Title Advancing fractal dimension techniques to enhance motor imagery tasks using EEG for brain–computer interface applications
Authors Mohamed, Amr F ; Jusas, Vacius
DOI 10.3390/app15116021
Full Text Download
Is Part of Applied sciences.. Basel : MDPI. 2025, vol. 15, iss. 11, art. no. 6021, p. 1-27.. ISSN 2076-3417
Keywords [eng] fractal dimension ; electroencephalography ; motor imagery ; brain–computer interface
Abstract [eng] The ongoing exploration of brain–computer interfaces (BCIs) provides deeper insights into the workings of the human brain. Motor imagery (MI) tasks, such as imagining movements of the tongue, left and right hands, or feet, can be identified through the analysis of electroencephalography (EEG) signals. The development of BCI systems opens up opportunities for their application in assistive devices, neurorehabilitation, and brain stimulation and brain feedback technologies, potentially helping patients to regain the ability to eat and drink without external help, move, or even speak. In this context, the accurate recognition and deciphering of a patient’s imagined intentions is critical for the development of effective BCI systems. Therefore, to distinguish motor tasks in a manner differing from the commonly used methods in this context, we propose a fractal dimension (FD)-based approach, which effectively captures the self-similarity and complexity of EEG signals. For this purpose, all four classes provided in the BCI Competition IV 2a dataset are utilized with nine different combinations of seven FD methods: Katz, Petrosian, Higuchi, box-counting, MFDFA, DFA, and correlation dimension. The resulting features are then used to train five machine learning models: linear, Gaussian, polynomial support vector machine, regression tree, and stochastic gradient descent. As a result, the proposed method obtained top-tier results, achieving 79.2% accuracy when using the Katz vs. box-counting vs. correlation dimension FD combination (KFD vs. BCFD vs. CDFD) classified by LinearSVM, thus outperforming the state-of-the-art TWSB method (achieving 79.1% accuracy). These results demonstrate that fractal dimension features can be applied to achieve higher classification accuracy for online/offline MI-BCIs, when compared to traditional methods. The application of these findings is expected to facilitate the enhancement of motor imagery brain–computer interface systems, which is a key issue faced by neuroscientists.
Published Basel : MDPI
Type Journal article
Language English
Publication date 2025
CC license CC license description