense mesh model

Getting mode
frequencies of sample
omain

Obtaining cl mode fr ies of
sample domain

Optimization is
Getting errors of finished
mode frequencies of

sample domain

Determining the range of first mode
frequencies, wherethe errors are
minimised

L]

sample domain modelwith dense mesh of
cotwentional elementsis assembled

[ Correction coefficient matrix (3],

where all values Of [3"] is equal 1

Synthesized element

Eigenvalue probler is solved for dense mesh

model providing close-to-exact first mode s of

the model, which are used asa reference inthe
process of synthesis

S —

Fig. 2 An outline of the SE generation procedure

The outline of the synthesis procedure of one-dimensional elements is
presented in Fig. 2. The computational domain is divided into geometrically
simple component substructures (CS) of 7 d.o.f. each. The external geometrical
shape of the CS is the same as of the SE we are going to create. However, the
number of d.o.f. of the SE must be much smaller, n «< 7. The high mesh
refinement of the CS is necessary for ensuring the high accuracy of its first n
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modes in case the CS is treated as a stand-alone structure. The matrices of SE are
computed by means of relation (3.1), where the first n close-to-exact modes
obtained from the highly refined CS model are used. As (3.1) is applied, the MS
available in highly refined mesh of the CS are mapped upon much a rougher mesh
of the SE in a proper manner. It is worth to mention that for simple geometries of
CS the necessary number of its exact modes sometimes can be obtained
analytically.

The SE obtained in this way is referred to as the initial approximation
element (IAE). By using IAEs, a model of any required geometry could be
assembled. Unfortunately, the errors of models assembled of close-to-exact IAEs
are significant. Therefore, we enter the optimization loop, where the MS used for
the synthesis of SE are treated as optimization parameters. The MS are slightly
modified during each optimization loop in order to ensure that a certain reference
structure, or sample domain (SD) assembled of a certain number of SEs provides
as many as possible close-to-exact modes. At first sight, we could suspect that the
result is dependent on the selected size and shape of the SD, which we may select
freely. For obtaining the proper modification of the modal shapes, the optimization
problem is solved, where 91-noded SD assembled of 10 such SEs is used as a
reference structure. It is essential to know the close-to-exact modal shapes of the
SD; however, this can be calculated once by using a very dense mesh or sometimes
can be obtained analytically. Anyway, the number of d.o.f. N of the SD may be
selected much smaller than the number of d.o.f. of the real computational domain
of practical value.

The optimization loop in Fig. 2 is used to minimize the target function
which presents the cumulative error of modal frequencies of the SD as:

- B; — Wip) 2
min¥ = (1—10) 4)
aY] _ Wio
i=1
where w; are the MFs of the SD assembled of SE, w;, are close-to-exact
MFs of the SD, and [a¥] is the matrix of MS correction coefficients treated as
optimization variables. The summation of errors is performed over N < N modal
frequencies of the SD.
The correction of MS is performed:

[{Fr1s s Finds oos Tty s P10 3] = {11 * ai’lr s Vin * afn}r s a * aZ1| vy Vm * ag{n} (5)

where each j-th term of i-th MS is multiplied by the corresponding value
taken from matrix [a¥]. The corrections of all MSs are performed with the
exception of the rigid-body modal shapes, which correspond to zero modal
frequencies.
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The target function (4) is minimized by using the gradient descent method.

The gradient W is expressed as:

N —~ ~
— Wi = Wio o~ 2
SY = 21 55, 5%; (6)
where
(K] a[M]
~T _ ,\.2_ =
P =0 J( o aa){y,} 7)

As we do not change the mass matrix in order to preserve its diagonal form,
% = 0 is assumed. From equations (6) and (7), the gradrent |s expressed as:

N N .
g B — B; Jd|K
7= Z%{W ( a[a ]> o (®)

1

where [K] is assembled in each optimization step of the SE matrices
obtained at the previous optimization step.
oIR]

Derivative is expressed as:
11
a[K
M (@57 ([ 0.3,0, - N RIF )
ij

9
+ @ [¥]"[R][O, ...0,5,0,....0]) (f”}[¥]) "

where [?] is mode shape of the sample model assembled of SE, y;; — j-th
value of i-th mode shape.

2.1 Numerical investigation with application to 1D waveguides

As a numerical example, the analysis of WP in a 1D waveguide is
performed. A reference model is assembled of the first order 1D finite elements
as:

[M°] =

PAL 1 0] (10.1)

2 o1

12



[K¢] = EL—A [_11 _11] (10.1)

where 4, L — length and cross-sectional area of the element, E, p — stiffness
modulus and mass density. In 1D case, the exact MF and MS of any straight 1D
waveguide can be obtained analytically as:

wip =n(i —1/IJE/p (11.1)
L (2xpix(i—-1)
Yioj = SIn (W> (11.1)

where i is the mode number, j — number of the component of the i-th MS
vector, [ — length of the waveguide. The dimensionless results are obtained by
assuming 4, E, p = 1. The exact value of the speed of wave is ¢ = \/E/p = 1.

In this numerical experiment IAE is obtained by substituting (11.1) with
(3.1), while the MS are mapped on the nodes of the 10-noded SE. Their mass
matrix is not changed; it remains diagonal as in the structure of conventional
elements, while the corresponding correction of the stiffness matrix is performed
as:

[K] = [M][Y][diag(w;, &, ..., o) ][Y]T[M] (12)

The diagonalization of the mass matrix does not significantly change the
MF of the SD, and this work further uses only the diagonal form. However, the
obtained IAE introduces much bigger MF errors than would be acceptable.

The stiffness matrix of SE is obtained by minimizing the target function
(4). the post-minimization MF errors of the SD are presented in Fig. 3, where the

error of each MF is presented as computed by % The presented results
i0

correspond to different numbers N of MF, the cumulative error of which has been

minimized: a) N = 91 (100%), b) N = 63 (~70%), c) N = 54 (~60%). The

text henceforth refers to the obtained SE as SE100, SE70, SE60.

—sem - sen - sem
-

TSNS A | S S A

Mode Frequency Error
Mode Frequency Error

Target Function 5 498188003 Target Function 7.041300-04 Target Function:1.0415230.05

Nodes : Nodes : Nodes
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Fig. 3 Modal frequency errors of the sample domain assembled of 10 synthesized
elements at different modal frequencies contributing to the cumulative error: a) 100%
(SE100); b) 70% (SE70); c) 60% (SE60);

If the cumulative error minimization is performed over all MFs, N = N, the
result is rather poor, Fig. 3a. However, by selecting smaller values of N, we may
achieve very small values of the cumulative error in this modal range. Perhaps the
best result was obtained as N comprised 60% of lower MF, where the final target

~ Ao \2
function value read as ¥\, (%) ~ 1075, The modal errors of the higher 40%
io

modes seem rather significant, however it is essentially better than could be
achieved by using the CFE at the same number of d.o.f., see the red curve of the
MF errors in Fig. 3c.

A very important property of the investigated models is that the percentage
of close-to-exact modes SE does not depend on the overall d.o.f. number of the
investigated domain. The frequency value of the higher limit of the close-to-exact
MFs range is approximately the same for the stand-alone SE, as well as for the
large computational domain assembled of such SE. Therefore, the highest close-
to-exact modal frequency value of the SE defines the width of wave spectrum
which could be simulated with very small phase velocity errors in waveguide
models. Fig. 4 presents the MF errors of the models of different sizes assembled
by using different numbers of nodes asa) N = 10; b) N = 361; ¢) N = 721. This
means that the obtained SE can be used for waveguide structures of different sizes
and can be treated as dynamic fast convergence super-element with a diagonal
mass matrix.

77777

Mode Frequency E
v

Mode Frequency E:

Mode Frequency Error

Nodes Nodes : Nodes

a) b) c)

Fig. 4 The MF errors of models assembled of SE (red) and CFE (black), at different
numbers of nodes in the waveguide model: a) N=10; b) N=361; c) N=721,

The synthesis process does not depend on mechanical constants and the
obtained element can be used as a template for higher-order synthesized elements,
where

[K55] = K] 13)
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Here [K3E°] is the stiffness matrix of the synthesized element, [K$5] — the
synthesized element with real mechanical properties. The mass matrix of the
synthesized element is diagonal and identical to the one in the model of
conventional elements.

2.2 The procedure of synthesis and numerical investigation with application
to 2D models

Generally, synthesis does not depend on the dimensions of the FE model
and can be applied to 2D or 3D elements as well as 1D elements. Unfortunately,
in higher dimensions, the synthesis procedure becomes very computationally
expensive. For example, by comparing 1D and 2D acoustic elements with the same
nodes in one direction, the number of optimization parameters in matrix [a¥]
increases quadratically. Moreover, it is necessary to obtain the gradients for
parameters aivj in each optimization step. Thus matrix [K] must be assembled and

its dimension increases quadratically as well. Therefore, the number of nodes in
synthesized elements of higher dimensions cannot be large. Fig. 5 demonstrates

the outline of 2D synthesis procedure.

M- nurber of node s of synthesized element
n - number of syrthesized elements in sample domain

Initial appiuximatiun

Process of synthesis

Updating matrix [ay] and vecter {aw}

Correcting the updated
Finite element model is constructed of matrix
conventional elementsin the size of the

synthesized element
Assembling the
sample domain fram
the syrthesized
elements

Getting mode

Obtaining close-to-exact mode frequencies of
sample domain

frequencies of sample
domain

Optimization is
Corre ction coeffice it matrix (=] finished
and vector {aw), where all values

of [3y] and {aw} equal 1

Getting errors of
made frequencies of
sample domain

B

v

Synthesized element

Fig. 5 An outline of the 2D SE generation procedure

In the case of 2D elements, the element is initially constructed of
conventional elements. Contrary to 1D, the mode frequencies of |AE are not exact,
the correction vector is added to the target function, and, finally, the target function
reads as
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N
=3 (05 w9
[a¥],(a®) _ Wio

The calculation of gradient for [a¥] remains the same as in the case of 1D,
while the correction vector {a®} gradients of mode frequencies are expressed
analogically as in (6) and (7), where

0 N Al_’\' K

= St (Lo Q
Here
d[K -t )
a[KL] (@)'[¥]")  (diaglo, .. 0,00, ...0D)({a}[¥]) " (16)

The element matrix of conventional 2D acoustic elements reads as

me] = 27 (17.1)

(K] =p[,,([BDT[D] [B]dV = E * S¢[B]"[B] (17.2)

where S€ — area of element, [I] and [B] — unit and geometry matrices, [D]
— stress matrix, which is diagonal in the acoustic case, where diagonal elements
are equal to the Young modulus of the material.

Additional difference in the 2D case is the existence of symmetric modes
with same mode frequency, where their correction coefficients can be calculated
for one of them, while the other mode is obtained with:

U2} = [T]{ysl} (181)
Bz = By (18.2)

where s1, s2 — numbers of symmetric modes, [T] rotation of 90° matrix.

Square elements with 5x5 nodes are used for the construction of 2D
synthesized finite element. The process of synthesis should minimize the errors of
the first 25% of mode frequencies of the sample domain assembled of 25
elements.. The results of synthesis are provided in Fig. 6a.
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Mode Frequency Error

Minimized errors of first 6.2% mode frequency errors

Targel function:1.7802856-05
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Fig. 6 . Mode frequency errors of a) the acoustic model b) the elastic model

AL N2
The value of target function after synthesis is YN, (%) o
io
1.26 * 107> (Fig. 6a) which is close to the results obtained of 1D elements.
Additionally, the stiffness matrix of the synthesized element can be used as a
template for the construction of synthesized elements with different mechanical

properties:
[K35] = E * [K35° (19)

The mass matrix of models assembled of the synthesized elements remains
diagonal and identical to the one in the model of a conventional element.

the main difference created by the process of elastic wave synthesis is that
the stress matrix reads as:

E 1-v v 0
Plradrosa-m| 5 0" aozew >

where v is Poisson’s ratio. Similarly to cases of 1D and 2D acoustic FE
models, the close-to-exact mode frequencies in the elastic FE model can be
obtained by solving the eigenvalue problem for the same structure but with a much
finer FE mesh. While the modes of 1D and 2D acoustic FE models do not depend
on mechanical properties, the mode frequencies and mode shapes in 2D elastic
elements depend on Poisons ratio. It means that the synthesized elastic elements
cannot be reused as a template for the materials with different Poison’s ratio, and
the synthesis for each material should be performed separately. Moreover, there
are 2 d.o.f. in each node in the elastic model and the matrices used in the process
of synthesis are 2 times bigger when compared with acoustic 2D models. Hence,
4x4 nodes square element has been selected for the construction of a 2D elastic
synthesized finite element. During synthesis, the errors of the first 6.2% mode
frequencies of the sample domain assembled of 25 elements are minimized. The
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results of synthesis are shown in Fig. 6b (aluminum — Poison's ratio v = 0,3435).
After synthesis, the target function value is close to 1.8 * 10~° and is of the same
order as in 1D or 2D acoustic cases.

3. CONVERGENCE INVESTIGATION OF MODELS ASSMEBLED OF
SYNTHESIZED ELEMENTS

3.1 Numerical investigation with application to wave simulation in 1D
waveguide

It is considered that the wave pulse is excited at the left-hand end of the 1D
waveguide structure and propagates along it. Theoretically, the pulse should move
along the structure at the speed of sound, without changing its form. In order to
evaluate the extent of deterioration of the pulse shape due to numerical dispersion
errors the following simulation quality indicators are used: wave amplitude a,, at
the peak of wave; maximum value of numerical noise (NN) a,, and the width q,

of the pulse at its height g * a,, (Fig. 7). In the case of exact solution, we have
a,=0,a, =1.

ss displacement

Dimensionless propagation distance

Fig. 7. A graphical interpretation of simulation quality indicators a,,, a; and a,,

Assume that the straight 1D structure is assembled of 20 SE, where the
length of each element [, = 0.1, total length of the structure [ = 2, total number

of nodes N = 181, the distance between adjacent nodes L = 1::1 ~ 0,011. The

dimensionless wave speed is c= 1. The simulation is performed during time
period T = 7 (s) , while the distance travelled by the pulse is S = 7. The obtained
results are compared against the results obtained in the CFE model of the same
dimensionality and against the results obtained in a very dense (90 nodes per
wavelength) CFE mesh. The latter has been regarded as the close-to-exact
solution. The wave simulation is performed by actuating the displacement at the
left-hand end of the waveguide as:

1T

u(t) = (1= cos(—mt)) ¥ deltal,  t < deltaT (21)

0, t = deltaT
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where deltaT is the actuation time, deltaU is the wave amplitude. The
dimensionless results are obtained by assuming deltalU = 1. A comparison of the
results at different space-steps of the model is presented in Fig. 8, where the
propagation distance is expressed in t»erms of the length of the wave pulse.

ct 2,0.025; a =-0.060; a_=1.000
——t 4,%0.024; 8,2-0.043; a_=0.966
——cr an 8,=-0.303; a_=0.389

-
3
1
E
8
8
2

Dimensionless displacement

Dimensionless

Vv

Di;\;nsianleu prt;pagalion dlsl;;ce ’ ' D.rnn:nslonless prc;pagmion uis«;:ce
a) b)
Fig. 8. Simulation results after 7 s: a) deltaT = 0.4, 36 nodes per wavelength, pulse

propagated 17.5 wavelengths; d) deltaT = 0. 07, =6 nodes per wavelength, pulse
propagated 100 wavelengths;

In all cases, the accuracy of the model assembled of SE is the best with less
than 10% of errors compared against the models of conventional elements. Even
6 nodes per pulse-length in the model assembled of SE produce reasonable
simulation results which are impossible to achieve by using conventional elements
at the same mesh density, Fig. 8b. Attention should be drawn to the small
distortion of the pulse shape at the peak of the pulse as SE with a dense mesh (36
nodes per wavelength) were used, Fig. 8a. Apparently, it is a consequence of the
lower MS correction, which is performed as the element is synthesized. This
imperfection exhibits itself at the moment of excitation of the pulse as the mesh is
dense. However, the distortion disappears when a combined model assembled of
conventional FE and SE is employed (Fig. 9). The explanation is as follows. Both
conventional FE and SE meshes ensure the close-to-exact MF values, therefore
the propagation speed of all harmonic components of the pulse is represented
correctly. The representation of the pulse shape depends on MS which are a little
distorted in SE. As the pulse comes back to the segment presented by CFE, the
distortion of the pulse shape disappears. Practically, this distortion is very small
because the corrections of the lower MS of the SE are small.
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Fig. 9. Wave propagation in the combined model assembled of SE60 and STE

The wave-pulse propagation in a branchy non-homogenous model
assembled of SE has been investigated in a sample model with 3 waveguide
segments of different properties. The diameters of circular cross-sectionsare D; =
0.1, D, = 0.08 and D; = 0.05, mass densities p; = 0.8, p, = 1.2, p; = 1, bulk
moduli and lengths are K; ,3 =1 and L; , 3 = 1. Depending on mass densities,
the speeds of the wave are C; = 1.12, C, = 0.91, C; = 1. The geometry of the
investigated domain is presented in Fig. 10a.

1,2,3 wavegnide segments of thin mesh NE‘

Branched structure

Y —=— CFE (30 nodes per wavelength)|
18 —o— SE (9 nodes per wavelength)

10 [Woveguide Type1 | [ Woveguide Tvpe 2 | [ Waveguide Type |

[Bressure impuis|

4 a \
2
Dimensionless displacement

Short STE before non-reflecting
Boundary condition

05 1 15 2 25 B
Dimensionless propagation distance

a) b)
Fig. 10 a) The geometry of a branched non-homogenous structure b) Simulation
results after 2.55 (s)

Simulation starts by actuating the wave pulse as (13) at the left-hand end
of segment 1, where deltaT = 0.1 (s), deltaU = 1 (Fig. 10a, stage 1). After
~1 (s), the wave-pulse reaches branching, is partially reflected back and partially
continues through segments 2 and 3 (Fig. 10a, stage 2). After ~2 s, the pulse is
reflected from the end of segment 2 and comes back, while the non-reflecting
boundary condition is implemented at the end of segment 3 (Fig. 10a, stage 3) as:

Kéu du
T 22
’p6x+& 0 (22)
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Two models were created for the analysis of wave-pulse propagation in a
branchy non-homogenous structure. The model assembled of SE contained ~9
elements per pulse-length, and the model assembled of CFE contained ~90 nodes
per pulse-length (close-to-exact solution). The exact number of nodes per pulse-
length depends on the mechanical properties of a particular segment. The non-
reflecting boundary condition cannot be implemented in SE directly; therefore, a
short CFE was joined at the end of segment 3 where the non-reflecting boundary
condition can be adequately implemented. Simulation results after 2.55 s at the
end of stage 3 in Fig. 10a are presented in Fig. 10b. It can be concluded that only
negligible discrepancies could be observed compared with the reference model,
though the SE60-based model was employed in a quite general and combined
situation. The discrepancy between the two models could be estimated as 0.04
relative level numerical noise, which was observed in the SE60-based model.

Error of estimation e, is used In order to investigate the influence of the
number of nodes per pulse length on the accuracy of wave simulation results,
where the models are assembled of SE or of CFE,. Assume the wave pulse (21) is
actuated in the waveguide of length = 2, where the actuation time is deltaT =
0.1 (s) and the dimensionless wave propagation speed is € =1 (m/s). The width
of the Fourier spectrum defines the frequency range in which the modal
frequencies of the model should be close-to-exact in order to provide accurate
simulation results. This enables to approximately predict the magnitude of the
propagating wave-pulse simulation error in terms of modal frequency errors of the
finite element structure.

In the case of 1D straight beam, the modal frequencies coincide with the
frequencies of the harmonic components of the Fourier spectrum. The error of
representation of the propagating wave pulse can be evaluated as:

S50

where f; is the amplitude of the component of i-th frequency of the Fourier
spectrum, (‘—“’) — relative error of i-th modal frequency of the structure. The
Wio

magnitude of e, allows to evaluate the amount of distortion of the wave pulse
shape. The evaluation is approximate since during the simulation the wave pulse
spectrum slightly changes due to the generated numerical noises.

Assume that if e, is equal for two different models, their abilities to
correctly represent the shape of the propagating wave pulse are the same. Rrrors
e, of models assembled of SE and of CFE are compared in Fig. 11a , while
different number of nodes of the models is used: 100 < N < 1100.
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Fig. 11 A comparison of the e, values of the SE60 and CFE models assembled against

their number of nodes (a) and a comparison of the shapes of the simulated wave pulse

in the SE60 and CFE models at node numbers Ngggo = 127 and Ncpg = 600 (equal
values of e, in both models) (b)

Fig. 11a demonstrates that e, value of the CFE model is same as e, value
of the SE model with more than 4.5 times rougher mesh. The performance of the
SE model in wave pulse simulation is demonstrated in Fig. 11b, where very
similar results were obtained by using the CFE model containing Ngps = 600
nodes and by using ~4.7 times rougher SE model containing only Nggeo = 127
nodes. The obtained indicator a;, a,, and a,,, values of simulation quality differ by
less than 1% between the two models. However, the number of non-zero positions
in the matrices of the SE model is larger, as the bandwidth of SE model matrices
is equal to the number of nodes of a single SE, while the bandwidth of matrices
assembled of CFE is always 3 and there are not enough to compare models by
using only mesh roughness criteria. The actual evaluation of the computational
resource used for wave simulations includes the amount of memory and the
number of operations, which should by performed during each numerical
integration step by employing the central difference numerical integration scheme.
Considering that the SE60 matrices are assumed to be known in advance, in order
to investigate the usage of computational resources, numerical experiment of
ultrasonic longitudinal wave propagation in 1D aluminum waveguide is
performed, where computational times are compared for models assembled of CE
and SE60 with 4.7 rougher mesh (30 nodes per wavelength in model of CE and
6.36 in model of SE, respectively). Simulation is performed while pulse
propagates the whole waveguide, thus total time of simulation increases by
increasing the length of the waveguide. The experiment is performed using Matlab
R2015a with sparse mass and stiffness matrices on a machine with Intel Core i7-
4790 CPU @ 3.60 Hz processor, 32GB RAM and 64-bit Windows Operating
System. Physical constants of the FE model waveguide of equation (10) are E =
71.788 MPa, p = 2780 kg/m3, wave speed 5081 m/s, pulse actuation time
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40 ps and the integration step is 0.4 ps. Results which show the influence of total
number of simulation steps and computational time on the length of the waveguide
are presented in Table 2.

Table 1 A comparison of computational times using FE models assembled of CE and SE60

Length Simulation | Total Model of CE Model of SE60 Improvem
(m) time (ms) steps ent (%)
Nodes | Computat | Nodes | Compu
ional tational
time (s) time
(©)

10 197 4,920 1,476 0.158 316 0.083 47
20 3.94 9,839 2,952 0.551 622 0.305 45
50 9.84 24,598 7,380 3.366 1,567 1.571 53
100 19.68 49,197 | 14,759 13.607 3,124 6.907 49
200 39.58 98,394 | 29,518 56.966 6,256 23.982 58

Results in Table 1 show that the improvement of computational time
obtained by performing the simulation is larger when compared with the results
obtained by calculating arithmetical operations. An additional advantage of the SE
models is a larger value of the limit time step ensuring the stability of the numerical
integration scheme.

3.2 Numerical investigation with application to 2D acoustic wave propagation

A rectangle of 500x200 m with non-dimensional mechanical properties
E=1 and p=1 and wave speed of C =1m/s is used to perform the
investigation of wave propagation in 2D acoustic models assembled of synthesized
and conventional elements (Fig. 12).

200

AdbAd Adhdd

Excitation zone

500

Fig. 12 The geometry of the 2D model

Impulse (21) is excited for 100 s. Two equal density mesh (L=10) models
are assembled of CFE and SE, and one close-to-exact (5 times denser mesh,
L=0.2) model of CFE is assembled. Simulation results with different pulse
excitation times in the models are provided in Fig. 13.
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Fig. 13 A comparison of simulation results after 100 s a) deltaT = 20, 20 nodes per
wavelength; b) deltaT = 10, 10 nodes per wavelength

Fig. 13 demonstrates the values of the quality indicators a,, a; and a,,, of
the simulated pulse in 2D acoustic model at data collection line, while different
nodes per wavelength are used. The results show that all indicators are close—to-
exact in the model of SE with 10 nodes per wavelength, while in model of CFE,
similar results are obtained with 20 nodes per wavelength. To obtain a more
accurate comparison based on mesh density in different models, 2D Fourier
transformation is performed for the simulation results obtained at the time at data
collection (B-scan image) by converting the results from displacement—time space
to the phase velocity—frequency space. The obtained dispersion curves are shown
in Fig. 14.

Model of STE Model of STE-SE

15 15
| | |

/ Theoretical phase velocity = 1 / Theoretical phase velocity = 1

Wave Speed(m/s)

Wave Speed(m/s)

% 05 1 15 2 % 05 1 15 2
Frequency (Hz) Frequency (Hz)

a) b)
Fig. 14 Dispersion curves of the 2D model obtained from the simulation results
Theoretical wave speed in the mode is 1 m/s. Dispersion curves show that

in CFE models, close to theoretical phase velocity is achieved until ~0,65Hz, while
in SE models - until ~1,6Hz. This means that the mesh of the SE model can be
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~2.5 times coarser when compared with the CFE model. Fig. 15 demonstrates the
simulation results at data collection line in the twice larger construction
(1000x400) as a B-scan image, while pulse is simulated in the SE and CFE models
with identical mesh (Fig. 15a,b) and with 2.5 times denser mesh in the CFE model
(Fig. 15c¢). The simulation lasted 360 s.

LT p———— I [ —— R on——
i / / § /

a) b) c)

Fig. 15 B-Scan images of simulated pulse in a and b) SE and CFE models with same
density; c) CFE models with 2.5 times denser mesh

Simulation results show some similarities in models of SE and CFE with
2.5 denser mesh. On the other hand, in the CFE model with the same mesh density
as in SE model noises cause numerical dispersion to mingle with the pulse
reflection from the model walls.

To compare the SE and CFE models in the computational resource manner,
SE and CFE with 2.5 denser mesh models are compared. Monitoring indicators
are the degrees of freedom in models, memory necessary in simulation for keeping
the vectors {U}, {U}, {U} and sparse symmetric matrices [K], [M], and the
computational time. The comparison is performed by constructing quadratic shape
models and simulating the pulse passing through the model and gradually
increasing the model edge length (Fig. 16a). Wave speed in the model is 1m/s, and
the integration step 0.01s. The results of indicators provided in Fig. 16.

T [r——— Camparinan of mamary wnsage Cormparcn of cemutmnral o

5

3) b) o) d)

Fig. 16 A comparison of FE models assembled of SE and SFE a) graphical comparison
interpretation b) comparison of d.o.f; ¢) comparison of memory; d) comparison of
computational time
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The results of comparison in Fig. 16 show that the model assembled of SE
is better on all compared indicators. The d.o.f number can be ~6 time lesser in the
model made of CFE compared with the SE model, while memory computational
time required for pulse simulation is ~2.3 times lesser.

3.3 Numerical investigation with application to 2D elastic wave propagation

The verification of 2D elastic synthesized elements is performed by
simulating a pulse in a 0.384 x 0.64 m rectangle (Fig. 17) using aluminum
(mechanical properties E = 70GPa and p = 2700 kg/m?).

Excitation of longitudinal and shear waves

Fig. 17. The geometry of elastic FE model

Simulation of the pulse is performed by exciting the pulse for dT = 4us
and performing the simulation for T = 50us, while the amplitude of the pulse is
dU = 1 x 10711, After the simulation, reflections from the geometry wall do not
arrive to the data collection line, and the impulse form should be the same as
excited pulse. Simulation results in models of different SE and SFE meshes are
provided in Fig. 18, where the length of the square element edge is 2, 1 and 0.5
mm. Respectively, the number of degrees of freedom in such models is about
127,000; 492,000 and 1,971,000.
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Fig. 18 The convergence investigation of pulse propagation in 2D elastic FE model
with different mesh a, b, ¢) models assembled of conventional elements; c, d, €)
models assembled of synthesized elements

Simulation results show that numerical errors in SE models are smaller
compared with such errors in CFE models. In order to obtain results similar to the
ones for the CFE model with element edge length of 0.5 mm, the element edge
length in the SE model can be 1 mm. It also should be noted that propagating shear
and longitudinal waves in the SE model generates small errors (~2% of impulse
amplitude) for other types of waves. These errors may be caused by the correction
of modes in the process of synthesis, and are not eliminated by using a dense mesh
(Fig. 18f). However, the locations of these errors are predictable and they can be
easily eliminated during post-processing. The dispersion curves obtained from B-
scans after 2D Fourier transformation are given in Fig. 19.
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Fig. 20 Dispersion curves of 2D elastic model obtained from the simulation results

The dispersion curves (Fig. 20) indicate that the range of close—to-exact
frequencies in SE model is the same for both longitudinal and shear waves, while
in the SFE model they differ. By taking into account that the range of mode
frequencies in a model should be close to exact for waves of both types, the SE
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model with a 2 times wider frequency range can be simulated using the same mesh
refinement as compared with the CFE model (SE ~0.4MHz; SFE ~0.2 MHz); or,
respectively, the SE model can be assembled with 2 times rougher mesh compared
with CFE. Fig. 21 demonstrates model performance indicators where the same
experiments as in 2D acoustic case are performed for 2D elastic models assembled
of SE and CFE with 2 times rougher mesh.

Fig. 21. A comparison of elastic 2D FE models assembled of SE and SFE a) a
comparison of d.o.f; ¢) a comparison of memory; d) a comparison of computational
time

The results show that usage of relatively small elastic synthesized element
(4x4 nodes; 10 nodes element was created for 1D case) allows to decrease memory
usage by ~1.5 times and computational time by ~3 times for wave simulation.

4. NUMERICAL EXPERIMENTS

4.1 Fluid transient analysis in one-dimensional branched non-homogenous
environment

The equations (21) cannot be directly applied for the simulation of pressure
pulse in pipelines of flowing fluid. Therefore, pressure pulse analysis equivalent
of fluid bulk modulus is used which considers fluid compressibility and the
elasticity of pipelines vessel walls:

_ KD__,
K=KQ1+ h—E) (24)

Here K — fluid bulk modulus; D — diameter of the pipeline; E — Young’s
modulus of pipeline; h — width of pipeline vessel wall. In the case of steady flow
analysis, the stiffness matrix of an element is expressed as:

e1_ | D . W\11 -1
[KT]_sz“Cl(Ap 1?) o 1] (25)
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0.3614
Here f = —

dynamic viscosity fluid, p — density fluid). In order to find steady flow results, the
debit values are renewed in each Newton-Raphson iteration; W,S") = wi("_l)(here
n is the number of iteration). After Newton-Raphson iterations, the transient
simulation should also be performed without additional stimulus. Damping will
cause the model to reach a steady state when debits and pressures are consistent.
Such a steady state can be used as an initial condition for transient simulation with
a stimulus described by:

— friction, where RE = %Ivl is Reynold’s number (u-

[M]{pe} + [ce(Pe, Pe)|{Pe} + [Ke(PO)I{P}+{Q°} =0 (26.1)
V=G (26.2)

Here{P¢} is the pressure vector, {Q°} — external force vector. Other
matrices and vectors from (26) can be found with:

AL
[M®] :Lf?hz (|1) (1) (27.1)

[ce] = 2D : (1) (1)] (27.2)

[Ke]*= - [_11 ‘11] (27.3)

{Q°} = AK (pf - fvze—g]el — gsin a) {_11} (27.4)
G¢ = %?1 ; P2 - Pzp;Lm - gve |277e| — g sina? (27.5)

here v — the velocity of fluid flow, a — the angle the pipeline makes with a
horizontal line, g — the free-fall acceleration. The first equation of system (26) is
transformed into the equation describing the whole system, while the second one
is solved for each element separately. The non-reflection condition of the wave
can be expressed as:

Kop  op _ 28)
poéx 6t

Equation (28) fully meets equation (23) which was investigated while
convergence analysis was performed in the models of synthesized and
conventional elements in branched non-homogenous structure. The main
difference of the previous investigation is that here damping appears, which
depends on the mechanical properties of the pipeline and fluid as well as the flow
speed in the model. To create the SE for fluid transient analysis in one-dimensional
29



branched non-homogenous environment, SE stiffness matrix for steady flow and
dynamic analysis are expressed as:

D ez EO
1= (e~ “

(Ke] = - [K35°)

A branched non-homogenous structure is assembled of SE and CFE for
verification of the SE (Fig. 22).

Flow rate

Pressure

Fig. 22. A branched non-homogenous structure

In the numerical experiment, a sample construction assembled of segments
used in thermal pipelines is analyzed, where the mechanical properties of pipelines
are E=2.1-10, K =22 x10°% p =995, u=0.045-1073, diameters and
thickness of walls of pipelines are, respectively, D; = 0.1, D, = 0.08, D; = 0.1
and h; = 0.0035, h, = 0.003, h; = 0.0025. As an initial condition, pressure P =
4 x 10°Pa is selected for the beginning of type 1 pipe, while for type 2 and type 3
pipes, flow debits are set to w; , = 10 m?/h at the end of the pipe. The length of
each segment is Lg; = 4000m. The synthesized elements in this case have 10
nodes, thus flow velocity by (26.2) is obtained in the whole element in the SE
model, while in the CFE model it can be found between nodes. The results of
steady flow analysis are shown in Fig. 23, where the length between nodes is L =
24.7m.
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Fig. 23 Results of steady flow analysis in a branched non-homogenous structure: a)
pressures b) flow velocities

Simplification in simulation is made: it is accepted that flow velocity does
not change in time and 7, = 0. The simulation starts by actuating the (21) pulse
by dT = 0.2s of amplitude dP = 1-10°Pa in the left of type 1 pipe. A
comparison of the resulting pressure pulses after simulation in different models is
shown in Fig. 24a (there are 11 nodes per wavelength and pulse is propagated by
~23 wave lengths).
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Fig. 24 a) Pressure value of pulse in measurement point observed in time b)
Comparison of models by mesh roughness

Simulation results in Fig. 24a show that the model using CFE results in
numerical noise (the “wavy” region after the pulse) with maximal amplitude being
almost half amplitude of the original front pulse. On the other hand, similar noises
in the SE model are insignificant.

Pulse simulation in SE and CFE models using different meshes is compared
in Fig. 24b. The area formed by propagating pulse in time interval from 4 to 4.5
in measurement point is assessed by:
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T/tmin 2

e = t”;" Z (/P(i*tmin)—Pp) (30)

i=0

where, t,,,;, —numerical integration step, B, — pressure value at point after
steady flow analysis, P(i * t,,;;,) — pressure value in the point at specific time. The
results show that depending on desired accuracy, convergence of the model of SE
is much better (3.8-4.5 times), and the improvement is similar to the one which
was obtained by previous comparison (Fig. 11a), when the mode frequencies
errors and the pulse frequency spectrum was combined as an indicator to compare
the models of different elements.

4.2 Calculation of ultrasonic measurement in acoustic non-homogenous
environment

A non-homogenous 2D rectangle 0.64 x 0.24 m structure has been selected
to verify the use of synthesized elements by performing simulation of ultrasonic
measurements. Two FE models with the same mesh refinement are assembled of
squared 0.5 x 0.5 mm SE and CFE. CFE matrices are obtained from (17). For SE,
the mass matrix is obtained from (17.1), while a 5x5 nodes template was used for
the stiffness matrix, obtained in the synthesis process (19) was used. The geometry
of the model is shown in Fig. 25.
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Fig. 25 A geometry of a 2D non-homogenous FE model

Gaussian window pulse is excited in water (E = 2.15GPa, E =
999.8 kg/m?, C = 1466 m/s) for 10 us. The traveling pulse partially reflected
passes to the oil environment (E = 1.35 GPa, E = 920 kg/m?, C = 1211 m/s).

Damping in the model is neglected, and there are no reflections from walls
or inhomogeneities. Thus, the shape of the traveling pulse in time should not
change. The simulation results are provided as a B-scan image of results collected
in time in data collection line (Fig. 26).
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Fig. 26 B-Scan images of simulated pulse in models of a) CFE b) SE and CFE

combination

By comparing the results in same mesh refinement models of SE and SFE,

it is seen that, in the SE model, reflections appear only when the pulse crosses
between different materials, while in the CFE model, the distortion of pulse grows
while it travels in the same material and the reflected pulse in B-scan image is not
visible at all. Also the combination of SE and CFE in same model does not cause
any significant numerical errors (Fig. 26b).

CONCLUSIONS

Numerical errors in FE models are inevitable and caused by the size of
discretization step of the mesh of FE model and depends on the frequency
spectra of the simulated wave. Conventional FE models assembled of
consistent or lumped mass matrices generate similarly valued but
opposite sign numerical errors. Methods for reducing these errors are
basically based on the applications of higher-order FE, combined mass
matrix or synthesized elements. Unfortunately, in all these cases, the
mass matrices in FE model are non-diagonal and do not allow to exploit
the advantages of explicit integration schemes.

An algorithm was created for the construction of 1D and 2D synthesized
finite element with a diagonal mass matrix applying a mode synthesis
procedure. Mode corrections are performed to obtain the synthesized
elements, while the correction coefficients are the parameters of target
function, while the target function evaluates the errors of mode
frequencies of the sample model consisting of synthesizing elements. It
is demonstrated that a larger number of degree of freedom in the
synthesized element leads to better convergence properties.

An investigation of the convergence of the models in a one-dimensional
structure has revealed that the errors for the first ~60% mode frequencies
in the models composed of 10 nodes, the synthesized elements are not
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significant (< 107°). A branched non-homogenous structure can be
assembled from the synthesized elements, where a combination of these
elements with conventional elements allows to implement a non-
reflection boundary condition.

4. The analysis of a 2D model convergence has shown that the necessary
demand for computational resources in element synthesis can be reduced
by applying the properties of symmetric modes. As a result, 5x5 nodes
acoustic and 4x4 nodes elastic squared synthesized elements have been
constructed. The errors of first 25% (in acoustic model) and 6.2% (in
elastic model) of mode frequencies in the model consisting of synthesized
elements are insignificant. By performing a simulation in 2D elastic
models, small errors (~2% of size of simulated impulse) occur; however,
the spatial and time locations of these errors are easily predictable and
they can be eliminated in impulse analysis after simulation.

5. The synthesized elements have been verified in numerical experiments.
The fluid flow model was created for transient analysis of a one-
dimensional structure in pipelines. In the cases of 2D models, ultrasonic
measurements have been simulated. The investigation has shown that
models comprised of 10 nodes 1D, 2D acoustic (5%5 nodes) and 2D
elastic (4x4) synthesized elements allowed to use coarser meshes
(approximately for 1D ~4.7 times; 2D acoustic ~2.5 times; 2D elastic ~2
times) with the same model accuracy. The performance tests have shown
that greater bandwidth of stiffness matrix in models of synthesized
elements caused by higher order elements is not significant, and in all
cases the computer memory and computational resources necessary for
wave simulation are saved.
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REZIUME

Bangy sklidimg tampriosiose ir akustinése terpése tenka modeliuoti
sprendziant daugybe inZineriniy uzdaviniy, tarp kuriy mechaniniy konstrukcijy
reakcijos | dinaminj zadinimg apskaifiavimas, ultragarso matavimy schemy ir
rezultaty analizés algoritmy projektavimas ir testavimas, pavojingy slégio impulsy
sklidimo vamzdynuose prognozavimas ir triikkio vietos aptikimas pagal
sklindangios bangos pozymius, seisminiy bangy sklidimo Zemés gelmése ir
pavir$iuje apskaic¢iavimas ir kt.

I§ pirmo Zvilgsnio minétus bangy sklidimo procesus modeliuoti
nesudétinga. Daznai jie iSreiSkiami tiesinémis kontinuumo mechanikos lygtimis,
kurios gali buti skaitiSkai iSsprestos diskretizuojant erdvéje bei laiko intervale ir
taikant baigtiniy skirtumy metoda (BSM), baigtiniy elementy metodu (BEM)
paremtas arba kombinuotasias skaitines schemas. BEM formuluotés tampriosioms
bangoms modeliuoti Zinomos jau nuo 1960-1970 mety. Jy matematiniai principai
iSliko 1§ esmeés nepakite iki Siol. Skaitiniai bangy sklidimo algoritmai pritaikyti
tiek universaliose BEM programinés jrangos sistemose (ANSYS, MSC, ABACUS,
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COMSOL ir kt.), tiek specializuotose bangy sklidimui modeliuoti skirtose
programose (WAVE2000, WAVE3000).

Skaitiniai bangy sklidimo modeliai i§ principo yra matematiSkai ir
programiskai nesudétingi, taciau turi jiems buidinga silpnaja vieta. Tai sunkiai
atpazjstamos skaiciavimo paklaidos, kurios susidaro panaudojus bent kiek retesnj
erdvés tinklelj. Gerai Zinoma, kad objekto, kuriame modeliuojamas bangos
sklidimas, erdvés tinklelis turéty bati ne retesnis nei 17-20 BE modeliuojamos
bangos ilgyje. Skaifiuotojai praktikai 1§ patirties Zzino, kad tai labai
nekonservatyvus (nors daznai literatliroje minimas) jvertis, ir pasirenka dar
smulkesnj — mazdaug 30 BE bangos ilgyje — tinklelj. Pernelyg reto tinklelio
nulemtos paklaidos pavojingos tuo, kad jas labai sunku atpazinti analizuojant
gautus skaitinius sprendinius. Daznai paklaidy dedamosios vizualiai nesiskiria nuo
iprastiniy konstrukcijoje sklindanciy bangy. Jos pasireiSkia kaip aukstesniojo
daznio bangos, sklindancios pagrindinés bangos priekyje arba gale. Tokio
poblidzio bangos gali biiti ir tikrovéje generuojamos dél terpés geometriniy
nehomogeniskumy, kuriuos savo kelyje sutinka pagrindiné banga. Taip pat jos gali
kilti dél tuo pat metu suzadinty aukstesniojo daznio pavirSiniy bangy atspindziy ir
pan. Tacdiau tokio pobiidZzio modelyje stebimy bangy priezastimi gali biti ir
skaitinés paklaidos. Kartais jos populiariai vadinamos skaitiniu triuk§mu arba
difrakcija nuo tinklelio mazgy. Taliau esmé visada ta pati — nepakankamas
tinklelio smulkumas. Kokj ji reikéty parinkti, i§ anksto numatyti nelengva.
Suzadinant bet kurig banga, dalyvauja ne tik pagrinding, bet ir visos harmoninés
jos komponentés. Skaitines paklaidas gali sugeneruoti bet kuri i$ jy. Vienintelé
universali priemoné skaitinéms paklaidoms atpazinti yra BE modelio pateikiamo
sprendinio konvergavimo analizé sulyginant kelias to paties proceso realizacijas,
gautas su skirtingo smulkumo modelio tinkleliais.

Labai tankaus tinklelio poreikis kelia problemy, kai tiriamos srities
matmenys yra gerokai didesni uz joje sklindanciy bangy ilgj. IS ¢ia kyla
trumposios bangos sgvoka, kuri daugiau susijusi su bangos sklidimo modeliais
diskreciaisiais tinkleliais pateiktose srityse nei su absoliuCiaisiais geometriniais
dydziais. Banga laikoma trumpaja tada, kai jos ilgis daug karty mazesnis uz viso
modelio biidinguosius geometrinius matmenis. Pavyzdziui, reikia iSspresti
ploksc¢iyjy bangy sklidimo plieningje 10x10 cm dydzio ploksteléje uzdavinj, kai
zadinamy skersiniy bangy daznis yra 10 Mhz (ultragarso bangos). Esant ~3000
m/s bangos greiciui ir atitinkamai 0,03 mm bangos ilgiui, iSilgai plokstelés tilpty
~300 bangos ilgiy, o tinklelio Zingsnj tekty parinkti ~0,1 mm. Taip bty tenkinama
20-30 tinklelio zingsniy bangos ilgyje salyga. Vadinasi, modelio mazgy skaicius
netgi tokio palyginti nesudétingo uzdavinio atveju turéty biiti ~10000x10000.
Skaitigkai reikéty spresti ~108 lygéiy sistema, kai banga akusting, ir ~208 lygéiy
sistema, kai banga tamprioji.

Taigi viena svarbiausiy problemy, kylanciy skaitiskai modeliuojant
trumpyjy bangy sklidima, yra itin didelis skai¢iavimo iStekliy poreikis. Sukiirus
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aukStesniosios eilés baigtinius elementus, uztikrinan¢ius sprendinio konvergavima
esant 2-3 kartus retesniam tinkleliui, sprendZiamo uzdavinio matmenys gali
sumazéti 10-30 karty. Siame darbe sickiama sukurti naujus, greiGiau
konverguojancius baigtinius elementus akustiniy ir tampriyjy bangy skaitiniams
modeliams.

Tyrimo objektas — aukstesniosios tikslumo eilés baigtiniai elementai,
skirti tampriyjy ir akustiniy trumpyjy bangy sklidimo baigtiniy elementy modeliy
paklaidoms sumazinti.

Tyrimo tikslas — sukurti algoritmus aukstosios tikslumo eilés tampriojo ir
akustinio kontinuumo baigtiniy elementy sintezei, kurie leisty gerokai sumazinti
skaic¢iavimo istekliy poreikj sklindancios bangos modeliavimui inzineriskai
priimtinu tikslumu, ir istirti gauty elementy savybes taikant juos homogeninése ir
nehomogeninése struktiirose.

Tyrimo uZdaviniai

Tyrimo tikslui pasiekti iSkelti §ie uzdaviniai:

1. ISanalizuoti BE modeliuose atsirandanciy fazinio greicio paklaidy kilme
ir zinomus $iy paklaidy minimizavimo biidus.

2. Taikant mody sintezés metoda, pagal optimaliai pakoreguotas modas
sintezuoti vienmacius (1D) ir dvimacius (2D) maziausios fazinés
paklaidos baigtinius elementus, kuriy masiy matrica yra jstriZzaininé.

3. Istirti sintezuotaisiais elementais paremty bangos sklidimo modeliy
konvergavima nehomogeniniuose ir Sakotuose 1D tinkluose.

4. Istirti sintezuotaisiais elementais paremty akustiniy ir tampriyjy bangy
modeliy konvergavimg nehomogeniniuose sudétingos geometrinés
formos 2D tinkluose.

5. Verifikuoti sukurtus baigtinius elementus ir istirti i§ jy sukurty modeliy
privalumus ir nasuma, palyginant su i$ jprastiniy baigtiniy elementy
sudarytais modeliais.

Darbo mokslinis naujumas

Darbe sukurtas naujas algoritmas, leidziantis optimaliai koreguoty mody
sintezés budu apskaiciuoti baigtinius elementus, i$ kuriy surinkti modeliai turi
daug platesn;j artimy tiksliems tikriniy dazniy ruoza nei modeliai, gauti i$ iki Siol
zinomy baigtiniy elementy. Nors i§ principo koreguoty mody sintezés budas
aukstosios tikslumo eilés baigtiniams elementams gauti buvo pritaikytas jau
anksciau, Siame darbe gauty elementy masiy matricos yra jstrizaininés ir tinkamos
naudoti i8reikstinio dinaminio modeliavimo (angl. explicit dynamics) skaitinése
schemose.
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Darbo praktiné verté

Kitaip nei jprastiniai mody sintezés biidu gauti elementai, Siame darbe
sukurti elementai gali bati tiesiogiai panaudoti iSreiks$tinio dinaminio
modeliavimo programingje jrangoje. Taikomieji skaic¢iavimai buvo atlikti tiriant
realius bangy sklidimo principu veikianc¢ius ultragarso matavimy modelius.

Darbo rezultaty aprobavimas

Disertacijos tema paskelbti 6 moksliniai straipsniai, 2 i§ jy — Mokslinés
informacijos instituto (ISI) pagrindinio saraso leidiniuose, turin¢iuose citavimo
indeksa. Disertacijos tema atlikty tyrimy rezultatai buvo pristatyti 4 mokslinése
konferencijose Lietuvoje ir uzsienyje.

Bendrosios iSvados

1. Skaitiskai modeliuojant banga BE modeliuose visada atsiranda skaitiniy
paklaidy, kurios priklauso nuo tinklelio diskretizavimo zingsnio ir simuliuojamo
impulso dazniy spektro. Tradiciniai baigtiniy elementy modeliai, gauti
panaudojant sutelktasias arba konsistentines masiy matricas, generuoja panasaus
dydzio, taCiau priesingy zenkly paklaidas. Iki Siol zinomi biidai sumazinti Sias
paklaidas yra paremti aukStesniosios eilés baigtiniais elementais arba
kombinuotosiomis bei sintezuotosiomis masiy matricomis. Deja, tokios masiy
matricos yra nejstrizaininés, todél neleidzia visiSkai panaudoti iSreikstiniy
skaitinio integravimo schemy privalumy.

2. Taikant mody sintezés metodg sukurtas algoritmas, skirtas 1D ir 2D
sintezuotiesiems baigtiniams elementams su jstrizaininémis masiy matricomis
sudaryti. Sintezuotieji elementai sudaromi atliekant elemento virpesiy mody
korekcijas, kur mody korekcijos koeficientai yra tikslo funkcijos minimizavimo
parametrai, o pati tikslo funkcija apibrézia modelio, surinkto i§ sintezuotyjy
elementy, pirmyjy tikriniy dazniy paklaidas. Pademonstruota, kad didesnis
sintezuojamo elemento laisvés laipsniy skaiCius lemia geresnes sintezuotojo
elemento konvergavimo savybes.

3. Istyrus modeliy konvergavimg 1D struktiirose pademonstruota, kad, BE
modelj surenkant i§ sintezuotyjy 10 mazgy elementy, pirmyjy ~60 % modelio
tikriniy dazniy paklaidos biina labai mazos (<107°). I§ §iy elementy galima sudaryti
Sakota nehomogening struktiirg ir modelj surenkant kartu su tradiciniais
elementais jvertinti bangos neatspindéjimo sglyga.

4. Istyrus modeliy konvergavimg 2D struktiirose, nustatyta, kad
skaic¢iavimo iStekliy poreikis sintezés procesui gali biiti sumazintas pasinaudojant
simetriniy konstrukcijy mody savybémis, ir atsizvelgiant j turimus skaiciavimo
iSteklius sudarytas 5x5 mazgy akustinis ir 4x4 mazgy kvadrato formos tamprusis
elementas. Modeliy, surinkty i§ tokiy elementy, pirmyjy 25 % (akustiniuose
modeliuose) ir 6,2 % (tampriuosiuose modeliuose) tikriniy dazniy paklaidos
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iSlicka labai maZos. Nors atlickant impulso modeliavimg 2D tampriuosiuose
modeliuose, surinktuose i$ sintezuotyjy elementy, dél atlikty konstrukcijos mody
korekcijy papildomai atsiranda nedidelés (~2 % modeliuojamo impulso
amplitudés) paklaidos, jy vieta yra nuspéjama ir §ios paklaidos gali biiti nesunkiai
pasalinamos atliekant signalo analize.

5. Sintezuotieji elementai verifikuoti atliekant skaitinius tyrimus. Sukurtas
1D spiidaus skyscio tékmés baigtiniy elementy modelis, skirtas pereinamiesiems
virpesiams vamzdyne apskaiciuoti. 2D konstrukcijose buvo simuliuojami testiniai
realiy ultragarso matavimy atvejai. Atliekant skaitinius tyrimus nustatyta, kad
sudaryti 10 mazgy 1D, 2D akustiniai (5%5 mazgy) ir 2D tamprieji (4x4 mazgy)
sintezuotieji elementai leido panaudoti gerokai retesnius tinklelius (1D — 4,7 karto;
2D akustinis — 2,5 karto; 2D tamprusis — 2 kartus), i§laikant tokj patj sprendinio
tikslumg. Tinklelio retumas verifikuojamas pagal konkretaus simuliuojamo
impulso dazniy spektra ir BE modelio tikriniy dazniy paklaidas atliekant
pasirinkto impulso modeliavima skirtingo retumo tinklelio modeliuose. Atliekant
nasumo testus nustatyta, kad panaudojus aukStesniosios eilés sintezuotuosius
elementus gautas didesnis standumo matricos juostos plotis didesnés reik§més
neturi ir visais atvejais yra sutaupoma kompiuterio atmintis, reikalinga BE
modeliui saugoti, ir sumazinamos skai¢iavimo, atlickamo modeliuojant banga,
apimtys.
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