

KAUNAS UNIVERSITY OF TECHNOLOGY

ALGIRDAS ŠUKYS

QUERYING ONTOLOGIES ON THE BASE
OF SEMANTICS OF BUSINESS

VOCABULARY AND BUSINESS RULES

Doctoral dissertation
Technological sciences, Informatics Engineering (07T)

2017, Kaunas

This doctoral dissertation was prepared at Kaunas University of Technology,
Faculty of Informatics, Department of Information Systems during the period of
2010–2017. The studies were supported by Research Council of Lithuania.

Scientific Supervisor:

Prof. Dr. Lina NEMURAITĖ (Kaunas University of Technology, Technological
Sciences, Informatics Engineering, 07T).

Doctoral dissertation has been published in:
http://ktu.edu

Editors:
Antony Richard Bexon, Vilija Celiešienė.

© A. Šukys, 2017

ISBN 978-609-02-1336-0

The bibliographic information about the publication is available in the National
Bibliographic Data Bank (NBDB) of the Martynas Mažvydas National Library of
Lithuania

KAUNO TECHNOLOGIJOS UNIVERSITETAS

ALGIRDAS ŠUKYS

VEIKLOS ŽODYNO IR VEIKLOS
TAISYKLIŲ SEMANTIKA GRINDŽIAMOS

ONTOLOGIJŲ UŽKLAUSOS

Daktaro disertacija
Technologijos mokslai, informatikos inžinerija (07T)

2017, Kaunas

Disertacija rengta 2010-2017 metais Kauno technologijos universiteto Informatikos
fakultete Informacijos sistemų katedroje. Mokslinius tyrimus rėmė Lietuvos mokslo
taryba.

Mokslinė vadovė:

Prof. dr. Lina NEMURAITĖ (Kauno technologijos universitetas, technologijos
mokslai, informatikos inžinerija, 07T).

Interneto svetainės, kurioje skelbiama disertacija, adresas:
http://ktu.edu

Redagavo:

Antony Richard Bexon, Vilija Celiešienė.

© A. Šukys, 2017

ISBN 978-609-02-1336-0

Leidinio bibliografinė informacija pateikiama Lietuvos nacionalinės Martyno
Mažvydo bibliotekos Nacionalinės bibliografijos duomenų banke (NBDB)

5

ACKNOWLEDGEMENT

This research would not have been possible without the support of many

people. First, I would like to thank my scientific supervisor Prof. dr. Lina Nemuraitė
for her guidance, support, patience, and gained knowledge during the research and
writing of the thesis.

I would also like to thank my reviewers for their insightful comments and
advice, who helped me to correct and improve the dissertation. I am also thankful to
all colleagues from the Department of Information Systems for their suggestions and
advice, which I have received through all the years of research.

A special thanks to my family and friends for their continuous support and
encouragement.

6

TABLE OF CONTENTS

Terms and abbreviations .. 9

Figures .. 12

Tables .. 14

INTRODUCTION ... 16
1.1 Motivation ... 16
1.2 Object and scope of research ... 17
1.3 Problem statement and research questions.. 17
1.4 Goal and objectives ... 18
1.5 Research methodology .. 18
1.6 Defended propositions ... 20
1.7 Major contributions and novelty .. 20
1.8 Practical significance ... 21
1.9 Scientific approval ... 21
1.10 Thesis structure ... 21

2 ANALYSIS OF Natural Language Interfaces and MOST ADVANCED
KNOWLEDGE MODELS ... 22

2.1 Ontologies and natural language interfaces .. 22
2.1.1 What is ontology... 22
2.1.2 Introduction to natural language interfaces .. 25
2.1.3 Natural language interfaces to databases ... 26
2.1.4 Challenges of developing natural language interfaces 27
2.1.5 Questions in natural language interfaces.. 28
2.1.6 Understanding natural language questions ... 29
2.1.7 Portability of natural language interfaces... 31
2.1.8 Habitability of natural language interfaces .. 32
2.1.9 Usability enhancement methods .. 33
2.1.10 Natural language interfaces to ontologies .. 35

2.2 SBVR knowledge model and SPARQL query language 39
2.2.1 Overview of SBVR knowledge model... 39
2.2.2 Overview of SBVR metamodel ... 40
2.2.3 Formulating the meaning of question .. 41
2.2.4 Using SBVR for NLI to ontologies ... 42
2.2.5 Overview of SBVR editing tools ... 43
2.2.6 Ontology query language SPARQL .. 45

2.3 Analysis of related works of Lithuanian researchers 48
2.4 Analysis summary ... 49

3 THE SEMANTIC SEARCH SOLUTION BASED ON SEMANTICS OF
BUSINESS VOCABULARY AND BUSINESS RULES 50

3.1 Requirements of Semantic search solution ... 50

7

3.2 Configuration of NLI to ontologies .. 52
3.3 The conception of SBVR structured language editor 53

3.3.1 Grammar rules for specifying SBVR business vocabulary 54
3.3.2 Grammar rules for specifying SBVR business rules 55
3.3.3 Grammar rules for writing SBVR questions .. 56
3.3.4 Grammar rules for representing atomic formulations 57

3.3.4.1 Representations with both placeholders not replaced 58
3.3.4.2 Representations with placeholders replaced by names 58
3.3.4.3 Representations with the second placeholder replaced by quantity
restriction .. 59
3.3.4.4 Representations with placeholders replaced by quantification
representations .. 60

3.4 Natural language interface to ontologies .. 61
3.4.1 Analysis of questions .. 62
3.4.2 Rules to transform questions to SPARQL .. 63

3.4.2.1 Rule 1: transform closed projection to the basis of query 65
3.4.2.2 Rule 2: transform variables of closed projection to variables of
SELECT clause ... 66
3.4.2.3 Rule 3: transform variables of closed projection to count expression
and group clause .. 67
3.4.2.4 Rule 4: transform variables of closed projections to group and having
clauses .. 68
3.4.2.5 Rule 5: transform variables of closed projection to order clause 69
3.4.2.6 Rule 6: transform atomic formulation to triple patterns of relation .. 70
3.4.2.7 Rule 7: transform variables to triple patterns 71
3.4.2.8 Rule 8: transform individuals to triple patterns 72
3.4.2.9 Rule 9: transform numerical comparison to filter operator 73

4 Implementation of Semantic Search Solution .. 74
4.1 Implementation of SBVR structured language editor 74

4.1.1 Graphical user interface for SBVR specifications 74
4.1.2 Adjusting the editor to different languages .. 76

4.2 Implementation of natural language interface to ontologies 76
4.2.1 Graphical user interface .. 77
4.2.2 Generating autocomplete suggestions .. 78
4.2.3 Implementation of transformation rules to SPARQL 78

5 EXPERIMENTAL EVALUATION .. 79
5.1 Evaluating the completeness of SBVR structured language editor 80

5.1.1 The investigated model of business domain ... 80
5.1.2 Evaluating the completeness of specifying business vocabularies 82
5.1.3 Evaluating the completeness of specifying business rules 83
5.1.4 Evaluating the completeness of writing questions 84
5.1.5 Conclusions of evaluating the completeness of SBVR editor 84

5.2 Evaluating the portability and multilingualism of SBVR structured language
editor 84

8

5.3 Evaluating the effectiveness, multilingualism, and portability of NLI to
ontologies ... 87
5.4 Evaluating the capabilities of NLI to ontologies to map questions with
combinations of ontology resources ... 91
5.5 Threats to validity and answers to research questions 92

6 CONCLUSIONS .. 94

7 REFERENCES ... 96

8 LIST OF AUTHOR‘S PUBLICATIONS ON DISSERTATION THEME 105

9

TERMS AND ABBREVIATIONS

Term Description
ANTLR Another Tool For Language Recognition, is a parser

generator that uses LL(*) parsing.
API Application programming interface.
AST Abstract Syntax Tree. In-memory representation

(object graph) of any parsed text file (Xtext definition).
ATL ATL Transformation Language is a model

transformation language and Eclipse toolkit, used in the
field of Model-Driven Engineering where ATL
provides ways to produce a set of target models from a
set of source models.

BPMN Business Process Model and Notation. A graphical
representation for specifying business processes in a
business process model.

CNL Controlled Natural Language. CNLs are subsets of
natural languages, obtained by restricting the grammar
and vocabulary in order to reduce or eliminate
ambiguity and complexity.

EBNF Extended Backus-Naur Form is a notation for formally
describing syntax.

Effectiveness Usability measurement criteria, typically evaluated in
terms of precision and recall in the area of NLIs.

EMF Eclipse Modelling Framework. A modelling
framework and code generation facility for building
tools and other applications based on a structured data
model.

Habitability Term, often used in context of natural language
interfaces. It defines, how easy and naturally a user can
express his thoughts using language restrictions.

HTML Hypertext Markup Language is the standard markup
language used to create web pages.

IRI Internationalized Resource Identifier, sequence of
characters from the Universal Character Set (Unicode /
ISO 10646) used to identify resources.

Lexicon Vocabulary of natural language interface, used to
formulate, analyse, and transform questions to queries.

MDD Model Driven Development
NLI Natural Language Interface.

10

OCL Object Constraint Language. A declarative language
for describing rules that apply to UML models
developed at IBM and now part of the UML standard.

OMG Object Management Group, the consortium for the
wide range of technology standards, originally aimed at
setting standards for distributed object-oriented
systems

OWL Web Ontology Language, the family of knowledge
representation languages for authoring ontologies,
endorsed by W3C.

Portability A feature of natural language interface, allowing to
adjust (i.e., configure) it for questioning in different
business domains.

QVT Query/View/Transformation. A standard set of
languages for model transformation defined by the
OMG.

RDB Relational database.
RDF Resource Description Framework is a standard model

for data interchange on the Web.
SBVR Semantics of Business Vocabulary and Business Rules,

is a publicly available specification from the OMG
intended to be the basis for a formal and detailed
natural language declarative description of business, its
rules and policies

SBVR SLE SBVR structured language editor
SPARQL Simple Protocol and RDF Query Language – a query

language for the Semantic Web and ontologies.
SQL Structured Query Language for managing data held in a

relational database management system.
SSE SBVR Structured English – notation and language used

for SBVR vocabulary and rules description.
SWRL Semantic Web Rule Language. A proposed language

for the Semantic Web that can be used to express rules.
UML Unified Modelling Language is the OMG standardized

general-purpose modelling language used in a very
broad scope that covers a large and diverse set of
application domains including the field of software
engineering and object-oriented software-intensive
systems.

Usability Term, defining the quality of the appropriateness to a
purpose of any particular artefact.

11

W3C World Wide Web Consortium is the main international
standards organization for the World Wide Web.

XMI XML Metadata Interchange is an OMG standard for
exchanging metadata information via Extensible
Markup Language.

XML Extensible Markup Language – a markup language,
that defines a set of rules for encoding documents in
format, which is human- and machine-readable.

XSD XML Schema Definition. A recommendation of the
W3C, which specifies how to describe elements
formally in an XML document.

12

FIGURES

Figure 2.1. Graphical representation of ontology .. 23
Figure 2.2. Example of individuals in the ontology 24
Figure 2.3. Metamodel of SBVR meaning [98] .. 40
Figure 2.4. Metamodel of SBVR meaning and representations [98] 41
Figure 2.5. SBVR metamodel fragment for representing questions [98] 42
Figure 2.6. SPARQL 1.1 SELECT query ... 45
Figure 2.7. SPARQL 1.1 SELECT clause... 46
Figure 2.8. SPARQL 1.1 dataset clause .. 46
Figure 2.9. SPARQL 1.1 WHERE clause ... 47
Figure 2.10. SPARQL 1.1 FILTER .. 47
Figure 2.11. Structure of SPARQL 1.1 SELECT query solution modifier part

 ... 48
Figure 2.12. Semantic search framework based on SBVR [99] (parts,

distinguished by darker background, were created on the base of this research) 49
Figure 3.1. Functional requirements of Semantic search solution using SBVR

 ... 51
Figure 3.2. Process model of Semantic search solution using SBVR 52
Figure 3.3. Components of NLI to ontologies ... 61
Figure 3.4. Steps of question analysis ... 62
Figure 3.5. Algorithm for transforming questions to find individuals of certain

type .. 64
Figure 3.6. Algorithm for transforming questions with modifier attachments 64
Figure 3.7. Algorithm for transforming questions to count values 64
Figure 3.8. Algorithm for transforming questions with cardinality restrictions

 ... 65
Figure 3.9. Algorithm for transforming questions with numerical comparisons

 ... 65
Figure 3.10. Algorithm of transforming questions with minimum or maximum

restrictions .. 65
Figure 3.11. Steps of Rule 1 ... 65
Figure 3.12. Steps of Rule 2 ... 66
Figure 3.13. Steps of Rule 3 ... 67
Figure 3.14. Steps of Rule 4 ... 68
Figure 3.15. Steps of Rule 5 ... 69
Figure 3.16. Steps of Rule 6 ... 70
Figure 3.17. Steps of Rule 7 ... 71
Figure 3.18. Steps of Rule 8 ... 72
Figure 3.19. Steps of Rule 9 ... 73
Figure 4.1. Graphical interface of SBVR SLE .. 75
Figure 4.2. Graphical interface of NLI to ontologies in Lithuanian language . 77
Figure 4.3. Autocomplete of the semantic search interface 78

13

Figure 5.1. Conceptual model of event organization domain presented as UML
class diagram .. 81

Figure 5.2. Conceptual model of geography knowledge base 87
Figure 5.3. Conceptual model of restaurant knowledge base 88
Figure 5.4. N-ary relation of purchases domain .. 91

14

TABLES

Table 1. The research methodology .. 19
Table 2.1. Ontology serialization using Turtle syntax 24
Table 2.2. Comparison of NLIs to ontologies ... 38
Table 2.3. Comparison of SBVR editors... 44
Table 3.1. Terminal rules of the grammar ... 54
Table 3.2. Smallest production rules of SBVR business vocabulary grammar 54
Table 3.3. Rules to represent vocabulary concepts .. 55
Table 3.4. Rules to represent verb concepts .. 55
Table 3.5. Example of vocabulary caption rule ... 55
Table 3.6. Rules of representation of business rules 56
Table 3.7. Rules of writing questions ... 57
Table 3.8. Representation of atomic formulations ... 58
Table 3.9. Rule and example of representation with both placeholders not

replaced .. 58
Table 3.10. Rule and example of representation when first role is replaced by

name... 58
Table 3.11. Rule and example of representation when second role is replaced

by name .. 59
Table 3.12. Rule and example of representation when both roles are replaced

by names .. 59
Table 3.13. Rule and examples of representation when second role is replaced

by expression of quantity restriction .. 59
Table 3.14. Keywords to express quantity restrictions 60
Table 3.15. Rule and example of representation when second role is replaced

by expression of quantification ... 60
Table 3.16. Keywords to express quantification restrictions.......................... 60
Table 3.17. Model fragment and example created by Rule 1 66
Table 3.18. Model fragment and example created by Rule 2 66
Table 3.19. Model fragment and example created by Rule 3 67
Table 3.20. Model fragment and example created by Rule 4 68
Table 3.21. Cardinality quantifications and corresponding symbols 69
Table 3.22. Model fragment and example created by Rule 5 69
Table 3.23. Model fragment and example created by Rule 6 71
Table 3.24. Model fragment and example created by Rule 7 72
Table 3.25. Model fragment and example by Rule 8 72
Table 3.26. Model fragment and example created by Rule 9 73
Table 4.1. Example of using metavocabulary for transformations of SBVR to

OWL 2 ... 75
Table 5.1. Fragments of specification of business vocabulary 82
Table 5.2. Fragments of specification of business rules 83
Table 5.3. Examples of questions ... 84
Table 5.4. Example of specifying individuals and using them in facts 85

15

Table 5.5. Evaluation of quality to recognize compound terms in Lithuanian
language ... 86

Table 5.6. Fragments of SBVR specifications... 88
Table 5.7. Example question and transformed query 89
Table 5.8. Results of evaluating correctness ... 90
Table 5.9. Comparison of this solution to other NLIs to ontologies 91
Table 5.10. SBVR specification for describing n-ary relations of purchases

domain ... 92
Table 5.11. SBVR specification for describing n-ary relations of purchases

domain ... 92

16

INTRODUCTION

The amount of information on the Web grows constantly nowadays. Information
overload makes a Web search process tedious. Traditional keyword based search
engines analyse HTML documents that are intended to render information for
humans but does not represent semantics, which a computer can understand. Even
though such search engines help to find information, they give redundant or
incomplete results based on keyword matches, leaving a lot of work for users to find
relevant information. For example, it would be a difficult task to find all heads of the
European Union states using keyword based search. The user would have to put
additional effort into completing this search.

The Semantic Web idea [4] is based on understanding the meaning of published
information and processing it by machines. The backbone of a Semantic Web is
ontologies that store entities, representing real world objects (i.e., persons, vehicles,
organizations), their relations, properties, etc. The search across ontologies is called
semantic search. Due to the capability to understand the intent of the user’s queries
and even complex questions, semantic search returns results that are more precise.

One of the challenges of developing a system with a semantic search function is
the implementation of a usable and convenient user interface. A number of
interfaces to ontologies were introduced after the Semantic Web idea spread:
Semantic Crystal [54], Ginseng [6], QuestIO [22], FREyA [19], ORAKEL [12],
PANTO [129], Querix [56], etc. They vary from simple interfaces for SPARQL
queries to more sophisticated natural language interfaces (NLIs) and differ in their
usability. The study of E. Kaufmann and A. Bernstein [54] was carried out to
compare keyword-based search, graphical query language, natural language and
menu guided interfaces. It was found, that users prefer querying ontologies using
full sentences in natural language. The research revealed the potential of NLIs for
end-user access to the Semantic Web, as this type of interface proved the most
useful and best-liked query interface.

1.1 Motivation

In this work, it was decided to create a new NLI. The first reason was the desire
to write questions in multiple languages. It is important, because 25.9% of internet
users use the English language, while the other users use other languages [83].
Existing NLIs show good results answering questions in English. However, authors
do not discuss about adapting their solutions for other languages, i.e., which
components are independent from language, and which should be replaced or
adjusted, what source code modifications are required. Certainly, simple
replacement of standard linguistic libraries (e.g., Stanford parser, WordNet, etc.)
would not be enough, it would require a significant source code modification.

Another reason is about mapping questions with ontology resources (i.e.,
classes, properties, etc.). This is a critical function of NLI, required for translating
questions to queries. Ontologies in the Semantic Web are processed and understood
by machines. The problem is that their structure can differ from how people think
about data and formulate questions. It is obvious, that people desire writing simple

17

questions, while data in ontologies can be stored using complex structures (e.g.,
using n-ary relations). Therefore, straightforward mappings (i.e., question to a single
ontology resource) is not enough, NLI must be able to perform complex mappings
(i.e., question to a combination of resources). The analysis of existing NLIs to
ontologies revealed that most of them extract lexicon directly from ontologies. As a
result, they allow only straightforward mapping and understand only those questions
that correspond to the structure of the ontology.

Therefore, the basic principles of the system’s architecture was formulated: NLI
must be adjustable for different languages and the lexicon must allow relating
complex ontological constructions with simple questions. It was decided to use
SBVR in order to achieve this. This standard is intended to specify business
vocabularies and business rules using structured natural language. The foundation of
SBVR is a semiotic/semantic triangle, which is the theoretical basis for SBVR’s
linguistic based architecture that separates expression from meaning [98]. It allows
the expressing of the same things differently as well as in different languages.
Therefore, a question, written in different languages, has the same model of meaning
and can be transformed to an ontology query regardless of the language it is written
in.

SBVR vocabulary concepts can have definitions given as rules that describe
derivations of those concepts. Such definitions formally specify the derivation of
concepts from other concepts and can support inferences [64]. This suggests that
SBVR definitions could be used to bridge the gap between the way in which a
particular item of data is stored (i.e., the ontology scheme) and the way of, how a
user thinks about the data and formulates questions.

Although the SBVR metamodel supports questions and allows querying
software models, it was not previously used for semantic search. This work should
answer, whether or not SBVR can be used as a basis for NLI, which is multilingual
and allows mapping simple questions with complex ontology structures (i.e.,
combinations of ontology resources).

1.2 Object and scope of research

The object of this research is a process of querying ontologies using natural
language questions. The scope of the research includes the following topics:

• Natural language interfaces to knowledge bases;
• Most advanced knowledge and data models, their representation and query

languages (SBVR, OWL 2, RDF, SPARQL), related tools and technologies;
• Model driven transformation technologies.

1.3 Problem statement and research questions

The lack of usable and convenient user interfaces to ontologies, allowing
questioning in natural languages – is the problem inspired by this research. When
solving this problem it was important to fulfil such requirements:

• Adjustability to questioning in different languages (i.e., languages,
investigated in this work: English and Lithuanian; and grammatically similar
languages: German, Czech, Polish, etc.);

18

• Ability to map questions with combinations of ontology resources;
• Portability (i.e., ability to question in different domains);
• Effectiveness of answering questions similar to other NLIs.
This research intends to answer the following questions:

1. Is it possible to use SBVR questions for querying ontologies and relating
natural language questions with combinations of ontology resources?

2. How natural language questions can be transformed to SPARQL using
SBVR?

3. Is it possible to achieve portability without compromising the correctness
of NLI to ontologies using SBVR?

4. Can SBVR based NLI to ontologies be adjusted to different languages
and what components are language specific?

1.4 Goal and objectives

The main goal of this work is to extend semantic search capabilities, allowing
users to write natural language questions in different languages, also including such
cases when mapping of questions to ontology is complex (i.e., questions must be
mapped with combinations of ontology resources). Research tasks are the following:

1. To analyse literature related with OWL ontologies and ontology query
language SPARQL; existing NLIs to databases and ontologies; SBVR
knowledge model and tools to write SBVR specifications;

2. To define the conception of NLI to ontologies and algorithms for
transforming natural language questions to SPARQL queries;

3. To define the conception of a SBVR tool for writing business
vocabularies, rules, and questions;

4. To create prototypes for evaluating the relevance of the solution;
5. To conduct an experiment and evaluate research results.

The scope of this work can solve just a limited set of problems, related with
natural language questions, sufficient for proving the concept. The main quality
criteria for the solution are as follows:

• Ability to question ontologies in different languages;
• Ability to map questions with combinations of ontology resources;
• Portability of the solution;
• Effectiveness of answering questions.

1.5 Research methodology

The research was carried out using the methodology of Design Science (also
called constructive) research. This paradigm seeks to extend the boundaries of
human and organizational capabilities by creating new and innovative artefact [45].
This artefact can be algorithm, framework, model, etc. In this research, it is
Semantic search solution. The methodology and steps of the research are presented
in Table 1.

19

Table 1. The research methodology
1. Selecting a practically relevant

research problem.
It was found that the process of
traditional keyword based search leaves
a lot of manual work for users to find
relevant information from results of
keyword matching.

2. Analysing existing solutions to find
out the potential for the research.

The search process can be facilitated
performing semantic search over
ontologies. The most convenient
interface for ontologies is NLI. The
analysis of existing NLIs to ontologies
showed that existing solutions have
limitations. Therefore, it was decided to
create a new Semantic search solution.

3. Analysing the domain to understand
the problem and create the solution to
solve it.

First, ontologies and ontology query
languages were analysed to understand,
how ontologies are modelled and quered.
To understand the area of creating NLIs
(e.g., problems that are faced creating
and using such systems, their main
features, requirements, etc.), research,
related with NLIs to databases and
ontologies were analysed.
Finally, having an insight to solve the
shortcomings of existing NLIs, SBVR
standard and capabilities to use it for
Semantic search solution were analysed.

4. Creating the original solution The conception of SBVR based
Semantic search solution was created.
The solution consist of NLI to ontologies
and SBVR structured language editor
(SBVR SLE). The solution was
theoretically described by defining rules
to transform natural language questions
to SPARQL queries and grammar for
creating SBVR structured language
editor.

5. Implementing the prototype of the
solution and evaluating it

Two prototypes were implemented:
SBVR SLE and NLI to ontologies.
Experiments were conducted for
evaluating the applicability of the
solution and comparing it against other
similar solutions.

6. Feasibility to apply the solution in
practice

The created solution can be applied to
implement the semantic search in the

20

Web. It is also expected that the created
SBVR SLE will create conditions for
other SBVR related research.

7. Relations of the solution with
theorethical studies

The created solution will complement
the set of available solutions of NLIs to
ontologies. This work also contributes to
the research of SBVR and presents the
applicability of this standard for
querying.

1.6 Defended propositions

Propositions defended by this thesis are the following:
1. SBVR allows using language independent rules to transform questions to

semantic queries and achieve multilingualism of NLI to ontologies.
However, such a solution also requires language dependent components
to perform syntactic and morphological analysis of questions.

2. SBVR derivation rules allows describing the relations between natural
language questions and complex ontology structure. As a result,
ontologies can be queried written questions that do not directly
correspond to their structure.

3. SBVR based NLI is portable. Portability is achieved specifying business
vocabulary and rules (i.e. lexicon) of certain domain and mapping it with
ontology. Mappings are performed labelling ontology resources with
representations of corresponding vocabulary concepts.

1.7 Major contributions and novelty

The major contribution of this work is the solution of querying ontologies using
natural language. The solution consists of the following two parts:

• NLI to ontologies, which allows writing, analysing natural language
questions and transforming them to SPARQL queries.

• The SBVR SLE that is used for configuration of NLI. It allows specifying
business vocabularies, business rules and writing questions using structured
language. In addition, specifications can be transformed to the SBVR XMI
model.

The novelty of the research is as follows:
1. It was not found in any research, published by other authors, the using

SBVR questions for querying ontologies.
2. The created NLI to ontologies has clearly defined parts, which have to be

replaced for querying in different languages.
3. The created NLI to ontologies allows questioning when the structure of

ontologies is complex and it is needed to map questions with
combinations of ontology resources. These mapping are defined using
SBVR derivation rules or formal definitions of SBVR concepts.

4. The created SBVR SLE is used for writing specifications of business
vocabularies and business rules to formulate questions. This tool allows

21

the splitting of specifications into separate parts and hide some
vocabulary entries (i.e., those that are used only for derivations) from
user. In addition, this feature allows the creating of metavocabularies
and applying editor for other purposes (e.g., transformation to OWL 2,
specification of BPMN business processes, etc.).

1.8 Practical significance

The presented solution offers a way to implement semantic search writing
questions in natural language. It can be configured to questions for ontologies of
different domains and in different languages. The ability to define SBVR derivations
allows the answering of simple questions in complex ontologies that are often used
in practice. The solution can be applied for a semantic search on the Web or in
business applications.

The results of this work were applied in the SemantikaLT project [99], creating a
semantic search service that allows writing questions in the Lithuanian language.
The SBVR SLE was used for creating SBVR business vocabularies, business rules
and configuration of NLI. The transformations, created in this work, were used to
transform Lithuanian questions to SPARQL for querying semantically annotated
Lithuanian Internet corpora for Politics, Business and Economy, and Public
Administration domains.

The created SBVR SLE can be used to other research, related with SBVR to
create specifications of business vocabulary and business rules.

1.9 Scientific approval

Results of this research were presented at five international conferences and one
Lithuanian conference. Two articles were published in scientific journals referred in
the Thomson Reuters “ISI Web of Science” Master Journal List with impact factor.
Two articles were published in publications that are referred in the Thomson Reuters
“ISI Web of Science” Conference Proceedings. Four articles were published in other
scientific publications – proceedings of the conference. The detailed list of
publications is presented in section seven.

1.10 Thesis structure

The second section introduces ontologies and the analysis of NLIs, including
challenges and requirements of creating such systems. This section also introduces
SBVR specification and SPARQL query language. In the third section, the Semantic
search solution, including models and algorithms created in this work, is presented.
The fourth section demonstrates details of implementing prototypes. The fifth
section is dedicated to experimental evaluation of the solution. The sixth section
presents conclusions. Seventh and eighth sections present references to the literature
and a list of author’s publications on the dissertation theme.

22

2 ANALYSIS OF NATURAL LANGUAGE INTERFACES AND MOST
ADVANCED KNOWLEDGE MODELS

The analysis of related scientific literature contains two parts. In the first part,
the definition of ontology is introduced. Then, the analysis of NLIs describes; how
these systems evolved, what main obstacles are encountered creating and using
them, what are the main requirements of NLIs, etc. Finally, a comparative analysis
of existing NLIs to ontologies is presented.

In the second part, a SBVR knowledge model and its capabilities for using as a
basis for NLI to ontologies are analysed. This part also contains the analysis of
SPARQL query language.

2.1 Ontologies and natural language interfaces

2.1.1 What is ontology
The term ontology came from Greek word onto (being) and logia (science). It

came from the discipline of philosophy – metaphysics, dealing with the nature and
the organization of reality. This discipline tries to answer questions, such as “What
are meanings of being?”, “Into what categories, if any, can we sort existing
things?”, etc. The traditional goal of ontological inquiry is discovering fundamental
categories or kinds into which the world’s objects fall [3]. From here, the main
concepts of ontology came, i.e., kinds, properties, attributes, relations, parts and
wholes, and processes. This traditional understanding of ontology has many
examples in natural and abstract sciences – physics, chemistry, biology,
mathematics. For example, in biology; the purpose of ontology is to classify living
organisms into kingdoms, phylums, classes, etc. In mathematics, ontology is used to
classify theoretical objects. For instance, in number theory; natural numbers are
classified into prime and composite numbers. In geometry, triangles are classified by
their angles and sides.

In computer and information science, ontology is a technical term that means an
artefact, which allows modelling knowledge of some domain, which can be real or
imagined [35]. The term was adapted by Artificial Intelligence researchers and in the
1980‘s this term started to refer to both a theory of a modelled world and knowledge
systems [35].

The essential definition of ontology came from 1993, when Tom Gruber defined
the term ontology as an explicit specification of conceptualizations [34]. That is,
ontology is objects, concepts, and other entities that are presumed to exist in some
area of interest and the relationships that hold among them [35]. This definition has
two essential points [35]: ontology defines concepts, relationships, and other
features that are relevant for modelling a domain; specification defines the form of
ontology (i.e., it can contain classes, data properties, etc.). The definition also claims
that all concepts and their features should be explicitly stated. This can be done in
two ways [37]: extensional, when all concepts and their features are listed or
intentional, when conceptualization is specified by constraining interpretations using
axioms (e.g., transitive, symmetric properties, etc.). However, this definition is
broad, allowing a range of specifications from simple glossaries to logical theories

23

couched in predicate calculus [102]. Therefore, researchers sort to clarify the
definition of ontology.

In 1997, Borst defined an ontology as a formal specification of a shared
conceptualization [8]. This definition is similar, but emphasizes the fact, that there
must be an agreement about conceptualization to allow reusing ontology and general
acceptance. The specification should also have formal representation to be processed
by machines. Therefore, natural language texts do not satisfy this definition.

In 1998, Studer et al. [15] merged these two definitions stating that ontology is a
formal, explicit specification of a shared conceptualization.

In 1998, Guarino clarified the original definition of ontology by formalizing it
[36] [37].

In 1999, Smith and Welty [102] proposed the classification of ontologies.
Different information artefacts were classified as ontology and all of them satisfy
Gruber‘s definition:

• Simple catalogue of products;
• A set of natural language texts;
• Glossary of terms and their natural language descriptions;
• Thesaurus, consisting of terms, formatting common hierarchy;
• Taxonomies with property inheritance from more general to more specific

classes;
• Frame-based systems, having a taxonomic structure and relations between

objects and restrictions, how objects can relate one with another;
• Ontologies, using axioms of first order, higher order, or modal logic – this

type of ontologies is the most complex and expressive.
Hence, ontologies can be represented in different ways. Consider ontology that

stores knowledge about students, taking exams, and teachers, who organizes exams.
Teachers can be also specialized as lecturers, associate professors, and professors.
The graphical representation of this ontology is presented in Figure 2.1.

Figure 2.1. Graphical representation of ontology

Figure 2.2 presents an example of individual in this ontology (i.e., students
taking the exam, which is organized by teacher).

24

Figure 2.2. Example of individuals in the ontology

Besides explicit knowledge that is stored in ontologies, implicit knowledge can
also be found. In this example, the fact that teachers examine students is not
explicitly stated. However, it can be derived from other facts (i.e., students take
exams and exams are organized by teachers).

Ontology must have a machine processable format to be able to use it as an
engineering artefact. The most popular language for defining and instantiating
ontologies is Web Ontology Language, OWL. It includes descriptions of classes,
properties and their instances [101]. OWL ontologies are based on the RDF data
model. It is considered the most relevant standard for data representation and
exchange on the Semantic Web [42]. The RDF data model is based on statements
(i.e., triples) that are expressed in the form of subject, predicate and object. A set of
statements compose the directed labelled graph. RDF Schema is a semantic
extension of RDF. It allows defining classes and properties of RDF resources,
semantics of generalizations of classes and properties.

OWL is a set family of three increasingly expressive sublanguages, which can be
chosen according to the needs:

• OWL Lite. Provides all semantics of RDF Schema, plus simple constraints,
such as cardinalities, equalities, property characteristics, etc. It also allows
importing ontologies.

• OWL DL. Supports maximum expressiveness with computational
completeness and computing in finite time. It is named so due to the
correspondence with description logics.

• OWL Full. Provides richer expressiveness, but it is not handled by software
tools, because no computational guarantees are provided.

OWL ontology can be serialised using various syntaxes (e.g., RDF/XML,
OWL/XML, Turtle, etc.) for storing or exchanging ontology among tools and
applications [89]. The primary syntax is RDF/XML. However, OWL/XML is easier
processable by XML tools, functional syntax simplifies reading of formal structures,
and Turtle syntax represents the triple based nature of OWL ontologies more clearly
and represent it as a set of triples. The example ontology of Turtle syntax is
presented in Table 2.1.
Table 2.1. Ontology serialization using Turtle syntax
:Student rdf:type owl:Class .
:Teacher rdf:type owl:Class .
:Exam rdf:type owl:Class .
:Lecturer rdf:type owl:Class ;
 rdfs:subClassOf :Teacher .

25

:Professor rdf:type owl:Class ;
 rdfs:subClassOf :Teacher .
:Associate_professor rdf:type owl:Class ;
 rdfs:subClassOf :Teacher .
:organizes rdf:type owl:ObjectProperty ;
 rdfs:range :Exam ;
 rdfs:domain :Teacher .
:takes rdf:type owl:ObjectProperty ;
 rdfs:range :Exam ;
 rdfs:domain :Student .

In this work, ontologies are treated as an engineering artefact and used to
perform a semantic search on the Web. According to the dependence classification
of N. Guarino [38], domain ontologies (i.e., describing the vocabulary related to a
specific domain) are considered. Ontologies are defined using OWL language
(precisely OWL 2, a latest version of OWL). By semantic expressiveness, OWL Lite
or OWL DL sublanguages can be selected.
2.1.2 Introduction to natural language interfaces

The simplest user interfaces allows to perform semantic search over ontologies
writing queries (e.g., SPARQL [92] [43]). However, dedicated query languages are
complex and unfamiliar for users. To allow querying ontologies - more convenient,
different types of interfaces were created: NLIs, KIM form-based interface [91],
faceted search, where knowledge is grouped and represented through taxonomies
[19], graphical tools, menu-guided, and keyword-based, etc. Although these tools
hide the complexity of underlying query languages, they still require the user to be
familiar with the structure of queried knowledge [19]. The usability research of
E. Kaufmann and A. Bernstein [54] has shown that users prefer querying ontologies
using natural language sentences. This study showed the potential of NLIs for end-
user access to the Semantic Web.

The first research of NLIs were started in the early 1960‘s [79]. Their goal was
to simplify the search process in databases and reduce the learning time to work with
them. NLI was thought to be a promising interface, allowing users to communicate
with information systems and extract the required data using natural instead of
specific querying or programming language. Four main reasons were distinguished
for using NLI [73]:

• No need to learn special purpose languages;
• The range of database queries that can be formulated in natural languages is

potentially the same as in any formal query language;
• Possibility to query about the domain structure;
• Possibility to refine queries using dialogues.
In general, NLIs have the following components: linguistic component, lexicon,

and data storage component. Linguistic component is used to parse natural language
questions and transform parse trees into queries. This component also formulates
answers to questions. Data storage component stores data (e.g., relational database,
ontology, etc.) and lexicon is used to link syntax elements of question with
structures of data storage. It helps to find objects (e.g., tables, attributes, relations,
etc.) corresponding to certain natural language formulations. Lexicon can also be
used for answer generation or formulating questions.

26

The key task of NLI systems is a bridge between two views: the way in which
that data is stored (i.e., the knowledge base view) and the user‘s view – the way how
he or she thinks about data. The problem is that data is stored using a strict model,
while a user thinks about it in a more abstract way, using real world knowledge.
Someone has to “teach” the system to identify available words of questioning in
certain domains and determine the relations of those words with database structures
[1]. This process is called configuration or customization. It is not a straightforward
task and requires extensive efforts of natural language processing specialists and
knowledge experts. The first of the configurable NLIs were configured by hand [33],
therefore the economics of configuring them was one of the factors that blocked the
uptake of NLIs [73]. Another reason was linguistic and syntactic problems that
aroused processing natural language questions. Despite that, many efforts were
made to create a commercially successful NLI. In the middle of 1980‘s, when NLI
research reached its peak, it was predicted that this type of interface will be one of
the alternatives for working with information systems. Unfortunately, after some
time this area has been abandoned for previously mentioned difficulties that
prevented from reaching practical success of NLIs. Form based graphical interfaces
were sufficient and more attractive for organizations, because they had no
difficulties, which are inevitable using NLIs. However, a number of NLIs to
databases were created for working in limited domains [84].
2.1.3 Natural language interfaces to databases

Research of NLIs to databases started in the late sixties and early seventies in the
context of research into artificial intelligence. Early systems have been developed
for certain domains and the portability was not important. One of the first systems
was LUNAR [133]. It was created to query the database for chemical analysis of
lunar rocks and facilitate the search process for scientists. Data from different
scientific articles were stored in a single repository. The purpose was not a simple
search of articles, but understanding and analysing data that was published: counting
averages, ratios, comparing results of different scientists, etc. Authors decided to use
this type of interface for several reasons:

• People use natural language in everyday life, so it is not necessary to learn
any computer language to work with the system. It was important, because
many people were not computer literate in those days;

• People think using terms of natural languages. Translation of ideas and
thoughts to specific computer languages takes time and aggravates
communication between people and computers.

LUNAR allowed formulating questions in a flexible way, using abbreviations
and synonyms. They were automatically translated into terms, corresponding to the
database structure. LUNAR used the advanced language analysis system. First,
syntactic analysis produced a parse tree. Following, semantic analysis was
performed to identify meaning of elements of the parse tree using derivation rules.
Finally, the result of the semantic analysis was used to generate a query. The
following example question of the LUNAR system is presented [133]: What is the
average concentration of aluminium in high alkali rocks?

27

A number of later systems used semantic grammars. This kind of architecture
allowed analysing natural language questions easier. RENDEZVOUS accepted
relatively unrestricted natural language questions and used clarification dialogs
when having difficulties with parsing user input. It also used query paraphrasing
which allowed reformulating a question if it was interpreted incorrectly [72].
LADDER interface was designed to work with large databases [44]. PLANES was
created to answer questions, related to airplane maintenance and flight history [128].
However, when portable systems started to be create, semantic grammars were
abandoned.

In the early eighties, one of the most prominent NLI to databases was CHAT-80
[130]. It used intermediate question representation as Prolog expressions that were
executed in a Prolog database. This system was widely used. Additionally, it became
a base for other experimental systems, for example, MASQUE.

In the mid-eighties, much attention has been paid to solving the portability
problem. For example, the TEAM interface [33] was designed to be easily
configurable by database administrators without any specific knowledge. ASK
[117], [116] had expandable vocabulary that could be filled by users. This NLI had
an internal database, but could also connect to external databases and applications,
communicating with them using the same interface and hiding the complexity of
those systems. JANUS [93] also had a similar interface with external systems,
integrating them and providing a single interface to question their data. JANUS was
one of the few systems, supporting temporal questions (questions with specifying
time). Another system of the mid-eighties was STEP. The important feature of this
system was the feedback mechanism, based on the intermediate representation of the
question. It allowed users to check, whether the system understood the question
correctly [72]. Some of the other interfaces that appeared in the mid-eighties were
DATALOG, EUFID, LDC, TQA, TELI, etc. Commercial NLIs were also developed
(e.g., INTELLECT, Symantec Q&A, Natural Language of Natural Language Inc.,
etc.). However, they were not commercially successful as was expected and interest
in this type of interface started to decline. Therefore, this area of research was
abandoned.

Research on NLIs were resumed when the Semantic Web idea spread. However,
most of the challenges remained the same for NLIs to ontologies.
2.1.4 Challenges of developing natural language interfaces

Development of NLI is inseparable from the challenges that are centred on [20]:
• Understanding the natural language;
• Understanding the data, which is being questioned;
• The way, in which user’s information needs are verbalised into questions.
Understanding natural language is challenging, because natural language is

complex and ambiguous. There are morphologically rich languages that makes them
even harder to understand. In general, the natural language understanding problem
includes the syntactic analysis, solving the ambiguity and expressiveness of the
language. Methods of dealing with these problems are presented in subsection 2.1.9.

The important feature of NLI is the ability to relate user thoughts and their
expressions in natural language with the data storage view. Knowledge bases have

28

different structures and also the same things can be stored differently. For example,
the number of countries that river flows through can be stored as data property or
rivers can be connected with countries using object property. In addition, some
words might have different meanings in two different domains or contexts. For
example, How the word big can refer to height, length, area, or population –
depending on the question context. Therefore, a NLI needs to have a configuration
mechanism to relate natural language phrases with structures of knowledge base and
ensure portability.

Another problem is that knowledge bases store data in optimized structures,
which differs from how people formulate questions. For example, n-ary relations are
a natural and convenient way to represent meaning in the Semantic Web [82].
Consider ontology, containing classes person and organization with object property
works_in. It allows questioning for persons working in organizations. However, if
one wants to store the period when a person worked in a certain organization, a n-
ary relation with intermediate class is required and the structure of underlying
ontology becomes different from the language formulations of the question. To
avoid this problem, the configuration mechanism of NLI must be able to relate
simple phrases of natural language with complex structures of knowledge bases.

Another group of challenges is focused on users and translation of their
information needs to questions. NLIs have only one textual query box that can pose
difficulties for users who need to express their information needs through natural
language queries. In order to address this problem, several usability enhancement
methods have been developed. These methods either assist users with query
formulation, or communicate with the user by asking them to confirm the
interpretation of the questions. The purpose of such methods is to increase the
habitability of the system [20]. These methods are overviewed in section 2.1.9.
2.1.5 Questions in natural language interfaces

Before discussing the main syntactic problems of understanding natural
language questions, an introduction of the most commonly used groups of questions.
These groups were identified working on project [99] and analysing question sets of
Mooney Natural Language Learning Data [75].

The simplest questions retrieve objects of a certain type, for example, Find
organizations. Another group contains questions with very similar syntax, but their
meaning is changed using superlative adjectives, for example, Find largest
organization. It is more difficult to answer these questions. The system needs to
know, what criteria should be used to answer them and avoid a nominal compound
problem (e.g., largest by sales, number of employees, etc.) and perform calculations.

Questions with modifier attachments belongs to another group of questions. The
modifier attachment phenomenon occurs, when modifiers are used to modify
meaning of syntactic elements (i.e., constituents). For example, in questions Find
persons that work in organizations and Find persons that work in KTU, the meaning
of person is modified by retrieving only those persons that work in some or specific
organization. Questions can have more than one modifier (e.g., Find persons that
work in organizations that are located in Kaunas). Questions with modifier

29

attachments can be additionally restricted using cardinalities, for example, Find
persons that work in at least two organizations.

Another group contains questions using count functions. Their syntax is very
similar to the syntax of questions, using modifier attachment (e.g., How many
persons work in KTU). These questions are distinguished by counting keywords
(e.g., How many, What is the number of, etc.).

It should be noted, that NLI should also answer combined questions, for
example, How many large organizations are in Kaunas.

Certainly, everyday language contains many more constructions of questions.
The presented groups are the most commonly used working with NLIs and is
considered in this work. More complex questions, such as ones, using conjunctions
or disjunctions, are more difficult to interpret and answer correctly. In addition, it is
unlikely, that internet users will be happy writing long and complex questions.
2.1.6 Understanding natural language questions

In this subsection, it is presented the most common linguistic problems of NLIs
and the natural language understanding in general. It also presents possible solutions
of how to cope with such problems.

The overview starts with elliptical questions. These questions do not have all the
required words, but they can be recovered from the context. The example of the
elliptical question is presented following [1]:

 - Who is the manager of the largest department?
 - John.
 - The smallest department?
 - Jack.

Elliptical questions are interactive: after the most comprehensive question, the

shorter elliptical questions are submitted. Users often want to submit a group of
similar questions. In this way, long and repetitive questions are avoided. To
implement such a solution, a robust discourse analysis mechanism is needed. The
easiest way to avoid a problem of long and repetitive questions is to allow users to
edit and resubmit previous questions [1].

Anaphora is another difficulty that is faced when analysing natural language
questions. In linguistics, it is a phenomenon when pronouns (e.g., she, he, they, etc.),
possessive determiners (e.g., her, his, their), or noun phrases (e.g., these people) are
used for implicitly denoting entities mentioned in the discourse [1]. Anaphora is a
common problem in natural language processing. Anaphoric expressions make
questions more natural, but these expressions must be resolved by identifying
denoted concepts, called antecedents. The example of a question with anaphora is as
follows:

 - Find city where John lives.
 - Kaunas.
 - What organization does he work?

30

In the second question, the pronoun he means person John. The easiest way to
resolve anaphoras is to keep a list of all available concepts in the discourse and
select the most recently mentioned concept, which corresponds to syntactic and
semantic constraints of the anaphoric object and its antecedent [1].

In everyday language, people make grammatical mistakes. Nevertheless, other
people usually correctly understand what they mean. Although NLIs are foremost
designed to understand correctly formulated questions, it is desirable to understand
ill-formed texts (or at least partially), especially in cases when mistakes are not
critical for correct interpretation of questions (e.g., missing articles, keyword
mistakes, disagreement between cases or numbers, capitalization, or punctuation
errors, etc.). The lexicon of NLI can be used for finding or automatically correcting
mistakes.

Another linguistic problem is related with questions, using modifier attachments.
Sometimes it is not easy to determine, which constituent is modified. Consider a
question, taken from [1]: List all employees in the company with a driving licence.
For people it is obvious, that modifier with a driving licence refers to employees.
However, this question is ambiguous for a computer, because it can also refer the
modifier to company. To resolve such ambiguities, some NLIs use heuristic rules.
For example, in [26] it is assumed that a relative clause modifies the rightmost
available constituent. Another solution is using clarification dialog, where the user is
asked to determine the correct interpretation.

Another linguistic problem is related with interpretation of determiners (e.g., a,
each, some, every, several, etc.). They are usually interpreted as logic quantifiers.
However, the interpretation is not always obvious. Consider the question, taken from
[60]: Which dish did every boy make? It is assumed that the quantified noun phrases
in questions can be interpreted in three different ways: the narrow-scope reading
(i.e., every boy made pasta); the functional reading (i.e., every boy made his
favourite dish), and the pair-list reading (i.e., All made pasta, Bill made salad, and
Carl made pudding). However, some quantifiers do not allow pair-list reading (e.g.,
Which dish did most/several/a few/no boys make?). In addition, some questions do
not have pair-list interpretations (e.g., Which boy made every dish?) [60].

The linguistic problem of determining quantifier scope arises when multiple
quantifiers are used in a single question. It leads to an ambiguous situation when it is
not easy to determine which quantifier should be given to the wider scope. Consider
the question Has every student taken some course? [1]. This question has two
different interpretations:

 ∀student ∃course taken (student, course) ∃course ∀student taken (student, course)

The first interpretation means that each student has taken any course. The second

interpretation means that each student has taken the same course. For resolving such
ambiguities, the heuristic method is proposed in [90]. It suggests that quantifiers
preserve the same order as for the determiner in the question.

31

The conjunction can also cause ambiguities that are difficult to resolve. In some
situations, the word and does not necessarily have the meaning of conjunction.
Consider the question List applicants that live in California and Arizona [115]. In
this question, the word and is used, but the question should be interpreted using
disjunction to get persons from either California or Arizona.

The nominal compound problem arises when a noun is modified with another
noun or adjective creating an ambiguous meaning. For example, the compound
phrase major river can be interpreted in a number of ways: a river that traverses
through a certain number of countries, a river of a certain length or width, etc.
Another example large company can be understood as a company with high sales or
a company that employs a large number of employees, etc. If the system contains
only data about sales of companies, this phrase can be easily disambiguated.
However, in some situations it is hard to determine the right interpretation. To
address this problem, some systems require defining each possible noun-noun or
adjective-noun compound in a configuration phrase [1].
2.1.7 Portability of natural language interfaces

Portability is the desired feature of NLIs and is considered as one of the most
challenging problems of developing a NLI [13]. This term was defined when NLIs
to databases were being developed. It is considered, that NLI to database is
knowledge-domain portable, if it can be configured for use in a wide variety of
knowledge domains [1]. However, many NLIs to databases were not portable and
were created to work only in a particular domain. The portability problem remains
relevant for NLIs to ontologies too. In addition, ontologies has a flexible data model,
which is changing and evolving over time and therefore the NLI should be adaptable
to these changes.

The most important issue here is to have a mechanism for specifying, how
natural language words and formulations map to structures in the knowledge base
[13]. Portability is closely related with correctness. Correctness is the criterion of
how correct results are and is expressed using precision and recall parameters. It is
always trying to keep the balance between these two features. If a system is portable
with little configuration efforts, the correctness is often worse and vice versa, if a
system is more tied with a certain domain and is not portable, it returns more correct
results. Easily portable systems, such as Querix [56], QuestIO [22], or NLP-Reduce
[55] require no or little configuration efforts. However, additional configuration can
improve the correctness [30].

A person, responsible for configuring NLI, creates a lexicon of a particular
domain and map linguistic formulations with the knowledge base [22]. This work is
often carried out by domain experts. A configuration can be time expensive, so it is
desirable to reduce the amount of effort and make a NLI easier to be portable to
different domains. Therefore, some systems use techniques to achieve portability
without additional efforts. For example, in QuestIO or FREyA [19], knowledge is
extracted from ontologies and lexicon is created automatically. Certainly, the
correctness depends on the quality of lexical information (e.g., labels, descriptions,
etc.) available in the ontology [22].

32

2.1.8 Habitability of natural language interfaces
Habitability is a term, proposed by Watt in 1968 [132]. This term is often used in

context of NLIs. It defines how easy and naturally a user can express his thoughts
using language restrictions. For example, if a certain question can be expressed in
five ways, the habitable NLI should understand each of them. Misalignment of
system capabilities and user expectations is called the habitability problem [118].

According to Epstein [26], a language is habitable if users are able to construct
expressions of the language, which they have not previously encountered, without
significant conscious effort. In addition, users are able to avoid constructing
expressions that are not part of the language.

Ogden and Bernick [84] describe the habitability in the context of four domains:
conceptual domain, functional domain, syntactic domain and lexical domain. NLIs
try to cover each domain by meeting expectations of the users. The habitability is
determined by how well these expectations are met.

The conceptual domain means the conceptual coverage of NLI. It means that the
interface can understand only those concepts that have relations with data stored in
the knowledge base. For instance, one cannot formulate questions to find persons
and organizations they work in, if there is no information about that. However, the
conceptual coverage of natural language and knowledge base can disagree. If
conceptual coverage of the knowledge base is wider than the conceptual coverage of
natural language, some information will not be found. Otherwise, users will be able
to formulate questions that will not be answered. The system should react properly
in such cases and inform users that certain question could not be answered (e.g.,
Information about persons and their organization is not stored). To sum up, the
conceptual domain determines what can be queried by the system [20].

The functional domain is determined by a number of functions and knowledge
that a system has for searching and inferring information. Same questions can be
formulated in many ways, depending on knowledge and experience of the users.
This domain defines how questions can be formulated. Consider the following
example: What is a salary of John’s Smith’s manager? The procedure of getting the
answer to this question is complicated and if the system is not sophisticated enough,
this question cannot be answered. However, it can be formulated in a different way
by writing two questions [84]:

 - Who is the manager of John Smith?
 - Mary Jones.
 - What is the salary of Mary Jones?
 -1200$

A habitable system should also provide functions that the user expects from the

natural language interface: counting, comparison, search for minimum and
maximum values, etc. This type of questioning should be determined automatically
by specific words and phrases (e.g., largest, smallest, greater than, how many, etc.).
Consider the following question: How many people live in France? The habitable
system should properly understand it and use a counting function. Another field of

33

functional criterion – determining types of proper names. When talking about
persons or organizations, people naturally understand types of proper names without
stating it explicitly. It is also expected from a habitable NLI. Consider the following
question: Where John Smith works?. The habitable system should understand that
the question is intended to find information about person John Smith.

The syntactic domain is defined as a set of different phrases, having the same
meaning that can be understood by the system. It defines how flexible questions can
be formulated. For example, if the system is not sophisticated enough, it cannot
understand and interpret both of the presented questions in the same way [84]:

 - What is the salary of John Smith's manager?
 - What is the salary of the manager of John Smith?

The lexical domain is defined as a set of available words in the lexicon,

including synonyms. It allows formulating more diverse question. Consider the
following question: What are the earnings of John Smith? If the lexicon does not
have some of its word, the question will not be answered.

Habitability of NLI directly correlates to its usability [21]. This term is more
general and defines quality of the appropriateness to a purpose of any particular
artefact [9]. With particular reference to information systems, ISO 9241 standard
suggests that one of the areas that usability measures should cover is effectiveness
[9]. It defines the ability to complete tasks using the system, and the quality of the
output of those tasks. From the end users point of view, effectiveness of NLIs is
typically evaluated in terms of precision and recall [20].
2.1.9 Usability enhancement methods

NLIs use methods to avoid the habitability problem and, therefore, improve
usability. The main requirement of a habitable NLI is that its vocabulary must be
aligned to that of the user. This means that the user must formulate questions using
terms, understandable by the system. However, at the beginning of using a NLI, the
user is not familiar with its vocabulary and does not even know, what can be asked.
At this stage, methods help to familiarise a user with the vocabulary of the system
and adapt it to that of the user [21]. These methods are presented further.

Guided interface is the method, which helps to familiarise the user with
lexicon, language restrictions, and supported functions of the NLI. It guides user to
write correct questions showing available words. The method is especially useful
when the user is not familiar with the vocabulary and does not know what can be
asked and how questions can be formulated. One of the options implementing
guiding interface is autocompletion. Traditional autocompletion is based on
matching input strings with a list of the words in a vocabulary. In NLIs to ontologies
and other ontology-based systems, autocompletion can be extended to semantic
autocompletion, when ontology resources are used to predict further available words
[21] [47].

In [118], guided interface is implemented as a contextual menu, which is used to
formulate natural language questions and commands. Users can write the question
either by typing it or selecting items from menus, driven by a grammar. This helps

34

to restrict the user to formulate only those questions that are understandable by the
system and avoid the habitability problem.
 Feedback is a technique to present the interpretation of question in a form,
understandable by the user [21]. It familiarizes the user of how questions are
interpreted, what mistakes are made, and what criterion of habitability is violated.
Therefore, users start formulating questions in a way understandable by the system
more quickly [136], [100]. Feedback allows users to confirm, whether the question
is correctly interpreted and reformulate it if needed. Feedback is a desirable feature
of the NLI, because it increases the confidence in the system and its returned results.

Controlled natural language (CNL) is a subset of natural language, based on
restricted vocabulary and grammar rules that have to be followed [18]. On the one
hand, CNL allows retrieving data without extensive training, whilst on the other; has
less expressiveness than formal languages, used for querying. However, NLIs to
ontologies usually use CNLs to avoid the complexity and ambiguity of natural
language.

Synonyms, hypernyms, and hyponyms are used to extend the lexical domain
of habitability. Synonyms are different words that have the same or nearly the same
meaning. Hypernyms and hyponyms are used to show the relationship between more
general word (i.e., hypernyms) and more specific words (i.e., hyponyms). To enrich
the lexicon with synonyms, hypernyms, and hyponyms, external lexical resources,
such as WordNet [28] or FrameNet [96] are often used.

Derivations are used to define concepts that are derived from other concepts.
This activity is often performed in a configuration phase. Derivations extend both
lexical domain, because more words are recognized, and functional domain, because
some concepts can be derived based on their data properties (e.g., finding minimum,
maximum values, etc.). For example, the term large city can be defined as the city
having a minimum number of citizens.

Another group of usability enhancement methods are used when a question is
already written. They help to resolve ambiguous questions and adjust the vocabulary
of the user with the vocabulary of the system [21]. These methods are presented
further.

Automatic ambiguity resolving is a method for resolving ambiguities using
heuristics and knowledge base. NLIs to ontologies usually use ontology reasoning
for mapping questions with ontology resources. For example, if a user did not
explicitly identify some concept writing question, it can be resolved analyzing
domains and ranges of object properties. In addition, morphological libraries, string
metrics [22] [30] and other techniques could be used.

When ambiguities cannot be resolved automatically, clarification dialog
involves the user into the process of interpreting questions to modify interpretations
[20]. The user can supervise the process of a creating formal query to get results or
make them more precise. This method helps mapping vague or ambiguous terms of
questions with ontology concepts. For example, if a user enters the word
Mississippi, it can be interpreted as a state or river. In such a situation, the system
must show a clarification dialog, allowing the user to select the correct
interpretation. The clarification dialog is in effective working with large knowledge

35

bases, having many resources with identical names that leads to ambiguous
questions. Another way to cope with ambiguities is using every possible
interpretation of the question and showing all results. However, it is not feasible
when there are too many interpretations [19].

Clarification dialog can be used together with learning mechanism to save
user’s input and reuse it. It improves the user’s experience over time and reduces the
cognitive overhead [20]. During the query interpretation, the learning mechanism
can remember choices that were made previously in similar situations. For example,
AquaLog system can remember novel phrases that a user entered and relate them
with ontology structure. If the system faces the term homepage and the user relates it
with ontology relation has-web-address, this decision will be remembered in the
future.

Query refinement – is changing the query in order to obtain results that are
more relevant. It usually means adding more constraints to the query until the user
obtains results that satisfies them [21]. This method is used to deal with ambiguities,
which are caused by vague expression of the user’s information need [17].

In [106], query refinement assists the user to formulate a more precise question.
When the user writes its initial question, the system tries to search for ambiguities
analyzing the knowledge base and the structure of underlying ontology. To
successfully refine question, it is important to know the information needs of the
user. In this approach, user’s needs are obtained by analyzing its interaction with the
portal. Finally, the refinement process derives more generic, more specific, similar
(i.e., results are partially overlapped with initial results) or equivalent queries (i.e.,
results are the same, but the execution of query is optimized).

In QuestIO [17], query refinement is straightforward, allowing the user to select
the set of returned documents.
2.1.10 Natural language interfaces to ontologies

In this subsection, the existing NLIs to ontologies, showing promising results of
answering questions, are analysed. In order to find their commonalities and
differences, the joint method of agreement and difference is used [71]. NLIs are
compared on the following criteria: (1) portability; (2) possibility of automatic
configuration; (3) capability to map language phrases with combinations of ontology
resources; (4) capability to resolve language ambiguities automatically; (5)
capability to resolve language ambiguities using clarification dialogs; (6) capability
to refine queries; (7) clear adaptability for different languages. Algorithms of
parsing and transforming questions to ontology queries are also analysed. In further
text, the criterion number in parenthesis marks the mentions of analysed criterion.

The analysis starts from QuestIO [22]. This NLI does not require any user
training and allows writing English questions of any length and form. QuestIO is
portable (1), the lexicon is created automatically by generating a gazetteer list from
morphologically normalized ontological lexicalizations. Therefore, the approach can
be applied for different ontologies without configuration (2). QuestIO cannot map
NL phrases with combination of ontology resources (3).

Questions are interpreted identifying key concepts and searching for relations
between them based on object properties of the ontology. The algorithm of analysis

36

and transformation of questions includes the following steps: linguistic analysis,
ontological gazetteer lookup, transformation to SeRQL query, executing query and
displaying results. In the first step, tokenization, POS tagging and morphological
analysis is performed. In the second step, annotations for all mentions of ontological
resources are created from the gazetteer list. In the third step, the most suitable
interpretation is found. Finally, the question is transformed to a query which is
executed against the ontology. Disambiguation (4) is performed using ontology
reasoning in order to derive all potential valid interpretations of the question. To find
the most suitable interpretation, fuzzy string distance metrics and similarity scores
are used. Clarification dialogs (5) are not used in this approach. However, it uses
query refinement, which allows to refine the set of returned documents or to provide
an answer [17] (6).

The next NLI is FREyA [19]. It allows a flexible formulation of English
questions, having no strict structures. FREyA is designed by the authors of QuestIO
to have a better understanding of the semantic meaning of questions and provide
concise answers. FREyA is a portable NLI (1), requiring no configuration. The
lexicon is derived from the semantic repository by executing the set of SPARQL
queries [17] (2). FREyA cannot map NL phrases with a combination of ontology
resources (3).

The algorithm of translating question to query combines ontology reasoning and
syntactic parsing. First, ontology based annotations, called ontology concepts (OC),
are identified in the question. In the next step, a syntax tree is created. Certain words
in the syntax tree (e.g., nouns, noun phrases, etc.) are identified as potential ontology
concepts (POC). The algorithm iterates through all POCs and tries to map them to
OCs automatically either (4) or engaging the user (5). If some POCs cannot be
resolved, the algorithm finds the closets OC for that POC by walking through the
syntax tree and generates suggestions using ontology reasoning. Suggestions are
ranked using string similarity metrics, synonyms, and other algorithms. Clarification
dialog is generated for the user to select the relevant suggestion [20]. When all POCs
are resolved, the query is interpreted as a set of OCs and transformed to SPARQL.

To improve habitability, FREyA also uses query refinement together with
feedback mechanism. It allows the user to confirm if the question is interpreted
correctly or reformulate it if needed (6).

ORAKEL is a system, capable of understanding composite semantic
constructions, such as quantifications, conjunctions, and negations [12]. ORAKEL is
portable (1), but, unlike QuestIO and FREyA, it requires configuration (2). The
mapping of NL phrases with ontology is defined creating linguistic structures, called
subcategorization frames (i.e., verbs with their arguments). Part of the lexicon
(including proper names) is automatically generated from the underlying ontology.
WordNet [28] is used to append lexicon with synonyms. ORAKEL allows relating
subcategorization frames with a combination of several relations in the ontology and
answer questions that do not directly correspond to one relation in the ontology (3).

The parsing process includes syntactic analysis of the question and construction
of semantic representation in terms of first order logic, enriched with query, count,
and arithmetic operators. The syntactic analysis is performed using logical

37

description grammar. First, parser selects elementary trees from the lexicon for each
token. A parse tree is produced combining elementary trees. Then, the meaning of
every word in the parse tree is analysed, semantic representation is created and
translated into the query. In ORAKEL, ambiguities are resolved automatically (4)
during the parsing process. The algorithm selects only those elementary trees that
fulfil the ontological restrictions. Clarification dialogs (5) and query refinement (6)
are not used in this approach.

PANTO [129] accepts English NL questions. It is designed to be portable (1) for
different domain ontologies without manual configuration (2). The lexicon is built
automatically from ontology entities. As well as in ORAKEL, proper names are
written to the lexicon. Users can enter their own synonyms. This helps to adapt the
system for specific domains. In this approach, NL phrases cannot be mapped with a
combination of ontology resources (3).

The parsing and transformation to SPARQL is performed by the query
translator. First, questions are parsed using the statistical Stanford Parser [58].
Nominal phrase pairs (i.e., phrases or words and their relationships expressed by
verb phrases, prepositions, etc.) are extracted from the parse tree to form
intermediate representation of the question, called query triples. Then, query triples
are mapped to ontology triples using lexicon. Simultaneously, the parse tree is
analysed to extract potential words for targets (i.e., variables after SELECT
keyword) and modifiers (i.e., information for UNION and FILTER elements).
Ontology triples, targets and modifies are finally used to generate a SPARQL query.
Questions are disambiguated automatically (4), matching query triples to ontological
triples. This step is performed employing semantic matching (i.e., using WordNet
[28]) and morphological matching (i.e., using string metrics [14] and heuristic
rules).

PANTO does not use clarification dialogs (5) or query refinement (6).
Querix [56] is a domain-independent NLI for the Semantic Web to answer NL

questions in English. Querix is portable (1) and requires no manual configuration
(2). The lexicon is constructed from the ontology automatically and is enriched
using WordNet [28]. Querix does not have means to map NL phrases with a
combination of ontology resources (3).

The algorithm of question analysis starts from creating the syntax tree using
Stanford Parser [58]. Word categories of the syntax tree are used to compose the
query skeleton. Then, a small set of heuristic patterns are used to identify triple
patterns of the question. After finding possible triples in the skeleton and combining
them with ontology resources, the SPARQL query is generated [56].

Querix does not try to resolve ambiguities of NL automatically (4), but asks the
user for clarifications using dialogs (5). This approach does not use query refinement
(6).

AquaLog [30] is a portable (1) question answering system, which interprets
questions using terms and structure of the ontology. Although Garcia et al. [30] state
that configuration time is negligible, AquaLog requires manual configuration (2).
Therefore, it cannot be configured to map NL phrases with a combination of
ontology resources (3).

38

The analysis of NL question starts with translating it into a set of intermediate
representations – query triples. Further, relation similarity service (RSS) is used to
map query triples to ontology compliant triples. Ontology compliant triples are used
to generate SPARQL query. Ambiguities are resolved automatically in RSS. The
algorithm uses knowledge, encoded in the ontology and string metrics (4).
Ambiguities can also be resolved by interacting with users using clarification
dialogs (5). Query refinement (6) is not used in AquaLog.

The analysis is summarized in the comparison table in Table 2.2. It also includes
SBVR based NLI to ontologies, created in this work.
Table 2.2. Comparison of NLIs to ontologies

Criterion
QuestIO FREyA ORAKEL PANTO Querix AquaLog SBVR

based
NLI

1. Portability + + + + + + +
2. Automatic
configuration

+ + - + + - -

3. Mapping NL
phrases with

combination of
ontology
resources

- - + - - - +

4. Automatic
ambiguity
resolving

+ + + + - + +

5. Clarification
dialogs

- + - - + + +

6. Query
refinement

+ + - - - - -

7. Clear
adaptability for

different
languages

- - - - - - +

The analysis of NLIs to ontologies led to some general conclusions. First,
authors of the analysed approaches do not discuss adjusting them for writing
questions in different languages, what components are language dependent, etc.

All of the analysed NLIs are portable. The lexicon of NLIs is often created semi-
automatically. Part of the lexicon is generated from ontology lexicalization, and the
rest is created manually by the user. However, most NLIs do not have a means to
relate formulations of question with a combination of several ontology relations.

For improving the habitability, most NLIs use algorithms to solve ambiguities
automatically using heuristic rules or ontology reasoning. When ambiguities cannot
be resolved automatically, the system generates clarification dialogs and the users
become involved.

The desire to write questions in different languages and the need to relate
questions with combinations of ontology resources led to the solution of creating a
new NLI to ontologies. In order to make transformation rules of questions
independent from language, it was decided to use intermediate representation of
question, instead of transforming a syntax tree directly to query. Further, SBVR

39

metamodel and its capabilities to use an intermediate representation of NLI are
analysed.

2.2 SBVR knowledge model and SPARQL query language

2.2.1 Overview of SBVR knowledge model
Semantics of Business Vocabulary and Business Rules (SBVR) is OMG

specification to define the vocabulary and rules for describing business semantics
(i.e., business concepts, business facts, and business rules) using SBVR Structured
English (SSE) or other CNL [98]. SBVR is one of the first OMG standards for
creating detailed business focused natural language specifications. The first version
of SBVR specification was introduced in January 2008. The latest version was
released in November 2013. SBVR is a synthesis of four disciplines [11]:
terminology science, natural language grammar structures, formal logic, and
business rules approach. The foundation of SBVR is a semiotic/semantic triangle,
which is the theoretical basis for the SBVR’s linguistic based architecture.

The idea of SBVR is to raise the process of information system development
into a more abstract level by creating information system specifications using some
kind of structured language. Therefore, SBVR specifications are understandable for
business people and interpretable by software tools. By providing business-oriented
language for specifying business knowledge and capability to transform them to
software models and artefacts, SBVR bridges the gap between business
requirements and formal models of information systems [23].

SBVR is an approach that enables people and organizations to treat business,
legal, and educational knowledge in a productive way not seen before [78].
However, applying SBVR in practice has various limitations. For example, SBVR
lacks the larger collection of data types and patterns for expressing arithmetic
operations, date, time, past, future events, etc. Although SBVR specification is
extensible, standard constructs for the most frequent cases are desired.
Spreeuwenberg and Anderson noticed more deficiencies of SBVR: lack of
inferences, lack of references (i.e., rules should be stated in single sentences),
necessity to introduce concepts before referencing to them, impossibility to express
directives, etc. [104], [105]. However, the main drawback of SBVR is the
complexity of its metamodel for production of suitable vocabularies [46]. In reality,
sophisticated SBVR tools should handle the complexity. Users should work with
SBVR Structured English language and create business specifications with the help
of business experts.

Researchers have introduced transformations of SBVR specifications to various
software models: UML&OCL [16], [76] and vice versa [10], BPMN [7], [122],
RDB schemas [70], SQL [74], OWL [24], OWL 2 [52], [89], [51], [53], Web
Services [31], [50], etc. In addition, several EU projects were devoted to create tools
for authoring SBVR business vocabularies and rules, and transforming them into
various software models and code. OPAALS (2006-2010, generating Web services
and data models from SBVR specifications [70], [77]), ONTORULE [85] (2009–
2012), aiming at integrating knowledge and technologies needed for extracting
ontologies and business rules from various documents, including natural language

40

texts, managing them and implementing in software systems. The commercial tool
suite for Business Semantics Management Collibra [15] presents capabilities for
authoring SBVR vocabularies and rules, generate ontologies and various models of
information systems. Besides automating development of software models and their
implementations [63], [65], SBVR Structured English may serve for creating
semantic specifications of legacy information resources, integrating these resources,
implementing contextualized and multilingual information systems, etc. The power
of SBVR is disclosed by the fact that SBVR specification itself is formally written in
SSE [62].

SBVR mainly covers two aspects – business vocabulary and business rules.
Business vocabulary specification contains concepts and their relations while rules
serve as elements of guidance that govern actions. Specification of business
vocabulary and rules allows describing organization from static and dynamic points
of view. SBVR also allows questioning business models and their implementations.
However, this functionality attained only little attention from related research and
SBVR specification [112]. Kriemacher in 2006 noticed the possibilities of SBVR
questions [59] for business people to query systems for business models without the
support of programmers. SBVR questions are much more comfortable for business
people than various query languages that are platform-specific and suitable for IT
specialists; having the experience of working with special tools. However, it is
believedthat no further research in that direction was done.
2.2.2 Overview of SBVR metamodel

The metamodel of SBVR consists of three main parts: meaning, representation,
and expression. Elements of meaning holds the shared sense that people assign to
real world objects. Metamodel allows defining meaning of business concepts, their
relations, business rules and questions. The meaning is not a text, graphical symbol,
or some other kind of representation. The metamodel of SBVR meaning is presented
in Figure 2.3.

Figure 2.3. Metamodel of SBVR meaning [98]

41

Concepts are used to formulate meaning of business vocabulary. Noun concepts
and verb concepts describe business entities and their relations. They are used to
compose a conceptual schema that is a basis for defining propositions and questions.

The question element is used to define meaning of interrogatory. The word
“question” has two common meanings: written or spoken expression of inquiry and
the meaning of such inquiry. Using the second definition, a question can be asked in
different languages. However, the first definition results different expressions for
different languages. The concept “question” here should be understood in the sense
of meaning, without confusing it with expression or representation of question [98].
The meaning of question is defined by semantic formulations – structures based on
formal logic, as presented in the further subsection.

The last type of SBVR meaning is proposition. Proposition is the meaning of a
declarative sentence and is used to express meaning of a business rule. Facts are
propositions that always have meaning true.

Elements of representation relate meaning with expression (i.e., elements used to
communicate, such as text, sounds, diagrams, etc.) as presented in Figure 2.4.
Meaning can have many representations, therefore they can be expressed in different
ways. It is necessary for two reasons [94]: allows using different types of
representations and multilingualism (i.e., sharing and talking about the same
concepts in different languages).

Vocabulary concepts can have definitions. Definition is a representation of
concept by a descriptive statement, which serves to differentiate it from related
concepts. Definitions can be formal (i.e., expressed by logical formulations) and
informal (i.e., expressed in natural language sentences having no underlying SBVR
logical formulations).

Figure 2.4. Metamodel of SBVR meaning and representations [98]

2.2.3 Formulating the meaning of question
The meaning of a question is formulated using specific SBVR semantic

formulation – projection. According to the SBVR specification [98], a projection

42

returns a set of things that satisfy a projection’s constraints. The projection
introduces one or more variables to represent results of a question. Types of results
are defined by general concepts that variables range over. For example, if one wants
to see a list of persons in results, the question introduces a variable that ranges over
the general concept person. For introducing other types in results (e.g., organizations
that person works in), the corresponding variables are introduced.

A projection is constrained by logical formulation, which projects variables,
using first-order logic. The constraining logical formulation scopes over the atomic
formulation, which is based on a verb concept. Depending on formulations of
questions, verb concept roles can be bound to particular bindable targets – variables
or individual concepts. SBVR metamodel fragment for representing questions is
presented in Figure 2.5.

Figure 2.5. SBVR metamodel fragment for representing questions [98]

2.2.4 Using SBVR for NLI to ontologies
There are several reasons, why SBVR could be used for NLI to ontologies. First,

the SBVR metamodel allows to model questions and could be used as an
intermediate representation of meaning for transforming questions to queries. SBVR
separates meaning from expression and allows expressing the same things
differently and in different languages. For example, questions will have the same
meaning, even though they are written in different languages.

SBVR specifications allow describing semantics of the business domain,
required for semantic search (hypernyms, hyponyms, synonyms, etc.). In addition,
SBVR allows specifying derivations of concepts from other concepts and can
support inferences [64]. SBVR derivation rules seem to have a potential for bridging
the gap between the ways in which specific data is stored (i.e., the ontology scheme)
and how a user thinks about data. It is an important function of NLI, because facts
questioned using simple and more abstract language formulations can be stored in
more complex ontology structures (i.e., expressed through several object properties,
derived from values of data properties, etc.).

43

2.2.5 Overview of SBVR editing tools
An important prerequisite to use SBVR for NLI to ontologies is a robust SBVR

editing tool that would be used in the configuration phase to specify vocabulary and
rules (i.e., lexicon) of NLI to ontologies. Such an editor should support SBVR
questions and be capable to serialize them to XMI models for further
transformations to SPARQL queries. In this section, the overview of freely available
SBVR editing tools is presented. An important feature of a SBVR tool is its
capability to formalize business vocabularies, business rules, and questions in
accordance with SBVR metamodel. SBVR specifications should be serialized using
SBVR XMI format to allow transferring them to other tools or transformation
engines.

The first overviewed SBVR tool is an open source SBVR editor SBeaVeR. It
was created in 2006 as an Eclipse plugin [23]. SBeaVeR is capable to specify and
validate business vocabularies and business rules using SSE. Specifications can be
transformed to formal models (i.e., XML Schema format) to support the interchange
of specifications between software tools. SBeaVeR editor has syntax highlighting
following SBVR Structured English style, hierarchical vocabulary navigation panel,
and embedded WordNet [28] dictionary for support of synonyms, hypernyms,
hyponyms, meronyms, and informal definitions. Specifications are parsed and
validated using LL parser. It is a top-down parser for context-free languages,
constructing a leftmost derivation. Unfortunately, the tool is not further supported.

Another open source tool is VeTIS [76], [123]. It was created on a base of
SBeaVeR. It provides all functionality of SBeaVeR plus better capabilities of
specifying business vocabulary (i.e., support of individual concepts) and recognizes
a wider variety of business rules. In VeTIS, business vocabularies and business rules
are serialized into SBVR XMI models and further transformed to UML models with
OCL expressions. However, both tools lack the flexibility for further extensions to
realize the full potential of the SBVR knowledge model.

Marinos et al. presented a SBVR editor with syntax highlighting and auto-
completion functions [69]. Unlike SBeaVeR and VeTIS, it allows writing terms or
verbs consisting of multiple words without joining them with a dash. This tool also
automatically recognizes terms in plural form even if they were declared in a
singular form. It was implemented using the Active Support for JavaScript tool that
uses a number of well-known English patterns for determining plural nouns from
singular ones [69]. The grammar was written in OMeta, an object oriented language
for matching patterns, based on expression grammars [131]. Expression grammar is
similar to context free grammar, except that the ambiguity eliminated by prioritizing
alternatives [29]. The editor was implemented to work on a Web browser using
CodeMirror library. It is capable to specify terms, verb concepts with attributes,
complex business rules (i.e., based on several fact types), and quantifiers.

RuleXpress [95] is a commercial framework for developing and managing
business vocabularies and business rules. RuleXpress allows creating conceptual
models that comply with the SBVR metamodel using a graphical interface. It does
not use any controlled language for writing business rules. Instead, it allows using a
natural language and recognizes only those concepts that are specified in a

44

vocabulary. RuleXpress is not an execution tool, but rather a tool to help people to
organize and understand their business.

The SBVR lab 2.0 is a commercial SBVR editor working on a Web browser
[97]. This tool allows specifying business vocabulary and business rules in SSE.
Each vocabulary term and business rule should be indicated by specifying their type
and features. The SBVR lab 2.0 allows using binary verb concepts and
characteristics. Like in Marinos et al. editor [69], verbs of verb concepts can consist
of several words without joining them. The editor has a unique function of graphical
visualization of business vocabulary and publishing it to the Web.

Table 2.3 presents the comparison of the analysed SBVR tools concerning
several essential features.
Table 2.3. Comparison of SBVR editors

 SBeaVeR VeTIS
Marinos et
al. SBVR

Editor
RuleXpress SBVR Lab

2.0

Language used in
business
vocabulary and
business rules

SSE SSE SSE Graphical
interface SSE

Automatic
highlighting and
auto completion

+ + + − +

Language parser’s
grammar

Context-
free

grammar

Context-
free

grammar

Extended
expression
grammar

Uncontrolled
natural

language
Unknown

Formalization in
compliance with
SBVR metamodel

+ + − − +

Model
interchange
format

XMI XSD XMI model − − −

Possibility to
access generated
XMI

+ + − − −

Possibility to
extend tool
capabilities

Limited Limited Unknown Unknown Unknown

Support of SBVR
questions,
including XMI
serialization

- - - - -

The analysis leads to some general conclusions. First, most of the SBVR tools
provide special functionalities (e.g., automatic text highlighting, using style and
colours of SSE, autocomplete, etc.) to relieve the creation of business vocabularies
and business rules. The SBVR Lab 2.0 is distinguished by its graphical interface to
visualize SBVR specifications. The analysed tools provide different formalization
levels. Some of them, such as Marinos et al. editor or RuleXpress, preserve text

45

structure only, whereas others are able to transform text to formal SBVR
specifications and analyse their compliance. The analysed tools use different
interchange formats: XMI XSD allows interchange of SBVR conceptual schema
only, whereas the XMI model allows interchange of the overall SBVR model – its
conceptual schema, individuals, facts, and semantic formulations. SBeaVeR and
VeTIS tools allow accessing generated XMI schema; this function is useful for
developers, creating model transformations.

 Unfortunately, none of SBVR editors supports questions. Further extensions of
them are prevented because of an inability to access the required functionality or
such extensions are extra complicated. Therefore, a new SBVR editor is required.
2.2.6 Ontology query language SPARQL

The analysis continues with ontology query language SPARQL. It covers
SELECT query type and main syntactic elements, required to answer types of
questions, described in section 2.1.5. This subsection is prepared according to the
specification of SPARQL 1.1 [43]. Models are created in accordance with the
syntactic structure of SPARQL 1.1, presented in the specification.

After RDF data model was introduced in 1998, when a problem of data
extraction arose. Many query languages were suggested (RQL, SeRQL, TRIPLE,
RDQL, N3, Versa, SPARQL [42]). Finally, SPARQL became an official
recommendation of W3C and now is the de facto ontology query language [103].
SPARQL is based on analysis of matching RDF graph patterns. SPARQL query
contains a set of triple patterns called a basic graph pattern. Triple patterns are
similar to RDF triples, except that triple pattern can contain variables [7]. During
execution of a query, triple patterns are matched with RDF graph triples, variables of
the graph pattern are bounded with RDF elements, and query results (a solution set)
are provided.

The original version of SPARQL lacked many features for querying ontologies.
The SPARQL working group received many requests from the community to
complement SPARQL with new features. As a result, SPARQL 1.1 was released,
offering many new features that facilitated writing queries and making them simpler.
This version is an official recommendation of W3C from March 2013. The most
important features of SPARQL 1.1 are aggregate functions, subqueries, negations,
property paths, assignment of value to variables [57] [43].

Although SPARQL has four types of query (i.e., SELECT, ASK, DESCRIBE,
and CONSTRUCT), only SELECT queries are used in this work. Figure 2.6
presents top-level elements of this query type: SELECT clause, dataset clause,
WHERE clause, and solution modifier.

Figure 2.6. SPARQL 1.1 SELECT query

46

SELECT clause is a mandatory part of the SELECT query (Figure 2.7). It is
used to declare, what results the query should give and includes a list of variables
from a pattern matching. It can also include Expression elements, to represent results
from SPARQL 1.1 aggregate functions, such as counting, finding minimum or
maximum values, etc. The SELECT clause has optional DISTINCT and REDUCED
modifiers. DISTINCT is used to eliminate duplicate solutions. For large datasets,
where DISTINCT can be too slow, the REDUCED operator can be used to permit
solutions to be eliminated. In some situations, REDUCED can perform only
straightforward deduplication, i.e., to remove immediately repeated results and to
leave duplicates that are expensive to remove. In certain situations, it can be good
enough.

Figure 2.7. SPARQL 1.1 SELECT clause

Queries are executed against RDF datasets. The RDF dataset is a set of graphs
that always contains one default graph and zero or more named graphs. Each of the
named graphs are identified by IRI. If a graph is not specified in the dataset clause,
the query is executed against the default graph. The Dataset clause can be defined
using two keywords. FROM keyword is used to execute the query against the
default graph and specified named graphs. While FROM NAMED is used to execute
query only against specified named graphs. The structure of dataset clause is
presented in Figure 2.8.

Figure 2.8. SPARQL 1.1 dataset clause

The WHERE clause is used to define graph patterns (Figure 2.9). Graph patterns
are used to produce a result set by matching them with RDF graphs. Graph patterns
contain variables and results are formulated when each variable of the graph pattern
has binding to a certain RDF element. If at least one variable does not have a
binding, such results are rejected.

47

The WHERE clause is expressed by a graph pattern element, which contains a
number of triple block elements. The triple block element contains a number of
graph patterns, expressed by TriplesSameSubjectLeft. This element has a structure of
subject, predicate, and object. In positions of subject and object, variables or graph
elements (i.e., IRI references, blank nodes, RDF literals, numeric literals, Boolean
literals, etc.) can be used. In a position of predicate, variables or IRI references,
expressed by a VerbPath element, are available.

Figure 2.9. SPARQL 1.1 WHERE clause

The WHERE clause can also contain FILTER elements. They are expressed
using GraphPatternNotTriples and FilterConstraint elements as presented in Figure
2.10. Note that SPARQL 1.1 specifications has many other types of filter
constraints, such as functions for data type conversions, IN, NOT IN operators,
rounding functions, etc. In this model, only constraints for numeric comparison and
string matching are included.

Figure 2.10. SPARQL 1.1 FILTER

The last part of the SELECT query is a solution modifier (Figure 2.11). This part
is used after pattern matching for the following reasons: divide results into smaller
groups with GROUP BY modifier to calculate aggregate values; filter grouped
solution sets using HAVING modifier; order results using ORDER BY modifier;
slice results using LIMIT and OFFSET modifiers.

48

Figure 2.11. Structure of SPARQL 1.1 SELECT query solution modifier part

This analysis also revealed that SPARQL syntax metamodel and SBVR
metamodel of questions have conforming elements and suggests that transformation
of SBVR questions to SPARQL is feasible. For example, verb concepts of SBVR
closed projections conforms to SPARQL triple patterns, variables of closed
projection conforms to variables of SELECT clause, etc. Therefore, model based
transformations of SBVR questions to SPARQL will be developed and used for NLI
to ontologies.

2.3 Analysis of related works of Lithuanian researchers

Research on Knowledge Models, Information Systems, and Model Driven
Development (MDD) has a long history in Lithuania and currently is following the
newest trends. It is worth mentioning theresearch done in the Department of
Information Systems (ISD) at Kaunas University of Technology (KTU); Information
Systems Department (ISD) of Vilnius Gediminas Technical University (VGTU); the
joint project of ISD (KTU) and ISD (VGTU) VeTIS [123]; the joint project of ISD
(KTU) and Vytautas Magnus University (VDU) SemantikaLT [99]; research in
Kaunas Faculty of Humanities of Vilnius University (VUKHF), Klaipėda University
(KU), and others.

The main directions of ISD (VGTU) are business rule approach [80], [81], [121]
and ontologies [119], [120], [49]. All mentioned research work is related with
Model Driven Development.

Related work of Kaunas Faculty of Humanities of Vilnius University and
Klaipėda University are mainly directed towards Knowledge based engineering of
Information systems [39], [40], [41], [66], [67], [68], [114].

The closest relation of this research is with research work that is done or is being
carried out in the ISD (KTU), specifically, for creating the Semantic Search
Framework based on SBVR (Figure 2.12). The Semantic Search Framework was
applied in the SemantikaLT project, but separate parts of this framework have a
broader value and applicability. Research work, directly related with this research,
are transformations of SBVR business vocabularies and rules to OWL 2 ontologies
[52], [51], [53], creation of SBVR business vocabularies and rules from OWL 2
ontologies [5], [61]. This is because SPARQL 1.1 queries, obtained from the
particular SBVR business vocabulary and rules, must be formulated using concepts
of the ontology, which strictly corresponds to the same SBVR business vocabulary
and rules.

Other parts of the Semantic Search Framework (e.g., process of semantic
annotation, including anaphora and co-reference resolution, linguistic processing of

49

text corpus, etc.) are beyond the scope of this research, which is limited to the
obtaining of SPARQL 1.1 queries that can be executed in OWL 2 ontologies.

Besides that, this work is related with the experience of the Department of
Information Systems in the fields of Conceptual Modelling, SBVR Business
Vocabularies and Business Rules, Ontology Engineering, MDD [126], [125], RDB
[88].

Figure 2.12. Semantic search framework based on SBVR [99] (parts, distinguished by

darker background, were created on the base of this research)

2.4 Analysis summary

The huge knowledge resources accumulated on the Web, organization
documents, and data storages require new ways for search and analysis of
knowledge. Ontologies seem the most relevant means for coping with this problem,
but they need human friendly interfaces. The conclusions of the analysis are as
follows:

1. Analysis of scientific publications has shown that the preferable interface for
querying ontologies is a natural language interface (NLI). The most important
requirements of such NLI are adjustability to different languages, ability to
deal with complex structure of ontology resources, portability, and
habitability.

2. Existing NLIs to ontologies allow questioning only in English and usually in
the form when formulation of question directly correspond to the structure of

50

ontology. On the other hand, existing solutions are portable and can be
configured for questioning in different domains.

3. Habitability of NLI expresses how naturally and easy a user can write
questions. To improve habitability, NLIs use various techniques that can be
divided into two groups: (1) methods intended to familiarize users with
lexicon and help formulating questions (e.g., guided interface, feedback,
synonyms, etc.); (2) methods intended to help interpreting and disambiguating
questions (e.g., clarification dialog, query refinement, etc.).

4. Analysis of SBVR standard has shown that the distinguishing feature of
SBVR metamodel to separate the meaning from representation allows
achieving multilingualism. This means that a question can have the same
model of meaning regardless of language it is written. It allows using
language-independent rules to transform questions to semantic (SPARQL)
queries. The language dependent components of NLI should only be those
that help writing and interpreting questions. In order to achieve
multilingualism, only these components should be replaced or adjusted for
questioning in certain language. The architecture of NLI will be designed in
pursuance of these ideas.

5. An important prerequisite to use SBVR for NLI to ontologies is a robust
SBVR editing tool for specifying vocabulary and rules (i.e., lexicon) of NLI
to ontologies. The tool should be capable of generating XMI models of
questions for further transformations. The analysis of existing tools showed
that none of them meets the requirements and their further improvements are
complicated. Therefore, it was decided to create the new SBVR editor.

6. The analysis revealed that metamodels of SBVR meaning and SPARQL
syntax has conforming elements, expressing information needs and
restrictions of query. This led to the assumption that transformation of SBVR
questions to SPARQL is feasible. Therefore, it was decided to describe
detailed mappings between these metamodels and create transformation rules
of SBVR questions to SPARQL.

3 THE SEMANTIC SEARCH SOLUTION BASED ON SEMANTICS OF
BUSINESS VOCABULARY AND BUSINESS RULES

This section presents the Semantic search solution using SBVR. First,
requirements of the solution are introduced. Following, the solution is presented in
detail, revealing created algorithms, and models.

3.1 Requirements of Semantic search solution

The solution consists of two parts: SBVR structured language editor (SBVR
SLE) and SBVR based NLI to ontologies. Their functional requirements are
presented in Figure 3.1. SBVR SLE is a tool for a domain expert, who is responsible
for the configuration of NLI. This tool integrates SBVR transformations to OWL 2,
created by J. Karpovič and described in [51], [52], and [53]. SBVR SLE can also be

51

used as a developer tool to write specifications and generate SBVR XMI models of
questions for developing and testing transformations to SPARQL.

NLI to ontologies is intended for internet users to write natural language
questions and perform a semantic search over OWL 2 ontologies.

The solution (both SBVR SLE and NLI to ontologies) uses an external
morphological library to analyse words (i.e., get lemma and other morphological
features, such as case, number, gender, etc.) and generate words in certain
morphological forms.

Figure 3.1. Functional requirements of Semantic search solution using SBVR

Non-functional requirements of SBVR SLE are as follows:
• Usability of writing SBVR specifications providing autocomplete,

highlighting syntax following SBVR Structured English style, automatically
marking errors of specifications, and checking cross-references between
concepts;

• Ability to adjust the editor for writing specifications in different languages;
• Ability to write SBVR specifications in different domains;
• Ability to split SBVR specifications into separate parts;
• Ability to adjust the editor for different transformations (e.g., OWL 2

ontologies, BPMN business processes, etc.).
Non-functional requirements of NLI to ontologies are the following:
• Ability to adjust NLI for writing natural language questions in different

languages;
• Portability to allow questioning in different domains;
• Ability to relate formulations of questions with combinations of ontology

resources;
• The effectiveness must be similar as other NLIs to ontologies: f-measure

above 80% in Mooney knowledge base of geography and above 70% of
restaurants.

The process of the solution is also split into two parts: configuration of NLI and
questioning ontologies (see Figure 3.2). NLI to ontologies is configured creating
SBVR specification and synchronizing it with the ontology. Then, the user can start
questioning. It is important to note, that questions should correspond to SBVR
specification. During the analysis of a question, it is identified the SBVR concept (s)

52

that the question is based on. This concept is further used to create intermediate
representation of the question (i.e. SBVR model of meaning) and transform it to
query. Finally, query is executed against the ontology.

Figure 3.2. Process model of Semantic search solution using SBVR

3.2 Configuration of NLI to ontologies

Configuration is performed to adjust NLI to a certain domain. The results of this
process are SBVR specifications, containing business vocabulary, business rules,
and OWL 2 ontology that corresponds to SBVR specifications. SBVR specifications
are used as a lexicon for writing and interpreting natural language questions. It is
important to ensure the conceptual coverage of specifications and ontology (i.e.,
ontology classes and properties must be specified as SBVR concepts to allow
questioning them). For alignment of SBVR specifications and OWL 2 ontologies,
relevant mappings between SBVR concepts and OWL 2 resources should be
holdcompleted. Following recommendations from [52], [51], [5], [61], [53], it was
decided to use the following mappings:

• SBVR general concepts to OWL classes;
• SBVR binary fact types to OWL object properties;
• SBVR is_property_of verb concepts to OWL data properties;
• Categorizations of SBVR concepts to OWL SubclassOf, SubObjectProperty

or SubDataProperty;
• SBVR individual concepts to OWL individuals;
• SBVR logical formulations to OWL 2 axioms and restrictions.
There are three ways to prepare SBVR specifications and OWL 2 ontology. The

first one is specifying SBVR vocabulary and rules, and transforming them to OWL 2

53

ontology using the automatic transformation, created by J. Karpovič [51], [52], [53].
For this purpose, transformations of J. Karpovič are integrated into SBVR SLE.
However, many more ontologies than SBVR business vocabularies and rules are
created nowadays. Fortunately, the opposite transformations are under development
and in the future it will be possible to transform OWL 2 ontology to SBVR
specifications [5], [61]. In both cases, the compliance between SBVR specifications
and OWL 2 ontologies is ensured automatically, so the possibility of errors is lower.
The third way is creating SBVR specifications and OWL 2 ontology manually,
ensuring compliance by domain expert. However, this way of configuration requires
a greater effort from the domain expert.

From a technical point of view, the alignment of SBVR specifications and OWL
2 ontology is ensured by labeling ontology resources with expressions of
corresponding SBVR concepts. For example, SBVR general concept person must
have the corresponding ontology class with label person. In an analogous way, verb
concepts must have corresponding labelled object properties.

Another important activity of the configuration process is writing derivation
rules. This allows extending the set of allowed questions or making them shorter.
Derivation rules are used to specify, how new facts are derived from existing ones.
Two types of derivation rules are allowed: rules for deriving general concepts and
rules for deriving verb concepts. Rules of the first type are used to define concepts
that correspond to ontology classes, deriving them from their properties. For
example, general concept large_city can be derived from its population or area.

Derivations of the second type are used to shorten questions, when their
formulations do not meet the structure of the ontology. Such situations are common
using n-ary relations. For example, the question What did person say? is based on
verb concept person said speech_content, which may not have the corresponding
object property in the ontology. However, it can be deriver from other object
properties (i.e., person gave speech and speech has speech_content). Such
derivations can be specified in the ontology (e.g., using SWRL rules to define
semantic relations [110]). In this solution, they are specified as SBVR derivation
rules and used transforming questions into SPARQL queries. Therefore, queries
hold required derivations and the amount of derivation rules in the ontology is
reduced.

3.3 The conception of SBVR structured language editor

Configuration is performed using SBVR SLE. The conception of this tool is
defined as structured language grammar for specifying business vocabulary,
business rules, and writing questions. Grammar rules are specified using Xtext
syntax (EBNF like) and presented in the following subsections. Rules correspond to
the representation part of SBVR metamodel. They are specified following
metamodel of SBVR representations, examples of Structured English from SBVR
specification ([98]) and practice. The presented grammar is intended to write SBVR
specifications in English. However, it can be adjusted to other languages, appending
rules with keywords of a certain language. Since no domain specific words are hard
coded, grammar rules are independent from the business domain.

54

3.3.1 Grammar rules for specifying SBVR business vocabulary
Structured language grammar contains terminal (i.e., lexer) and production rules.

Terminal rules are fundamental building blocks and are used to produce tokens. In
this grammar, the main terminal rules are as follows: TERM_OR_VERB_SYMBOL
(i.e., words, starting with lowercase letter) and NAME (i.e., words, starting with
uppercase letter or digit). These rules are used to formulate basic SBVR structures,
such as terms, names, and verb symbols. Additional terminals (e.g., NEWLINE,
ML_COMMENT, etc.) are used for editing purposes. Xtext grammar allows using
terminal fragments (i.e., reusable parts). They are not counted as tokens, but makes
grammar simpler and more readable. Fragments are used to define available lexer
symbols: Latin, Lithuanian letters, and digits. Terminal rules are presented in Table
3.1.
Table 3.1. Terminal rules of the grammar
terminal TERM_OR_VERBSYMBOL:
 LOWERCASE(LOWERCASE|DIGIT|'_'|'-')*;
terminal NAME:
 (UPPERCASE|DIGIT)(LOWERCASE|UPPERCASE|DIGIT|'_'|'-')*;
terminal NEWLINE:
 ('\r'|'\n')*;
terminal ML_COMMENT:
 '/*' -> '*/';
terminal fragment LOWERCASE:
 ('a'..'z')|'ą'|'č'|'ę'|'ė'|'į'|'š'|'ų'|'ū'|'ž';
terminal fragment UPPERCASE:
 ('A'..'Z')|'Ą'|'Č'|'Ę'|'Ė'|'Į'|'Š'|'Ų'|'Ū'|'Ž';
terminal fragment DIGIT:
 ('0'..'9');

Production rules are used to produce syntactic trees. The smallest production
rules of SBVR business vocabulary grammar are Term, Name, and VerbSymbol
(Table 3.2). Rules Term and VerbSymbol share the same terminal rule defining their
syntax. They can be applied, when a word starts with a lowercase letter. Syntax of
Name is defined by another terminal and can be applied when a word starts with an
uppercase letter or digit.
Table 3.2. Smallest production rules of SBVR business vocabulary grammar
Term:
 syntax=TERM_OR_VERBSYMBOL;
Name:
 syntax=NAME;
VerbSymbol:
 syntax=TERM_OR_VERBSYMBOL;

The smallest production rules are used to define rules of representing vocabulary
concepts: GeneralConcept, IndividualConcept, and VerbConcept (Table 3.3). These
representations consist of primary representation and optional specification,
containing a set of captions. Captions provide additional information of vocabulary
concept (e.g., textual descriptions, synonyms, synonymous forms, general concepts,
definitions, etc.). Some captions are applicable only to particular concepts. For

55

example, Synonymous_form can be used only for verb concepts. Therefore, different
sets of captions for each concept type were defined.
Table 3.3. Rules to represent vocabulary concepts
GeneralConcept:
 primaryRepresentation=Term
 (captions+=CaptionForGeneralConcept)*;
IndividualConcept:
 primaryRepresentation=Name
 (captions+=CaptionForIndividualConcept)*;
VerbConcept:
 primaryRepresentation=VerbConceptWording
 (captions+=CaptionForVerbConcept)*;

VerbConceptWording is the general rule for representing verb concepts (Table
3.4). SBVR verb concepts can have different structures: binary verb concepts,
characteristics, and noun forms. They use cross-references to representations of
general concepts (i.e., terms). They help to ensure that verb concepts are specified
using only those general concepts that are specified in the vocabulary. Cross-
references are indicated by square brackets in Xtext syntax.
Table 3.4. Rules to represent verb concepts
VerbConceptWording:
 SententialForm|NounForm;
SententialForm:
 BinaryVerbConcept|Characteristic;
BinaryVerbConcept:
 placeholder1=[Term]
 verbSymbol=[VerbSymbol]
 placeholder2=[Term];
Characteristic:
 placeholder1=[Term]
 verbSymbol=[VerbSymbol];
NounForm:
 placeholder1=[Term]
 placeholder2=[Term];

The example of caption’s rule is presented in Table 3.5.
CaptionForGeneralConcept is the rule to define available captions of representation
of general concepts. The caption rule contains a label and type of value. For
example, the synonym of general concept can be defined using syntax of term,
whereas the description can be written using free text.
Table 3.5. Example of vocabulary caption rule
CaptionForGeneralConcept:
 Description|Synonym| ... ;
Description: "Description: " STRING;
Synonym: "Synonym: " Term;

3.3.2 Grammar rules for specifying SBVR business rules
Rules of SBVR business rules grammar are based on representations of atomic

formulations that are described in subsection 3.3.4.

56

In this subsection, the basic structure of business rules and their types are
presented. Grammar allows specifying structural, operative, and derivation rules.
Structural and operative business rules are distinguished by modal operators.
Structural rules are written using alethic (i.e., It is necessary that, It is possible that,
and It is impossible that) and operative rules - deontic (i.e., It is obligatory that, It is
permitted that, It is prohibited that) modal operators. Derivation rules are used for
deriving new facts from existing ones. They are specified using implication.

Therefore, two templates are defined for representing business rules: rules based
on statements of atomic formulations for specifying structural and operative rules
and rules based on implications (Table 3.6). The first template contains two parts:
modal operator and restricting statement. The second one has a modal operator and
two statements as consequent and antecedent.
Table 3.6. Rules of representation of business rules
Rule:
 RuleBasedOnStatementOfAtomicFormulation|ImplicationRule;
RuleBasedOnStatementOfAtomicFormulation:
 modality=ModalOperator
 statement=RepresentationOfAtomicFormulation;
ImplicationRule:
 modality=ModalOperator
 consequent=RepresentationOfAtomicFormulation
 “if” antecedent=RepresentationOfAtomicFormulation;

ModalOperator:
 NECESSITY|POSSIBILITY|IMPOSSIBILITY|OBLIGATION|PERMISSION|
 PROHIBITION;
NECESSITY:
 "It is necessary that";
POSSIBILITY:
 "It is possible that";
IMPOSSIBILITY:
 "It is impossible that";
OBLIGATION:
 "It is obligatory that";
PERMISSION:
 "It is permitted that";
PROHIBITION:
 "It is prohibited that";

3.3.3 Grammar rules for writing SBVR questions
As well as rules for specifying business rules, rules for writing questions are

based on representations of atomic formulations.
In this subsection, the basic structure and types of questions are presented (in

accordance with types, analysed in this work and defined in 2.1.5). The two main
types of questions are defined in the grammar, they are presented in Table 3.7. The
simplest questions intended to find instances of certain type (e.g., Find persons,
Find largest_state, etc.). Ordinary questions contain representation of atomic
formulation (e.g., What persons work_in KTU).

57

Table 3.7. Rules of writing questions
Question:
 (QuestionToFindInstancesByType|OrdinaryQuestion);
QuestionToFindInstancesByType:
 startKeyword=FIND
 concept=[Term];
OrdinaryQuestion:
 startKeyword=(WH|FIND)
 statement=RepresentationOfAtomicFormulation ("?"|".");
WH:
 "What"|"When"|"Where"|...;
FIND:
 "Find"|"Search_for"|...;

3.3.4 Grammar rules for representing atomic formulations
Atomic formulations are logical formulations, used to formulate meaning of

restrictions of business rules and questions. In this subsection, representations of
atomic formulations are described. For example, in the business rule It is necessary
that person works_in at least 1 organization its representation of atomic formulation
means the following fragment of the rule: person works_in at least 1 organization.

Atomic formulations are based on verb concepts and have bindable targets,
which allow binding roles to individual concepts or variables. Variables can be
further restricted by other logical formulations, for example, cardinality
formulations.

Representation of atomic formulation correspond to representation of verb
concept with placeholders for each role. A placeholder is a place for an expression
that can be replaced by representation of an individual concept (i.e., name),
quantifier, or quantity comparison. For example, the representation event
is_organized_by organizer has two placeholders: event and organizer. If placeholder
organizer is replaced by name Events_Ltd, statement is as follows: event is
organized_by Events_Ltd. It represents the atomic formulation with the second role
bound to an individual concept, which means that each event is organized by
organizer Events_Ltd. If the placeholder is not replaced (i.e., event is_organized_by
organizer), it represents atomic formulation with both roles bound to variables,
which formulates the meaning that each event is organized by some organizer. In
this case, representation of the atomic formulation correspond to the representation
of the verb concept.

Atomic formulations can be restricted by several logical formulations that are
related using conjunction or disjunction operators. In such cases, the representation
is compound. For example, event is_organized_by Events_Ltd and event has
number_of_sold_tickets greater_than 100 is the representation of two atomic
formulations related with conjunction. This representation can also be written in a
way that is more elegant, by omitting on of the placeholders: event is_organized_by
Events_Ltd and has number_of_sold_tickets greater than 100.

Compound representations are also used to represent meaning, when atomic
formulations are restricted by other logical formulations. For example, organizer
organizes event that takes_place_in sports_arena Snow represents the meaning of

58

when the second role (event) of first atomic formulation is restricted by the other
logical formulation (represented by event takes_place_in sports_arena Snow).

Table 3.8 presents types of representations of atomic formulations. Each of them
are further described in detail.
Table 3.8. Representation of atomic formulations
RepresentationOfAtomicFormulation:
 BothPlaceholdersNotReplaced|
 1stPlaceholderReplacedByName|
 2ndPlaceholderReplacedByName|
 BothPlaceholdersReplacedByName|
 2ndPlaceholderReplacedByQuantityRestriction|
 2ndPlaceholderReplacedByQuantification;

3.3.4.1 Representations with both placeholders not replaced
It is the simplest type of representation, which correspond to representation of

verb concept. It represents atomic formulation, which is based on a verb concept,
having both roles bound to variables. The meaning of this atomic formulation is
true, when all referent things of the first variable have corresponding referents of the
second variable. For example, representation organizer, which organizes event,
represents the meaning that each organizer organizes at least one event. The
grammar rule and the example of such representation are presented in Table 3.9.
Table 3.9. Rule and example of representation with both placeholders not replaced
BothPlaceholdersNotReplaced:
 placeholder1=[Term]? (PRONOUN)?
 verbSymbol=[VerbSymbol]
 placeholder2=[Term]
 ((conj=CONJUNCTION|disj=DISJUNCTION)?
 restriction=RepresentationOfAtomicFormulation)?;
event takes_place_in event_venue

Rules of representations of atomic formulations allow writing compound
representations using recursive restrictions, expressed by optional call of
RepresentationOfAtomicFormulation (i.e., any type of representation).

3.3.4.2 Representations with placeholders replaced by names
Representations of this type intended for atomic formulations that have at least

one role bound to an individual concept. The meaning of this atomic formulation is
true, when each referent of the variable is an individual concept, bound to the role.
For example, statement event is_organized_by organizer Events_Ltd represents the
meaning, selecting events that are organized by the organizer Events_Ltd. Grammar
rules and examples for this type of representations are presented in Table 3.10 -
Table 3.12.
Table 3.10. Rule and example of representation when first role is replaced by name
1stPlaceholderReplacedByName :
 placeholder1=[Term]? role1Replacement=Name (PRONOUN)?
 verbSymbol=[VerbSymbol]
 placeholder2=[Term]

59

 (((conj=CONJUNCTION|disj=DISJUNCTION)?
 restriction=RepresentationOfAtomicFormulation)?)*;
organizer Events_Ltd organizes event
Events_Ltd organizes event

Table 3.11. Rule and example of representation when second role is replaced by name
2ndPlaceholderReplacedByName:
 placeholder1=[Term]? (PRONOUN)?
 verbSymbol=[VerbSymbol]
 placeholder2=[Term]? role2Replacement=Name
 ((conj=CONJUNCTION|disj=DISJUNCTION)?
 restriction=RepresentationOfAtomicFormulation)?;
event that takes_place_in sports_arena Snow
event takes_place_in Snow

Table 3.12. Rule and example of representation when both roles are replaced by names
BothPlaceholdersReplacedByName:
 placeholder1=[Term]? role1Replacement=Name (PRONOUN)?
 verbSymbol=[VerbSymbol]
 placeholder2=[Term]? role2Replacement=Name
 ((conj=CONJUNCTION|disj=DISJUNCTION)?
 restriction=RepresentationOfAtomicFormulation)?;
organizer Events_Ltd organizes event Tern
Events_Ltd organizes Tern

3.3.4.3 Representations with the second placeholder replaced by quantity
restriction

In this type of representations, the second placeholder is replaced by expression
of quantity restriction. This type of representations is intended for atomic
formulations, when the first role is bound to a variable and the second one is
restricted by a logical formulation of quantity restriction. It formulates the meaning,
which is true for each referent of the variable, which satisfies the restriction. For
example, event that has number_of_sold_tickets greater_than 100 represents the
meaning, that each selected event has number of sold tickets greater than 100. The
grammar rule and examples are presented in Table 3.13. Keywords to express
various quantity restrictions are presented in Table 3.14.
Table 3.13. Rule and examples of representation when second role is replaced by expression
of quantity restriction
2ndPlaceholderReplacedByQuantityRestriction:
 placeholder1=[Term]? (PRONOUN)?
 verbSymbol=[VerbSymbol]
 placeholder2=[Term]
 role2Replacement=QuantityRestriction;
event that has number_of_sold_tickets that is_greater_than 100
event has number_of_sold_tickets that is_less_than 100
number_of_sold_tickets of event equals 100

60

Table 3.14. Keywords to express quantity restrictions
QuantityRestriction:
 GREATER_THAN|GREATER_OR_EQUAL|LESS_THAN|LESS_OR_EQUAL|EQUAL;
terminal GREATER_THAN:
 "is_greater_than" value=DIGIT;
terminal GREATER_OR_EQUAL:
 "is_greater_or_equal_to" value=DIGIT;
terminal LESS_THAN :
 "is_less_than" value=DIGIT;
terminal LESS_OR_EQUAL:
 "is_less_or_equal_to" value=DIGIT;
terminal EQUALS :
 "equals" value=DIGIT;

3.3.4.4 Representations with placeholders replaced by quantification
representations

These types of representations are used to represent atomic formulation, when
the second role is restricted by a cardinality restriction. Therefore, the second
placeholder of this representation is replaced by an expression of quantification. For
example, representation organizer organizes at_least 2 events represents the
meaning, which is true for each organizer that organizes at least two events.
Grammar rules for statements with quantifications and available quantifications are
presented in Table 3.15. Keywords to express various quantification restrictions are
presented in Table 3.16.
Table 3.15. Rule and example of representation when second role is replaced by expression
of quantification
2ndPlaceholderReplacedByQuantification:
 placeholder1=[Term]
 verbSymbol=[VerbSymbol]
 role2Replacement=Quantification
 placeholder2=[Term];

event is_organized_by exactly 1 organizer

Table 3.16. Keywords to express quantification restrictions
Quantification:
 UNIVERSAL_QUANTIFICATION|AT_LEAST_N_QUANTIFICATION|
 AT_MOST_N_QUANTIFICATION| EXACTLY_N_QUANTIFICATION|
 NUMERIC_RANGE_QUANTIFICATION;
terminal UNIVERSAL_QUANTIFICATION:
 ("a"|"an"|"each")?;
terminal AT_LEAST_N_QUANTIFICATION:
 "at_least" valueN=DIGIT;
terminal AT_MOST_N_QUANTIFICATION:
 "at_most" valueN=DIGIT;
terminal EXACTLY_N_QUANTIFICATION :
 "exactly" valueN=DIGIT;
terminal NUMERIC_RANGE_QUANTIFICATION :
 "at_least" valueN=DIGIT "and_at_most" valueM=DIGIT;

61

3.4 Natural language interface to ontologies
Another part of the solution is NLI to ontologies is that it accepts natural

language questions, analyses them and transforms to SPARQL queries. NLI can
only answer question starting with WH or find keywords. Yes/no questions are not
accepted. Answering such questions is complicated, because ontologies use open
world assumption and the absence of required data does not give rise to a negative
response. Such questions could only be used to check, if a certain fact is correct
(e.g., whether person had ever been a prime minister?).

The conception of NLI to ontologies is presented in Figure 3.3. It contains
components for writing natural language questions, analysing them and transforming
to SPARQL queries. Components with a darker background (i.e., autocomplete
suggestions, clarification dialog, heuristic algorithms of question analysis) and
morphological library are dependant from language.

SPARQL metamodelSBVR metamodel

User
interface

Question
analyser

SBVR model
composer

Transformations
of questions

NL
question

SBVR
concept

SBVR
XMI

model
SPARQL
query

Morphological library

SBVR vocabulary

Input/Output
Usage

Component
Legend

Figure 3.3. Components of NLI to ontologies

The user interface is intended for writing questions and presenting results. This
component provides autocomplete and guides the user writing the question word
after word. Suggestions of autocomplete are generated using general and verb
concepts from the SBVR vocabulary. The SBVR vocabulary can contain synonyms
to allow questions that are more varied. SBVR generalizations allows the writing of
abstract or specific questions. The user interface also shows a clarification dialog,
when a question is ambiguous. Generating suggestions of autocomplete and
clarification dialog should be adjusted according to the used language.

When the structure of the ontology is complex and does not directly correspond
formulations of questions, formal SBVR definitions are used to derive concepts used
for questioning. As a result, SBVR concepts, which are required only in definitions
and cannot be used to formulate any natural language question (e.g., person gave
speech, speech has speech_object, etc.), often appears in the vocabulary. Such
concepts (i.e., systemic) should be hidden from users and cannot appear in the
suggestions of autocomplete. This can be done by splitting the SBVR vocabulary
into two parts. The first part containing systemic concepts and the second one
contains concepts that can be used to formulate questions and appear in
autocomplete.

62

When a question is written, the analysis of question starts. This component is
described in detail in the next subsection.
3.4.1 Analysis of questions

Since NLI interprets and answers only those questions that are based on SBVR
vocabulary concepts, the goal of question analysis is to find the SBVR concept(s)
that a question is based on. The analysis is performed using empirical rules that
should be adjusted according to the language. Main steps of the analysis and their
sequence are presented in Figure 3.4.

Figure 3.4. Steps of question analysis

Steps are described further:
• Tokenization – question is split into separate words;
• Morphological analysis – tokens are analysed morphologically by finding

the part of speech, lemma and other information using the morphological
library. This step requires a specific morphological library, such as Stanford
parser [58] for English;

• Joining compound SBVR words – this step is performed matching tokens
with words of SBVR vocabulary. Compound SBVR words (e.g.,
large_state, works_in, etc.) are searched and joined to a single token. If a
question starts with a preposition (e.g., Lit.: Su kuo, Eng.: With what), the
system attempts to connect such preposition with a verb (e.g., Lit.:
susitiko_su, Eng.: met_with). In addition, it is verified, if such a compound
is defined in the SBVR business vocabulary;

• Identification of SBVR words – each token that is found in the SBVR
vocabulary as term, verb, or proper name is marked as a SBVR word;

• Clarification – clarification is used when some words of the question are not
recognized as a SBVR word and morphological analysis does not provide
any helpful information (e.g., word is name of place, surname, etc.). User

63

can clarify unrecognized word as: (1) synonym of another SBVR
vocabulary word; (2) proper name of a certain type. User can write lemma
of unrecognized proper name; (3) stop word that should be skipped in
further interpretation. A clarification dialog is also generated in cases of
ambiguities, when several equal interpretations of a questions are available.
When possible, ambiguities are resolved automatically from the context. For
example, although Mississippi can mean state or river, in the question What
states border Mississippi it is obvious that the state is meant.

• Identification of SBVR concept(s) – this step is required to find the
concept(s) that a question is based on. For example, the question What states
border Illinois is based on the SBVR verb concept state borders state, while
question Find cities is based on the general concept city. When a question
starts with a pronoun (e.g., Lit.: Kas, Ką, Kuo, Eng.: Who, What,
Wherewith) followed by a verb, the noun, representing the first role of the
verb concept is skipped (e.g., Lit.: Ką kalbėjo asmenys, Eng.: What did
persons say). In such cases, the correct verb concept should be found by
selecting verb concepts with corresponding verb and analysing
morphological features of their roles. When a question is ambiguous (i.e.,
several verb concepts available), a clarification dialog should be generated.

Question analyser also identifies if the question is for counting and passes it as a
parameter for the query transformation component to use the appropriate
transformation rules.

After analysing a natural language question and identifying the SBVR
concept(s), a SBVR XMI model of the question is generated calling XMI generator
of SBVR SLE. If the identified concept has definition rules, the XMI generator uses
definition in the model of the question. Finally, the SBVR XMI model is
transformed to a SPARQL query using model transformation rules that are presented
in a further subsection. As the SBVR model holds the meaning of a question,
transformation rules are independent from language.
3.4.2 Rules to transform questions to SPARQL

Transformation rules are based on generic transformation patterns presented in
[109]. They are model driven, conforming to the SBVR metamodel (subsections
2.2.2, 2.2.3), and SPARQL syntax metamodel (subsection 2.2.6). The details of
implementation of these rules are described in subsection 4.2.3.

There are six types of transformable questions, conforming types, presented in
2.1.5:

• Questions to find individuals of certain type (e.g., Find persons);
• Questions with modifier attachments (e.g., What states that border Illinois?);
• Questions to count values (e.g., How many states border Illinois?);
• Questions with cardinality restriction (e.g., Find states that border at least 3

states.);
• Questions with numerical comparison (e.g., Find cities that have population

greater than 100000.);

64

• Questions to find minimum or maximum values (e.g., Find state that has
largest population.).

To transform questions to SPARQL queries, nine transformation rules were
defined; as described in the further subsections. Each rule creates a certain part of
the query. They are called by different algorithms (Figure 3.6 – Figure 3.10)
depending on the type of question.

Figure 3.5. Algorithm for transforming questions to find individuals of certain type

Figure 3.6. Algorithm for transforming questions with modifier attachments

Figure 3.7. Algorithm for transforming questions to count values

65

Figure 3.8. Algorithm for transforming questions with cardinality restrictions

Figure 3.9. Algorithm for transforming questions with numerical comparisons

Figure 3.10. Algorithm of transforming questions with minimum or maximum restrictions

3.4.2.1 Rule 1: transform closed projection to the basis of query
This rule is called first for all types of questions. It uses closed projection to

create the top-level element of the query with empty SELECT and WHERE clause
elements that are filled when using subsequent rules. Steps of this rule are presented
in Figure 3.11. Table 3.17 presents SPARQL model fragment created by this rule
and the example.

Figure 3.11. Steps of Rule 1

66

Table 3.17. Model fragment and example created by Rule 1
in: SBVR:ClosedProjection
out: SPARQL:
 SelectQuery (
 SelectClause (),
 WhereClause (
 GroupGraphPatternSub (
 TriplesBlock ()
)
)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 WHERE { ... }
3.4.2.2 Rule 2: transform variables of closed projection to variables of SELECT
clause

Rule 2 transforms variables of closed projection to variables of SELECT clause.
Names are set by expressions of general concepts that projection variables range
over. Steps of this rule are presented in Figure 3.12. Table 3.18 presents SPARQL
model fragment created by this rule and the example.

Figure 3.12. Steps of Rule 2

Table 3.18. Model fragment and example created by Rule 2
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause (
 foreach in.variable as v
 Var(name=v.rangedOver.expr)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 ?river
 ?state
 WHERE { ... }

67

3.4.2.3 Rule 3: transform variables of closed projection to count expression and
group clause

This rule is used for transforming questions to count values. Since the SBVR
metamodel is not capable to represent questions with counting, SBVR XMI models
for such questions are created in the same way as simple questions with modifier
attachments. Therefore, transformation accepts the parameter to indicate questions
for counting and calls appropriate rules. The transformation creates the COUNT
function from the first variable of a closed projection and solution modifier with
GROUP BY operator from the second variable. Steps of this rule are presented in
Figure 3.13. Table 3.19 presents SPARQL model fragment created by this rule and
the example.

Figure 3.13. Steps of Rule 3

Table 3.19. Model fragment and example created by Rule 3
in: SBVR:ClosedProjection
out: SPARQL:
SelectClause(
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[0].rangedOver.expr)
),
 Var(name=in.Var[0].rangedOver.expr + “_count”)
)
),
SolutionModifier(
 GroupClause(
 Var(name=in.Var[1].rangedOver.expr)
)
)
SBVR: How_many rivers run_through Illinois?
SPARQL:
 SELECT (COUNT(?river_i) as ?river_count)
 WHERE { ... }
 GROUP BY ?state_i

68

3.4.2.4 Rule 4: transform variables of closed projections to group and having
clauses

This rule is selected to transform variables of closed projection, restricted by
cardinality formulation. It creates COUNT function and solution modifier with
GROUP BY and HAVING operators from first and second variables of closed
projection. Steps of this rule are presented in Figure 3.14. Table 3.20 presents
SPARQL model fragment created by this rule and the example.

Figure 3.14. Steps of Rule 4

Table 3.20. Model fragment and example created by Rule 4
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[1].rangedOver.expr + “_i”)
),
 Var(name=in.Var[1].rangedOver.expr + “_count”)
)
),
 SolutionModifier(
 GroupCondition(
 Var(name=in.Var[0].rangedOver.expr + “_i”)
),
 HavingCondition(
 Var(name=in.Var[1].rangedOver.expr + “_count”)
 ComparisonSign
 INTEGER
)
)
SBVR: Which rivers run_through at_least 3 states?
SPARQL:
 SELECT
 ?river_i
 (count(?state_i) as ?state_count)
 WHERE { ... }
 GROUP BY ?river_i
 HAVING(?state_count >= 3)

69

Depending on the type of cardinality quantifications, different comparison
symbols are created in the HAVING condition. Cardinality quantifications and
corresponding symbols are presented in Table 3.21.
Table 3.21. Cardinality quantifications and corresponding symbols
Cardinality quantification Comparison symbol
not AtLeastNQuantification <
AtMostNQuantification <=
EqualsNQuantification =
not EqualsNQuantification !=
AtLeastNQuantification >=
not AtMostNQuantification >

3.4.2.5 Rule 5: transform variables of closed projection to order clause
This rule is called when the restricting atomic formulation is based on

is_property_of verb concept (e.g., population of city), and such property is
additionally restricted by the minimum or maximum formulation. This rule creates
variables of the SELECT clause and the solution modifier with ORDER and LIMIT
clauses from variables of a closed projection. Steps of this rule are presented in
Figure 3.15. Table 3.22 presents SPARQL model fragment created by this rule and
the example.

Figure 3.15. Steps of Rule 5

Table 3.22. Model fragment and example created by Rule 5
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 Var(name=in.Var[1].rangedOver.expr),
),
 SolutionModifier(
 OrderClause(
 OrderDirection,
 iriOrFunction(
 iri=”xsd:float”,
 argList=Var(name=

70

 in.Var[0].rangedOver.expr)
)
)
 LimitClause(
 integer=1
)
)
SBVR: What city has largest population?
SPARQL:
 SELECT
 ?city_i
 ?population_i
 WHERE { ... }
 ORDER BY DESC(xsd:float(?population_i))
 LIMIT 1

Depending on whether it is a minimum or maximum restriction, ordering is
ascending or descending.
3.4.2.6 Rule 6: transform atomic formulation to triple patterns of relation

The atomic formulation is based on the verb concept and is used to express
restrictions of question. Rule 6 transforms atomic formulation and its verb concept
into two triple patterns to express the relation of the verb concept.

The first one is the main triple pattern expressing relation. It has variables in all
three positions of subject, predicate, and object. The name of the predicate’s variable
is set by the expression of verb concept’s verb symbol. Names of variables in
positions of subject and object are set by roles of verb concept and suffixed with
“_i”.

The second triple pattern is used to identify the label of relation. It is set by the
expression of verb concept’s sentential form and language tag.

When both triple patterns are created, they are appended to triples block. Steps
of Rule 6 are presented in Figure 3.16. Table 3.23 presents SPARQL model
fragment created by this rule and the example. If questions use synonymous forms,
the preferred verb concepts should be used [111].

Figure 3.16. Steps of Rule 6

71

Table 3.23. Model fragment and example created by Rule 6
in: SBVR:AtomicFormulation
out: SPARQL:
WhereClause(
 GroupGraphPatternSub(
 TriplesBlock(
 TriplesSameSubjectPath(
 Var(name=in.verbConcept.role[0].expr +
 “_i“),
 PropertyListPathNotEmpty(
 Var(name=in.verbConcept.verbSymb.expr),
 Var(name=in.verbConcept.role[1].expr +
 “_i“)
)
)
),
 TriplesSameSubjectPath(
 Var(name=in.verbConcept.expr),
 PropertyListPathNotEmpty(
 IRIREF=”:label_sbvr”,
 STRING_LITERAL=in.verbConcept.
 sentForm.expr + “@” + lang
)
)
)
SPARQL:
 ?city_i ?is_in ?state_i .
 ?is_in :sbvr_label “city is_in state“@en .
3.4.2.7 Rule 7: transform variables to triple patterns

Roles of verb concept of atomic formulation can be bound to variables or
individual concepts. If the role is bound to variable, it is transformed to two triple
patterns using this rule. The first one is rdf:type relation between variable and its
type (i.e., variable with suffix “_c”) and the second one identifies type by label. This
rule is also called transforming questions for finding individuals of certain type to
identify types of searched variables.

Rule 7 is presented in Figure 3.17. Table 3.24 presents SPARQL model
fragment created by this rule and the example.

Figure 3.17. Steps of Rule 7

72

Table 3.24. Model fragment and example created by Rule 7
in: SBVR:Variable
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.rangedOver.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.rangedOver.expr + “_c“),
)
),
 TriplesSameSubjectPath (
 Var(name=in.rangedOver.expr + “_c“),
 PropertyListPathNotEmpty(
 IRIREF=“rdfs:label“,
 STRING_LITERAL=in.rangedOver.expr+“@”+
 lang
)
)
SBVR: What rivers run_through states?
SPARQL:
 ?river_i rdf:type ?river_c .
 ?river_c rdfs:label “river”@en .
 ?state_i rdf:type ?state_c .
 ?state_c rdfs:label “state”@en .

3.4.2.8 Rule 8: transform individuals to triple patterns
Rule 8 is used to transform individual concepts, bound to roles. It creates three

triple patterns with a filter operator. The first two triple patterns are the same as rule
7 creates. The third one defines the variable of a searched individual label and the
filter element used to filter individuals by label. Figure 3.18 presents steps of this
rule. Table 3.25 presents SPARQL model fragment created by this rule and the
example.

Figure 3.18. Steps of Rule 8

Table 3.25. Model fragment and example by Rule 8
in: SBVR:IndividualConcept
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.general.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.general.expr + “_c“),
)

73

),
 TriplesSameSubjectPath (
 Var(name= in.general.expr + “_c“),
 PropertyListPathNotEmpty(
 IRIREF=“rdfs:label“,
 STRING_LITERAL=in.general.expr+“@” + lang
)
),
 TriplesSameSubjectPath (
 Var(name=in.general.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdfs:label”,
 Var(name=in.general.expr + “_v“),
)
),
 RegexExpression(
 Var(name=in.general.expr + “_v“)
 pattern=in.expr
)
SBVR: What rivers run_through Illinois?
SPARQL:
 ?state_i rdf:type ?state_c .
 ?state_c rdfs:label "state"@en .
 ?state_i rdfs:label ?state_v .
 FILTER regex(?state_v, "Illinois")
3.4.2.9 Rule 9: transform numerical comparison to filter operator

Rule 9 defines transformation of questions with quantity restrictions, expressed
by numerical comparisons of values of data properties. In SBVR models, numerical
comparisons are expressed by atomic formulations, based on particular verb
concepts (e.g., number1 is_greater_than number2). This restriction is transformed to
the FILTER operator in the WHERE clause. Steps of this rule are presented in
Figure 3.19. Table 3.26 presents SPARQL model fragment created by this rule and
the example.

Figure 3.19. Steps of Rule 9

Table 3.26. Model fragment and example created by Rule 9
in: SBVR:AtomicFormulation
out: SPARQL:
 WhereClause(
 RelationalExpression(
 Var(name=in.Var[1].rangedOver.expr)

74

 ComparisonSym
 INTEGER
)
)
SBVR: What cities has population less_than 30000?
SPARQL:
 SELECT
 ?city_i
 ?population_i
 WHERE {
 ...
 FILTER(?population_i < 30000)
 }

4 IMPLEMENTATION OF SEMANTIC SEARCH SOLUTION

This section presents prototypes of the SBVR based Semantic search solution
and details of implementation. The solution contains two prototypes: SBVR SLE
and NLI to ontologies.

4.1 Implementation of SBVR structured language editor

4.1.1 Graphical user interface for SBVR specifications
The prototype SBVR SLE was implemented using the Xtext framework [27],

[32], [134], [135] and grammar, presented in subsection 3.3. This framework was
used because it allows generating ANTLR [2] based parser, AST metamodel and
full-featured Eclipse editor from grammar descriptions without any programming
effort. The generated editor is capable of recognizing text, compliant with the
defined grammar, and has an auto completion function. Xtext framework allowed
implementing the tool with the desired features: the possibilities of evaluating the
context of business concepts, adapting the editor to other languages; and extending
its capabilities by appending the grammar with new rules and rebuilding the editor
[107]. The editor is easily configurable and extensible with new functions, such as
syntax highlighting, colouring features, external linguistic libraries, etc.

Xtext framework is integrated with the Eclipse Modelling Framework (EMF)
and Eclipse User Interface [25]. Xtext automatically creates EMF based AST from
structured language text. In this editor, AST is further used to compose formal
SBVR models of business vocabularies, business rules and questions. SBVR models
are further exported to SBVR XMI schemas and can be used by other tools for
transformations. In this work, the SBVR XMI schemas are transformed to SPARQL
queries.

Xtext uses the context-free grammar, but allows analysing context following the
two-phase process: parsing the text in the first phase and using a linking service to
establish cross references in the second phase. Therefore, it allows the creation of
links between vocabulary concepts (i.e., verb concept roles and general concepts),
business rules, and questions. Incorrect references are automatically marked as
errors and can be quickly noticed by the user. Furthermore, cross references can be
established between concepts, specified in different files of the same SBVR project.

75

This feature allows the splitting of specifications into separate parts and uses
vocabulary concepts in other vocabularies. It also allows the definition of
vocabulary of metaconcepts, required for a particular purpose. For example, one can
create metavocabulary for OWL 2 transformations, containing specific concepts,
such as transitive_verb_concept, symmetric_verb_concept, etc. These concepts can
be used in the main vocabulary to declare, how certain concepts should be
transformed (i.e., to transitive or symmetric object properties in OWL 2 ontology).
The example of using metavocabulary is presented in Table 4.1.
Table 4.1. Example of using metavocabulary for transformations of SBVR to OWL 2
Metavocabulary :
verb_concept
transitive_verb_concept
 General_concept: verb_concept

Main vocabulary :
product consists_of product_part
 Concept_type: transitive_verb_concept

The graphical interface of SBVR SLE is presented in Figure 4.1. It contains the
following components: (1) package explorer to manage SBVR projects and files; (2)
outline block for showing the tree of vocabulary concepts; (3) editing area for
business vocabularies, (4) business rules, and (5) questions. Generation of the SBVR
XMI model and SBVR transformation to OWL 2 ontology are initiated from the
main menu. Editor also contains API that is used by NLI to ontologies, for
generating SBVR XMI models of questions.

Figure 4.1. Graphical interface of SBVR SLE

76

4.1.2 Adjusting the editor to different languages
In this work, the editor was adjusted to the English and Lithuanian languages.

However, it can also be adjusted to other grammatically similar languages. The
adjustment requires appending the grammar with keywords of that language and
adjusting the morphological library. The Hunspell based library of JSC Fotonija
(created in SemantikaLT project [99]) for Lithuanian was used and Stanford Parser
of English language.

The adjustment is more complex for morphologically rich, highly inflected
languages. Cross-references between concepts are established analysing syntax.
However, concepts can be written using different cases, numbers and other
morphological features but they are not syntactically identical. For example, general
concepts are usually written using nominative case, but they can be used in genitive
or other cases specifying verb concepts. Therefore, the editor must be capable of
finding lemmas (i.e., canonical or citation forms) and relate concepts using them.
Consider the example representation of a verb concept in Lithuanian spektaklis
vyksta auditorijoje. The second role in this representation (auditorijoje) is in a
locative case, while the representation of general concept is in nominative
(auditorija). By finding the lemma of the locative case (auditorija), the verb concept
role can be syntactically related with the general concept.

However, finding lemmas proved to be challenging in some cases. The first,
difficulties are caused by words, having several parts of speech. For example, the
Lithuanian word kasa can be considered as a noun or a verb. Lemmas of adjectives
and nouns are written in a singular form and a nominative case (kasa), whereas
lemmas of verbs are in the infinitive form (kasti). It creates ambiguous situations,
where it is important to decide, which lemma should be used.

Problems also arise tying to relate lemmas with general concepts that are
specified in plural forms. Normally, lemmas are in singular forms and cannot be
syntactically related with concepts, specified in plural. This problem frequently
occurs when analysing compound phrases. Consider the representation of the
general concept scenos_dekoracijos. The second word of this representation is in the
plural form. While the second word of its lemma (scenos_dekoracija) is in singular.
Therefore, words cannot be syntactically related and concept recognition error
occurs. To cope with such errors, a morphological generator is used. This tool
generates words in the required morphological forms (e.g., numbers, genders,
pronominal forms, etc.). Further, generated words are used to establish cross
references between concepts.

4.2 Implementation of natural language interface to ontologies
The implementation of NLI to ontologies consists of several main components:

graphical user interface; component for checking questions and generating
autocomplete suggestions; component for analyzing and transforming questions to
SPARQL queries and component for executing SPARQL queries and presenting
search results to users. It should be noted, that graphical user interface, execution of
SPARQL queries and presentation of results are implemented by other authors and
is not part of this work. SPARQL queries are executed against ontologies that are

77

filled with individuals using a semantic annotation component. This component
annotates articles, extracted from various news portals and stored in corpus storage.
However, it is also not a part of this work and is not described in detail.

Results of this research were implemented as two Web services: the first one
checks questions and generates autocomplete suggestions; the second one
transforms questions to SPARQL queries. These services were used to implement a
sematic search service in the SemantikaLT project [99]. The semantic search service
is described in more detail in [124]. This subsection describes only parts that were
implemented using results of this work.
4.2.1 Graphical user interface

The graphical user interface of NLI to ontologies is presented in Figure 4.2. It is
implemented as an internet page and works from a web browser. The interface
allows the writing of questions in the Lithuanian language and performs a semantic
search in the Lithuanian news corpus from areas of politics, economy, and public
administration. Users can write questions to find out about utterances of persons,
positions of persons, information related with currencies, unemployment,
organizations, etc.

Figure 4.2. Graphical interface of NLI to ontologies in Lithuanian language

To start the search, the user needs to select one of the areas and time interval of
publication. Then, they select one of the suggested questions or write their own
question. If the question contains errors, the user receives an error messages. Errors
can be of two types: syntax errors, when some of words of the question are not
recognized or vocabulary errors, when some of words are not found in the
vocabulary. The user can correct the question and try to search once again. If the

78

question contains no errors, it is transformed to a SPARQL query, which is executed
against the ontology and results are presented to the user.

Currently, the implementation of a semantic search uses tools that store the
whole ontology in memory [86]. However, to improve performance, it is worth
considering to store ontology individuals in a relational database and query data
using SPARQL together with SQL using the method described by Vyšniauskas et
al. [127], [108].
4.2.2 Generating autocomplete suggestions

Autocomplete shows the available words and phrases and helps to formulate
questions word after word. It familiarizes users with the structure of questions and
concepts that can be questioned.

NLI uses SBVR vocabulary as lexicon. Vocabulary is split into two parts, as
described in subsection 0. General concepts and verb concepts from the second
vocabulary are used to create autocomplete suggestions. Appropriate morphological
forms of words are generated using a morphological generator. For example, if a
question starts with a word Kokie (Eng. What), the second word should be a
masculine plural noun (e.g., Lit. agentai, asmenys; Eng. agents, persons). These
forms are generated from the SBVR vocabulary concepts that are usually specified
in singular and nominative case.

Suggestions are generated considering synonyms and synonymous forms. SBVR
vocabulary concepts always have the main form of representation and can have
several synonyms. During the generation of autocomplete suggestions, the main
form is written first and synonyms are listed in parentheses. This gives more
information of what results to expect choosing a certain word.

Attention to the hierarchy of concepts is also considered when generating
autocomplete. If the concept has child concepts, they are presented below the parent
concept; indented by spaces and dashes. This allows users to formulate general or
specific questions. The screenshot of autocomplete is presented in Figure 4.3.

Figure 4.3. Autocomplete of the semantic search interface

4.2.3 Implementation of transformation rules to SPARQL
Question transformation rules (subsection 3.4.2) are implemented as a model-to-

model transformation in accordance with the principles of model-driven

79

development, when a series of transformations are executed over models, usually to
decrease the level of abstraction of models [48]. Although transformations of models
can be implemented using general-purpose languages, ATL was chosen, as it allows
the definition of transformation rules more naturally.

ATL is a domain-specific language to define model transformations [48]. It was
created as a proposal of OMG QVT standard for performing model transformations.
ATL language allows the use of both declarative and imperative constructs. The
preferred style is declarative, because declarative rules are closer to the way the
developers intuitively perceive a transformation and can hide complex
transformation algorithms in a simple syntax [48]. However, for complex mappings
the declarative style can be insufficient. In such situations, developers can use
imperative constructs.

ATL transformations can be executed in one direction. During the
transformation, the target model is created by navigating a read-only source model.
The target model cannot be navigated [48].

Models of transformations are serialized using XMI standard. In this work, the
source model of transformation is the SBVR XMI model containing business
vocabulary and question. The source model is created by SBVR SLE, which is
called through API. The target model is the SPARQL XMI model. This is the first
step of transforming questions to SPARQL.

In the second step, the SPARQL XMI model is used to generate the textual
query. The generation is performed using Acceleo language. Acceleo is a code
generator, the implementation of OMG’s Model to Text Language (MTL) standard.
Acceleo takes the XMI model as input and generates the output – SPARQL query in
the text file.

ATL transformations of SBVR to SPARQL are presented in appendix 1.
Appendix 2 presents the Acceleo query generation template.

5 EXPERIMENTAL EVALUATION

To evaluate the created solution, several experiments were performed. They
were performed and evaluated by the author of the dissertation.

The first experiment was performed to evaluate the suitability of SBVR SLE to
write specifications and support all the required SBVR constructions. In another
experiment, the editor’s capabilities to write specifications in different languages
and in different domains were evaluated. It is important, because this tool is used to
configure NLI to ontologies and must allow its multilingualism and portability.

The created NLI to ontologies was evaluated by measuring its correctness.
Standard knowledge bases and sets of questions were used to compare the solution
with other NLIs. In addition, questions were translated to the Lithuanian language
and the multilingualism of the solution was evaluated. In this experiment, two
knowledge bases were used to ensure that the created NLI could be configured to
question ontologies of different domains.

In the last experiment, questioning complex ontologies (i.e., when questions do
not directly correspond to the structure of ontologies) was evaluated.

80

5.1 Evaluating the completeness of SBVR structured language editor
The goal of this experiment is to evaluate the completeness of the created SBVR

structured language grammar and find out whether SBVR SLE is suitable for writing
SBVR specifications and generating SBVR XMI schemas. The experiment consists
of three parts: evaluating capabilities to specify SBVR business vocabulary,
business rules, and questions.

In the first part, the capabilities to specify the following vocabulary
constructions were evaluated:

• General concepts;
• Verb concept roles;
• Verb concepts;
• Property associations;
• Characteristics;
• Partitive verb concepts;
• Roles;
• Individual concepts;
• Hierarchy of concepts;
• Segmentations and categorization schemes;
• Facts;
• Definitions.
In the second part, the capabilities to specify structural, operative, and derivation

rules, based on following representations of atomic formulations were evaluated:
• With both placeholders not replaced;
• With placeholders, replaced by names;
• With the second placeholder, replaced by quantity restriction;
• With placeholders, replaced by quantification representations.
In the third part, whether the grammar and the created editor is suitable to write

WH and find questions, based on previously listed representations of atomic
formulations and questions to find instances of certain type were evaluated.

During the experiment, SBVR XMI schemas were generated. Examples of these
schemas are presented in appendix 2.
5.1.1 The investigated model of business domain

For a representative example, the domain of event organization was chosen. The
conceptual model of this domain is presented in Figure 5.1. In this model, SBVR
general concepts are expressed as UML classes and verb concepts as associations.
For the completeness, it contains class hierarchy, generalization between
associations, generalization between roles, bidirectional associations, aggregation,
cardinality constraints, categorization schemes, segmentations, etc. Therefore, it is
suitable to investigate, if the created grammar is complete enough and the editor is
capable to use all the required constructions of SBVR.

81

Figure 5.1. Conceptual model of event organization domain presented as UML class diagram

82

5.1.2 Evaluating the completeness of specifying business vocabularies
In the first part, business vocabulary of the presented domain was specified.

Fragments of vocabulary specifications are presented in Table 5.1.
Table 5.1. Fragments of specification of business vocabulary

General concepts
person
 General concept: agent
 Synonym: human
 Description: "a living human"
Company
 General concept: agent
event

Verb concept roles
organizer
 Concept_type: verb_concept_role
 General concept: agent

Verb concepts
organizer organizes event
 Synonymous_form: event is_organized_by organizer

Property associations
name
 General_concept: text
 Concept_type: role
ticket_price
 General_concept: number
 Concept_type: role
organizer has name
 Concept_type: property_association
event has ticket_price
 Concept_type: property_association

Characteristics
event is_finished
event_venue is_suitable_for_sport_events
concept 'sports_arena' incorporates characteristic 'event_venue
is_suitable_for_sport_events'

Partitive verb concepts
auditorium includes stage
 Concept_type: partitive_verb_concept
auditorium includes parterre
 Concept_type: partitive_verb_concept

Roles
Company name
 Concept type: role
 General concept: text

Individual concepts
Jonas_Grinius

83

 General_concept: person
Events_Ltd
 General_concept: company

Hierarchy of concepts
company
 General_concept: organizer
company_name
 General_concept: name
event takes_place_in location
 General_concept: spectacle is_performed_in auditorium
Segmentations and categorization schemes
payment_type
 Concept_type: categorization_type
 Necessity: is_for general_concept event
Events_by_payment
 Necessity: segmentation for general_concept event that
subdivides event by payment_type
free_event
 General_concept: event
 Necessity: is_included_in Events_by_payment
paid_event
 General_concept: event
 Necessity: is_included_in Events_by_payment

Facts
company Events_Ltd organizes spectacle Tern
Definitions
paid_event
 Definition: event that has ticket_price greater_than 0
organizer
 Definition: person that organizes event and sells_tickets_for
event

5.1.3 Evaluating the completeness of specifying business rules
In the second part, business rules of the domain were specified. Examples of

business rules are presented in Table 5.2.
Table 5.2. Fragments of specification of business rules
Rules using representations with both placeholders not replaced
It is obligatory that organizer sells_tickets_for event if event
is paid_event.
It is necessary that event takes_place_in location if event
takes_place_in event_venue which is_located_in location.
Rules using representations with placeholders replaced by names
It is obligatory that cultural_events are_organized_by Events_Ltd.
It is obligatory that Volleyball_match takes_place_in
sports_arena.

Rules using representations with the second placeholder replaced by quantity
restriction

84

It is obligatory that organizer cancels event if
number_of_sold_tickets of event is_less_than 50.
It is necessary that event is_paid if ticket_price of event
is_greater_than 0.

Rules using placeholders replaced by quantification representations
It is necessary that event takes_place_in exactly 1 location.
It is necessary that organizer is company that organizes
at_least 1 event.
It is necessary that organizer is_experienced if organizer
organizes at_least 20 events.

5.1.4 Evaluating the completeness of writing questions
In the third part, questions of the presented domain were specified. Examples of

business rules are presented in Table 5.3.
Table 5.3. Examples of questions
Questions using representations with both placeholders not replaced
Find names of organizers that organize events.
Find person that organize events that are free_events.

Questions using representations with placeholders replaced by names
What organizer organizes spectacle Tern?
Find events that has_location city Kaunas.
Questions using representations with the second placeholder replaced by quantity
restriction
Find events whose number_of_sold_tickets is_greater_than 100.
What person organize events that have ticket_price that
is_greater_than 150?

Questions using placeholders replaced by quantification representations
Find person that organizes at_least 5 events.
Find organizer that cancelled at_least 7 events.

Questions to find instances of certain type
Find persons.
Find events.

5.1.5 Conclusions of evaluating the completeness of SBVR editor
The experiment showed that the created grammar of SBVR structured

language is complete enough to specify all the required constructions of SBVR. It
allows specifying all types of SBVR vocabulary concepts (i.e., noun concepts, verb
concepts, and individuals), adding specifications for concepts, etc. The grammar
allows specifying operative, structural and derivation rules, based on all types of
representations of atomic formulations. All the required question types (presented in
2.1.5) are supported.

5.2 Evaluating the portability and multilingualism of SBVR structured
language editor

This experiment was carried out to find out, if the editor can be used for
configuring NLI to ontologies and allow its portability and multilingualism.

85

Evaluation of the portability of the SBVR SLE was performed writing SBVR
specifications in three different domains: agents, events, and e-commerce.

To evaluate multilingualism, the editor was adjusted for the Lithuanian language
by appending grammar with Lithuanian keywords and integrating a Lithuanian
morphological library. Further, SBVR specifications of three domains were
translated to the Lithuanian language.

The main problems of adjusting the editor to another language are related with
establishing syntax based relations between compound concepts, as described in
subsection 4.1.2. To avoid these problems, adjusting the cross-reference resolution
mechanism for the Lithuanian language, morphological library, created in the
SemantikaLT project [99] was used; as it contains a lemma finder and
morphological generator functions. The lemma finder returns the lemma of word.
Morphological generator returns the word in the specified morphological form. In
SBVR SLE, the morphological generator is used to generate all morphological
forms of word. For example, if the analysed word is a noun, generator will be used
to find that noun in all cases and genders. A generated list is further passed to the
Xtext cross-reference resolution mechanism. It accepts all possible forms at once
and searches, to identify if at least one of them exist in the vocabulary (i.e. searches
for vocabulary concept, specified in one of the forms). The drawback of such a
solution is that many redundant forms must be generated.

To evaluate capabilities of establishing relations between concepts in the
Lithuanian language, the number of compound individual concepts were specified.
They were used to formulate facts. During the evaluation, how many of individuals
in facts were successfully related with specified individual concept were counted. A
short example of Lithuanian specification from domain of events with marked
recognition errors is presented in Table 5.4.
Table 5.4. Example of specifying individuals and using them in facts
spektaklis
teatras
Priežastys_ir_pasekmės
 General_concept: spektaklis
Čipolino_nuotykiai
 General_concept: spektaklis
Snieguolė_ir_septyni_nykštukai
 General_concept: spektaklis
Kauno_Dramos_teatras
 General_concept: teatras
Kauno_Lėlių_teatras
 General_concept: teatras
Priežastis_ir_pasekmes vaidina Kauno_Dramos_teatre
Čipolino_nuotykius vaidina Kauno_Lėlių_teatre
Snieguolę_ir_septynis_nykštukus vaidina Kauno_Lėlių_teatre

Two different techniques were used to recognize concepts and establish
relations: lemma finder alone and lemma finder with morphological generator.
Recognition errors occurred if either lemmas of words were not found (i.e.,
morphological vocabulary errors), or lemmas or generated words were in unsuitable
morphological forms (i.e., morphological errors).

86

Results of the experiment are presented in Table 5.5. They are calculated using
precision PRi, (i.e., the ratio of correctly recognized concepts), recall RRi (i.e., the
ratio of recognized concepts), and F-measure FRi metrics. These metrics were
calculated using parameter ATi - the total number of individuals to recognize (i.e.,
individuals used in facts) and RTi – counted number of recognized individuals:

These metrics were calculated for three cases:

1) Using lemma finder only (i=1);
2) Using lemma finder with morphological generator (i=2);
3) Using lemma finder with morphological generator, but excluding terms

with lemmas not found. This shows the pure impact made by
morphological generator (i=3).

The impact of morphological generator on the quality of recognizing terms in
the Lithuanian language was evaluated by the increase of recall ∆RRi and F measure
∆FRi:

Table 5.5. Evaluation of quality to recognize compound terms in Lithuanian language
Business
domain

Terms to
recognize

Recognized
terms

PRi RRi FRi ∆RRi ∆FRi

Lemma finder
Agents 178 131 1 0,735 0,847 – –
Events 117 84 1 0,718 0,836 – –
E-commerce 509 59 1 0,116 0,208 – –

Lemma finder with morphological generator
Agents 178 154 1 0,865 0,928 0,129 0,081
Events 117 114 1 0,974 0,987 0,256 0,151
E-commerce 509 458 1 0,900 0,947 0,784 0,739

Lemma finder with morphological generator excluding vocabulary errors (pure
impact made by the morphological generator)

Agents 155 154 1 0,994 0,997 0,258 0,150
Events 115 114 1 0,991 0,995 0,273 0,159
E-commerce 477 458 1 0,960 0,980 0,844 0,772

Conclusions. The results show, that the recall of recognizing concepts using
only lemma finder is not good at all (0,116 – 0,735). The worst results are in the e-
commerce domain. Vocabulary of this domain has many titles of product categories,
defined in plural form. As lemmas are in singular form, recognition errors occur.

The main errors in domain of agents were caused by unrecognized names or
surnames (i.e., vocabulary errors) and disappeared pronominal forms in lemmas. In
the events domain, errors were similar – they were caused by unrecognized titles of
spectacles, disappeared pronominal forms or the wrong form of genders in lemmas.

However, the morphological generator greatly improved the concepts
recognition results (0,865 – 0,974). Certainly, it is better when vocabulary errors

87

were not counted (0,960 – 0,994). Therefore, the editor can be adjusted to write
SBVR specifications in different languages. For complete elimination of term
recognition errors, the morphology support in the SBVR SLE can be improved. To
eliminate vocabulary errors, morphological vocabulary can be improved to be able
for finding lemmas even of rare words.

The experiment also showed that SBVR SLE allows portability of NLI, because
it is capable of writing specifications in different domains.

5.3 Evaluating the effectiveness, multilingualism, and portability of NLI to
ontologies

The goal of this experiment is to evaluate the created NLI to ontologies and find
out, if SBVR can be used as a basis of NLI for questioning ontologies in multiple
languages and if the solution is portable. Effectiveness was evaluated calculating
correctness of answering English and Lithuanian questions. Portability was
evaluated configuring NLI for different domains.

The prototype, described in subsection 4.2 was used to perform the experiment.
However, it additionally uses clarification dialog to disambiguate questions. The
used data sets are based on the Mooney Natural Language Learning Data created by
Ray Mooney and his group from the University of Texas at Austin [75]. The original
knowledge bases were created using Prolog and have been used to evaluate NLIs to
databases. They were translated to OWL knowledge base and published by the
Dynamic & Distributed information Systems Group from the University of Zurich
[87]. This knowledge base is now often used to evaluate NLIs to ontologies. It
contains three test knowledge bases (i.e., geography, restaurants, and jobs) with sets
of question. The correctness is expressed by precision and recall parameters.

In this experiment, two knowledge bases were used: geography and restaurants.
The first one stores geographical information about the United States of America:
states, cities of states, capitals of states, borders of states, population of cities and
states, rivers, highest points, etc. It contains a set of 880 questions. However, the
subset of 250 questions is often used, because it semantically represents the whole
set. The conceptual model of the geography knowledge base is presented as a class
diagram in Figure 5.2.

Figure 5.2. Conceptual model of geography knowledge base

88

The restaurant knowledge base contains information about restaurants, their
ratings, locations, type of food, etc. It has 251 representative questions. The
conceptual model of the restaurant knowledge base is presented in Figure 5.3.

Figure 5.3. Conceptual model of restaurant knowledge base

Mooney knowledge bases contain English questions to evaluate NLIs. They
were translated to the Lithuanian language to evaluate the solution, not only in
English but also in the Lithuanian language. Translations of questions of the
geography knowledge base are presented in appendix 3.

In the created solution, questioning is carried out using SBVR business
vocabulary and business rules specifications that correspond the ontology. These
specifications were created during configuration with SBVR SLE in the English and
Lithuanian languages. Definitions for concepts that are derived from their properties
were also specified (e.g., large_city, italian_restaurant, etc.). Fragments of English
and Lithuanian SBVR specifications are presented in Table 5.6.
Table 5.6. Fragments of SBVR specifications

Geography knowledge base in English
city
population
 General_concept: number
 Concept_type: role
city has population
 Concept_type: property_association

It is necessary that major_city is city that has population
greater_than 300000.

Geography knowledge base in Lithuanian
miestas
populiacija
 General_concept: number
 Concept_type: role
miestas turi populiaciją
 Concept_type: property_association

Būtina, kad didelis_mietas yra miestas kuris turi populiaciją
didesnę_už 300000.

Restaurant knowledge base in English
restaurant
rating
 General_concept: text
 Concept_type: role
restaurant has rating

89

 Concept_type: property_association
restaurant has food_type
 Concept_type: property_association

It is necessary that good_french_restaurant is restaurant that
has rating “good” and has food_type “french”
Restaurant knowledge base in Lithuanian
restoranas
reitingas
 General_concept: number
 Concept_type: role
restoranas turi reitingą
 Concept_type: property_association
restoranas gamina patiekalų_rūšį
Būtina, kad geras_prancūziškas_restoranas yra restoranas kuris
turi reitingą "geras" ir gamina patiekalų_rūšį "prancūziškas".

After creating SBVR specifications, OWL ontologies were prepared by adding
labels with SBVR representations for ontology resources in order to establish the
compliance between ontology resources and SBVR concepts using principles
defined in [51].

During the experiment, English and Lithuanian questions were transformed to
SPARQL queries using the created transformations. An example of a English
question and transformed query is presented in Table 5.7.
Table 5.7. Example question and transformed query
What is population of Dallas?

SELECT
 ?population_i
WHERE {
 ?city_i ?city_has_population ?population_i.
 ?city_has_population rdfs:label "city has population"@en .
 ?city_i rdf:type ?city_c.
 ?city_c rdfs:label "city"@en.
 ?population_i rdf:type ?population_c.
 ?population_c rdfs:label "population"@en
 FILTER regex(?city_i, "Dallas")
}

Queries were executed against OWL ontology and parameters of precision,
recall, and F-measure were calculated. These parameters are adapted from the
information retrieval area. The precision PQ is the number of questions for which
the correct answer is returned (CQ) divided by number of questions whose answers
were returned at all (AQ). The recall RQ is the number of questions for whose
correct answers were returned (CQ) divided by the total number of questions (TQ)
that can be answered by the knowledge base [113]. Formulas of calculating
precision, recall, and F-measure are presented below:

90

Results of evaluating the correctness are presented in Table 5.8.
Table 5.8. Results of evaluating correctness

Conclusions. In the geography knowledge base, the created prototype was not
able to answer questions with negations. Due to the incompleteness of natural
language analysis algorithms, some English questions could not be answered. For
example, questions of grammatical structure that differs from the structure of SBVR
concepts (e.g., Through which states does the Mississippi run?) or questions to find
minimum or maximum values according to the specified criterion (e.g., What is the
smallest state by area?). Question transformation rules could not transform the
questions with double comparisons of minimum or maximum values (e.g., Which
states have points higher than the highest point in Colorado?).

Results of the restaurant knowledge base are worse, because prototype could not
identify the type of answer correctly for many questions. For example, the question
Where is Chinese food in Bay area? was answered incorrectly by showing a list of
Chinese restaurants instead of their exact locations. It negatively affected precision.

Clarification dialog made a significant impact on improving precision. It helped
to answer questions by disambiguating proper names of places. For example, the
question What is the population of Seattle Washington? contains the composite
proper name Seattle Washington, meaning city Seattle in state Washington.

The experiment showed that NLI is portable and can be configured to question
ontologies of different domains. However, it does not guarantee, that the correctness
will always be good. Each domain can have specific questions that could not be
easily answered. The correctness depends on the question analysis rules, which can
be improved to achieve better results.

The solution also allows questioning ontologies in different languages. It is
ensured by SBVR SLE, which allows writing multilingual SBVR specifications and
transformation rules. These rules transform SBVR questions to SPARQL queries
using a model of the question’s meaning that is independent from language.
Therefore, correctness of answering English and Lithuanian questions is similar.

The solution was compared with other NLIs to ontologies that were analysed in
subsection 2.1.10 and evaluated using the same knowledge bases. Results of the
comparison are presented in Table 5.9.

Knowledge
base

TQ AQ CQ PQ RQ FQ

Geography
250

English questions
224 205 0,9151 0,82 0,8649

Lithuanian questions
232 222 0,9569 0,888 0,9212

Restaurants
251

English questions
247 188 0,7611 0,749 0,7550

Lithuanian questions
248 187 0,754 0,745 0,7495

91

Table 5.9. Comparison of this solution to other NLIs to ontologies
 Geography Restaurants

Precision Recall F-measure Precision Recall F-measure
FREyA [19] 0,924 0,924 0,924 – – –
PANTO
[129]

0,8805 0,8586 0,8694 0,9087 0,9664 0,9367

Querix [56] 0,8608 0,8711 0,8659 – – –
This solution 0,9151 0,82 0,8649 0,7611 0,749 0,7550

The correctness of the solution is similar to PANTO and Querix systems.
FREyA is the most sophisticated of the compared systems. It has a lot of means to
analyze the semantics of question, such as communicating with users writing an
ambiguous question, helping to formulate correct questions, using ontology
knowledge to interpret questions. Therefore, this system has the highest correctness.

In the experiment, how easily the solution can be adjusted for different domains
was not evaluated, because it is very difficult to estimate and compare. The effort
that is needed to configure NLIs has been rarely quantified and compared across
paradigms [13].

5.4 Evaluating the capabilities of NLI to ontologies to map questions with
combinations of ontology resources

The goal of this experiment is to evaluate questioning capabilities when the
structure of the ontology differs from language formulations used for writing
questions. The evaluation was performed using the n-ary relation case, which often
occurs in Semantic Web applications. The representative example of n-ary relation
was adapted from [82] and presented in Figure 5.4. It contains the relation class
purchase, which is connected with classes buyer, seller, and products that are being
purchased.

Figure 5.4. N-ary relation of purchases domain

Relations of this ontology do not express very useful information for users. For
example, it is unlikely that he or she will be interested what products were included
in certain purchase. Probably, users will be interested in relations that are not
explicitly declared in the ontology, but can be derived. For example, what products
were bought by some person? The solution allows describing derivations in SBVR
specification and formulating questions using derived concepts. SBVR vocabulary
and derivation rules of the example are presented in Table 5.10.

92

Table 5.10. SBVR specification for describing n-ary relations of purchases domain
purchase
person
product
purchase is_created_by person
product is_included_in purchase
product is_bought_by person
It is necessary that product is_bought_by person if product
is_included_in purchase that is_created_by person.

The example question and transformed SPARQL query is presented in Table
5.11.
Table 5.11. SBVR specification for describing n-ary relations of purchases domain
What products were bought by John Smith?

SELECT
 ?product_i
WHERE {
 ?product_i ?is_included_in ?purchase_i.
 ?is_included_in rdfs:label "product is_included_in
purchase"@en.
 ?purchase_i ?is_created_by ?person_i.
 ?is_created_by rdfs:label "purchase is_created_by person"@en.
 ?product_i rdf:type ?product_c.
 ?product_c rdfs:label "product"@en.
 ?purchase_i rdf:type ?purchase_c.
 ?purchase_c rdfs:label "purchase"@en.
 ?person_i rdf:type ?person_c.
 ?person_c rdfs:label "person"@en
 FILTER regex(?person_i, "John Smith")
}

Conclusions. The experiment showed, that the solutions allow questioning,
when it is needed to map questions with combinations of ontology resources.
Mapping of a question to ontology can be implemented using SBVR derivation rules
or formal definitions.

5.5 Threats to validity and answers to research questions

The confidence of experiments may be affected by internal and external threats
to validity. In this work, threats to internal validity can be caused by chosen
experimental domains or by chosen external tools needed for implementing the
prototype of the solution (i.e., morphological library and SBVR to OWL 2
transformation component), which can make a positive or negative influence to
experiment results.

To avoid the influence of chosen domains, the following means were used:
1) The representative example, used in the experiment of specification

capabilities of SBVR SLE, contains all SBVR constructs to represent;
2) Lithuanian language concepts of 3 different domains were analysed in the

experiment for evaluating the portability and multilingualism of SBVR
SLE;

93

3) In the experiment of NLI to ontologies, standard test data sets were used
that are now often used to evaluate NLIs to ontologies [75], [87].
Therefore, the comparison of the solution with other existing solutions can
be accepted as a trustworthy one.

 The external tools could not make an unssen influence to the experimental
results because:

1) Results of the experiment of portability and multilingualism of SBVR SLE
depend on quality of the morphological component. More precisely, the set
of recognizable words and capability to generate required morphological
forms. The functionality of the morphological library of the Lithuanian
language was insufficient;

2) Results of the experiment of NLI to ontologies depend on the quality of the
configuration of the NLI. If SBVR specification does not fully meet the
ontology (e.g., some ontology concepts do not have corresponding SBVR
concepts, lack of derivations, etc.), results of correctness can be worse. To
minimise this risk, SBVR to OWL 2 transformation ([51], [52], and [53])
component can be used to synchronise ontologies and SBVR specifications
automatically.

3) Threats to external validity raise a question whether the research results are
applicable to other languages. During experiments of multilingualism of
SBVR SLE and NLI to ontologies, the English and Lithuanian languages
were considered. It seems enough, because the Lithuanian language is
complex and morphologically rich. This suggests that the solution can be
adjusted to other grammatically similar languages.

In this work, the following answers to research questions were concluded.
Is it possible to use SBVR questions for querying ontologies and relating

natural language questions with combinations of ontology resources? SBVR
questions can be used for querying ontologies. Questions can be written and
interpreted using SBVR specifications as lexicon. SBVR standard allows
representing meaning of a question. This standard can be used as an intermediate
knowledge representation model and transformed to SPARQL queries. To relate
formulation of questions (i.e., the way, how users think and question data) and
ontology structure, SBVR derivation rules or formal definitions can be used.

How natural language questions can be transformed to SPARQL using
SBVR? Natural language questions can be transformed to SPARQL following these
common steps: (1) performing analysis of natural language question and identifying
SBVR concepts that questions are based on; (2) creating SBVR model of meaning
of question; (3) performing model-based transformations of SBVR to SPARQL; (4)
generating textual queries from SPARQL models.

Is it possible to achieve portability without compromising the correctness
of NLI to ontologies using SBVR? The portability requires a domain independent
tool for writing SBVR specifications. The mutual correspondence between
vocabulary concepts and ontology resources must be ensured. The created solution
allows achieving portability of a natural language interface to ontologies of different
domains by:

94

• Using domain independent SBVR SLE;
• Using domain independent transformations of meaning of SBVR questions

to SPARQL queries;
• Synchronizing SBVR and OWL 2 concepts manually or via mutual SBVR –

OWL 2 transformations, and, in particularly, using labels for ontology
resources to relate them with SBVR concepts.

Greater efforts put into configuring NLI (e.g., specifying all available
derivations) will cause better correctness. However, to ensure sufficient correctness
in certain domains, improvement of question analysis algorithms may be necessary,
especially when facing specific formulations of questions that were not analysed
before.

Can SBVR based NLI to ontologies be adjusted to different languages and
what components are language specific? SBVR based NLI to ontologies can be
adjusted for investigated natural languages. For interpreting questions in a certain
language, question analysis algorithms and morphological library must be adjusted.

6 CONCLUSIONS

1. Analysis of scientific publications has shown that the preferable interface for
querying ontologies is a natural language interface (NLI). The most important
requirements of such a NLI are adjustability to different languages, ability to
deal with complex structures of ontology resources, portability and
habitability. Existing NLIs to ontologies only allow questioning in English
and usually in the form when the formulation of question directly corresponds
to the structure of ontology. On the other hand, existing solutions are portable
and can be configured for questioning in different domains. To improve
habitability, NLIs use various techniques that can be divided into two groups:
(1) methods intended to familiarize users with lexicon and help formulating
questions; (2) methods intended to help interpreting and disambiguating
questions.

2. The analysis of SBVR standard has shown that a distinguishing feature of its
metamodel to separate the meaning from representation allows achieving
multilingualism. It suggests that questions in the SBVR based NLI could be
transformed to semantic queries using language-independent rules, because
the model of a question’s meaning is the same for all languages. The language
dependent components of such a NLI should only be those that help writing
and interpreting questions. In order to achieve multilingualism, these
components should be replaced or adjusted for questioning in a certain
language. The architecture of the implemented NLI was designed in
pursuance of these ideas. Another important aspect related with deciding to
use SBVR for NLI to ontologies is the derivation rules that can be used to
relate simple questions with complex ontology structure.

3. The analysis of SPARQL revealed that the syntax of this query language and
metamodel of SBVR questions has conforming elements, expressing
information needs and restrictions of a query. It led to the assumption that

95

transformation of SBVR questions to SPARQL is feasible. Therefore, it was
decided to describe detailed mappings between the metamodel of SBVR
questions and SPARQL and create transformation rules.

4. An important prerequisite to use SBVR for NLI to ontologies is a robust
SBVR editing tool for specifying vocabulary and rules (i.e., configuration of
NLI) and generating XMI models of questions for further transformations.
The analysis of existing tools showed that none of them meets the
requirements and their further improvements are complicated. Therefore, it
was decided to create a new SBVR editor.

5. The conception of SBVR editor is based on structured language grammar (in
EBNF-like form) for specifying business vocabularies, rules, and writing
questions. The grammar was described analysing the metamodel of SBVR
representations, structured language examples from SBVR specification and
practice. Grammar supports questions to retrieve; objects of a certain type,
questions with modifier attachments, cardinality restrictions, numeric
comparisons, and count function.

6. Xtext framework was used to describe the grammar and implement the SBVR
editor. Experiments have shown that the editor allows specifying all the
required SBVR constructions. It also creates the necessary preconditions for
portability and a multilingual NLI to ontologies, along with being suitable for
the configuration task.

7. The conception of SBVR based NLI to ontologies contains the following
components (only the first two are language-dependent):
− User interface, which allows formulating natural language questions,

conforming to SBVR vocabulary;
− Question analyser, which identifies SBVR concept (s) that the question is

based on;
− SBVR model composer, which constructs the question’s SBVR XMI

model;
− Component of query transformation, which transforms the question’s

SBVR XMI model to SPARQL query.
8. Implementation of SBVR based NLI proved that it is possible to use SBVR

questions for querying ontologies. Additionally, experimental investigation
shows that the solution allows querying ontologies, whose structure (i.e.,
expressing relevant part of domain knowledge) directly does not correspond
to the structure of the natural language questions. This is achieved specifying
derivation rules of SBVR concepts that are used when transforming questions
to SPARQL.

9. Experiments of questioning in two different domains proved that it is possible
to achieve the portability and multilingualism of a NLIthat uses SBVR
standard. Portability is achieved by allowing SBVR specification to be written
fora certain domain and linking it with the ontology. The evaluation of
effectiveness showed similar result as other NLIs (i.e. f-measure is 0,86 in the
domain of geography and 0,75 in the domain of restaurants). However, the

96

main advantages of the created solution is multilingualism and the ability to
question ontologies, whose structure does not directly correspond to the
structure of natural language questions.

7 REFERENCES

[1] Androutsopoulos, I., Ritchie, G. D., Thanisch, P. Natural Language Interfaces to
Databases – An Introduction. Natural Language Engineering, 1(1), 1995, Pages 29-
81.

[2] ANother Tool for Language Recognition (ANTLR). Available from:
http://www.antlr.org/ [Accessed: 21 Jun 2011].

[3] Benjamin, P. C., Menzel, C. P., Mayer, R. J., Fillion, F., Futrell, M. T., deWitte,
P. S., Lingineni, M. IDEF5 Method Report. Knowledge Based Systems, Inc.,
September 21, 1994.

[4] Berners-Lee, T., Hendler, J., Lassila, O. The Semantic Web, Scientific American,
May 2001, p.28–37.

[5] Bernotaitytė, G., Nemuraitė, L., Butkienė, R., Paradauskas, B. Developing SBVR
vocabularies and business rules from OWL2 ontologies. In Proceedings of 19th
International Conference on Information and Software Technologies, ICIST 2013,
Kaunas, Lithuania, October 10-11, 2013, p.134-145.

[6] Bernstein, A., Kaufmann, E., Kaiser, C. Querying the semantic web with ginseng:
A guided input natural language search engine. In: Proceedings of 15th Workshop on
Information Technologies and Systems, Las Vegas, Nevada, USA, 2005, p.112–126.

[7] Bodenstaff, L., Ceravolo, P., Ernesto Damiani, R., Fugazza, C., Reed, K.,
Wombacher, A. Representing and Validating Digital Business Processes. Advances
in Web Semantics, January, 2007, p.219-246.

[8] Borst, W. Construction of Engineering Ontologies. PhD thesis, Institute for
Telematica and Information Technology, University of Twente, Enschede, The
Netherlands, 1997.

[9] Brook, J. SUS – A quick and dirty usability scale. P. Jordan, B. Thomas, B.
Weerdmeester, A. McClelland (eds.) Usability Evaluation in Industry, 1996, p.189-
194.

[10] Cabot, J., Pau, R., Raventos, R. From UML/OCL to SBVR specifications: A
challenging transformation. Information Systems, 35(4), 2010, p.417-440.

[11] Chapin, D. Implementing SBVR with a Practitioner’s Perspective. In Proceedings of
the 2010 international conference on Semantic web rules (RuleML'10), Washington,
DC, USA, October 21-23, p.16-19.

[12] Cimiano, P., Haase, P., Heizmann, J., Mantel, M. ORAKEL: A Portable Natural
Language Interface to Knowledge Bases. Technical report, Institute AIFB, University
of Karlsruhe (2007).

[13] Cimiano, P., Minock, M. Natural Language Interfaces: What is the Problem? - A
data-driven quantitative analysis. In Proceedings of the 14th international conference
on Applications of Natural Language to Information Systems (NLDB'09),
Saarbrucken, Germany, June 24-26, 2009, p.192-206.

[14] Cohen, W. W., Ravikumar, P., Fienberg, S.E. A Comparison of String Distance
Metrics for Name-Matching Tasks. In Proceedings of the 18th International Joint

97

Conference on Artificial Intelligence, Accapulco, Mexico, August 9-15, 2003, p.73-
78.

[15] Collibra. Business Semantics Glossary. Available from: https://www.collibra.com/
[Accessed: 25 Mar 2012].

[16] Čeponienė, L., Nemuraitė, L., Vedrickas, G. Semantic business rules in service
oriented development of information systems. In Proceedings of the 15th
International Conference on Information and Software Technologies (IT 2009),
Kaunas, Lithuania, April 23-24, 2009, p.404–416.

[17] Damljanovic, D. Natural Language Interfaces to Conceptual Models. Ph.D. thesis,
The University of Sheffield, Language Resources and Evaluation.
http://etheses.whiterose.ac.uk/1630/ (2011).

[18] Damljanovic, D. Towards Portable Controlled Natural Languages for Querying
Ontologies. In Proceedings of Second Workshop on Controlled Natural Language,
Marettimo Island, Italy, September 13-15, 2010.

[19] Damljanovic, D., Agatonovic, M., Cunningham, H. Natural Language Interfaces to
Ontologies: Combining Syntactic Analysis and Ontology-based Lookup through the
User Interaction. In Proceedings of the 7th international conference on The Semantic
Web: research and Applications, Heraklion, Crete, Greece, May 30 - June 3, 2010,
p.106-120.

[20] Damljanovic, D., Agatonovic, M., Cunningham, H., Bontcheva, K. Improving
Habitability of Natural Language Interfaces for Querying Ontologies with Feedback
and Clarification Dialogues. Web Semantics: Science, Services and Agents on the
World Wide Web. Volume 19, March 2013, 1–21.

[21] Damljanovic, D., Bontcheva, K. Towards Enhanced Usability of Natural Language
Interfaces to Knowledge Bases. Web 2.0 & Semantic Web, 2009, p.105-133.

[22] Damljanovic, D., Tablan, V., Bontcheva, K. A Text-based Query Interface to OWL
Ontologies. In Proceedings of 6th Language Resources and Evaluation Conference
(LREC), Marrakech, Marocco, May 28-30, 2008, p.205-212.

[23] De Tommasi, M., Corallo, A. SBEAVER: A Tool for Modeling Business
Vocabularies and Business Rules. In Proceedings of 10th International Conference on
Knowledge-Based Intelligent Information and Engineering Systems (KES‘06),
Bournemouth, UK, October 9-11, 2006, p.1083-1091.

[24] Demuth, B., Liebau, H. B. An Approach for Bridging the Gap Between Business
Rules and the Semantic Web. In Proceedings of the 2007 International Conference
on Advances in Rule Interchange and Applications, Orlando, Florida, USA, October
25-26, 2009, p.119–133.

[25] Eclipse Modeling Framework (EMF). Available from:
http://eclipse.org/modeling/emf [Accessed: 10 Oct 2012].

[26] Epstein, S. S. Transportable Natural Language Processing through Simplicity - the
PRE System. ACM Transactions on Information Systems (TOIS), 3(2), April 1985,
p.107-120.

[27] Eysholdt, M., Behrens, H. Xtext: implement your language faster than the quick and
dirty way. In Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion (
OOPSLA’2010), Reno/Tahoe, Nevada, USA, October 17-21, p.307−309.

98

[28] Fellbaum, C. WordNet - An Electronic Lexical Database. Cambridge, MA: MIT
Press, 1998.

[29] Ford, B. Parsing Expression Grammars: A Recognition-Based Syntactic Foundation.
In Proceedings of the 31st ACM SIGPLAN – SIGACT symposium on Principles of
programming languages, Venice, Italy, January 14-16, 2004, p.111-122.

[30] Garcia, V. L., Motta, E., Uren, V. AquaLog: An ontology-driven Question
Answering System to interface the Semantic Web. In Proceedings of Human
Language Technology Conference of the North American Chapter of the Association
of Computational Linguistics, June 4-9, 2006, New York, USA, p.269-272.

[31] Goedertier, S., Vanthienen, J. A Vocabulary and Execution Model for Declarative
Service Orchestration. In Proceedings of the 2007 International Conference on
Business Process Management, Brisbane, Australia, 2007, p.496–501.

[32] Gronback, R. C. Eclipse Modeling Project. A Domain-Specific Language Toolkit.
Addison-Wesley Professional, 2009, p.1−675.

[33] Grosz, B. TEAM: A transportable natural language interface system. In Proceedings
of the Conference on Applied Natural Language Processing, February 1-3, Santa
Monica, California, 1983, 39-45.

[34] Gruber, T. A translation approach to portable ontologies. Knowledge Acquisition,
5(2), 1993, p.199-220.

[35] Gruber T. Ontology. Encyclopedia of Database Systems, Ling Liu and M. Tamer
Özsu (Eds.), Springer-Verlag US, 2009.

[36] Guarino, N. Formal Ontology in Information Systems. In Proceedings of the first
International Conference Formal Ontology in Information Systems (FOIS’98), Trento,
Italy, 6-8 June 1998. Amsterdam, IOS Press, p.3-15.

[37] Guarino, N., Oberle, D., Staab, S. What Is an Ontology. Handbook on Ontologies.
Springer, 2nd edition, 2009, p.1-17.

[38] Guarino, N. Semantic Matching: Formal Ontological Distinctions for Information
Organization, Extraction, and Integration. In Proceedings of International Summer
School on Information Extraction: A Multidisciplinary Approach to an Emerging
Information Technology (SCIE-97), Springer-Verlag, 1997, p.139-170.

[39] Gudas, S., Brundzaitė, R. Knowledge-based enterprise modelling framework. In
Proceedings of 4th International Conference, ADVIS 2006, Izmir, Turkey, October
18-20, 2006, p.334-343.

[40] Gudas, S., Lopata, A. Knowledge-based refinement of business management
functions. In Proceedings of the International Conference on Knowledge Engineering
and Ontology Development (KEOD 2009), Madeira, Portugal, October 6-8, 2009,
p.435-442.

[41] Gudas, S., Lopata, A. Workflow models based acquisition of enterprise knowledge.
Information Technology and Control, 36(1A), 2007, p.103-109.

[42] Haase, P., Broekstra, J., Eberhart, A., Volz, R. A Comparison of RDF Query
Languages. In Proceedings of Third International Semantic Web Conference,
Hiroshima, Japan, November 7-11, 2004, p.502-517.

[43] Harris, A., Seaborne, A. SPARQL 1.1 Query Language. W3C Recommendation 21
March 2013. Available from: http://www.w3.org/TR/sparql11-query/ [Accessed 06
May 2014].

99

[44] Hendrix, G. G., Sacerdoti, E. D., Sagalowicz, D., Slocum, J. Developing a Natural
Language to Complex Data. ACM Transactions on Database Systems, 3(2), 1978,
p.105-147.

[45] Hevner, A. R., March, S. T., Park, J., Ram, S. Design Science in Information
Systems Research. MIS Quarterly, 28 (1), 2004, p.75-105.

[46] Huber, S., Carrez, C., Suttner, H. Development of Innovative Services Enhancing
Interoperability in Cross-Organizational Business Processes. In Proceedings of Third
International IFIP Working Conference (IWEI 2011), Stockholm, Sweden, March 23-
24, 2011, p.75-88.

[47] Hyvonen, E., Makela, E. Semantic Autocompletion. In Proceedings of the first Asia
Semantic Web Conference (ASWC 2006), Beijing, China, September 3-7, 2006, p.4-9.

[48] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I. ATL: A model transformation tool.
Science of Computer Programming, 72(1-2), 2008, p.31-39.

[49] Jurkevičius, D., Vasilecas, O. Ontology Creation by Using a Formal Concepts
Approach. In Proceedings of the International Conference on Computer Systems and
Technologies and Workshop for PhD Students in Computing (CompSysTech’10),
Sofia, Bulgaria, June 17-18, 2010, Vol. 471, p.64–70.

[50] Kamada, A., Mendes, M. Business Rules in a Service Development and Execution
Environment. In Proceedings of Eleventh International IEEE EDOC Conference
Workshop (EDOCW'07), October 17-19, 2007, p.1366–1371.

[51] Karpovič, J., Kriščiūnienė, G., Ablonskis, L., Nemuraitė, L. The comprehensive
mapping of semantics of business vocabulary and business rules (SBVR) to OWL 2
ontologies. Information Technology and Control, 43(3), 2014, p.289-302.

[52] Karpovič, J, Nemuraitė, L. Transforming SBVR business semantics into Web
ontology language OWL2: main concepts. In Proceedings of 17th International
Conference on Information and Software Technologies (IT 2011), Kaunas, Lithuania,
April 27–29, 2011, p.231–238.

[53] Karpovič, J., Nemuraitė, L., Stankevičienė, M. Requirements for semantic business
vocabularies and rules for transforming them into consistent OWL2 ontologies. In
Proceedings of 18th International Conference on Information and Software
Technologies (ICIST 2012), Kaunas, Lithuania, September 13-14, 2012, p.420-435.

[54] Kaufmann, E., Bernstein, A. Evaluating the Usability of Natural Language Query
Languages and Interfaces to Semantic Web Knowledge Bases. Web Semantics:
Science, Services and Agents on the World Wide Web, 8(4), 2010, p.377−393.

[55] Kaufmann, E., Bernstein, A., Fischer, L. NLP-Reduce: A naive but domain
independent natural language interface for querying ontologies. In Proceedings of the
6th International The Semantic Web and 2nd Asian Conference on Asian Semantic
Web Conference, Busan, Korea, November 11-15, 2007, p.281-294.

[56] Kaufmann, E., Bernstein, A., Zumstein, R. Querix: A Natural Language Interface
to Query Ontologies Based on Clarification Dialogs. In Proceedings of 5th
International The Semantic Web Conference (ISWC 2006), Athens, Georgia, USA,
November 5-9, 2006, p.980–981.

[57] Kjernsmo, K., Passant, A. SPARQL New Features and Rationale. Available from:
http://www.w3.org/TR/2009/WD-sparql-features-20090702/ [Accessed 06 July
2012].

100

[58] Klein, D., Manning, C.D. Accurate Unlexicalized Parsing. In Proceedings of the
41th Annual Meeting on Association for Computational Linguistics, Sapporo, Japan,
July 7-12, 2003, Vol. 1, p.423-430.

[59] Kriechhammer, M. Querying Systems for business models. Available from:
http://www.kriechhammer.com /?English_Portfolio:my_Documents:Finals, 2006
[Accessed: 25 June 2010].

[60] Krifka, M. Quantifiers in Questions. Korean Journal of English Language and
Linguistics 3, 2003, p.499-526.

[61] Kriščiūnienė, G., Nemuraitė, L., Butkienė, R., Paradauskas, B. Rules for
transforming OWL 2 ontology into SBVR. In Proceedings of the 6th international
conference on knowledge engineering and ontology development (KEOD 2014),
Rome, Italy, October 21-24, 2014, p.256-263.

[62] Lemmens, I., Nijssen, M., Nijssen, S. A NIAM2007 Conceptual Analysis of the ISO
and OMG MOF Four Layer Metadata Architectures. In Proceedings of On the Move
to Meaningful Internet Systems 2007: OTM 2007 Workshops, Vilamoura, Portugal,
November 25-30, 2007, p.613−623.

[63] Linehan, M. H. Ontologies and Rules in Business Models. In Proceedings of 11th
International IEEE EDOC Conference Workshop, Annapolis, Maryland, USA,
October 15-19, 2007, p.149–156.

[64] Linehan, M. H. SBVR Use Cases. In Proceedings of 2008 International Symphosium
on Rule Representation, Interchange and Reasoning on the Web (RuleML’08),
Orlando, Florida, USA, October 30-31, 2008, p.182−196.

[65] Linehan, M. H. Semantics in Model-Driven Business Design. In Proceedings of 2nd
International Semantic Web Policy Workshop (SWPW'06), Athens, Georgia,
November 5-9, 2006, p.86-93.

[66] Lopata, A., Ambraziūnas, M., Gudas, S. Knowledge-based MDA requirements
specification and validation technique. Transformations in Business & Economics,
2012, 11(1(25)), p.248-260.

[67] Lopata, A., Ambraziūnas, M., Gudas, S., Butleris, R. The main principles of
knowledge-based information systems engineering. Electronics and Electrical
Engineering, 2012, 4(120) p.99-102.

[68] Lopata, A., Ambraziūnas, M., Veitaitė, I., Masteika, S., Butleris, R. SysML and
UML models usage in knowledge based MDA process. Electronics and electrical
engineering. 2015, 21(2), p.50-57.

[69] Marinos, A., Gazzard, P., Krause, P. An SBVR Editor with Highlighting and Auto-
completion. In Proceedings of 5th International Rule Challenge, Vol. 799, 2011,
p.111−118.

[70] Marinos, A., Krause, P. An SBVR Framework for RESTful Web Applications. In
Proceedings of the 2009 International Symposium on Rule Interchange and
Applications, Las Vegas, Nevada, USA, November 5-7, 2009, p.144–158.

[71] Mill , J. S. A System of Logic. University Press of the Pacific, Honolulu, 2002.
[72] Minock, M. A STEP Towards Realizing Codd’s Vision of Rendezvous with the

Casual User. In Proceedings of 33rd International Conference on Very Large Data
Bases, Vienna, Austria, September 23-27, 2007, p.1358-1361.

[73] Minock, M., Olofsson, P., N¨aslund, A. Towards Building Robust Natural Language
Interfaces to Databases. In Proceedings of the 13th international conference on

101

Natural Language and Information Systems: Applications of Natural Language to
Information Systems, London, UK, June 24-27, 2008, p.187 - 198.

[74] Nadeem, T. Automated Translation of SBVR to SQL Queries. International Journal
of Emerging Sciences, 4(1), 2014.

[75] Natural Language Learning Data. Available from:
http://www.cs.utexas.edu/users/ml/nldata.html [Accessed: 05 Apr 2015].

[76] Nemuraite, L., Skersys, T., Šukys, A., Šinkevičius, E., Ablonskis, L. VETIS tool
for editing and transforming SBVR business vocabularies and business rules into
UML&OCL models. In Proceedings of the 16th International Conference on
Information and Software Technologies (IT 2010), Kaunas, Lithuania, April 21-23,
2010, p.377−384.

[77] Nenortaitė, J., Butleris, R. Improving Business Rules Management through the
Aplication of Adaptive Business Intelligence Technique. Information Technology and
Control, 38(1), 2009, p.21−28.

[78] Nijssen, S. SBVR: Semantics for Business. Business Rules Journal, 8(10), 2007.
Available from: http://www.BR Community.com/a2007/b367.html. [Accessed: 20 Jan
2011].

[79] Nihalani, N., Silakari, S., Motwani, M. Natural Language Interface for Database: A
Brief Review. IJCSI International Journal of Computer Science Issues, 8(2), 2011.

[80] Normantas, K., Vasilecas, O. A systematic review of methods for business
knowledge extraction from existing software Systems. Baltic Journal of Modern
Computing (BJMC), Vol. 1, no 1-2, 2013, p.29-51.

[81] Normantas, K., Vasilecas, O. Business rules discovery from existing software
Systems. International Journal of Scientific & Engineering Research, 3(10), 2012,
p.1-7.

[82] Noy, N., Rector, A. Defining N-ary Relations on the Semantic Web. W3C Working
Group Note, 12 April 2006. Available from: http://www.w3.org/TR/swbp-n-
aryRelations/ [Accessed 14 Junuary 2016].

[83] Number of Internet Users by Language. Internet World Stats, Miniwats Marketing
Group, 30 November 2015. Available from:
http://www.internetworldstats.com/stats7.htm. [Accesed: 15 Mar 2016].

[84] Ogden, W., Bernick, P. Using Natural Language Interfaces. Handbook of Human-
Computer Interaction. Elsevier Science Publishers B.V. (North-Holland), 1996.

[85] ONTORULE project. Available from: http://ontorule-project.eu [Accessed: 18 Jan
2012].

[86] Ontotext GraphDB. Available from: http://ontotext.com/products/graphdb/
[Accessed: 31 Mar 2016].

[87] OWL Test Data. Available from:
https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/talking-to-the-semantic-web/owl-
test-data/ [Accessed: 05 Apr 2015].

[88] Paradauskas, B., Laurikaitis, A. Business Knowlegde extraction using program
understanding and data analysis techniques. In Proceedings of the 15th International
Conference on Information and Software Technologies (IT 2009), Kaunas, Lithuania,
April 23-24, 2009, p.337−354.

102

[89] Patel-Schneider, P. F., Motik, B. OWL 2 Web Ontology Language Mapping to RDF
Graphs (Second Edition). W3C Recommendation 27 October 2009. Available From:
https://www.w3.org/TR/owl2-mapping-to-rdf/ [Accessed: 15 Mar 2016].

[90] Perrault, C. R., Grosz, B. J. Natural-language interfaces. Exploring artificial
intelligence. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 1988,
p.133-172.

[91] Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyano, D., Goranov, M. KIM
- Semantic Annotation Platform. In Proceedings of the 2nd International Semantic
Web Conference (ISWC2003), Sanibel Island, Florida, USA, October 20-23, Berlin,
2003, p.484-499.

[92] Prud‘hommeaux, E., Seaborne, A. SPARQL Query Language for RDF. W3C
Recommendation. 15 January 2008. Available from: http://www.w3.org/TR/rdf-
sparql-query/ [Accessed 06 May 2011].

[93] Resnik, P. Access to Multiple Underlying Systems in JANUS. BBN report 7142. Bolt
Beranek and Newman Inc., Cambridge, Massachusetts, September 1989.

[94] Ross, R. G. The RuleSpeak® Business Rule Notation. Available from:
http://www.brcommunity.com/b282.php [Accessed 18 June 2013].

[95] RuleXpress: The business tool for expressing and communicating business rules.
Available from: http://www.rulexpress.com/ [Accessed: 18 Feb 2014].

[96] Ruppenhofer, J., Ellsworth, M., Petruck, M. R. L., Johnson, C. R., Scheffczyk, J.
FrameNet II: Extended Theory and Practice. Technical Report, ICSI, 2005.

[97] SBVR Lab 2.0. Available from: http://www.sbvr.co/ [Accessed: 20 Feb 2014].
[98] Semantics of Business Vocabulary and Business Rules (SBVR), Version 1.3.

OMG Document Number: formal/2015-05-07, 2015.
[99] SemantikaLT. Syntactic-semantic analysis and search system for Lithuanian

Internet, corpus and public sector applications (2012-2014). Contracting authority:
Information Society Development Committee (IVPK). Supported by Structural funds
of EU, No VP2-3.1-IVPK-12-K, 2014.

[100] Slator, B., Anderson, M., Conley, W. Pygmalion at the interface. Communications
of the ACM CACM Homepage archive, 29(7), July 1986, p.599-604.

[101] Smith, M. K., Welty, C., McGuiness, D. L. OWL Web Ontology Language Guide.
W3C Recommendation 10 Feb 2004. Available from:
https://www.w3.org/TR/2004/REC-owl-guide-20040210/ [Accessed: 08 Apr 2016].

[102] Smith, B., Welty, C. Ontology: Towards a New Synthesis. In Proceedings of the
international conference on Formal Ontology in Information Systems (FOIS '01),
Ogunquit, Maine, USA, October 17-19, 2001, p.3-9.

[103] Son, J., Jeong, D., Baik, D. Practical Approach: Independently Using SPARQL-to-
SQL Translation Algorithms on Storage. In Proceedings of the 4th International
Conference on Networked Computing and Advanced Information Management,
Gyeongju, Korea, September 2-4, 2008, p.598-603.

[104] Spreeuwenberg, S., Anderson, H. K. SBVR's approach to controlled natural
languages. In Proceedings of the 2009 conference on Controlled natural language,
Marettimo Island, Italy, June 8-10, 2009, p.155-169.

[105] Spreeuwenberg, S., Gerrits, R. Business Rules in the Semantic Web, are there any
or are they different? In: Reasoning Web. Springer Berlin/Heidelberg, Germany,
LNCS, Vol. 4126, 2006, p.152−163.

103

[106] Stojanovic, N. On the Query Refinement in the Ontology-Based Searching for
Information. In Information Systems – Special issue: The 15th international
conference on advanced information systems engineering (CAiSE 2003), 30(7),
Novermber 2005, p.543-563.

[107] Šukys, A., Ablonskis, L., Nemuraitė, L., Paradauskas, B. A Grammar for
Advanced SBVR Editor. In Information Technology and Control, 45(1), IT&C 2015,
p.27-41.

[108] Šukys, A., Nemuraitė, L. Semantinių užklausų vykdymas saugant ontologiją
reliacinėje duomenų bazėje. 15-osios tarpuniversitetinės magistrantų ir doktorantų
konferencijos "Informacinė visuomenė ir universitetinės studijos" (IVUS 2010)
medžiaga, 2010 m. gegužės 13 d, Kaunas, Lietuva. Kaunas, Vytauto Didžiojo
universitetas. 2011, 15, pp. p.145-151.

[109] Šukys, A., Nemuraitė, L., Paradauskas, B. Representing and transforming SBVR
question patterns into SPARQL. In Proceedings of 18th International Conference on
Information and Software Technologies (ICIST 2012), Kaunas, Lithuania, September
13-14, 2012, p.436-451.

[110] Šukys, A., Nemuraitė, L, Paradauskas, B., Šinkevičius, E. SBVR based
representation of SPARQL queries and SWRL rules for analyzing semantic relations.
In Proceedings of the First International Conference on Business Intelligence and
Technology (Bustech 2011), September 25-30, Rome, Italy, p.1-6.

[111] Šukys, A., Nemuraitė, L., Paradauskas, B., Šinkevičius, E. Transformation
framework for SBVR based semantic queries in business information systems. In
Proceedings of the second International Conference on Business Intelligence and
Technology (Bustech 2012), July 22-27, 2012, Nice, France, p.19-24.

[112] Šukys, A., Nemuraitė, L., Šinkevičius, E., Paradauskas, B. Querying ontologies on
the base of semantics of business vocabularies and business rules. In Proceedings of
the 17th international conference on Information and Software Technologies (IT
2011), Kaunas, Lithuania, April 27-29, 2011, p.247-254.

[113] Tang, L. R., Mooney, R. J. Using Multiple Clause constructors in inductive logic
programming for semantic parsing. In Proceedings of the 12th European Conference
on Machine Learning, Freiburg, Germany, September 2001, p.466-477.

[114] Tekutov, J., Gudas, S., Denisovas, V. The Refinement of Study Program Content
Based on a Problem Domain Model. Transformations in Business &
Economics, 11(1(25)), 2012, p.199–212.

[115] Templeton, M., Burger, J. Problems in natural-language interface to DBMS with
examples from EUFID. In Proceedings of the first conference on Applied natural
language processing (ANLC '83), Santa Monica, California, USA, February 1-3, p.3-
16.

[116] Thompson, B. H., Thompson, F. B. ASK is Transportable in Half a Dozen Ways.
ACM Transactions on Office Information Systems, 3(2), April 1985, p.185–203.

[117] Thompson, B. H., Thompson, F. B. Introducing ASK, A Simple Knowledgeable
System. In Proceedings of the first conference on Applied natural language
processing (ANLC '83), Santa Monica, California, USA, February 1-3, p.17-24.

[118] Thompson, C. W., Pazandak, P., Tennant, H. R. Talk To Your Semantic Web.
IEEE Internet Computing, 9(6), November 2005, 75-78.

104

[119] Trinkūnas J., Vasilecas O. A Graph Oriented Model For Ontology Transformation
Into Conceptual Data Model. Information Technology and Control, 36(1A), 2007,
p.126–132.

[120] Vasilecas, O., Kalibatienė, D., Guizzardi, G. Towards a Formal Method for the
Transformation of Ontology Axioms to Application Domain Rules. Information
Technology and Control, 38(4), 2009, p.271–282.

[121] Vasilecas, O., Normantas, K. Deriving business rules from the models of existing
information systems. In Proceedings of the 12th International Conference on
Computer Systems and Technologies (CompSysTech 2011), Vienna, Austria, June 16-
17, 2011, p.95-100.

[122] VEPSEM. Integration of Business processes and business rules on the base of
Business Semantics. Research project VP131V008F, supported by Lithuanian
Education and Science ministry (2013-2015).

[123] VeTIS. Business Rules Solutions for Information Systems Development. Research
project No K B-04/2008, supported by Lithuanian State Science and Studies
Foundation (2008-2009).

[124] Vileiniškis, T.; Šukys, A.; Butkienė, R. An approach for semantic search over
Lithuanian news website corpus. In Proceedings of the 7th international joint
conference on knowledge discovery, knowledge engineering and knowledge
management (IC3K 2015), Lisbon, Portugal, November 12-14, 2015, p.57-66.

[125] Vyšniauskas, E., Nemuraitė, L., Butleris, R., Paradauskas, B. Reversible lossless
transformation from OWL 2 ontologies into relational databases. Information
Technology and Control, 40(4), 2011, p.293−306.

[126] Vyšniauskas, E., Nemuraitė, L., Paradauskas, B. Preserving semantics of OWL 2
ontologies in relational databases using hybrid approach. Information Technology and
Control, 41(2), 2012, p.103-115.

[127] Vyšniauskas, E., Nemuraitė, L., Šukys, A. A hybrid approach for relating OWL 2
ontologies and relational databases. In Proceedings of the 9th international
conference (BIR 2010), Rostock, Germany, September 29 − October 1, 2010,
p.86−101.

[128] Waltz, D. Natural Language Access to a Large Database: an Engineering Approach.
In Proceedings of the 4th international joint conference on Artificial intelligence
(IJCAI'75), 1975, p.868-872.

[129] Wang, C., Xiong, M., Zhou, Q., Yu, Y. Panto: A portable natural language interface
to ontologies. In: Proceedings of the 4th European conference on The Semantic Web:
Research and Applications, Innsbruck, Austria, June 3-7, 2007, p.473-487.

[130] Warren, D. H. D., Pereira, F. C. N. An Efficient Easily Adaptable System for
Interpreting Natural Language Queries. Computational Linguistics, 8(3-4), July-
December 1982, p.110-122.

[131] Warth, A. Experimenting with Programming Languages. Ph.D. thesis, University of
California, Los Angeles, 2009, p.1−122.

[132] Watt, W. C. Habitability. American Documentation, 19(3), July 1968, p.338–351.
[133] Woods, W. A, Kaplan, R. M., Webber, B. L. The Lunar Science Natural Language

Information System: Final Report. Report 2378. Bolt, Beranek, and Newman, Inc.
Cambridge, Mass., 1972.

105

[134] Xtext domain specific language development framework. Available from:
http://www.eclipse.org/Xtext/ [Accessed: 10 Nov 2011].

[135] Yue, J. Transition from EBNF to Xtext. In: MODELS-PSRC 2014, Poster Session
and ACM SRC of MODELS, Valencia, Spain, 2014, p.75−80.

[136] Zoltan-Ford, E. Reducing Variability in Natural-Language Interactions with
Computers. In Proceeding of the Human Factors Society 28th Annual Meeting, Santa
Monica California, USA, 1984, p.768-772.

8 LIST OF AUTHOR‘S PUBLICATIONS ON DISSERTATION THEME

Articles in Journals referred in Master Journal List of the Thomson
Scientific Information Institute (ISI) with impact factor

1. Šukys, Algirdas ; Ablonskis, Linas; Nemuraitė, Lina; Paradauskas, Bronius. A
Grammar for Advanced SBVR Editor // Information Technology and Control,
45(1), IT&C 2015. ISSN: 1392-124X, p. 27-41.

2. Šukys, Algirdas; Nemuraitė, Lina; Butkienė, Rita. SBVR based Natural
Language Interface to Ontologies // Information Technology and Control, 46(1),
IT&C 2017. ISSN: 1392-124X, p. 118-137.

Articles referred in other publications of the Thomson Scientific

Information Institute (ISI) (proceedings)
1. Šukys, Algirdas; Nemuraitė, Lina; Paradauskas, Bronius. Representing and

transforming SBVR question patterns into SPARQL // Information and
software technologies : 18th International Conference, ICIST 2012, Kaunas,
Lithuania, September 13-14, 2012 : proceedings / [edited by] Tomas Skersys,
Rimantas Butleris, Rita Butkiene. Berlin, Heidelberg : Springer, 2012.
(Communications in computer and information science, Vol. 319, ISSN 1865-
0929), ISBN 9783642333071. p. 436-451. DOI: 10.1007/978-3-642-33308-8.
[Conference Proceedings Citation Index]. [0,333]

2. Šukys, Algirdas; Nemuraitė, Lina; Šinkevičius, Edvinas; Paradauskas, Bronius.
Querying ontologies on the base of semantics of business vocabularies and
business rules // Information Technologies' 2011 : proceedings of the 17th
international conference on Information and Software Technologies, IT 2011,
Kaunas, Lithuania, April 27-29, 2011 / Edited by R. Butleris, R. Butkiene ;
Kaunas University of Technology. Kaunas : Technologija. ISSN 2029-0020.
2011, p. 247-254. [Conference Proceedings Citation Index]. [0,250]

Articles published in the other reviewed scientific publications

(proceedings)
1. Šukys, Algirdas; Nemuraitė, Lina; Paradauskas, Bronius; Šinkevičius, Edvinas.

SBVR based representation of SPARQL queries and SWRL rules for analyzing
semantic relations // Bustech 2011 [elektroninis išteklius] : the First
International Conference on Business Intelligence and Technology, September
25-30, Rome, Italy. [S.l.] : IARIA, 2011. ISBN 9781612081601. p. 1-6.
[0,250].;

106

2. Šukys, Algirdas; Nemuraitė, Lina. Semantinių užklausų vykdymas saugant
ontologiją reliacinėje duomenų bazėje // Informacinės technologijos =
Proceedings of Master and PhD students conference on informatic : 15-osios
tarpuniversitetinės magistrantų ir doktorantų konferencijos "Informacinė
visuomenė ir universitetinės studijos" (IVUS 2010) medžiaga, 2010 m. gegužės
13 d, Kaunas, Lietuva / [Vytauto Didžiojo universitetas, Kauno technologijos
universitetas, Vilniaus universitetas]. Kaunas : Vytauto Didžiojo universitetas.
ISSN 2029-249X. 2011, nr. 15, p. 145-151. [0,500].;

3. Šukys, Algirdas; Nemuraitė, Lina; Paradauskas, Bronius; Šinkevičius, Edvinas.
Transformation framework for SBVR based semantic queries in business
information systems // Bustech 2012 [elektroninis išteklius] : the second
International Conference on Business Intelligence and Technology, July 22-27,
2012, Nice, France. [S.l.] : IARIA, 2012. ISBN 9781612082233. p. [1-6].
[0,250].;

4. Vileiniškis, Tomas; Šukys, Algirdas; Butkienė, Rita. An approach for semantic
search over Lithuanian news website corpus // IC3K 2015 : proceedings of the
7th international joint conference on knowledge discovery, knowledge
engineering and knowledge management, Vol. 1: KDIR, Lisbon, Portugal,
November 12-14, 2015 Setúbal: Science and technology publications, ISBN
9789897581588. p. 57-66. [Indėlis: 0,333]

[Indėlis grupėje: 1,333]

SL344. 2017-05-09, 13,25 leidyb. apsk. l. Tiražas 16 egz. Užsakymas 161.
Išleido Kauno technologijos universitetas, K. Donelaičio g. 73, 44249 Kaunas
Spausdino leidyklos „Technologija“ spaustuvė, Studentų g. 54, 51424 Kaunas

