
KAUNAS UNIVERSITY OF TECHNOLOGY

NERIJUS JUSAS

Feature Model-Based Development of Internet of Things
Applications

Doctoral dissertation
Technological sciences, Informatics Engineering (07T)

2017, Kaunas

This doctoral dissertation was prepared at Kaunas University of technology,
Faculty of Informatics, Department of Computer Science, during the period of
2012 – 2017.

Scientific supervisor:

Prof. dr. Algimantas Venčkauskas (Kaunas University of Technology, technol-
ogy sciences, informatics engineering – 07T).

Doctoral dissertation has been published in:
http://ktu.edu

Editor:
Dr. Armandas Rumšas (Publishing Office “Technologija”)

© N.Jusas, 2017

ISBN 978-609-02-1341-4

The bibliographic information about the publication is available in the National
Bibliographic Data Bank (NBDB) of the Martynas Mažvydas National Library
of Lithuania

KAUNO TECHNOLOGIJOS UNIVERSITETAS

NERIJUS JUSAS

Požymių modeliais grindžiamas daiktų interneto sistemų
kūrimas

Daktaro disertacija
Technologijos mokslai, Informatikos inžinerija (07T)

2017, Kaunas

Disertacija rengta 2012-2017 metais Kauno technologijos universiteto infor-
matikos fakultete kompiuterių katedroje.

Mokslinis vadovas:

Prof. dr. Algimantas Venčkauskas (Kauno technologijos universitetas, tech-
nologijos mokslai, informatikos inžinerija – (07T).

Interneto svetainės, kurioje skelbiama disertacija, adresas:
http://ktu.edu

Redagavo: Dr. Armandas Rumšas (leidykla “Technologija”)

© N.Jusas, 2017

ISBN 978-609-02-1341-4

Leidinio bibliografinė informacija pateikiama Lietuvos nacionalinės Martyno
Mažvydo bibliotekos Nacionalinės bibliografijos duomenų banke (NBDB)

Contents

1 Introduction 11
1.1 Relevance of the work . 11
1.2 Object of the thesis . 13
1.3 Aim of the thesis . 13
1.4 Tasks of the thesis . 13
1.5 Scientific novelty . 13
1.6 Practical value . 14
1.7 Thesis statements . 14
1.8 Scientific approval . 14
1.9 Thesis organization . 15

2 The Internet of Things 16
2.1 Introduction to Internet of Things 16
2.2 IoT applications . 17
2.3 Communication between ’Things’ in IoT 19
2.4 Energy issues within IoT . 21
2.5 Security and privacy challenges within IoT 23
2.6 Quality of service of IoT . 24

2.6.1 QoS evaluation and optimization 26
2.7 Methods of IoT applications development 27

2.7.1 MDD and IoT applications 28
2.7.2 Modelling languages . 30

2.8 Product line and IoT applications 31
2.8.1 Variability modelling . 33
2.8.2 Model transformation . 34
2.8.3 Code Generation . 36

2.9 Conclusions . 37

3 Feature model-based development of IoT applications 38
3.1 Proposed IoT application development method 40
3.2 Relationship between phases of proposed method 42
3.3 Development of domain models 46
3.4 Aggregation phase . 52
3.5 Specialization phase . 57

3.5.1 Creation of specialized model 61
3.5.2 Design space exploration 68
3.5.3 Components database . 77

3.6 Generation phase . 79
3.6.1 Code template repository 83

3.7 Implementation phase . 87

5

3.8 Conclusions . 89

4 Development of IoT-based healthcare appliaction 90
4.1 Software tools . 90
4.2 Case study: IoT-based healthcare application 90

4.2.1 Introduction . 91
4.2.2 Modelling of IoT-based healthcare BAN layer domain . . 92
4.2.3 Aggregated model of healthcare BAN domain 97
4.2.4 Specialization of healthcare applicaiotn’s BAN layer . . . 100
4.2.5 Framework generation for IoT-based healthcare applica-

tion’s BAN layer . 110
4.2.6 Implementation of IoT-based healthcare application’s

BAN layer . 113
4.3 Discussion . 115

5 Conclusions 118

A Definitions of main concepts of feature model 137

B Feature model example 139

C Fragment of code template and outputs of code generator 140

List of Figures

3.1 The basic components of IoT application 38
3.2 Method of the implementation of the IoT application 41
3.3 Relationship between the method phases 43
3.4 Models development of IoT application domain 46
3.5 Feature model fragment which represents the IoT node 48
3.6 Generic structure of the proposed feature models 50
3.7 Aggregation layer . 52
3.8 Three types of aggregation . 54
3.9 Aggregated and verified feature model of IoT application domain 56
3.10 Specialization phase . 59
3.11 Extended Node feature of the aggregated feature model 63
3.12 Extended aggregated feature model 65
3.13 Specialized feature model for IoT application 65
3.14 A list of configurations created from a specialized feature model . 68
3.15 Extended Conf1 configuration of a specialized feature model.

RoC1 represents the part of configuration which remains un-
changed. 69

3.16 Specialized feature model after configurations extension. RoC
presents the rest of the configuration 70

6

3.17 A configurations list with estimates. ES presents the calculated
estimate of configuration . 71

3.18 Specialized configuration in the XML format 75
3.19 Fragment of the components database 78
3.20 Code generation process . 81
3.21 Selected code components from the code template library 82
3.22 Generated framework for IoT application. 83
3.23 Fragment of a code template library 85
3.24 Implementation phase . 88
4.1 Three-level architecture of the IoT-based healthcare application . 92
4.2 The created functional and non-functional requirements feature

models of IoT-based healthcare applicationn 94
4.3 Aggregated and verified feature model of IoT-based healthcare

application domain . 99
4.4 Extended Node feature of the aggregated feature model 102
4.5 Specialized feature model of IoT-based healthcare application . . 104
4.6 Design space exploration . 106
4.7 Design space exploration of the IoT-based healthcare applica-

tion’s BAN module . 107
4.8 The selected specialized configuration IoT-based healthcare BAN

module . 109
4.9 BAN structure after the specialization phase 110
4.10 Generation of code framework 111
4.11 The parsing process of specialized configuration 111
4.12 Implemented hardware of all three sensors of IoT-based health-

care BAN application . 113
4.13 The view of real time measurements of the implemented BAN

application . 114

List of Tables

1 Comparison of Wi-Fi, Bluetooth, BLE, ZigBee, 6LoWPAN and
Z-Wave protocols . 20

2 Multi-dimension QoS parameters of IoT applications 27
3 Rules to increase the number of configurations which are pre-

sented by the aggregated feature model [Alves et al., 2006] 61
4 Example of possible constraints between the features of a spe-

cialized feature model which can appear during the specialization
process . 67

5 Functional, non-functional and aggregated feature model charac-
teristics. Models statistics obtained using the S.P.L.O.T. tool. *
- Variability Degree is the number of valid configurations divided
by 2n,where n is the number of features in the model 95

7

6 Constraints relationships of the functional and non-functional
requirements feature models of the IoT-based healthcare BAN
layer domain . 96

7 Relationships between the features of the aggregated feature model 98
8 Relationships between features of the specialized feature model . 103
9 Specialized feature model characteristics 105

8

GLOSSARY

Advanced encryption
standard (AES)

Asymmetric block cipher used to protect classified
information.

Body Area Network
(BAN)

Wireless network of wearable computing devices.

Confidential (C) Information that could cause risk of material harm
to individuals or if disclosed.

Domain space explo-
ration (DSE)

Process to obtain an optimally performing architec-
ture with respect to some constrains.

Domain-specific lan-
guage (DSL)

Computer language specialized to a particular appli-
cation domain.

Feature model (FM) Compact representation of the products of the prod-
uct line in terms of some "features".

Feature-oriented
domain analysis
(FODA)

Domain analysis method which introduced feature
modelling to domain engineering.

Heterogeneous con-
centrator (HC)

A device which provides communication capabil-
ity between many low-speed, usually asynchronous
channels and one or more high-speed, usually syn-
chronous channels

Internet of Things
(IoT)

The interconnection via the Internet of computing
devices embedded in everyday objects, enabling them
to send and receive data.

IoT application data
collection module (Io-
TADCM)

Module of IoT application, which is responsible for
data processing.

Internet Protocol ad-
dress (IP)

Numerical label assigned to each device participating
in a computer network that uses the Internet protocol
for communication.

Measurement-
Communication
Module (MCM)

Module of IoT application which is responsible for
data collection and transmission to a heterogeneous
concentrator.

Model-driven engi-
neering (MDE)

An application development methodology that fo-
cuses on creating and exploiting domain models,
which are conceptual models of all the topics related
to a specific problem.

Model-driven devel-
opment(MDD)

A paradigm for writing and implementing computer
programs quickly, effectively and at minimum cost.

Model-driven appli-
cation development
(MDAD)

A concept of being able to make any kind of change
to a model as well as to the code generated from that
model.

9

Model-driven product
line (MDPL)

A combined paradigm of MDE and SPLE.

Message integrity
check (MIC)

A security improvement for encryption found on
wireless networks.

Product line (PL) or
Product Line Engi-
neering (PLE)

Application engineering methods, tools and tech-
niques for creating a collection of similar applications
from a shared set of applications assets by using a
common means of production.

Quality of Service
(QoS)

Network’s ability to achieve maximum bandwidth
and deal with other network performance elements
like latency, error rate and uptime.

Restricted (R) Restricted information is the kind of information, the
disclosure of which would not cause material harm,
but which has been chosen to be kept confidential.

Secret (S) Information that would cause severe harm to some
individuals/entities if disclosed.

Standard Internet
Module (SIM)

Module of IoT application, which is responsible for
data transmission between MCM and IoTADCM.

Sensitive but Unclas-
sified (SU)

Data that is not considered vital to individuals secu-
rity, but its disclosure would do some harm.

Simple XML Fea-
ture Model format
(SXFM)

A mark-up language that is used by an S.P.L.O.T.
tool to present feature models.

Top Secret (TS) Information that would cause severe harm to some
individuals/institutions if disclosed.

Unclassified (U) Data that has no classification or is not sensitive.
Unified Modelling
Language (UML)

A standardized modelling language enabling devel-
opers to specify, visualize, construct and document
artefacts of a software system.

Wireless Personal
Area Network
(WPAN)

A network for interconnecting devices centered
around an individual person’s workspace in which the
connections are wireless.

Wireless Sensor Net-
work (WSN)

Spatially distributed autonomous sensors designed
monitor physical or environmental conditions.

Extensible Mark-up
Language (XML)

A mark-up language that defines a set of rules for
encoding documents in a format that is both human-
readable and machine-readable.

10

1. INTRODUCTION

1.1. Relevance of the work

Technology advances have resulted in our modern-day life and work in a
digital world surrounded with the modern technology infrastructure – multi-
ple devices integrated within networks along with computers, mobile devices,
sensor networks, etc. which have become a commodity of our contemporary
lives. In the nearest future, however, not only humans and computers but also
everyday life items will be interconnected to create the new computing infras-
tructure – The Internet of Things (IoT) [Atzori et al., 2010]. The goal of the
IoT is to enable things to be connected "any-time, any-place, with anything
and anyone ideally using any path/network and any service" [Smith, 2012]. Se-
mantically, the IoT means a new highly heterogeneous worldwide network of
interconnected objects uniquely addressable, based on standard communication
protocols [Labiod et al., 2007]. This move from ’interconnected computers’ to
’interconnected things’ is a great challenge for the Information-Communication
Technology (ICT) practitioners, scientists and the society in the whole. As a re-
sponse to the challenge, an extremely wide stream of research is being provided
worldwide.

In the case of its application, the IoT is to be considered as an information-
communication technology with smart features and enhanced capabilities. From
this viewpoint, the IoT stands for a huge infrastructure containing physical
objects such as sensors, actuators, etc. that are self-identifiable to other devices;
thus, being connected over the Internet, these objects enable communication
and continuous transmission of the collected or control data over the nodes of
a network via the Internet. Depending on the application, diverse sensors and
other devices are served in collecting the data, on whose basis, the functionality
of the application is built.

Typically, security/privacy, energy-awareness and environmental factors
represent the major constraints in such applications. The first aspect is due
to the possibility that the data can be launched and changed, e.g., during the
transfer sessions. The second aspect is due to the use of battery-charged devices
within the network. The third aspect deals with the noises influencing data
transfer. The outlined factors are highly interrelated and extremely complex
in their own way. For example, there are a variety of communication protocols
designed to ensure different levels of security. The more complex a protocol
is (in terms of the complexity of the encryption algorithms used), the more
energy is required to ensure the required level of security. The same is true
of environmental noises. All these factors, when considered together, predefine
the quality of service (QoS) of the application. Therefore, QoS should appear
as a basic non-functional requirement in designing the IoT applications. In
[Jin et al., 2012], it is shown that QoS requirements for IoT applications are

11

very different even when the applications are very similar.
The IoT application itself consists of internal nodes (sensors, actuators,

and other devices). Typically, the number of nodes ranges from a few to a
dozen nodes. This depends on the type of each IoT application (e.g., a smart
house requires fewer sensors than a smart city). The nodes may be combined
into groups in order to cover different aspects of the same application, or even
different but related applications. Therefore, the functionality and structure
of a node can differ significantly, depending on the requirements of a particu-
lar application. On the other hand, there might be identical nodes (e.g., for
ensuring better performance, higher reliability, etc.).

As the complexity of systems is steadily increasing, application devel-
opment approaches should rely on the successful ones already in use in the
industry, such as Product Line Engineering (PLE), Model Driven Application
Development (MDAD) or Model-Driven Product Lines (MDPL). The PLE ap-
proach is defined as a methodology intended to develop a family of related
products in an efficient way, taking full advantage of the products’ commonal-
ity and variability aspects [Lockheed and U.S. Navy, 2013]. It is also concerned
with the use of the variability management [Capilla et al., 2013]. MDAD raises
the abstraction level of the typical application development by focusing on mod-
elling and automated code generation from the models. Models of an applica-
tion are specified by high-level feature modelling languages and using model
transformations that typically are defined as model-to-program transformation
[Czarnecki and Helsen, 2006] which are converted into the application. There-
fore, the model-driven application development approach is centered on the
use of models and their transformations [Czarnecki and Helsen, 2006]. MDPL
combines the abstraction capability of MDAD and the variability management
capability of PLE [Czarnecki et al., 2005a]. MDPL uses models with the inten-
tion to present the possible variability in order to implement the application
in the given domain where the variability is usually modelled by using feature
models [Dalgarno, 2007].

In IoT applications, due to their novelty and specificity, PLE approaches
are not yet exploited in full to ensure better quality, higher productivity, more
flexible adaptability and reuse despite the fact that IoT applications are domain-
specific [Lopez et al., 2014] and share many common features in it. Therefore,
the aim of the thesis is to analyse and disclose the potential of the product
line engineering approach for designing IoT-oriented applications. Currently,
the main problems in designing those applications are as follows: insufficient
extent of automation, inadequate capabilities for process reuse, integration and
adaptation. Furthermore, so far, designers have largely ignored the multiplicity
and synergy of non-functional requirements (security and energy requirements,
heterogeneity of devices and communication protocols) in designing their sys-
tems.

12

1.2. Object of the thesis

The object of this research is a feature modelling based method for the
development of IoT-oriented applications product line.

1.3. Aim of the thesis

The aim of the thesis is the development of IoT-based applications in prob-
lematic domain(s) by using product line methodologies while accounting for IoT
applications challenges: the complexity of requirements (security, energy con-
sumption), the heterogeneity of technology, and the factor of the environment.

1.4. Tasks of the thesis

The main tasks of this thesis are:

1. To investigate the typical requirements and challenges of IoT applications
development;

2. To propose an IoT applications product line development method based
on feature modelling;

3. To perform transformations of feature models and specialized configura-
tion to the framework of IoT application;

4. To produce practical implementation of the proposed method by imple-
menting IoT application.

1.5. Scientific novelty

The thesis has achieved the following innovative results:

1. A novel feature model-based method for the development of IoT applica-
tions product lines has been proposed.

2. Generic functional and non-functional requirements feature models have
been proposed which are used to present the variability of possible re-
quirements of the IoT application in the application domain at an early
stage of the application development.

3. The mapping procedure to map the problem domain variability presented
by the feature model with the requirements of the specific IoT application
has been proposed.

4. An approach to connect higher-level models with the generation level to
produce IoT applications has been proposed.

13

1.6. Practical value

The creation of IoT-based applications is a very complex and time-
consuming process because, during this process, software, hardware, the work-
ing modes of the hardware and the environmental factors must be combined in
order to ensure the best performance (QoS) of an application in a given situa-
tion. Moreover, IoT applications are domain-specific and share many common
features in the same domain [Chen et al., 2014], thus the product line technolo-
gies for the development of IoT applications can be used. PL methods allow
to reuse the created application components for the development of another
application. Considering that, IoT applications development methods with the
following properties have been proposed:

• To present possible design space to implement IoT applications in a spe-
cific domain;

• To choose one implementation variant from the design space of some IoT
application which meets the application’s requirements optimally;

• To generate a framework of IoT application from the selected implemen-
tation variant.

The research results are included into project No. VP1-3.1-ŠMM- 08-K-
01-018 "Research and Development of Internet Technologies and Their Infras-
tructure for Smart Environments of Things and Services" funded by the EU
SA.

1.7. Thesis statements

1. IoT applications development methods based on feature models can be
used to develop the product line of IoT application(s) in the specific IoT
domain.

2. The generic feature models present: the complexity of requirements (se-
curity, energy consumption), the heterogeneity of technology, and the
environmental factors of the problematic IoT domain.

3. The result of generic feature models transformations is a Pareto optimal
model of IoT applications which is used to generate a framework of the
IoT application.

1.8. Scientific approval

All of the results presented in the thesis are original; they have been
presented in 4 internationally referred "ISI Web of Science" scientific journal
publications and 2 other publications in informatics, electronics and software
engineering peer reviewed journals and proceedings.

14

The experimental results were presented and discussed in 3 international
conferences:

1. 18th International conference Electronics 2014, Palanga;

2. 20th International conference on information and software technologies,
ICIST 2014, Druskininkai;

3. 12th Annual International Conference on Information Technology & Com-
puter Science 2016, Athens.

1.9. Thesis organization

The thesis consists of 5 chapters:
Chapter 1 is an introduction providing a short summary of the work’s

novelty, aim and objectives. This chapter includes a brief identification of the
main problems in the IoT are and the motivation of the work.

Chapter 2 performs a thorough review of Internet of Things. This chapter
describes in detail IoT applications, IoT applications development challenges,
QoS of IoT applications and methods used for the development of IoT ap-
plications. The purpose of this chapter is to introduce the reader with the
terminology and IoT applications characteristics and specifics which will be
exploited and referred to in further chapters.

Chapter 3 presents a proposed feature model-based method intended to
implement the IoT-based application. It starts with an overview of the proposed
IoT application development method. The proposed method consists of five
phases: development of models, aggregation, specialization, code generation
and implementation. The processes of each phase are extensively described in
a specific subsection.

Chapter 4 presents a prototype which implements the proposed IoT appli-
cation development method presented in Chapter 3. It includes presentation of
a case study of the implementation of IoT-based healthcare BAN application.

Chapter 5 is the concluding chapter where the proposed solution and
contributions are summarized.

15

2. THE INTERNET OF THINGS

In this chapter, we represent the IoT since the understanding of the IoT
serves as the background for this thesis. We shall discuss the definition of the
IoT and review IoT applications, QoS of IoT applications and the methods used
for IoT applications development.

2.1. Introduction to Internet of Things

The phrase ’Internet of things’ (IoT) for the first time was mentioned in
1985 by Peter T. Lewis in a speech to the Congressional Black Caucus Founda-
tion of the 15th Annual Legislative Weekend in Washington [Saha et al., 2017].
Nowadays, IoT encompasses many aspects of life – from connected homes and
cities to connected cars and roads to devices that track an individual’s behaviour
and use the data collection for ’push’ services or even human healthcare systems
which save people’s lives. The goal of the IoT is to enable things to be connected
’anytime, anyplace, with anything and anyone ideally using any path/network
and any service’ [Smith, 2012]. Semantically, the IoT means a new highly het-
erogeneous world-wide network of interconnected objects uniquely addressable,
based on standard communication protocols [Labiod et al., 2007].

There are several definitions of the Internet of Things; yet, these defi-
nitions vary among organizations and authors. In most of these definitions,
IoT is presented as a dynamic complex system which combines various de-
vices, where these devices are interconnected and share information with each
other, and, for data sharing, they use standard communication protocols
[ITU, 2005, INFSO, 2008, IERC, 2009].

We tend to think that IoT description presented by Gubbi et al.
[Gubbi et al., 2013] best fits to the way how IoT is understandable in the scope
of this thesis. The authors suggest that IoT is described as a smart environ-
ment framework, which interconnect sensors and actuators. Such interconnec-
tion provides the ability to share information across platforms through a unified
framework. The proposed framework uses cloud computing for data analysis
and information representation, which is generated by sensors and actuators.

Physical objects that interact with each other through communication
protocols in the IoT context are usually understood as ’Things’. In this context
’Things’/physical objects could be electronic devices with network capabilities
or any physical objects without communication ability.

Objects with communication capabilities are able to communicate with
other devices by using similar communication capabilities. These devices usu-
ally communicate in Wi-Fi, Bluetooth and ZigBee wireless communication pro-
tocols (see Chapter 2.3). The number of this type of devices has increased
dramatically. Nowadays, they are being used as everyday devices, such as
smart phones, smart watches, refrigerators or TVs which are equipped with an
embedded computer and one of connection protocols.

16

Objects without any communication capabilities can be used to present
information about an object or to influence their state. These types of devices
are usually presented by proxies which perform information transfer (devices
or servers with communication capabilities) [Alam and Noll, 2010].

Despite the variety of types of objects which can be used in IoT, the
sensing and actuating objects are the most important for IoT because sensing
devices generate information about objects while actuating devices perform ac-
tions according to the collected data [ITU-T, 2012]. Most of IoT applications
depend on the information generated by sensors because without this infor-
mation applications cannot perform their tasks. IoT-based applications usually
process the selected information and, according to the processed results, control
actuating devices and provide other information.

Atzori et al. [Atzori et al., 2010] and Lee et al. [Lee et al., 2013] pre-
sented a survey of technologies that are often related to the IoT. The authors
categorized the relevant technologies according to three perspectives which are
understood as the IoT core technologies: things, network and semantic per-
spectives. In addition, these surveys state that IoT applications share many
common features, such as technologies, communication protocols, data trans-
mission, and the quality of service requirements.

2.2. IoT applications

Almost an infinite number of applications can be implemented by us-
ing the technologies of IoT. In the scope of the IoT domain, almost any
types of application can be found, some of which are futuristic, while oth-
ers are already being implemented and are used in the present days. The
IERC [IERC, 2009, Vermesan et al., 2013] identified and described the main
IoT applications which span across numerous application domains: smart en-
ergy, smart health, smart buildings, smart transport, smart industry and smart
city. Chen et al. [Chen et al., 2014] distinguished nine domains of IoT ap-
plications which are very similar to the domain distinguished by IERC. The
presented domains could be extended to many others, but almost every appli-
cation derives from these main domains. These facts show that IoT applications
are domain-specific and share many common features.

An IoT application can be understood as a centralized control which over-
look connections between IoT application parts. The software side of the IoT
application has to match and leverage the changes in the hardware. One of the
well-known concepts, which helps to deal with the flexibility and reconfiguration
requirements, is the service-oriented architecture. Due to the hard boundary
condition, such as limited resources, the common concepts of services-oriented
architecture cannot be directly mapped on most IoT applications.

Every application domain is denoted by its own characteristics. Most of
these characteristics are presented, discussed, identified and analyzed in soft-

17

ware engineering literature; however, the IoT domain brings forward some char-
acteristics which have not been analysed and discussed before. According to
Patel et al. [Patel et al., 2011], IoT applications have the following character-
istics:

• Commonality at various levels. Different IoT applications have a sig-
nificant amount of features which are common between applications. It
is caused by the fact that different applications are employing the same
sensors or actuators, also, the same application can be deployed at dif-
ferent locations (e.g. the same patient’s application at two hospitals)
[Patel et al., 2013]. This shows that IoT applications are domain-specific.

• Multiple concerns. Commonality at various levels has a great impact
on IoT applications for multiple concerns which must involve: 1) domain-
specific features; 2) application-specific features; 3) operating system-
specific features; 4) deployment-specific features.

• Heterogeneous devices. Usually, IoT applications must combine vari-
ous sensing and actuating devices, and ensure communications and data
exchange.

• Heterogeneous platforms. Different devices of IoT applications work
and perform their actions by using heterogeneous platforms; the plat-
forms are hardware-specific. For example, a device could be implemented
by using a Smart-phone, Arduino, Blackberry, .net Gadgeteer and other
hardware platforms. The hardware platform also determines the specific
of operating system (e.g. Android, iOS, GNU/Linux, and others).

• Heterogeneous interaction modes. Different devices mean var-
ious methods how data can be accessed from them. Three
data accessing modes can be distinguished: publish/subscribe
[Fukui et al., 2013], request/response [Neufeld and Goldberg, 1990] and
command [Andrews, 1991].

• Scale. Device network of an IoT application may consist of hundreds to
million devices, which usually perform multiple actions.

• Evolution. An IoT application works in the environments, which change
over time. Due to this fact, the IoT application must be modified in re-
sponse to the changes; this means that some or all parts of the application
should be re-developed. The changes may require adding or removing de-
vices, adding new features etc.

18

2.3. Communication between ’Things’ in IoT

Nowadays, most local area networks are based on the TCP/IP proto-
col [Hong-You and San-Ping, 2012] based wired or wireless communication net-
works. Wireless communication standards, such as Wi-Fi, and Personal Area
networks, such as Bluetooth and ZigBee, are more frequently employed to fa-
cilitate the interconnections between mobile devices and the home appliance.
However, the industry may use other communication protocols, such as Field-
bus [Shoshani et al., 2010] or CANBus [Huang et al., 2013]. Despite the het-
erogeneity of communication protocols, TCP/IP-based communication is the
de facto standard on the Internet. Usually, IoT application tries to integrate
the heterogeneous devices which communicate in different communication pro-
tocols. Moreover, these communication protocols must ensure different require-
ments for the data transfer rate and security. In order to show differences
between various communication protocols, we looked closely at several wire-
less communication protocols which are used for IoT applications. Below, we
will explore these protocols with respect to the data transfer rate, the level of
security and the working range.

Bluetooth is a short-range radio frequency communication for exchang-
ing data. Bluetooth technology is used in fixed and mobile devices, building
personal area and IoT networks. Nowadays, almost all mobile devices have
the Bluetooth technology. Communication between the devices is master-slave
based [Davies, 2002]. The master controls all the communication, and the slave
cannot communicate directly. A master can communicate either point-to-point
or point-to-multipoint. A group of Bluetooth devices forms a cell called pi-
conet; if several piconets overlap, they create a ’scatternet’ network. The same
Bluetooth device can belong to several piconets at the same time; thus it lets
expand the coverage area of the Bluetooth network.

Bluetooth low energy or Bluetooth 4.0 [Honkanen et al., 2004], is a simpli-
fied version of the classic Bluetooth standard. BLE has a similar transmission
rate and a slower data transfer rate but has a superior power saving capability
and reduced time which is needed to connect to other devices. However, Blue-
tooth low energy single mode devices are not interoperable with classic devices
such as Bluetooth 2.1+EDR devices. Single mode devices are only compatible
with other Bluetooth low energy devices [Libelium, 2014].

Wi-Fi is a technology that allows electronic devices to exchange data or
connect to the Internet by using radio waves [Khanduri and S. Rattan, 2013].
This technology is based on IEEE 802.11 standards for wireless local area net-
works. Many devices, ranging from smart-phones to sensors, have Wi-Fi con-
nectivity. These devices can connect to a network or Internet by using a wireless
network access point. In addition, wireless communication devices can be con-
nected into an ad-hoc network, where devices communicate directly. Wireless
devices communicate with each other by using unique identities.

19

Table 1. Comparison of Wi-Fi, Bluetooth, BLE, ZigBee, 6LoWPAN and Z-
Wave protocols

Standard Bluetooh BLE Wi-Fi ZigBee 6LoWPAN Z-Wave
IEEE
spec.

802.15.1 802.15.1 802.11a/b
/g

802.15.4 802.15.4 –

Max signal
rate

3 Mb/s 1 Mb/s 54 Mb/s 250
Kb/s

250 Kb/s 40
Kb/s

Nominal
range

10 m 10 m 100 m 100 m 100 m 100 m

Encryption E0
stream
cipher

AES
stream
cipher

RC4
strem
cipher
(WEP),
AES
block
cipher

AES
block
cipher

AES block
cipher

AES

Authenti-
cation

Shared
key

Shared
key

WPA2
(802.11i)

CBC-
MAC

CBC-
MAC

Key ex-
change

Data pro-
tection

16-bit
CRC

24-bit
CRC,
32-bit
Message
in-
tegrity
check

32-bit
CRC

16-bit
CRC

CBC-
MAC

CBC-
MAC

Operation
(security)
mode

Mode1
(Unpro-
tected),
Mode2
(Encryp-
tion),
Mode3
(Full en-
crypted)

Mode1
(Unpro-
tected),
Mode2
(En-
cryp-
tion),
Mode3
(Full en-
crypted)

Unpro-
tected,
WEP-
64,
WEP-
128,
WPA-
TKIP,
WPA-
AES,
WPA2-
TKIPT-
AES,
WPA2-
AES

None,
MIC-32,
MIC-64,
MIC-
128,
ENC,
ENC-
MIC-32,
ENC-
MIC-64,
ENC-
MIC-
128

Non-
secure,
access
control
list, secure
mode

Secure
mode

20

ZigBee [Chen et al., 2006] ZigBee [Chen et al., 2006] is a standard for
low-power wireless personal area networks (WPANs) and IoT systems, which
is, in other words, wireless networks with a short range. ZigBee is built on
top of the 802.15.4 specification which defines the physical and media access
control layers. ZigBee can have one of the three different topologies: star,
tree and mesh. Communication devices, according to the actions which they
perform, are divided into three types: coordinating, router and the end device.
Every ZigBee network must have a single coordinator which initialises the rest
of the networking by defining the communication frequency and identifiers and
allowing other devices to join the network. The router is responsible for relaying
messages to other devices and is not required in all the network topologies. End
devices are simple devices that send and receives messages.

6LoWPAN [Tabish et al., 2013] is a protocol which enables efficient use of
IPv6 over low power, low rated wireless networks on simple embedded nodes.
The target of this low power communication protocol is the applications that
need wireless Internet at lower data transfer rate for devices with very limited
resources. Such a connection can be performed by using border routers which
connect the 6LoWPAN network with other IP networks.

Z-Wave [Yassein et al., 2016] is a wireless communication protocol ori-
ented towards home automation. Z-Wave enables communication between de-
vices directly or indirectly by using wireless mesh networking technology. In
order to achieve this, Z-wave uses a network controller which controls all the
communication in the network.

2.4. Energy issues within IoT

Energy consumption is the key problem in the wireless sensor network
(WSN) as well as in the IoT. Communication is one of the most energy de-
manding tasks of IoT devices. In order to reduce energy consumption, low
power communication protocols have been proposed from different standard-
ization technologies, such as: ZigBee, Bluetooth low energy, RFID, and others
(see more in Chapter 2.3).However, the communication characteristics in WSN
and IoT are different from the traditional wireless communication because most
of the devices use battery as the main power source. In addition, the number
of the devices participating in communication is very large. Most of the time,
IoT networks should operate for a long period of time without any need for
human intervention [Kim et al., 2014]. Thus, energy saving is very important
for WSN and IoT.

Abbas and Yoon [Abbas and Yoon, 2015] propose the taxonomy of energy
saving issues for different types of wireless communication technologies of IoT.
The presented taxonomy distinguishes among three main wireless communica-
tion technologies which are used in IoT: wireless area networks, wireless local
area networks and wireless personal area networks. Each power saving method

21

of each main communication technology is analysed by using the following tech-
nical criteria: schemes, metrics, control, and evaluation.

In order to understand the energy consumption and saving problems in
WSN and IoT better, some methods are proposed which suggest using device(s)
modelling at an early stage of the wireless sensor and IoT network implemen-
tation. Zhou et al. [Zhou et al., 2011] describes the energy models of the WSN
node core parts, such as processors, radio frequency modules and sensors. The
basis of energy models is the event-trigger mechanism. The authors first sim-
ulate the node components and then estimate the energy consumption of net-
work protocols while using these energy models. The model presented here is
suitable for WSNs and IoT energy consumption analysis, for the evaluation of
network protocols and for WSN or IoT application developments. Kamyabpour
and Hoang [Kamyabpour and Hoang, 2010] propose a robust architecture that
takes into account all the principal energy constituents of WSN applications.
Their paper presents a single overall model and proposes a feasible formulation
seeking to express the overall energy consumption of a generic WSN appli-
cation in terms of its energy constituents. The formulation offers a concrete
expression for evaluating the performance of a WSN application, optimizing
its constituents’ operations and designing more energy-efficient applications.
Schmidt et al. [Schmidt et al., 2007] describes a method to construct models
for sensor nodes based on few simple measurements. This source provides a
sample where models are integrated in a simulation environment within the
proposed runtime framework to support the model-driven design process. Mea-
surements show that the proposed model enables to significantly reduce energy
consumption.

Other authors investigate energy consumption during the communication
process between WSN or IoT devices while using different communication proto-
cols. This enables the prediction of communication device energy consumption
in the implemented network and the application of the power saving methods.
Lanzisera et al. [Lanzisera et al., 2014]proposes a ’communicating power sup-
ply’ to enable the communication of energy and control information between
the device and the building management system. According to the authors,
the ’communicating power supply’ technology can significantly reduce energy
consumption in automated interactive solutions. Friedman and Krivolapov
[Friedman et al., 2011] deals with a combined effect of power and throughput
performance of the Bluetooth and Wi-Fi usage in smartphones. Their study
discloses some interesting effects and trade-offs. In particular, the paper iden-
tifies many situations in which Wi-Fi is superior to Bluetooth thus countering
previous reports. The study also identifies a couple of scenarios that are better
handled by Bluetooth. The conclusions from this study give the preferred usage
patterns that might be interesting to the researchers and smart phone develop-
ers.Venckauskas et al. [Venckauskas et al., 2014a] present the configurable IoT

22

prototype unit that enables to perform various experiments in order to deter-
mine the relationship between energy and security in various modes of the IoT
unit. The paper also presents a methodology of measuring the energy of the IoT
unit. While being applied, the methodology provides results in two different
modes: ideal (without the effect of noises within a communication environment
where the IoT unit works) and real (with the effect of noises).

2.5. Security and privacy challenges within IoT

The fact that most of IoT components are characterized as a low capability
in terms of both energy and computing resources (this is exclusively the case for
sensors and passive components) causes great concern of IoT security as well.
As a result of its low capabilities, most of the contemporary cryptographic
techniques are impossible to use or require further analysis. Due to this, most
IoT devices do not protect the collected data and protect it only during the data
sending operation of the encryption algorithm of the communication protocol.
Because of these complications and the fact that the IoT network is usually
deployed at a large scale, IoT is highly vulnerable.

Moreover, the heterogeneity of IoT networks increases the requirements
for IoT security because different communication protocols and algorithms must
be combined together in order to ensure the security and privacy requirements
of IoT applications. Thus, it decreases the opportunity to implement IoT ap-
plications in a large scale [Roman et al., 2013]. Due to this fact, the security
factor in the implementation of IoT applications is to support the scalability
and heterogeneity of IoT applications. In [CoIoToTPC, 2013], data protection,
privacy and information security are presented as complementary requirements
of IoT services. In addition, Weber [Weber, 2010] considers new security and
privacy challenges from the international legislation that pertains to the right
to information, provisions prohibiting or otherwise limiting the use rules on
IT-security legislation supporting the use of mechanisms of the IoT.

Chen et al. [Chen et al., 2009] delivers an overall vision of security is-
sues in the sensor networks categorized as follows: cryptography, key man-
agement, attack detections and preventions, secure routing, secure location se-
curity, secure data fusion, and other security issues. The authors also sum-
marize the techniques and methods used in these categories. Babar et al.
[Babar et al., 2010] provides analysis of the IoT in the context of security, pri-
vacy, and confidentiality issues and proposes a security model for the IoT.

Some authors propose new methods while others investigate some oppor-
tunity to use the already existing methods to cope with the existing challenges
of IoT security and privacy. Skarmeta et al. [Skarmeta et al., 2014] proposes
a distributed capability-based access control mechanism. The latter is based
on public key cryptography in order to cope with some security and privacy
challenges in the IoT. Their solution uses the optimized elliptic curve digital

23

signature algorithm inside the smart object. Slavin et al. [Slavin et al., 2014] in-
troduces security requirements patterns which represent reusable security prac-
tices that software engineers can apply in order to improve security in their
systems. The paper proposes a new method that combines an inquiry-cycle
based approach with the feature diagram notation intended to review only the
relevant patterns and quickly select the most appropriate patterns for the sit-
uation. Heer et al. [Heer et al., 2011] discusses the problems and application
possibilities of the already known Internet protocols and security solutions in
the IoT. The authors also describe the deployment model, the core security
requirements and emphasize the technical restrictions which are specific to the
standard IP security protocols.

Despite the proposed new security and privacy methods, most contem-
porary IoT implementations are using the already existing standard methods.
Therefore, method(s) are required which can analyse the presently existing se-
curity and privacy methods according to different requirements for security,
privacy and energy consumption of each IoT implementation independently. In
addition, security and privacy are contradictory to energy consumption because
higher requirements of security and privacy increase the energy consumption,
which poses the energy consumption problem of IoT applications (see Chapter
2.4).

2.6. Quality of service of IoT

Different parts of IoT application must communicate with each other, and
this communication can be understood as services. According to [Sancho, 2009],
a service is defined as an "asset of functions provided by a (server) software or
system to client software or system, usually accessible through an application
programming interface." Vermesan and Friess [Vermesan and Friess, 2014] pre-
sented a more accurate IoT application service description: "IoT application
service is providing thing-related service within the constraints of things, such
as privacy protection and semantic consistency between physical things and
their associated virtual things." Services between different parts of IoT applica-
tion(s) must perform the appropriate actions which are described by the quality
of service in short QoS. A service in IoT can be defined by the combinations of
capabilities of functionality, interoperability, interactions, communication abil-
ities, related data and the ability of using the related data of the device(s)
for implementing the IoT system in order to meet the requirements of specific
application(s) and end user system(s) [Bhaddurgatte and Kumar, 2015]. As
can be seen from a description of the quality of service of the IoT application,
services describe only non-functional features of IoT applications

There is no formal definition of QoS; however, in the telecommunication
domain, where QoS is mainly used, several definitions are available for certain
communication level properties of the network. International Telecommunica-

24

tion Union (ITU) presented standard x.902 [Iec, 1995] where QoS is defined
as "A set of quality requirements on the collective behaviour of one or more
objects." QoS attributes describe the speed and reliability of data transfer.

In [ITU-T, 2005], the definition of QoS of IoT has been proposed, where
QoS is defined as a complex indicator which evaluates user satisfaction with
a given service. These indicators are related to security, user satisfaction,
energy consumption, cloud computing provider parameters, and reliability
[Han et al., 2013, Shaoshuai et al., 2011, Peng and Ruan, 2012, Hu, 2015].

QoS satisfaction level depends on many various parameters and attributes.
The terms of the parameters and attributes are used interchangeably, and the
set of QoS parameters for an IoT application and its environment defines the
QoS provided by the application. Some QoS parameters and attributes have
a bigger impact on user satisfaction of the IoT application. Therefore, meth-
ods are proposed which improve or optimize one or many QoS parameters.
These parameters and attributes could be divided into four groups: 1) user and
application perspective; 2) operator and network-specific; 3) edge nodes and
communication system resource; 4) perspective of the all enabling technologies
[Zheng et al., 2014, Bhaddurgatte and Kumar, 2015].

Teixeira et al. [Teixeira et al., 2011] reports that the IoT and the Internet
of Services together will provide services for users in their real environment.
The authors review the main problems faced by the service-oriented middle-
ware along with the related scientific and technical innovation to support the
services for the IoT. The authors distinguished among six main problems: scale,
heterogeneity, unknown topology, unknown data-point availability, incomplete
or inaccurate meta-data and conflict resolution.

• Scale. Usually, IoT application must control from several to millions
sensing and actuating devices, which is a challenging task because each
device must be coordinated, and these devices have different constraints
such as latency, memory, processing power and energy consumption
[de Fuentes et al., 2015].

• Heterogeneity. Different sensors and actuators of an IoT application
can operate in different communication protocols. Also, they may have
been manufactured by an assortment of vendors and can have different
attributes which are related to the sensing performance, actuating ca-
pacities and accuracy [Mattern and Floerkemeier, 2010]. It results in IoT
application heterogeneity because of the functionalities of the sensors and
actuators and their capacity to communicate and exchange data among
each other or with the systems exploiting them. All of these parameters
lead to a rather challenging heterogeneity that makes the IoT extremely
hard to work with.

• Unknown topology. Many IoT applications are denoted by unknown

25

main ability and dynamic topology. According to [Hachem et al., 2011],
this leads to two consequences: 1) the application requires services which
could be available when required; 2) services might themselves rely on
the devices that had once joined the network and left it abruptly, or may
require devices which never existed at the IoT application location in the
first place.

• Unknown data-point availability. This problem appears because of
the unknown topology. A situation may arise that there is no device
which could accept the data and process it, and the device sending this
information is not capable to collect/store the data.

• Incomplete inaccurate meta-data. Since much of meta-data must be
manually entered by a human operator at installation time, in a massive
network this will surely result in a large amount of incomplete/inaccurate
information due to human error [Eisenhauer et al., 2010]. Moreover, some
meta-data information changes over time.

• Conflict resolution. Conflict resolution appears when several appli-
cations try to control the same devices. This problem usually affects
actuators [Hachem et al., 2011].

2.6.1. QoS evaluation and optimization

The QoS for the same IoT application can be composed of various compo-
nents (e.g. different devices, communication protocols, security requirements)
which have their own parameters and attributes; this opportunity to select the
different options creates a set of possible variants to implement the QoS. These
different variants of implementation must be evaluated in order to meet the in-
dividual needs of many applications. However, sometimes, evaluation is not an
option to select the best composition of parameters to implement the QoS be-
cause evaluation produces a big number of possible compositions. In this case,
the optimization is used; at this point, QoS optimization means finding an op-
timized composition with respect to several QoS constraints (e.g. minimizing
the power consumption while maximizing the security level), which is the best
for the specific IoT application. Depending on the specific end requirements of
the IoT application, optimization criteria could be related to energy, network
bandwidth, query, routing efficiency, network coverage, and other aspects.

Peng and Ruan [Peng and Ruan, 2012] proposed a QoS service model
which is based on analytical hierarchy process. This model takes user pref-
erences and device performance parameters, and evaluates this information in
order to select the best QoS for users.

Shaoshuai et al.[Shaoshuai et al., 2011] proposes the multi-objective
decision-making by using the evaluation model of service quality. This model

26

takes into consideration both the state of the system and the user settings to
improve the model of the QoS validity. The calculated assessment of the pro-
posed model can be used as a parameter for the estimation and selection of the
service.

Table 2. Multi-dimension QoS parameters of IoT applications

Dimension QoS parameters
Sensing Accuracy Availability Stability

Transmission Transmission time Storage capacity Reliability
Application Functionality Normative Robustness

Li et al. [Li et al., 2014] presents the method for evaluating and optimiza-
tion of the QoS of IoT. The proposed method evaluates IoT application by using
multi-dimensional QoS. QoS of an IoT application is understood as a space of
n dimensions, where each dimension presents one of the parameter of QoS.
These requirements cope with the heterogeneity of IoT applications because
applications cover various sensing and actuating devices which can commu-
nicate in different communication protocols. Table 2, presents the proposed
multi-dimensioned QoS parameters of IoT applications.

In [Li et al., 2015], the authors presented the methodology which eval-
uates the users’ satisfaction degree of the IoT application according to the
optimized quality of the service of IoT application. The proposed methodology
evaluates the IoT quality of experience by using multiple linear analysis. First
of all, the type of the IoT application must be analysed, the quality of the
service parameters for the quality of experience is determined, and the princi-
pal components are distinguished. Then, the regression function between the
quality of experience and the principal components is composed; after that, the
functional model between the quality of experience and the QoS parameters is
created. Such an evolution of QoS helps reduce the complexity of the quality
of experience and the number of parameters of QoS.

Guan et al. [Guan et al., 2006] presented the framework for QoS-guided
service optimization while using constraint hierarchies as a formalism for speci-
fying QoS. In the proposed framework, a model of QoS is created from functional
requirements which are modelled as hard constraints and use constraint hierar-
chies; however, this framework supports a small amount set of QoS attributes.

2.7. Methods of IoT applications development

In this chapter, we provide a comprehensive survey of the state of the art
in the IoT applications development. The main purpose of this chapter is to
investigate the already existing approaches.

27

2.7.1. MDD and IoT applications

In [France and Rumpe, 2007], France and Rumpe say that one of the chal-
lenges in the application, including IoT, development is filling the gap between
the application domain and the technology used to implement the solutions of
the problem. Two different concepts: the domain space and the technology
domain (computer science domain), must be understandable in order to create
a solution to the problem domain. The domain space represents the concepts
such as information flows, the behaviour and process with the scope of the
application domain. After that, the domain space must be mapped with the
technology domain (the computer science domain), which represents program-
ming languages, memory and storage management as well as communication
technology. Thus, application engineers must possess strong analytic skills and
creativity because they must combine both domains into one in order to cre-
ate the solution application [MacDonald et al., 2005]. Furthermore, Greenfield
and Short [Greenfield and Short, 2003] claim that this combination of the two
domains cannot be done by using mass production approaches.

Model driven development (MDD) is an applications development ap-
proach which is used to build the bridge between the domain space and the tech-
nology domain. Developing an application by using model-driven development
implies the creation of a model of the problematic application and the automat-
ically generated code [Nikiforova et al., 2009]. Application domain modelling
helps reduce the risks of bad engineering and usually decreases the produc-
tion time of the application. Application domain model creation is understood
as domain analysis [Czarnecki and Helsen, 2006], and this step of application
creation is performed at the highest abstraction level because modelling lan-
guages used in the creation of models, are of higher abstraction level than the
application implementation language. Moreover, Sallai [Sallai, 2014] identifies
modelling as a separate branch in the IoT research.

The lowest abstraction layer of MDD methodology is code generation from
the created application domain model [Fuentes et al., 2009]. In the generation
process, modelling languages are getting transformed into machine-executable
codes. This process is done by code generators or compilers.

In [Riedel et al., 2010], the authors presented a flexible code generation
method based on model drivel development for the creation of an IoT-based
application. The proposed method strives to build the bridge between the
networked embedded objects and the enterprise back-end system. In order to
do that, modelling and code generation architecture has been proposed; this
architecture is based on state of the art technologies which ensure efficient data
exchange between two different parts of the IoT application. For modelling,
they use various high-level message description languages in order to create
visual automata which are used as the basis for the code generator.

In [Grace et al., 2016], the authors presented an MDD-based method to

28

control the interoperability of IoT application development. This is necessary
because the IoT resource is highly heterogeneous in terms of communication
technologies, protocols and data formats. Due to this, the authors proposed
to use two types of the model: the interoperability model and the specifica-
tion models. Thus it allows to reduce the IoT application development time
and to ensure possibilities to create complex applications. Small models de-
signed to describe the interoperability are used; this allows faster simulation
and evaluation of IoT application.

In [Patel and Cassou, 2015, Patel et al., 2015], the authors presented an
MDD-based IoT application development framework which copes with IoT ap-
plication problems, such as heterogeneity, the large number of devices, and the
different life cycle phase. In the proposed development framework, a method-
ology that separates IoT application development into different concerns, and
the methodology which allows to support the actions of stakeholders are sug-
gested. The framework provides a graphical modelling language which allows
to specify each development concern and abstracts, and integrates code gen-
eration, task-mapping and linking techniques in order to provide automation.
Code generation is done in such a way that it supports all the IoT application
development phases. Furthermore, the framework is oriented in such terms as
re-usability: the extent to which software artefacts can be reused during appli-
cation development; and expressiveness: the characteristics of IoT applications
that can be modelled while using this approach. Conceptual models have been
chosen as the main modelling technology.

As can be seen, most of the proposed MDD methods for IoT ap-
plications development are oriented to model 1 application. However, in
[Chen et al., 2014], it is stated that IoT applications will be deployed in nine
domains: smart house, smart medical care, intelligent transportation, smart
agriculture, smart environmental protection, smart safety, smart grid, domain
industry application and smart logistics. In addition, according to Internet
of Things Environment for Service Creation and Testing [Lopez et al., 2014]
project, the already existing IoT applications are domain-specific because they
use heterogeneous communications, technologies and protocols. These facts
show that IoT applications share a lot of common features in the same do-
main; thus the product line methodologies can be used for the creation of IoT
applications in the same domain. These techniques are used to present the pos-
sible ways to implement an IoT application in its domain at an early stage of
its development, and to ensure good re-usability of components (models, soft-
ware fragments, and others) while developing different applications in the same
domain.

29

2.7.2. Modelling languages

Model-driven development requires language(s), with which, the domain
model can be created. There are various forms of modelling languages, such
as graphical notation, hierarchical tree and textual languages. All these lan-
guages can be divided into two main types: programming and modelling
[Poruban et al., 2014]. By using a programming language, the application do-
main is presented in the form of the source code, and as a model in case of mod-
elling languages, which is transformed into the application source code. The
similarities and differences of programming languages and modelling languages
as model-driven development technologies are discussed in [Sun et al., 2008].
The authors noted that modelling languages mostly use higher abstraction, par-
ticularly, while using graphical notation. Meanwhile, programming languages
are executable at a lower abstraction level.

Depending on the abstraction level which is presented by the mod-
elling languages, and the representations, modelling languages are divided
into two main categories: general modelling languages and domain-specific
languages (DSL). General modelling languages can be used to describe any
type of the application domain. Examples of general languages may be UML
[Vanderperren and Mueller, 2006], or they may feature the model script lan-
guage [Acher et al., 2013]. UML language uses graphical notation to describe
the domain. By using UML architecture, objects, interactions between objects,
data aspects modelling, as well as the design aspects of component-based devel-
opment are involved. Feature model scrip language is used to present different
variants in order to develop an application in its domain.

According to Mernik et al. [Mernik et al., 2005]: "Domain-specific lan-
guages (DSLs) are languages tailored to a specific application domain. They
offer substantial gains in expressiveness and ease of use compared with gen-
eral purpose programming languages in their domain of application." As it can
be seen from this definition, general purpose languages are more flexible than
DSLs. A good example of DSLs is VHSIC Hardware Description Language
(VHDL) [Swamy et al., 1995]: it is a standard DSL for describing digital circuit
designs, Embedded Systems Language (ESML)[Jouault and Bezivin, 2006]: it
is a standard DSL for describing digital circuit designs, Embedded Systems
Language (ESML) [Jouault et al., 2008]: it is a DSL for specifying model trans-
formations (more about DSLs can be found in [Sun et al., 2008]).

Due to the heterogeneity, huge scale, network requirements and other
specific factors of IoT applications, most of the software engineering domain-
specific languages cannot be used for the creation process of IoT applications.
As a result of this fact, new DSLs have been proposed which are oriented to IoT
applications. By using these DSLs, most aspects (e.g. heterogeneous objects)
of an IoT application can be described.

Midgar is one of such languages which is used to describe smart objects

30

for various IoT application platforms [Garćıa et al., 2014]. By using Midgar
DSL, the necessary software for objects is created. A graphical editor is used to
present this DSL; also, this editor allows the user to create any kind of objects
(sensors, actuators, etc.) which can be used in their platform (e.g. smartphone,
micro-controllers). This helps to cope with the huge amount of heterogeneous
devices. Moreover, a system developer can describe which data will be sent to
the platform for further processing.

In [Salihbegovic et al., 2015], DSL-4-IoT domain-specific language has
been proposed. DSL-4-IoT can be used to describe the following aspects of IoT
application: heterogeneity of wireless sensor networks, devices, communication
media, protocols and operating systems. This lets IoT application develop-
ers describe the most specific IoT applications. The editor of this language is
based on the class of visual domain-specific modelling languages. DSL-4-IoT
uses formal presentations and abstract syntax in a meta-model. The hierarchi-
cal structure is as follows: the system, subsystem, device physical or virtual
channel is used to describe IoT application by using DSL-4-IoT.

2.8. Product line and IoT applications

The traditional focus of applications development [Acher, 2011] (includ-
ing IoT applications) and the analysed MMD methods are intended to develop
individual applications. As it was mentioned earlier, almost all the IoT appli-
cations can be divided into nine main domains [Chen et al., 2014], where these
domains can be divided into smaller IoT application domains. Due to this
fact, IoT applications can be seen as a product group which has a common
set of features: similar developing platforms and implementation functionality
in the same domain. Thus the product line (PL) methodologies can be used
for IoT applications development in order to show as many as possible vari-
ants to implement the IoT application in its domain. PL engineering relies
on the idea of mass customization [Kotha and Pine, 1994] known from many
industries: telecommunications, avionics and others. Such an application de-
velopment method tries to identify whatever applications may have in common
and manage the aspects varying among them while analysing the problematic
domain. The main purpose of PL engineering is to provide various development-
related solutions for different customers in a systematic and coordinated way.
Instead of individually developing each variant from scratch, commonalities are
conceived only once. Therefore, the final product is customized to meet the
specifications of individual customers.

PL ensures better reusability of components between different applications
because a group of applications share common features in the same domain
[Glass, 2001]. Therefore, the common components (features) can be reused
between different applications in a group, and the application can be developed
from the beginning instead of one by one from scratch [Lee et al., 2002].

31

According to [Fuentes et al., 2009], PL brings two new issues as compared
to the engineering of single product-based systems: the variability design and
the product derivation. The variability design is responsible for the variation
mechanisms incorporation in the production process of products in such a way
that it would be possible to present an infrastructure to describe the complete
range of family products. Such an infrastructure is used in order to describe
both the commonalities and the variations of the family of products. Product
derivation is the process of a specific product creation from the selected specific
configuration by selecting it from the configurations which were determined
at the variability design step. In order to perform variability design, various
variability modelling techniques were introduced (see Chapter 2.8.1).

The development of IoT applications has many features in common, but
we must also estimate a high variability due to the heterogeneity of the commu-
nication protocols, devices, and environment facts. Therefore, demand appears
to solve component management issues between different applications of the IoT
with respect to the inherent variability of these applications. Due to this fact,
suggestions are made to use product line technologies for IoT application(s)
development.

Anon et al. [Anon et al., 2014] presented an IoT application development
framework which manages variability and provides an opportunity to create IoT
applications. In order to achieve that, they adopted the product line engineering
and proposed a framework with a layered architecture which consists of a cloud
layer, a central hub layer, and an end devices layer. The proposed framework
allows to present the variability of all layers.

Conejar and Kim [Conejar and Kim, 2016] presented a framework for the
mobile device product line security based on the Internet of Things which is
used for the development of IoT application in mobile devices. This framework
uses PL engineering in order to present variability at the following three levels:
edge, access, and application. According to the authors, this improves the
planning, operations and control phases of the product development.

Ayala et al. [Ayala et al., 2015] proposes a method which uses product
line engineering for the development of IoT agents by using Self-StarMASMAS,
a multi-agent system. The proposed method can be divided into three steps:
IoT multi-agent domain analysis, IoT multi-agent system variability modelling
and IoT multi-agent system architecture. The first step is used to collect in-
formation about the IoT multi-agent domain with respect to the devices and
transport protocols heterogeneity which can be used in the creation of agent
in the IoT applications. The variability model of the analysed multi-agent do-
main is created in the second step. During the third step, the final application
architecture is automatically derived from the variability model. These three
steps ensure an appropriate reuse mechanism to develop an agent family of
applications in the IoT.

32

All of the analysed PL methods for IoT applications development focused
on modelling a variability (configurations) to implement the application in its
domain. However, none of the analysed PL methods considers the security
levels of the communication protocols, the device working modes and the device
energy consumption factors as a part of IoT applications development, which
have an impact on an IoT application’s performance (QoS). Despite this fact,
these factors are crucially important for the development of IoT applications.

2.8.1. Variability modelling

The main task of presenting the variability of the PL is to distinguish
the features shared by all the products of the line, and the elements that may
vary from one product to another. Many different techniques are proposed
for the presentation of variability among products in the same domain. In
[Berger et al., 2013], twelve main variability notations are distinguished: fea-
ture model, spreadsheet, key/value pairs, domain-specific language, UML-based
representation, decision model, free-text description, product matrix, aspect-
oriented language, architecture description language, configuration facilities of
a component framework, and goal model. Bellow, we present several variability
notions which use models so that to present the variability in PL.

Feature models for the first time were proposed by Kang et al.
[Kang et al., 1990] in 1990. Feature models are usually standard for represent-
ing variability in PL. Despite years of research, there is no universal modelling
standard for feature models. Due to this fact, a number of proposed exten-
sions exist. Most of the proposed extensions are based on parent and child
relationships. Feature models are presented as a hierarchical diagram to orga-
nize a potentially large number of concepts. These hierarchical diagrams (see
Appendix B) are usually graphically presented as rectangles while some graph-
ical elements, such as a filled or unfilled circle are used to describe the feature
type ’mandatory’ or ’optional’ (see Appendix B), and the root feature is the
most general concept. The original feature model notation called FODA was
proposed by Kang et al. [Kang et al., 1990]. Griss et al. [Griss et al., 1998] pre-
sented the Feature-RSEB (based on Reuse-Driven Software Engineering Busi-
ness) feature model as a FODA extension with additional relationship. FODA
feature models use four types of relations among the features to present the
PL variability: mandatory, optional, alternative, and cross-tree constraints:
require and exclude. Later on, Feature-RSEB feature models extended the
FODA notation by adding OR-relation between the features. Riebisch et al.
[Riebisch et al., 2004] and Czarnecki et al. [Czarnecki et al., 2005b] proposed
cardinality-based feature models where cardinality was introduced as the main
concept when striving to present the variability in the PL. These three types
of feature models are most common in literature.

The UML is one of the most popular notations for modelling and ap-

33

plication by proposing a set of models intended to specify several aspects of
the application. However, it is unsuitable for modelling groups of related ap-
plications as required by PL [Ziadi and Jézéquel, 2006]. Therefore, the UML
extensions to present variability were presented. In [ClauB and Jena, 2001]
three UML extensions are presented in order to demonstrate the variability.
The first extension describes the rules how to transform feature models into
UML models. The second extension is used to present the variation points of
feature models. The third extension intends to present an optional element of
the feature model. The final two extensions were implemented by using stereo-
types. Ziadi and Jézéquell [Ziadi and Jézéquel, 2006] presented another UML
extension which tries to present the variability in PL engineering as it is pos-
sible by using feature models (FODA notation). In order to achieve that, they
proposed three stereotypes: optional, variation and variant. In addition, the
meta-level constraints of the object constraints language to present constraints,
which are used in FODA feature models, were presented as well. Maazoun et
al. [Maazoun et al., 2016] presented an UML profile named SPL-UML, which
models variability in UML designs for PL. The profile uses the proposed stereo-
types in order to extract information from the feature models and presents it
as class diagrams, sequence diagrams, and uses cases diagrams.

Haugen [Haugen, 2012] presented a common variability language which is
used to express the variability between models in terms of the variation point
(model fragments, such as placement fragments) and variants (replacement frag-
ments) [Echeverria et al., 2015]. The creation of product models is perfumed
by changing model fragment(s) between the base model (placements) and a
model library (replacements).

According to [Lee et al., 2002, Berger et al., 2013] both industry and
academia use variability modelling in their PL for the creation of a wide range of
applications domain. Moreover, industry and academia use feature model nota-
tions as the main methodology for variability modelling. Due to the wide use of
feature models, there are many tools, both commercial and open source, which
support feature models as a variability modelling notation (despite the product
domain whose variability is presented) and provide opportunities for analysing
the created variability models in various aspects. In addition, according to
[Czarnecki et al., 2012], feature models allow to model both the commonality
and variability of PL, thus enabling to define the product derivation from the
PL. These facts show that feature modelling is a domain independent nota-
tion; therefore, it can be used in the development of IoT applications in the
problematic domain by presenting an application’s PL in the domain of interest.

2.8.2. Model transformation

Both model driven development and product line techniques use model
transformations in order to create the desired application from the cre-

34

ated high-level models. Model transformations allow transforming one
model to another automatically. The classification of model transforma-
tion was proposed by Czarnecki and Helsen in [Czarnecki and Helsen, 2006,
Czarnecki and Helsen, 2003]. The authors presented three categories of trans-
formation:

• Text-to-model or code-to-model. This category comprises parsing and
reverse-engineering technologies.

• Model-to-code. The target of this transformation is the programming
code.

• Model-to-model. This transformation produces its target as an instance
of the target model.

Text-to-model and Code-to-model transformation is a reverse engineering
process where the model is generated from the source code by using some tools
(from code to higher-level representations). Thus the model is described by
using the same existing programming language in order to create a high-level
model. This transformation is usually described as model-driven reverse engi-
neering and is used to simplify the production of the new version of the system
thus reducing the risk of mistakes [Rugaber and Stirewalt, 2004]. Object Man-
agement Group presented a knowledge discovery model which is used to express
the various types of knowledge extracted from a legacy system and covers not
only the structure of the code but also data modelling, event handling and other
concerns [Garcia-Dominguez and Kolovos, 2016].

Model-to-code transformation is usually referred to as a code generation
process, which transforms high-level models to programming code. Model-
to-code transformations are described by rules and pattern-matching like the
activation schemes of these rules. Such a transformation is widely used in pro-
gramming code generators. In order to perform model-to-code transformation,
usually, a number of code generation templates are used for code generation
from the model(s) [Kalnins et al., 2010]. Each template holds some particular
aspect code, which is linked with the corresponding parts of the model(s) during
the transformation process.

The process of converting one model into another is called model-to-model
transformation. The model transformation here means the mapping of the two
models (or more) based on transformation rules or update of the same model. It
is important to distinguish between ’endogenous’ transformations (e.g. models
merging and re-factoring), in which, the source and the target models are the
same, and ’exogenous’ transformations (e.g. code generation from a model),
where the two models are different.

35

2.8.3. Code Generation

Code generation can be understood as a model transformation process.
According to [Thibault and Consel, 1997], application generation is a process
when a target application is created from a high-level specification (model).
Generator programs transform abstract data (model) into a code making it
possible to manage the software at a favourable abstraction level of the model
[Stuikys and Damasevicius, 2013]. As input for a generator, various types of
files, such as the application model, intermediate code, and others can be for-
warded. In other words, code generation is used to produce programs auto-
matically. In addition, the use of high-level specifications in code generation
increases a model’s re-usability in different applications. One of the code gen-
eration methods is used by MDD and PL methodologies.

The code generator can be divided into several types, which depend on
how they treat the source code. Three code generator types are distinguished:
template-based, model-transformation mechanisms, and meta-programming
with reflection.

The model-transformation generators use the application model as in-
put; this model is called the application meta-model, and is created by
using any modelling language including any type of domain-specific lan-
guage. The meta-model can be treated as the grammar of a modelling lan-
guage. Such a code generator uses various model transformation approaches
[Czarnecki and Helsen, 2003, Hemel et al., 2009] for code generation. Model
transformation approaches describe the relation between the source and target
models, which depends on the application. The relations show what should be
transformed into what.

Meta-programming generators manipulate the other program in order to
generate the output program; reflection is a good example of such manipula-
tion, and compiler is a good example of meta-programming generators. Meta-
programming usually uses an abstract syntax tree, which is usually written in a
meta-language to generate a code [Miao and Siek, 2014]. While using this kind
of generators, the code can be generated as specialized for different cases (pro-
grams) [Nanevski, 2002]. However, the meta-programming code generators are
limited, because they can generate structural constructs like classes, methods,
attributes.

Template-based code generation approach relies on the use of templates
which denote the way to transform the input data of the generator into textual
files [Franky and Pavlich-Mariscal, 2012]. Templates are pre-compiled code
fragments; these fragments include all the text which will be included in the
output file. Most templates are platform-dependent because they offer a solu-
tion for a certain combination of hardware, operating systems and programming
language. This fact enables to re-use these templates in different implementa-
tions using the same platforms. Thus template-based code generation is a good

36

approach for code generation of IoT applications because, as it was mentioned
above, IoT applications share many common features including platforms in
the domain.

2.9. Conclusions

This chapter is aimed at reviewing the challenges and development ap-
proaches used in the development of IoT applications. The literature analysis
defined the following issues of the IoT application development process:

1. During the IoT application development process, the heterogeneity of
communication protocols, sensors, actuators and other devices must be
analysed and adapted to any IoT application separately even in the same
domain.

2. There is lack of IoT applications development approaches which analyse
and model the possible variability seeking to implement IoT applications
in the application’s domain despite the fact that IoT applications are
domain-specific and share many common features in the same domain.

3. Due to the fact that most IoT devices have a low capability in terms of
both energy and computing resources, the security and energy consump-
tion must be analysed as main components to ensure the necessary QoS
of IoT during the application development process.

4. There is lack of IoT applications development approaches which com-
bine IoT application requirements for heterogeneity, security and energy
consumption and analyse them according to QoS requirements of IoT
application at an early stage of application development.

5. In order to solve the problems of IoT application development which were
distinguished during the analysis of IoT applications development process,
product line methodologies can be used.

37

3. FEATURE MODEL-BASED DEVELOPMENT OF IoT APPLI-
CATIONS

Analysis of the IoT domain shows that most IoT applications have a very
similar structure, which, with very few changes, can be adapted to the ma-
jority of implementations of IoT applications. The basic structure of an IoT
application is shown in Figure 3.1 [Gubbi et al., 2013, Vermesan et al., 2013,
Vermesan and Friess, 2014, Chen et al., 2014, Zachariah et al., 2015]. This
structure consists of the following components: measurement-communication
module (MCM), standard Internet module (SIM) and IoT application data
collection module (IoTADCM).

Figure 3.1. The basic components of IoT application

MCM has two main tasks: to generate data and to send it to IoTADCM via
the SIM or to perform some actions according to the control signal which can be
sent from IoTADCM. Commonly, MCM is the core of IoT application because
this module is responsible for data generation (e.g. temperature, humidity, and
others) and action performance; according to collected data, these two actions
are ’vitally’ important for the functionality of the IoT application. As it can be
seen from Figure 3.1, the measurement-communication module consists of two
parts: the nodes network and the heterogeneous concentrator (HC). IoT nodes
(see Explanation 1) network may be composed of different hardware compo-
nents which can collect contrasting measurements and perform various actions
and communicate in different communication protocols thus creating the het-
erogeneous network, usually of low range. Nodes perform data collection; if
necessary, they also perform data processing, and send it to the concentrator.
While devices performing actions wait for a controlling signal from the concen-
trator, these signals usually come from IoTADCM and sometimes can be gener-
ated by the concentrator. HC is usually a much bigger and more powerful device
compared with the remaining components of the measurement-communication
module, and it commonly has unlimited power supply. HC collects data from
IoT nodes, performs data processing and prepares data for transferring to the
IoT application data collection module via the SIM; it can also send control

38

data to IoT nodes which are derived from the IoTADCM. The concentrator is
necessary because, most of the time, IoT nodes use the low range communi-
cation protocols which usually cannot send data via the standard Internet or
network(s) directly. Therefore, HC processes MCM collected data so that it
could be sent via the standard Internet to the IoTADCM which can actually be
thousands of kilometres away from the measurement-communication module.

Explanation 1 IoT node – IoT application unit, which consists of an action
module and a communication module.

Explanation 2 Action module – IoT application hardware component (sensor,
actuator, or other), which performs actions (measures, controls, or others).

At this point, the standard Internet module represents the Internet as it is
understood today. The global system of interconnected computer networks that
use the Internet protocol suite (TCP/IP) links billions of devices worldwide.
The Internet consists of millions of private, public, academic and other networks
which are interconnected.

The IoT application data collection module is responsible for collecting,
storing and final processing of data which was collected by MCM. If the IoT
application requires that, the module performs decision taking when decision
taking can be related to the control of MCM devices; most of the decisions are
based on the processed data which came from MCM. In Figure 3.1, it is shown
that this module can also be responsible for the presentation of data to the end
user (e.g. a web page or other graphical user interface technologies).

Such a viewpoint of the three modules at the IoT applications gives an op-
portunity to use product line methodologies for the creation of a measurement-
communication module of IoT applications as this module of IoT applications
is consistent with many features which are common for almost all the IoT ap-
plications within the same domain. Thus, PL methodologies help to ensure the
component re-usability between different applications and to reduce the devel-
opment time of the IoT application because an application can be created by
selecting components from the existing component libraries where the compo-
nents can be both hardware and software. However, there are many problems
in the IoT domain because the same components must ensure very different
requirements for security, energy, data transfer rate (e.g. the same temperature
sensor used in agriculture and healthcare will be implemented with the same
software components, while the same or different communication protocols can
be used for data transmission). Naturally, problems develop how to evaluate
these requirements and choose the best components from the component library
because a lot of factors have an impact on those requirements. The evaluation
of these factors affecting the selection of components and the component work-
ing modes can be understood as the quality of service (QoS) measurement for
the IoT-based application.

39

Due to these facts, we proposed an IoT application development method
which uses feature models (Feature-RSEB notation which is presented in Ap-
pendix B) to present the variability of configurations (different devices, com-
munication protocols, ant other) to present the variability of configurations
(different devices, communication protocols, and others) to implement the IoT
application in a specific domain, evaluates each configuration according to the
QoS requirements and suggests the best configuration to implement the specific
IoT application. Feature models were selected on the grounds of the following
facts: a) these models are widely used to present the variability of product
lines in various application domains; b) are independent from the application
domain c) have many software tools which support feature models. In the scope
of Chapters 3 and 4, the configuration is understood as a list of hardware com-
ponents, communication protocols, data transmission information, and security
parameters that can be used for the development of an IoT application.

3.1. Proposed IoT application development method

Based on the above-mentioned possibility to use product line methodolo-
gies in creation of IoT-based applications, the five phases of IoT applications
development method were proposed. They cover the architectural design and
implementation software development stage, both at the domain and applica-
tion engineering levels. The first two phases are used for the engineering of
an IoT application’s domain and serve for the presentation of the variability
of possible configurations (different PLs) to implement the application. The
last three phases correspond to the creation of the specific IoT application by:
1) selecting the configuration (hardware components and their working mode)
which meet the application QoS requirements best; 2) generating code frame-
work of the IoT application from reusable software components for the selected
hardware; 3) implementing the IoT application. Figure 3.2 presents the phases
of the proposed IoT applications development method. The five-phase method
was proposed in order to simplify domain analysis of the IoT application and
to ensure better re-usability of the created IoT application domain models and
software components in the creation of various IoT applications.

Development of domain models. The purpose of this phase (at the require-
ments specification phase) is first to extract the relevant knowledge and
then to represent it adequately so that it would be possible to apply
the knowledge in the subsequent layers as easily and effectively as pos-
sible. Typically, the resulting knowledge of modelling is a set of mod-
els (e.g. functional and non-functional) of the domain under considera-
tion. The modelling procedure, in order to be systematic and most useful
for the next phases, requires the use of some well-defined approach. As
stated above, currently, the feature-based modelling approaches prevail
[Apel and Kästner, 2009, Almeida et al., 2015] where the design of new

40

Figure 3.2. Method of the implementation of the IoT application

systems with the reuse in mind is considered.

Aggregation. The aggregation phase serves for aggregating the input of a set
of models (e.g. functional and non-functional requirements models) into
the resulting model. The main intention is to maximize the reuse potential
in using the product line paradigm. The conditions of aggregating are as
follows: (i) input models must be correct; (ii) they must be represented
uniformly using the feature-based notion; (iii) the models are to be general
enough (meaning the adequate scope of the domain expressed by features)
to support the pre-defined extent of reuse. Aggregation might be carried
out not for all the input models but for the specific separately selected
models. For example, aggregation of a non-functional model (i.e., security
and energy-related) are the most likely in terms of composition for the
resulting model. The reusable model resulting from aggregation would
still be an abstract one. The models should be correct. The consistency
should be verified.

Specialization. Specialization can be viewed as the process of transforming
abstract feature models into the concrete model. By the concrete model,
we mean the one whose abstract features are decomposed into variant
points, the latter containing variants as concrete values. Here again, one
can see the processes, the actions performed by the designer as well as the
tools to support the modelling and verification processes along with the
produced products, i.e. feature-based models. We should note that only

41

specialized models can be useful at the generation phase. One important
aspect of the specialization is that the application is not homogeneous
and may contain different functional and non-functional aspects which
can be understood as QoS. These functional aspects, when implemented,
are represented by the different components, and these components must
be selected according to the requirements and constraints of QoS. Thus,
the specialization phase also includes these issues.

Generation. The generation phase is responsible for the production of the
application code through the configuration-to-program transformations.
This type of transformation is necessary for lowering the level of abstrac-
tion. This phase uses the best possible implementation of the application
which was suggested by the specialization phase. As the next step, soft-
ware components (communication protocols, data transmission, etc.) are
selected within the specified specialized configuration; they will be used
for the implementation of the application.

Implementation. This is the final phase of the proposed IoT application im-
plementation method which is dedicated to creating the final working IoT
application. It means that, at this phase, all the components (sensors, ac-
tuator, communicating and transferring facilities) of the IoT application
are combined into one functioning application according to the predefined
requirements and constraints. These actions require intervention of sys-
tem developers who extend the generated framework code by applying
additional functionalities which had not been generated in the generation
phase.

3.2. Relationship between phases of proposed method

Figure 3.3 shows the relationship between the proposed method phases
and represents the dependencies between them. As it can be seen from Figure
3.3, every next phase depends on the previous one because it uses the previous
phase data as input for further actions.

Every activity which is done following the proposed IoT-based application
development method starts from the analysis of the IoT application domain and
applications in this domain. In the scope of Chapter 3, the measurement-
communication module of IoT-based application will be understand-
able as an IoT domain (see Figure 3.1). During the analysis of the IoT
domain, the functional and the non-functional requirements feature models are
created. These two models should present as many as possible configurations
of functional and non-functional requirements so that to implement application
in the analysed domain. In short, the output of the model development phase
is two models: functional and non-functional requirements in the graphical or

42

Figure 3.3. Relationship between the method phases

43

textual or both formats as it depends on the tools which are being used for the
creation of the feature models.

The aggregation phase is responsible for the creation of one resulting
model which combines both functional and non-functional requirements feature
models and their constraints. This means that it takes the created functional
and non-functional models and aggregates them. Aggregation takes two (or
more) feature models and creates one resulting feature model which must be
correct. At this point, the correct feature model must be seen as a model,
which does not have any dead features (see Definition 21 in Appendix A), in
other words, the features and constraints of the resulting model are compati-
ble. The correctness of a newly created feature model is ensured by application
developer(s) by using automated tools. The output of the aggregation phase
is an aggregated and verified feature model of analysed IoT domain and which
presents many possible configurations (the variability of PLs) which can be used
for the implementation of IoT applications in the analysed domain.

The specialization phase creates a specialized feature model of the IoT-
based application and selects the best configuration to implement the applica-
tion. The specialized feature model describes all the possible correct configura-
tions (PLs variability) which can be used for the implementation of the specific
application. In order to create a specialized feature model, IoT-based applica-
tion specifications are merged with the aggregated feature model. The created
specialized feature model usually describes several configurations; thus one con-
figuration that meets the IoT application’s requirements best must be selected.
The selected configuration is used to generate a framework of the IoT-based
application. The selected configuration describes hardware components which
should be used for different nodes implementation in order to implement the
specific IoT application. The described hardware components are as follows:
sensors, actuators or other components and communication modules. The se-
lected configuration also presents the working mode which must be used for each
communication module. In addition, for the selection of the best configuration
to implement the IoT application, each configuration is evaluated according to
the IoT application’s QoS requirements. The output of the specialization phase
is the specialized configuration in the XML format, from which, the framework
of the IoT-based application will be generated.

The generation phase is responsible for the code framework gen-
eration from the specialized configuration of the specific IoT applica-
tion. Code generation is performed by using a code template repository
[Ge and Whitehead Jr., 2008]. The generation phase takes configuration as an
input, parses it, and determines what source code components (methods) must
be selected from the code template repository in order to generate the frame-
work of the IoT application. Components are selected for all the modules which
are included in the specialized configuration file. The generated framework de-

44

scribes only the initial functionality rather that the fully working application.
A fully working application is obtained in the implementation phase by supple-
menting the generated framework with the necessary functionality.

The implementation phase takes the generated code framework of a spe-
cific IoT application as an input, and complements it till the working applica-
tion by adding the necessary functionality and logical connections between the
generated code parts.

All the actions and transformations which are performed by the proposed
method can be described by referring to the following steps:

Step 1 Abstract functional and non-functional requirements feature models are
obtained through domain analysis (DA) and modelling by using the relevant DA
approaches (such as FODA [Kang et al., 1990]) along with adequate tools.

Step 2 If an abstract model consists of separate models, then model aggregation
follows. The latter merges two or more input models without common features
into the resulting model (aggregated, see Definition 22 in Appendix A) by using
the tools.

Step 3 An aggregated feature model is transformed into a specialized one by
extending some lower-level features into features with concrete values so as to
satisfy the design aims and requirements of IoT application.

Step 4 A specialized model is derived from the aggregated model under given
specific requirements and specialization rules (such as narrowing the number of
configurations).

Step 5 The aggregated problem domain feature model is transformed into the
specialized solution feature model by using the aggregated feature model through
mapping of the corresponding IoT application specifications (e.g., variation
points and variants) onto the features of the specialized problem domain fea-
ture model.

Step 6 The variation points of the specialized solution feature model correspond
to the parameters within the IoT application framework which will be generated,
and the variants of the variation point correspond to the parameter value.

Step 7 The specialized solution model is transformed into a specialized config-
uration by using design space exploration [Mahalank et al., 2016] through map-
ping of the corresponding specialized solution model values with the components
contained in the components database.

Step 8 The specialized configuration is transformed into the IoT application
framework by performing the following actions: 1) selecting the source code

45

related to specialized configuration values; 2) creating a framework from the se-
lected source code whose structure depends on the programming language speci-
fications.

Step 9 The IoT application framework is transformed into the fully functional
IoT application via the following actions: 1) adding the necessary functionality
and logical connections; 2) testing the framework functionalities.

3.3. Development of domain models

This phase can be understood as an analysis of the IoT application do-
main. Domain analysis includes the methodologies and processes used to cre-
ate and manage the product line. The FODA [Kang et al., 1998] acts as a
domain process to collect the domain knowledge, study the product family
structure, and create a reference architecture for the product family of applica-
tions. FODA describes the basic concepts of modelling as an abstraction and
a refinement [Kang et al., 1990]. The process of studying the existing applica-
tions, generalizing the functionalities and designs into generic domain elements
is called abstraction. Refinement is the process of creating a specific applica-
tion from the generic domain elements by adding factors that are unique for
individual applications.

Figure 3.4. Models development of IoT application domain

In the proposed IoT domain models development phase, only an abstrac-
tion concept is used from the FODA modelling concepts. The abstraction
concept is used to create feature models of the functional and non-functional
requirements of an IoT application domain. As it can be seen from Figure

46

3.4, feature models are created from the collected data at the analysis process
of the IoT domain with respect to application, energy, security, environment,
nodes and communication. Experts extracting the most important data which
properly describes the application functional and non-functional requirements
in the problematic domain of the relevant IoT application perform the analysis.
The main task of this phase is to present as many as possible configurations
(product line) of the functional and non-functional requirements which can be
used for the development of IoT applications in the analysed domain.

Considering the feature definition as "a prominent or distinctive user-
visible aspect, quality or characteristic of a software system or systems"
[Kang et al., 1990] and the generic structure of the IoT application (see Fig-
ure 3.1), we propose the generic structure of the functional and non-functional
requirements feature models. We believe that the proposed models exhibit a
good opportunity to be reused and fitted for various developments of IoT-based
applications. In addition, these feature models cover all the areas of interests
which were distinguished in Figure 3.4 and are used to present the variability
of possible configurations (PLs) to implement the application in the domain.
The proposed models are shown in Figure 3.6. These models are not final and
can be extended according to the experts’ needs. However, in our opinion, the
mandatory features (see Definition 5 in Appendix A) of the proposed feature
models must stay as they are shown in Figures 3.5 and 3.6. Thus only the low-
est level of the proposed feature models should be adapted in order to present
configurations (PLs) of the functional and non-functional requirements of the
IoT application in its domain.

However, there are some exceptions, security level, power consumption
and physical obstacle features of non-functional requirements models. We sug-
gest that these features should be presented as it is shown in Figure 3.6a for
any IoT domain, whereas models of IoT application domain are created. This
means that no changes or additional features are required. Hence we believe
that the presented lowest-level features are sufficient to describe the most im-
portant aspects of the IoT application domain. Due to this fact, IoT domain
modelling can be performed faster.

We presume that [Venckauskas et al., 2014a, Venckauskas et al., 2014b,
Venckauskas et al., 2016a] shows that the presented six levels of security (see
[Pastore and Dulaney, 2006]) are sufficient to describe any protection which is
required by an application and can be provided by communication protocols.
These six levels of security can be used to describe communication security re-
quirements of any IoT application. The same holds with the features describing
the environment, in which the application of the IoT domain usually operates.
It is covered by the three proposed features. The power consumption for various
configurations of the IoT domain is sufficiently covered by the three features
as well. Furthermore, the security level, the power consumption and the physi-

47

Figure 3.5. Feature model fragment which represents the IoT node

cal obstacle features are used to show the security-energy, environment-energy,
security-environment-energy relationships which are important for the appli-
cation’s performance. These relationships are also used for the selection of a
configuration, from which, the IoT application framework will be generated at
the generation phase. The configuration selection is performed by calculating
the QoS values of each configuration presented by a specialized feature model
(see Chapter 3.5).

The proposed structure of functional and non-functional requirements fea-
ture models can be extended by supplying additional features which can be
optional or mandatory and can have XOR or OR (see Definitions 8 and 9 in
Appendix A) feature groups. However, the basic structure of the feature mod-
els, as it is shown in Figure 3.6, must stay unchanged. This means that new
changes should not change the mandatory feature names. Consequently, the
work of the following phases is based on this recommended structure of func-
tional and non-functional requirements feature models of the IoT application
domain.

In addition, we suggest that the children of the Node variant point (see
Definition 7 in Appendix A) should be presented by using the structure which
is shown in Figures 3.5 and 3.6b. Such a structure is used because the Node
feature children describe an IoT node (see Explanation 1), where an action
module performs various actions which are important for the IoT application
whereas the communication module is responsible for data transferring in and
out of the action module. Due to these facts, such a structure of the feature
model striving to describe the IoT node has been proposed.

Furthermore, an extensive or extremely complex domain can be divided
into smaller sub-domains in order to perform the analysis easier. Thus, for
each sub-domain, functional and non-functional requirements models should be
created. These models would be combined into one model in the aggregation
phase of the proposed IoT application development method (see Chapter 3.4).

At the level of domain models, the development phase of the proposed
IoT application development method, and the feature models should present as
many as possible configurations (the variability of PLs) so that to implement the
functional and non-functional requirements of the application, most of which

48

will be eliminated at the specialization phase. Furthermore, feature models
presented in Figure 3.6 are shown without constraints because they depend on
the IoT domain of application; however, feature models, at this point, must
be understood as a combination of the feature model and its constraints (see
Definition 1 in Appendix A)

Feature models presented in the proposed generic functional and non-
functional requirements models were distinguished during the analysis of the
most important facts for IoT applications and their QoS [Atzori et al., 2010,
Lee et al., 2013, Patel et al., 2011, Teixeira et al., 2011, Zheng et al., 2014,
Bhaddurgatte and Kumar, 2015]. The proposed non-functional requirements
feature model presents the following features which were distinguished during
the analysis:

Security level. It describes the IoT-based application requirements of se-
curity for data transmission (communication). Each security level
describes the specific working mode of the communication proto-
col; these working modes are presented in [Venckauskas et al., 2014b,
Venckauskas et al., 2016a].

Energy consumption. This feature is used to show different energy require-
ments of different configurations where it can depend on communication
protocols, IoT devices, security levels.

Environment. It describes the environment in which the IoT application is
expected to work. In Figure 3.6a, the environment feature is divided into
two features: working distance and physical obstacle.

Working distance. It presents the distance within which IoT nodes must
operate. In other words, it shows how far one IoT node is from another
node or device which collects the data and controls it.

Physical obstacle. It describes how many obstacles which can interfere with
the communication signal are in the working area of the IoT application.
The obstacles are understood as an environmental factor which influences
the transfer of wireless communication signals. We distinguish among
three values: minimum for the rural regions, the maximum for city regions
and the medium level falling into the space between the extreme values.

Hardware platform. It describes hardware platforms whose components are
or can be used to implement the analyzed IoT-based application (e.g.
Arduino, Gadgeteer and others).

The proposed functional requirements feature model contains the following
features:

49

(a) Feature model of non-functional requirements

(b) Feature model of functional requirements

Figure 3.6. Generic structure of the proposed feature models

50

Node. It describes the possible nodes which can be or are actually used in the
analysed IoT domain.

Communication protocol. It describes the communication protocols in
which action modules can operate. Each individual action module usually
operates in one protocol.

Type of communication. It describes the types of communication in which
the action module communicates with a heterogeneous concentrator and
other IoT nodes; the communication type depends on the action module
type. As it can be seen from Figures 3.5 and 3.6b, we distinguish between
two types of communication: one-way and two-way communication. One-
way describes the communication where action modules can only send
data. Two-way describes the communication where action modules can
send and receive data.

Communication. This feature is used to show the most suitable information
about the communication properties of the analysed IoT applications in
their domain.

Data amount. It describes how much data is usually sent in one communica-
tion session by action modules.

Data sending frequency. It describes how often data is usually transferred
to other IoT devices by the action module.

Data transfer rate. It describes what data transfer rate usually needs to be
ensured by the communication module so that all the data generated by
an action module could be transferred.

Protocol. It describes all the possible protocols which can be or are used
for the implementations of IoT-based applications in the analysed IoT
domain.

After the extension and adaptation of the proposed functional and non-
functional feature models, we obtain feature models which completely describe
the analyzed IoT application’s domain (i.e. they present the variability of PLs
of the functional and non-functional aspects of IoT application in their domain).
As it can be seen from Figure 3.4, the newly created feature models must be
verified. Verification is used to ensure that the created feature models are cor-
rect (i.e. they do not have dead features, see Definition 14 in Appendix A), and
only verified feature models are used in the next phase of the proposed IoT ap-
plication development method. The application developer performs verification
by using model verification tools that perform verification automatically.

From Figure 3.4 it can be seen, that besides the functional and non-
functional requirements imposed on feature models at the modelling phase, we

51

also suggest creating a list of specific aspects of IoT-based applications in the
analysed domain. The specific information can be anything that cannot be
presented in feature models or which could be used for the augmentation of
IoT application specifications, and could be used for the specialization of the
aggregated feature model (see Chapter 3.5).

3.4. Aggregation phase

As it was mentioned above, the aggregation phase serves for aggregation
by creating the resulting feature model of the analysed IoT application domain.
Aggregation takes two (or more) feature models (see Figure 3.7) and creates
one. The main aim of aggregation is the interrelation and separation of feature
models through cross-tree constraints. Features in input feature models are
correlated to each other through relations expressions (’requires’ and ’excludes’,
see Definitions 11 and 12 in Appendix A) [Streitferdt et al., 2003].

Figure 3.7. Aggregation layer

During the aggregation process, feature models are treated as equally
important. Because of this, the distinction between models is not needed, to
define the syntax or the semantic properties of the aggregation process. The
aggregation process can be described as follows [Acher et al., 2010a]:

52

aggregation(sIoTFM : setofIoTfeaturemodel, sIoTCons : setofconstraints)

The aggregation process takes a set of feature models (sIoTFM) and and a
set of constraints (sIoTCons) as input, and produces a new feature model which
presents possible configurations (variability of PLs) in order to implement the
IoT application in its domain. Input feature models are aggregated by creating
a new root (Rootmaster) feature (see Definition 3 in Appendix A) so that the
root of the input feature models is a child of the created new Rootmaster root
and requires mandatory connection.

In order to present why the aggregated feature model needs new root, we
will use FMa1 and FMa2 feature models and a1 and a2 features. The new
root is necessary because feature model FMa1 can describe the concepts that
may not be composed of or refined by the concept described by feature model
FMa2, and help avoid the situation when feature a1 of feature model FMa1

can be a root feature of the aggregated feature model while feature a2 of model
FMa2 becomes its child with the mandatory connection. It follows that two
models may be unconnected, and the relation between FMa1 and FMa2 should
be reversed.

After aggregation, we have an aggregated feature model with a set of
new constraints which comes from FMa1 and FMa2 feature models. These
constraints may a have different impact on the aggregated feature model. Ag-
gregating two feature models FMa1 and FMa2 with a different set of constraints
can create three resulting feature models, as follows: (for example, for our pur-
pose, we used feature models presented in Figure 3.8) [Acher et al., 2010a]:

Reduced model. The reduced aggregated model is represented in Figure
3.8a, and can be disclosed as:

FM1aggr ⊂ (FMa1 ⊗ FMa2), (1)

by aggregation, FMa1 and FMa2 are combined together to create new FM1aggr
which has new configurations. FM1aggr model cannot represent all combina-
tions of configuration of FMa1 and FMa2 because of the constraints.

Redundant model. The redundant aggregated model is shown in Figure
3.8b, and can be disclosed as:

(FMa1 ⊗ FMa2) = FM2aggr, (2)

model FM2aggr does not reduce the set of configurations, and all combinations
of configurations of FMa1 and FMa2 are allowed. It means that the aggregation
of FMa1 and FMa2 creates an aggregated model which is equivalent to model
of Figure 3.8a without constraints. Naturally, the fact that constraints F7
require F2 is logically entailed by the aggregation of FMa1 and FMa2 without

53

(a) Basic aggregation

•
(b) Redundant constraints (c) Dead and core features

Figure 3.8. Three types of aggregation

54

constraints. This follows from the fact that these two features are mandatory
and must be included in every possible combination of configurations of the
aggregated model.

Dead and core features. The dead and core features aggregated model
is shown in Figure Figure 3.8c, and can be disclosed as:

(FMa1 ⊗ FMa2) ⊂ FM3aggr, (3)

due to constraints, features F4 and F5 are now dead features (Definition 14 in
Appendix A) while feature F3 is a core feature (Definition 13 in Appendix A)
of FM3aggr.

After the aggregation process of functional and non-functional require-
ments for feature models, a new feature model (see Figure 3.9) is created which
has a new root feature. The new root feature of the created aggregated feature
model is suggested to be named according to the IoT application’s name (e.g.
Greenhouse, Food supply, etc.) whose analysis was performed at the model de-
velopment phase. For example, the purpose, the root feature of the aggregated
feature model, was called IoT application (see Figure 3.9). After aggregation,
we get a reduced feature model because not all configurations of functional
and non-functional feature models can be presented by it. Furthermore, a new
list of constraints has been created, and this new list usually contains more
constraints than functional and non-functional requirements models together.
The new constraints appear from the fact that features of functional and non-
functional requirements feature models can require (include) or exclude (see
Definitions 11 and 12 in Appendix A) each other. These new constraints come
from domain analysis. For example, Table 1 can be used as a good source for
the creation of new constraints, which was not possible before aggregation.

By using our proposed functional (Figure 3.6b) and non-functional (Fig-
ure 3.6a) requirements feature models, it is impossible to get the redundant
resulting feature model. Because, naturally, some constraints appear between
communication protocols and the level of security or distance as well as the
sensor operating distance as a result of restraining of communication protocols
or hardware which were presented in the functional and non-functional require-
ments models. The result of addition of at least one new constraint between
non-mandatory features into aggregated feature model is configuration(s) loss in
functional and non-functional requirements feature model(s). Therefore, such
newly created feature model does not comply the requirements of redundant
feature model.

55

Figure 3.9. Aggregated and verified feature model of IoT application domain

56

A set of constraints of functional and non-functional requirements feature
models used during the aggregation or new constraint(s) can noticeably change
the properties of the aggregated feature model. It may lead to situations where
the aggregated feature model does not represent any valid configuration or
may include dead or core features. The verification of the aggregated model
is used to avoid such unacceptable situations. If there is a situation that,
after verification, at least one dead feature remains, we must return to the
aggregation process (see Figure 3.7). At the aggregation process, after carefully
reviewing all the constraints, sometimes a dead feature can be fixed by deleting
or adding constraint(s) such that all constraints would be compatible with each
other, and that the aggregated feature model would be correct (see Definition
21 in Appendix A). Automatic model verification can be performed by using
various software tools which support feature models.

If everything has been done correctly, we should get an aggregated and
verified feature model, which combines functional and non-functional require-
ments feature models which have been created at the previous phase of the
proposed method. Figure 3.9 presents the basic structure of the aggregated
feature model which was created from the proposed functional (Figure 3.6b)
and non-functional (Figure 3.6a) requirements feature models. As it can be
seen from Figure 3.9, the created aggregated feature model contains all the
features and constraints of functional and non-functional feature models. For
the purpose of demonstration, we only display several possible constraints as a
separate list due to the readability.

The main purpose of an aggregated feature model is to present as many
as possible configurations which can be used to implement IoT application(s)
in its domain. Thus an aggregated feature model usually presents a significant
number of configurations (the variability of possible PLs to implement appli-
cation in its domain). Some subsets of these configurations are not relevant
for IoT application which we want to implement as the created aggregated fea-
ture model describes all the domain(s) of the analysed IoT application. This
fact allows reusing the created aggregated feature model for the development of
other applications in the same IoT domain. Thus the creation of an application
can be started from the specialized phase of the proposed IoT applications im-
plementation method. In order to reduce the number of configurations which
are relevant for the IoT application being developed, the specialization of the
aggregated feature model must be performed.

3.5. Specialization phase

After the aggregation phase, an aggregated feature model has been cre-
ated. The created model presents the variability of configurations (PLs) which
can be used for the implementation of application(s) in the analyzed domain.
At the specialization phase, the aggregated feature models must be merged with

57

the specifications and the list of specific aspects (if it was created at the model
development phase) of the IoT application which must be developed. In order
to achieve that, the merging process is used. The merging process is used in
order to decrease the number of configurations (the variability of PLs) which
are presented by the aggregated model and are the most relevant to the IoT
application which must be developed. The specialized model which presents
these configurations is a result of the merging process. In order to achieve the
consistency of the specialized model, new constraints may be added, some fea-
tures may be deleted and some feature groups may change their form. In order
to select one configuration from the specialized model which meets the require-
ments of the specific IoT application best, the design space exploration process
is used. The specific IoT application’s framework will be generated from the
selected configuration in the generation phase.

According to Brunet et al. [Brunet et al., 2006], model merging is tradi-
tionally used to group together model elements that describe the same concepts
in the input models to be composed. Syntactically, the merging operation can
be defined as [Acher et al., 2010b]:

merge(sFM : setofFeaturemodels,mode : MergeMode)

In our case, the aggregated feature model, the specifications and a list
of specific aspects (if it was created at the model development phase) of the
specific IoT application are used as inputs. During the merging process, features
of the aggregated model and specifications of the IoT application are merged
(see Figure 3.10). During the merging process, the features and specifications
which contain the same or synonymous information are merged.

Thum et al.[Thum et al., 2009] identifies and classifies four merging modes
of feature models where ⊗ is a merging operator:

Re-factoring. After re-factoring, two or more models deliver model FMresult

which is created and contains all configurations which were described by
the models before re-factoring. This means that no new configurations
are added and no existing configuration is removed.

FM1 ⊗ FM2 = FMresult (4)

Specialization. Specialization removes some existing configurations and does
not add a new configuration.

FMresult ⊂ FM1 ⊗ FM2 (5)

Generalization. When merging two or more models by using generalization,
new configurations are added to the resulting model, and no existing
configuration is removed from the resulting model.

FM1 ⊗ FM2 ⊂ FMresult (6)

58

Figure 3.10. Specialization phase

59

Arbitrary edit. It describes merging operations that are not re-factoring, spe-
cialization or generalization.

Specialization is the merging mode of interest in the scope of this chap-
ter. As it can be seen from the proposed specialization phase actions which are
presented in Figure 3.10, the aggregated feature model is merged with speci-
fications and a list of specific aspects of IoT-based application. Due to this,
specialization Formula 5 must be rewritten as follows:

FMspec ⊂ FMaggr ⊗ IoTAS ⊗ LOSAoIoTA, (7)

where FMspec is the resulting specialized feature model, IoTAS are the IoT
application specifications, LOSAoIoTA is a list of specific aspects of the IoT
application.

Six categories of the specialization steps have been presented in
[Czarnecki et al., 2005b]; these categories are for cardinality-based feature mod-
els. However, we believe that the three following specialization steps can be
adapted for the Feature-RSEB feature models used in this work:

1. Removing a sub-feature from a group. Group cardinality and feature
group of size k merges a set of k sub-features and indicates a choice of
at least n1 and at most n2 distinct sub-features. A feature group can
be changed by removing one of the sub-features, provided that n1 < k.
Sub-feature removing creates a new k-1 size group with cardinality

〈n1 −min(n2, k − 1)〉, (8)

where max(n, n′) takes the minimum of the two natural numbers n and
n′.

2. Selecting a sub-feature from the group. A specialization step can alter a
feature group of size k with group cardinality 〈n1 − n2〉 by selecting one
of the sub-features, provided that n2 > 0. And new k-1 size group will be
created with cardinality:

〈(max(0, n1 − 1))− (n2 − 1)〉, (9)

where max(n, n′) takes the maximum of the two whole numbers n and
n′.

3. Assigning an attribute value. The specific value which is assigned to an
uninitialized attribute, helps decrease the number of possible configura-
tions. The value has to be the type of the attribute

60

The first and the second steps must be adapted and extended in order to
use them for feature models which are used in this work. Adapted and extended
steps of specialization are described below. The third step, assigning attributes
and values, does not require an adaptation and extension, therefore, it can be
used as presented above.

The specialization phase is shown in Figure 3.10. Two main steps of
the specialization phase can be distinguished from Figure 3.10: aggregated
feature model specialization and design space exploration in order to find the
configuration which meets the IoT application’s requirements best.

3.5.1. Creation of specialized model

At this step of the specialization phase, the aggregated feature model and
the specifications and/or a list of specific aspects of the IoT application which
must be developed are merged. This step is used to decrease the number of
configurations (variability of PLs) presented by the aggregated model to the
most relevant configurations for the IoT application which must be developed.
Firstly, we must check if the aggregated feature model can represent all the
specifications and/or aspects of the IoT application. If not, the aggregated
feature model must be extended with features which could cover the missing
specifications and/or aspects in order to present all the requirements of the
IoT application which must be developed. The Node feature of the aggregated
feature could be a good example of a feature which should be extended in order
to present all the specifications of the IoT application.

Table 3. Rules to increase the number of configurations which are presented
by the aggregated feature model [Alves et al., 2006]

Rule Name

1 Convert Mandatory feature to Optional

2 Convert Alternative feature to Optional

3 Expand OR group by adding new member

4 Expand Alternative (XOR) group by adding new member

5 Create new OR group

6 Create new Alternative (XOR) group

For example, we have an aggregated feature model which is presented in
Figure 3.9, and IoT application specifications say that nodes N1 and N2 must
be used for the development of the IoT application. Moreover, specifications say
that nodes can use P1, P2 and Pm communication protocols for data trans-

61

ferring. As it can be seen from Figure 3.9, in the aggregated feature model
node N1 is presented as if it only can use P1 communication protocol while N2
uses P2. From this fact, we can see that the aggregated feature model cannot
present all the specifications and/or aspects of the IoT application. The model
cannot cover specifications where node N1 can use P2 and Pm communication
protocols, and N2 deals with P1 and Pm. Therefore, Node feature of the aggre-
gated feature model, which is presented in Figure 3.9, must be extended with
the features which cover the missing specifications. After the extension, Node
feature of the aggregated model should look as shown in Figure 3.11 in order
to cover all the specifications of the IoT application which must be developed.
The extended aggregated feature model is presented in Figure 3.12. As it can
be seen from Figure 3.11, now, all the specifications and/or aspects of the IoT
application are covered. By using the given examples of extensions, any feature
of the aggregated feature model can be extended. Feature model extension by
adding new features leads us to the fact that the extended aggregated feature
model presents more configurations. Therefore, this step of specialization could
be understood as a generalization where Formula 6 must be rewritten as follows
and FM is understood according to Definition 1 (see Appendix A):

(〈FDaggr, CLaggr〉 ⊗ IoTARS ⊗ LOSAoIoTA) ⊂ 〈FDaggr_ext, CLaggr〉, (10)

where, FDaggr is the aggregated feature model, FDaggr_ext is the extended
aggregated feature model, CLaggr is a list of constraints of an aggregated feature
model, IoTARS are specifications of IoT application, LOSAoIoTA is a list of
specific aspects of IoT application.

As it can be seen from Formula 10, after the extension process, we get
a new aggregated feature model 〈FDaggr_ext, CLaggr〉, whose feature model
structure has changed but the list of constraints remains the same. This is due
the fact that at this step of the specialization phase, we check whether all the
specifications and/or aspects of the IoT-based application could be presented
by the aggregated model. Thus a list of constraints will be re-viewed at the
next step of the specialization phase.

In Table 3, we present the rules adopted from [Alves et al., 2006] which
can be used for the aggregated feature model extension in order to cover all the
specifications and/or aspects of the IoT application which must be developed.
The presented rules are used only if there is need to increase the number of
configurations which are presented by the aggregated feature model and help
implement the requirements of Formula 10.

At this step of specialization, it does not matter whether the extension
has been carried out or not, we have a feature model in any case (see Figure
3.12) which presents all the possible configurations for the implementation of
the specific IoT application whose domain was analysed in the domain model

62

Figure 3.11. Extended Node feature of the aggregated feature model

development phase. The configurations which are presented by this model are
not necessarily correct. Incorrect or illegal (not all the features presented by
the aggregated feature model can be used for application implementation) con-
figurations appear from the fact that during the aggregation and/or aggregated
feature model extension process, no features and no constraints were deleted.
Unnecessary and illegal configurations will be removed at the next step of the
specialization phase.

After the merging process of the aggregated feature model and specifica-
tions and/or aspects of the IoT application, we obtain a feature model whose
basic structure is shown in Figure 3.12. This model presents all the relevant
configurations (all PLs which meet the specifications of the IoT application) to
implement the IoT application whose specifications are given above.

As it can be seen from Formula 7, the specialization of the aggregated
feature model according to the specifications and/or specific aspects of the
IoT application is a step which decreases the number of configurations which
are presented by the aggregated model. This is done by eliminating incorrect
configurations by deleting the unused features and changing the variability of
feature groups (see Figures 3.12 and 3.13). Furthermore, at this step, all the
constraints of the aggregated feature model are reviewed and the unnecessary
ones are deleted while new ones are added. New constraints come from the
specifications and/or aspects of the IoT application where specifications and/or
aspects of the IoT application could present which nodes must be used in order
to implement the application and which communication protocol must be used
for which node by describing what data transfer rate each node requires.

At this step of the specialization phase, the feature model is understood

63

according to Definition 1 (see Appendix A), specialization Formula 7 must be
rewritten as follows:

〈FDspec, CLspec〉 ⊂ (〈FDaggr, CLaggr〉 ⊗ IoTARS ⊗ LOSAoIoTA), (11)

where FMspec is the resulting specialized feature model, CLspec is a list of the
resulting model constraints, FDaggr is the aggregated feature model, CLaggr is
a list of aggregated feature model constraints. At this point, the aggregated
feature model is a feature model which was created at the aggregation phase
(see Figure 3.9) or during a previous step of the specialization phase (see Figure
3.12).

In order to achieve that, Formula 11 of the feature model specialization
would be appropriate, and the following rules must be satisfied:

• The sum of FMaggr aggregated feature model features must be greater
than the sum of features of the FMspec specialized model:∑

FMaggr(FeatNo) >
∑

FMspec(FeatNo), (12)

where FeatNo is the number of features.

• The FMspec specialized feature model must have as many as possible con-
straints which are between the non-mandatory features (see Definition5
in Appendix A).

In order to achieve the requirements of Formula 12, we must adapt the
1st and the 2nd steps of the specialization which are presented by Czarnecki
et al. [Czarnecki et al., 2005b] and described above. First of all, we suggested
that feature variant points (see Definition 7 in Appendix A) of the merging
aggregated feature model must be divided into two groups: XOR and OR.
Each group represents a different variability. The number of configurations
presented by the XOR group is equal to the feature number in the group (see
Formula 13) while in the OR group, the number of configurations is calculated
by Formula 14. ∑

(FeatureNumberInGruop) (13)
and

r∑
n=1

Cn
r =

r!

n!(r − n)!
, (14)

were r is the number of group elements and r ≥ 2. Because of 13 and 14,
different rules can be applied to the different variant points of the feature model
in the specialization process.

In order to decrease the variability presented by the XOR variant point,
we suggest using three rules:

64

Figure 3.12. Extended aggregated feature model

Figure 3.13. Specialized feature model for IoT application

65

• Feature of variant point can only be converted to a mandatory feature.
In this case, feature conversion creates a new variant point with a new
variability which is counted according to Formula 15. As can be seen
Formula 8, which is used to present the variability of the cardinality-
based feature models has been adapted to feature-RSEB feature models
and rewritten as follows:∑

(FeatNoInV P)− 1, (15)

were FeatNoInVP is the feature number of the variant point and Feat-
NoInVP > 1.

• A group feature can be deleted from the feature model.

• All XOR variant points can be deleted from the aggregated feature model.

We suggest four specialization rules which can be applied for the OR
variant point:

• All variant point types can be changed to the XOR type. After that, the
group variability is counted according to Formula 15.

• A feature of OR variant point can be converted to a mandatory feature.
After converting one feature to mandatory, Formula 9, which describes
the cardinality based feature model variant point is rewritten as follows:

2n−1 − 1, (16)

where n is the feature number of the variant point.

• Features of the OR variant point can be removed from the feature dia-
gram. The variability of the new group, when one feature is removed, is
counted according to Formula 13.

• All OR variant points can be deleted from the aggregated feature model

When specialization rules are applied in order to achieve the specifications
and/or aspects of the IoT application, we get a specialized feature model (see
Definition 22 in Appendix A) of the specific IoT application which presents
all the relevant configurations for the implementation of this application; the
presented configurations meet the specifications of the application fully. To
illustrate the purpose, in Figure 3.13, we present a specialized feature model
of the IoT-based application. The model has been created from the extended
aggregated feature model presented in Figure 3.12. As it can be seen from
Figure 3.13, the specialized feature model has a lot fewer features. Also, it can
be seen, that some variant point has lost so many features that they are not

66

Table 4. Example of possible constraints between the features of a specialized
feature model which can appear during the specialization process

No. Feature Constraint Feature No. Feature Constraint Feature

1 P1 Requires PWMin 5 P1 Excludes S

2 CP2 Requires P2 6 P1 Excludes TS

3 CP3 Requires P3 7 TS Requires P2

4 N1 Requires DTR1 8 N2 Requires WD1

· ·

presented in the specialized model, whereas others have changed their types.
Also, the newly created specialized model has a new list of constraints. This list
is adapted to cover all the specifications and/or aspects of the IoT application
which must be developed. Several possible constraints of a specialized feature
model are presented in Table 4. After specialization, the created specialized
feature model must be verified to ensure that it is correct.

If all the presented steps were applied correctly and the model verifica-
tion was successful, a correct specialized feature model is created. Figure 3.13
presents an example of the specialized feature model which was created from
the aggregated model (see Figure 3.12). The specialized feature model presents
only configurations which meet the requirements of the IoT application which
must be developed. As it can be seen from Figures 3.12 and 3.13, the specialized
model has much fewer features than the aggregated model. Also, the specializa-
tion process reduces the configurations number from the millions presented by
the aggregated feature model to several hundred or even fewer as presented by
the specialized feature model. The number of configurations depends on several
aspects: the feature model being created in the domain models development
phase, the IoT application domain, the IoT application specifications, and on
how accurately proposed steps of specialization were applied.

From the configurations which are present in the specialized feature model,
we have to choose one configuration which matches the specifications and re-
quirements of the IoT application best because different performances of the
IoT application can be ensured by each configuration. To do that, we suggest
using the design space exploration process where the configuration is selected
by adding additional aspects according to the IoT application’s requirements.
For example, these aspects could be as follows: the configuration must use
the lowest possible amount of energy and ensure the highest possible security
level. Moreover, we understand these aspects as IoT application requirements
for QoS, which must be ensured. The design space exploration is the last step

67

of the specialization phase, after which we get a specialized configuration, from
which, the code framework of the IoT application, which must be developed,
will be generated.

3.5.2. Design space exploration

After the specialization step, we have obtained a specialized feature model
of the specific IoT application; this specialized feature model usually describes
several possible configurations allowing to implement the IoT application.
These configurations are understood as a design space of the IoT application.
All these configurations consist of two parts: a) one which stays the same for all
configurations; b) one which varies for each configuration. The part which is the
same for all configurations is described by mandatory features (see Definition 5
in Appendix A). The part which is different for each configuration is described
by features which are in variant points (see Definition 7 in Appendix A). As it
can be seen from the created specialized feature model (see Figure 3.13), the
parts which are different for each configuration describe IoT application nodes,
communication protocols, and security levels. Due to this fact, at the design
space exploration (DSE) step, the specialized feature model is understood as
a list of n different configurations whose generic structure is shown in Figure
3.14.

FMspec =

{

Conf1
}{

Conf2
}{

..........
}{

Confn
}

Figure 3.14. A list of configurations created from a specialized feature model

As it can be seen from Figure 3.13, the Node feature presents only the
types of nodes which can be used for the development of an IoT application.
Furthermore, m action modules can be used to implement each node (see Expla-
nation 2, e.g. N1 node can be implemented by using AM_1, AM_2 and other
action modules). In addition, each action module performs the same actions
but has different specifications. The same is with communication modules be-
cause a specialized feature model presents only communication protocols which
can be used by a node. For example, there can be k options to choose a commu-
nication module for a N1 node where k can be different for each communication
protocol presented in the specialized feature model. The number of action and
communication modules which can be used for one node implementation comes
from the components database (see Chapter 3.5.3). Components database is
used to hold information about the action (sensors, actuators, etc.) and com-

68

Conf1 =

{
N1_1, CP1_1, N2_1, CP2_1, RoC1

}{
N1_1, CP1_1, N2_1, CP2_2, RoC1

}{
N1_2, CP1_2, N2_1, CP2_1, RoC1

}{
N1_2, CP1_2, N2_1, CP2_2, RoC1

}{
N1_1, CP1_2, N2_1, CP2_1, RoC1

}{
N1_1, CP1_2, N2_1, CP2_2, RoC1

}{
N1_2, CP1_1, N2_1, CP2_1, RoC1

}{
N1_2, CP1_1, N2_1, CP2_2, RoC1

}

Figure 3.15. Extended Conf1 configuration of a specialized feature model.
RoC1 represents the part of configuration which remains unchanged.

munication modules which can be used in the development of IoT applications.
The number of action and communication modules depends on the hardware
platform which is chosen to be used for the IoT application implementation,
e.g. in a specialized feature model, it is HVP1.

Due to these facts, each configuration presented by the specialized feature
model must be extended in such a way that the node type (e.g. N1 and N2
features from the specialized feature model, Figure 3.13) must be changed to
the specific action module names which come from the components database.
The same is with features CP1, CP2, and CP3 which describe communication
protocols.

For example, we have a Conf1 configuration (from the specialized feature
model presented in Figure 3.13) which requires that for the implementation
of the IoT application, we must use N1 node which uses CP1 communication
protocol, and N2 uses CP2 communication protocol. In addition, we have a
components database which describes that for the implementation of N1 node,
we can use N1_1 and N1_2 action modules, for N2 we can use N2_1, and
for the implementation of communication protocols CP1_1 and C1_2 we use
communication modules for CP1, and CP2_1 and CP2_2 for CP2. In Figure
3.15, we present a Conf1 configuration after an extension, which was extended
according to the presented information. At this point, each module from the
components database is taken with all of its characteristics the way these com-
ponents are presented in Figure 3.19, thus it should be understandable as a
list and presented e.g. as CP1_1[char1, char2, ..., charn]. Due to the readabil-
ity, we present these components as it is shown in Figure 3.16. The selected
components from the components database with all their characteristics are
necessary because these characteristics will be used for the selection of the best
configuration for the given application.

As can be seen from Figure 3.15, the parts of configurations which must
be changed describe nodes and communication protocols. Also, from Figure
3.15, we can see that a newly extended configuration presents all the possi-

69

FMspec =

Conf1 =

{
N1_1, CP1_1, N2_1, CP2_1, RoC1

}{
N1_1, CP1_1, N2_1, CP2_2, RoC1

}{
N1_2, CP1_2, N2_1, CP2_1, RoC1

}{
N1_2, CP1_2, N2_1, CP2_2, RoC1

}{
N1_1, CP1_2, N2_1, CP2_1, RoC1

}{
N1_1, CP1_2, N2_1, CP2_2, RoC1

}{
N1_2, CP1_1, N2_1, CP2_1, RoC1

}{
N1_2, CP1_1, N2_1, CP2_2, RoC1

}

Conf2 =

{

N1_1, CP1_1, N2_1, CP2_1, RoC2
}{

N1_1, CP1_1, N2_1, CP2_2, RoC2
}{

..
}

Confn =

{ {
...

}{
..

} }

Figure 3.16. Specialized feature model after configurations extension. RoC
presents the rest of the configuration

ble variants to implement nodes with different communication protocols. The
number of variants depends on the action module number which can be used
to implement each node, and on the communication module number which can
be used to implement node communication protocols in a given configuration.
For example, we have a configuration which presents two N1 and N2 nodes,
where N1 uses CP1 communication protocol and N2 uses CP2. Moreover, in
order to implement N1 node, we can use a different action modules from the
components database, b is used for N2, and c communication modules are used
for CP1 communication protocol, and d is used for CP2. In this way the num-
ber of different variants presented by one configuration after extension would be
counted as a·b·c·d. After the extension of every configuration which is presented
by the specialized feature model, we get a specialized feature model which is
derived from a list of configuration lists whose structure is presented in Figure
3.16.

Now, each newly created configuration, which is presented in Figure 3.16,
presents a configuration with real hardware components which can be used for
the development of the IoT application whose domain has been analysed and
whose functional and non-functional requirements feature models were created.
As it was mentioned before, hardware components, which describe the same ac-
tions have different characteristics. Moreover, e.g. from Figure 3.16 we can see
that Conf1 and Conf2 configurations describe the same action and communica-
tion modules, but the remaining part of the configurations is different. In this
different part of the configurations, the security level is presented which must

70

FMspec =

Conf1 =

{
N1_1, CP1_1, N2_1, CP2_1, RoC1

}
, ES11{

N1_1, CP1_1, N2_1, CP2_2, RoC1
}
, ES12{

N1_2, CP1_2, N2_1, CP2_1, RoC1
}
, ES13{

N1_2, CP1_2, N2_1, CP2_2, RoC1
}
, ES14{

N1_1, CP1_2, N2_1, CP2_1, RoC1
}
, ES15{

N1_1, CP1_2, N2_1, CP2_2, RoC1
}
, ES16{

N1_2, CP1_1, N2_1, CP2_1, RoC1
}
, ES17{

N1_2, CP1_1, N2_1, CP2_2, RoC1
}
, ES18

Conf2 =

{

N1_1, CP1_1, N2_1, CP1_1, RoC2
}
, ES21{

N1_1, CP1_1, N2_1, CP1_2, RoC2
}
, ES22{

..
}
, ...

Confn =

{ {
...

}
, ESn1{

...
}
, ESnm

}

Figure 3.17. A configurations list with estimates. ES presents the calculated
estimate of configuration

be ensured by communication modules. Due to these facts, those hardware
components which can be used for the IoT application implementation have
different characteristics and each configuration describes the different working
mode of these components, and each newly created configuration can ensure a
different level of performance of the IoT application. This performance of the
IoT application can be understood as the QoS of IoT application.

Due to this reason we must select one configuration from the specialized
configurations which are presented in Figure 3.16. This configuration should de-
scribe the performance (ensure QoS) of the IoT application in the best possible
way according to the specific criteria which are important for this application.
Therefore, each configuration must be evaluated according to QoS criteria of
IoT application which must be developed. Moreover, the criteria usually con-
tradict each other, e.g. the increase in the security level versus the reduction
of the power consumption.

After the evaluation of configurations, we get a list of configurations (see
Figure 3.17) where every configuration is denoted by its own estimate which
was calculated according to QoS criteria. This estimate shows how well the
configuration satisfies a specific IoT application’s QoS criteria. Now, when we
have a list of configurations with estimates, one configuration with a minimum
or a maximum estimate must be chosen which depends on the priorities of the
IoT system. The selected configuration describes the hardware components
and the working modes of these components which should be used for the

71

development of the IoT application and can ensure the best QoS according to
the given criteria. In Figure 3.17, we present how a list of configurations should
look after evaluation.

The evaluation problem of the configurations which are presented in Figure
3.16 can be understood as multi-criteria optimization in the design space of the
IoT application. Optimization helps evaluate configurations according to the
assigned QoS criterion, which comes from the IoT application requirements for
the specific performance. A basic multi-criteria optimization problem can be
formulated as follows [Zionts, 1988]:

minF (X)
X=(x1,...,xn)∈D

= [f1(X), f2(X), ..., fm(X)]T , (17)

where D is a bounded domain in the n-dimensional space Rn, X = (x1, x2, ..., xn)
is a vector of variables, the functions fj(X) : Rn → R1 are criteria and m is
the number of criteria.

In order to solve the problem formulated according to Formula 17, multi-
criteria decision analysis algorithms are used. For configuration evaluation, we
suggest using the Pareto optimality [Karimpour and Ruhe, 2017], which gives
engineering the optimal solution rather than the mathematical one. When solv-
ing the Pareto optimality, we search for the Pareto optimum point of the Pareto
set (see Explanation 3) [Marler and Arora, 2004]. In our case, the Pareto set
is a list of configurations which is presented in Figure 3.17 and can be used for
the IoT application implementation. In order to find the Pareto optimum, first
of all, configurations must be evaluated. We assume that the weighted sum
method [Gass and Saaty, 1955] would be a good choice to estimate configura-
tions. The notion of the weighted sum method is:

min
X∈D

m∑
i=1

wiFj(X) (18)

where wi is the weighting coefficient of i criteria, 0 < wi 6 1,
m∑
i=1

wi = 1, m is

the number of criteria, Fj(X) is the j-th configuration’s criteria and j is a list of
criteria according which optimization must be performed. The coefficient of a
criterion would be assigned by the application developers according to the QoS
requirements.

Explanation 3 A point X∗ is said to be a strict Pareto optimum or a strict
efficient solution for the multi-criteria problem if and only if no X ∈ D such
that Fi(X) 6 Fi(X

∗) for all i ∈ {1, 2, ..., n}, with at least one strict inequality.

In order to get estimates of different configurations according to QoS cri-
terions, various dimensional units must be evaluated and added which are de-
scribed by objective functions. Thus, usually, unit normalization is used. We

72

suggest that normalization should be performed by Formulas 19 and 20 when
minimizing or maximizing the objectives [Jakob and Blume, 2014]:

Fnorm
i (X) =

max(Fi(X))− Fi(X)

max(Fi(X))−min(Fi(X))
for objectives to be minimised (19)

and

Fnorm
i (X) = 1− max(Fi(X))− Fi(X)

max(Fi(X))−min(Fi(X))
for objectives to be maximazed.

(20)
In order to evaluate configurations, Formula 18 must be rewritten as fol-

lows:

min
X∈D

m∑
i=1

wiF
norm
j (X) (21)

In the proposed optimization process of the DSE step of the specializa-
tion phase, F(X) used in Formula 21 is one of the configurations from the list
which is presented in Figure 3.16. Optimization objectives would come from
the components database, and optimization criteria weights would be assigned
by the system developers according to the IoT application requirements for
performance.

In order to create a list of configurations which is presented in Figure
3.14, a specialized feature model must be parsed. Then, the specialized feature
model is parsed, and we have all the configurations presented by this model
separately. The next step is to create a list of configurations presented in Fig-
ure 3.16 which presents configurations with real components which can be used
for the IoT application development. In order to do that, the components
from the components database must be selected. When selecting components
from the components database, first of all, from each configuration, the fol-
lowing information must be extracted (as an example, we used a specialized
feature model presented in Figure 3.10): action modules types (N1 and N2),
communication protocol of the action module (CP1, CP2 and etc.), hardware
platform (HVP1), security level for each communication protocol (R, C, S and
TS) and physical obstacle (POAverg). For each configuration, this information
is extracted separately and can be different.

Parsed information is used to select hardware components from compo-
nents database where components from the components database would be
selected by comparing the extracted information and the information which
is contained in the components database. In order to select an action mod-
ule from the components database, two rules must be implemented: 1) the
extracted type of the action module must coincide with the name of the ac-
tion in the components database; 2) the extracted hardware platform’s name

73

must coincide with the hardware platform’s name which is in the action mod-
ule description in the components database. The rules of components database
creation are presented in Chapter 3.5.3.

The action module selection from the components database can be pre-
sented as follows: (for example, we used a specialized feature model pre-
sented in Figure 3.10 and a components database presented in Figure 3.19):
N1︸︷︷︸, HV P1︸ ︷︷ ︸ = N1︸︷︷︸_1[HV P1︸ ︷︷ ︸, ...], where marked information matches in ac-
cordance with action module selection rules, and [HV P1, ...] presents action
module characteristics which are in the components database. Also, it can be
seen that in order to select an action module from the components database,
the marked parts must coincide, and this is due to the database filling rules
(see Chapter 3.5.3). When an action module is extracted from the components
database, the next step is to extract communication modules which can be
used to implement the communication protocol which is associated with this
action module. For example, in one of the configurations which is presented by
a specialized feature model, N1 action module is associated with CP1 commu-
nication protocol.

In order to select a communication module from the components database,
the following rules are used: 1) the extracted communication protocol must co-
incide with the name of the communication module in the components database;
2) the extracted hardware platform’s name must coincide with the hardware
platform’s name which is in the action module description in the components
database; 3) the extracted security level must coincide with the security level
which is used in the communication module description; 4) the extracted phys-
ical obstacle must coincide with the physical obstacle which is used in the
communication module description.

The communication module selection from the components database can
be presented as follows (for example, we used the specialized feature model(see
Figure 3.10), a components database presented (see Figure 3.19) and S security
level): CP1︸︷︷︸, HV P1︸ ︷︷ ︸, S︸︷︷︸, POAverg︸ ︷︷ ︸ = CP1︸︷︷︸_1[HV P1︸ ︷︷ ︸, S︸︷︷︸, ..., POAverg︸ ︷︷ ︸] where
the marked information matches as the communication module selection rules
require. [HV P1, S, ..., POAverg] presents communication module information
characteristics, which is in the components database. For each action module,
all the possible communication modules are extracted from the components
database. After this has been done, we have obtained a list which presents an
action module and communication modules associated with it. The created list
could look as follows: N1[charN1][CP1_1[charCP1_1], CP12[charCP1_1], ...],
wherechar represents the characteristics of the selected module.

After having completed all the selections, we have a list whose structure
is presented in Figure 3.16. When such a list has been created, the next step
is the evaluation of each configuration in order to create the list presented
in Figure 3.17. As it was mentioned before, the evaluation of configurations

74

<IoT_appl icat ion>
<Hardware_platform> VHP1</Hardware_platform>
<N1>

<Action_module>N1_1</Action_module>
<Communication module_name = "CP1_1" >
<Secu r i t y_ l eve l>SecL_1</ Secu r i t y_ l ev e l>
<TypeOfCommunication>OW</TypeOfCommunication>
</Communication>

</N1>
<N2>

<Action_module>N2_1</Action_module>
<Communication module_name = "CP2_1" >
<Secu r i t y_ l eve l>SecL_2</ Secu r i t y_ l ev e l>
<TypeOfCommunication>OW</TypeOfCommunication>
</Communication>

</N2>
</ IoT_appl icat ion>

Figure 3.18. Specialized configuration in the XML format

will be performed by using Formula 21, where the necessary information for
optimization is bound to come from components characteristics lists which were
selected in the previous step. For example, if one of the optimization criteria
were energy, then all the information related to energy would be used for the
optimization, and this information would be multiplied by the weight of these
criteria.

When we have obtained a list presenting configurations and their estimates
which were calculated according to QoS requirements of the IoT application, by
using the Pareto optimality, we need to choose one configuration (specialized
configuration) from this list. However, there may be a situation that none
of the evaluated configurations satisfies the QoS requirements; therefore, the
weights of the optimization criteria must be changed, and the optimization
process must be repeated (see Figure 3.13). When the optimization process has
been completed, the one configuration which meets the QoS requirements of the
IoT application the best is selected. This configuration contains information
about hardware components and their working mode which are important for
code generation. Due to this fact, from the selected configuration, the following
information must be parsed: the hardware platform’s name, the action module’s
names, the communication modules’ names, and the security level which must

75

be ensured by communication modules (for each communication module, it
can be different) and the working modes of communication which must be
ensured by communication modules. This information is parsed directly into
an XML format file as for the specialized configuration, such a file structure is
presented in Figure 3.18. In Figure 3.18, we show what one of the specialized
configurations for the specific application after the optimization process may
look like; the configurations were obtained from the specialized model (see
Figure 3.13). From the specialized configuration, we can see that N1 and
N2 nodes are described with real hardware components which must be used
for the implementation of these nodes and for the working modes of these
hardware components. The specialized configuration presented in Figure 3.18
is the output of the specialization step which will be used for the code framework
generation of the IoT application.

The generated XML file of the specialized configuration consists of the
following elements:

IoT_application is the IoT application’s name whose specialized configura-
tion is created. This specialized configuration attribute depends on what
the root feature of the aggregated feature models is called (see Figures
3.9).

Hardware_platform presents the hardware platform which should be used
for the development of the IoT application. It is VHP1 in Figure 3.18.

N1 specifies the IoT node which is presented in the specialized model (see Fig-
ure 3.13) and whose main components are presented below. The number
of the nodes depends on specification of IoT applications. According to
specialised model it is two: N1 and N2.

Action_module describes the name of the concrete action module which
must be used for the development of the node of the IoT application
and was selected during the design space exploration process. The name
of the action module comes from the components database, and in the
presented specialized configuration N1_1 corresponds to N1 node and
N2_1 corresponds to N2 in Figure 3.18.

Communication specifies attributes which should be used to ensure the per-
formance of the communication and data transfer of the action module
(e.g Action_module in Figure 3.18).

module_name describes the concrete communication module (e.g. CP1_1
for N1_1 action module in Figure 3.18) which was selected from the
components database during the design space exploration process.

76

Security_level presents the security level (the working mode) which is as-
signed during the design space exploration process and must be ensured
by the communication module (e.g. SecL_1 for CP1_1 in Figure 3.18).

TypeOfCommunication describes what type of communication is used by
action module. This specialized configuration attribute comes from the
specialized model (e.g. OW for N1_1 action module in Figure 3.18).

3.5.3. Components database

The components database is used in the IoT application’s design spare ex-
ploration process and contains the necessary information for it. This database
contains a list of hardware modules which can be used to implement the IoT
applications. These modules can be sensors, actuators, communication modules
and other devices which are used or can be used in IoT applications. Every
hardware module included in the components database must be described with
a list of characteristics which are ensured by the module. A list of charac-
teristics varies depending on the type of module, e.g. a sensor has different
characteristics from those of an actuator or a communication module. Some
characteristics come from the description of modules while others are calculated
by experiments. Most characteristic of modules can be used as an optimization
criterion. The components database can be extended at any time by adding
new hardware modules.

In addition to the specific characteristics, every module must have a char-
acteristic parameter which shows for which hardware platform this module is
designed (e.g. Arduino, Gadgeteer, etc.).

For the names of hardware components which are inserted into the com-
ponents database, we suggest using the combination from the type of module
and the real name of the module. For example, we have a Wi-Fi communi-
cation module whose name is RS21, the name of this module in the compo-
nents database must be Wi-Fi_RS11; for the temperature sensor whose name
is SHT1x it would be Temperature_SHT1x. Such naming helps identify and
search for components as it was shown in the design space exploration process
step of the specialization phase. Moreover, from Figure 3.18, it can be seen
that the proposed module naming is used to describe the specialized configura-
tion which will be used in the IoT application framework generation phase (see
Chapter 3.6).

We suggest that the modules which are included in the components
database must have the following characteristics in addition to the above-
mentioned hardware platform, and this suggested list is inconclusive:

• Sensor: accuracy (AC)– how accurately it can perform measurements;
working range (WR) -what is the measurement diapason; power consump-

77

CP1_1{HVP, DTR_m, PC, SecL_1 , WD, EpIU , Env}
CP1_2{HVP, DTR_m, PC, SecL_2 , WD, EpIU , Env}
CP_n{HVP, DTR_m, PC, SecL_2 , WD, EpIU , Env}
. .

N1_1{HVP, AC, WR, PC}
N1_2{HVP, AC, WR, PC}
N_m{HVP, AC, WR, PC}
. .

AC_1{HVP, PC, SR}
AC_k{HVP, PC, SR}
. .
Other IoT modules

Figure 3.19. Fragment of the components database

tion (PC) – what is the average power consumption while performing the
measurement.

• Actuator: power consumption (PC) is the average power consumption
which is used to perform an action; sample rate (SR) denotes how fast an
action can be performed.

• Communication module: data transfer rate (DRT_m) is the maximum
data transfer which can be ensured with this module; power consumption
(PC) is the average energy power consumption during data transferring;
working distance (WD) is the maximum distance across which data can
be transferred; security level (SecL) is used to present near which working
modes of communication modules some of characteristics were calculated.

In addition, we suggest that the communication module must have ad-
ditional characteristics which are important for the process of design space
exploration and may have a major impact on configuration evaluation results.
These additional characteristics would be calculated experimentally. These
characteristics will be used to show the relationships related to the security
level and energy consumption, energy consumption and the environment, en-
ergy consumption and the security level as well as the environment. After
the experiments, we should get the following characteristics: power consump-
tion per information unit (EpIU), which was transferred to another device in
different environments by using different security levels. Also, environment
characteristic Env must be added too in order to show in which environment
EpIU characteristics were calculated. To describe environment characteristic,
we suggest using one of three units: min, average, max as it is described in
Chapter 3.3 and presented in Figure 3.6a.

78

In Figure 3.19, we present a fragment of a components database where
CP is a communication module, N is a sensor, AC is an actuator, and the other
abbreviations are as above-mentioned.

3.6. Generation phase

After the specialization phase, a specialized configuration of the IoT appli-
cation which must be developed was created. A specialized configuration is as if
an XML document which contains all-important aspects which are used for the
implementation of the IoT application. In addition, specialized configuration
contains all the information which is needed to generate the code framework of
the IoT application.

The proposed code generation has a simple structure and it can be un-
derstood as a text processor aimed to generate a code framework. The pro-
gramming language and the architecture design of the generated framework is
determined by the code template libraries (see Chapter 3.6.1). If the frame-
work must be generated in the C language, the generated framework will be
implemented in C as well. This generation method can be easily extended by
adding new code fragments to the code template library or a new code template
library in the code template repository (see Chapter 3.6.1).

Figure 3.20 shows the process of code generation; as it can be seen, the
proposed code generator takes on a specialized configuration (see Figure 3.18)
as the input. As it was mentioned before, this configuration contains all the nec-
essary information for code framework generation of the IoT application. The
first step which is done by the code generator is the parsing of the specialized
configuration. In Figure 3.20 it can be seen that the specialized configuration
is parsed into two lists: the action modules and the hardware platform. The
action modules list contains all the information which is related to the action
modules: the action module’s name, the communication module’s name, the
communication module’s working mode and the type of communication. This
information will be used for code selection from the code template library at the
next step of code generation. The hardware platform is selected as a separate
variable due to the fact that, before code generation, the code template library
must be selected from which the code will be generated in the next steps of the
code generation process.

When the hardware platform information is parsed, the next step, which
is performed by the code generator, is the code template library selection from
the code template repository. The hardware platform’s name is used for the
code template library selection the where hardware’s and code template’s names
must match. The selected code template library contains methods related to
a specific hardware platform. The methods describe the performance of ac-
tion modules, the functionality of communication modules and data transfer-
ring. Apart from the methods in the code library, also information about the

79

programming language of the hardware platform is presented: depending on
whether the programming language is object-oriented or not, the extension of
the output file is contained (see Figure 3.23). These two parameters will be
used in the final stage of the code framework generation (see Figure 3.20).

The next step, after the code template library selection, is the method
selection from the code template library for actions and communication mod-
ules, and data transferring. These methods describe the performance and the
communication type functionality of modules. The selection is done through
the name of the module and the name of code template parts (the tag name)
which describes all the methods which are used to describe this module’s per-
formance. The code generator is the search code description part where the
description parameter’s name in the code template library is the same as the
module’s name (see Chapter 3.6.1). When such a parameter has been found, all
the methods which are presented in this part are copied from the code template
library. The same is done with the methods which describe the communication
module’s functionality.

In order to select methods that describe the type of communication func-
tionalities (one or two-way), and which are associated with the communication
module, two parameters in the code template library must match: the commu-
nication protocol for which these methods can be used and the communication
type. Due to this fact, in order to present methods which describe the type
of communication, in the code template libraries, a different notation is used
(see Chapter 3.6.1). Because of this specificity, in order to select methods
which describe the type of communication for a specific protocol, the code gen-
erator must determine what communication protocol is used by the selected
communication module. This is done by creating the name of communication
name where e.g. CP1_1 communication module name consists of the commu-
nication protocol name CP1 and 1 real name of the communication module
(see Chapter 3.6.1). When the communication protocol is known, the methods
which describe the type of communication functionality can be selected from
the code template library because other necessary information comes from the
node parameter list which has been created at the first step of code genera-
tion (see Figure 3.20). Moreover, the same methods which describe the type
of communication functionality can be used by several different communication
protocols.

After the code selection has been done, we get a list of methods where
the methods describe action and communication module functionality and the
data transferring functionality (the type of communication). Such a list would
be created for each node which is presented in the specialized configuration.
In Figure 3.21, we show an example how such lists could look for nodes which
are presented in the specialized configuration (see Figure 3.18). As it can be
seen from Figure 3.21, the code generator selects not only the methods but also

80

Figure 3.20. Code generation process

the information about the programming language which is used in the selected
hardware platform. In Figure 3.21, Class presents if the programming language

81

Class = "Yes"
Extension = ".ext"
N1:
method1_N1_1
method2_N1_1
method1_CP1_1
method1_CP1_1(SecL_1)
method1_OW
method2_OW

N2:
method1_N2_1
method2_N2_1
method1_CP2_1
method1_CP2_1(SecL_2)
method1_OW
method2_OW

Figure 3.21. Selected code components from the code template library

is object oriented or not, Extension shows the extension which must be used
for the output files of code generation.

The last step of code generation is performed after all the information for
the IoT application framework generation has been selected. First of all, from
the selected information, the structure of the output code is determined. This
means that the type of the programming language must be determined, whether
it is object oriented or not. As it can be seen in Figure 3.20, on this information,
the operations of the code generation depend. If the programming language
is not object-oriented, then the selected code which is shown in Figure 3.20
would be divided into two individual files with .ext extension. The code would
be divided according to the node name, and the output file would be named
according to the node name (N1 or N2 as it is presented in the specialized
configuration). If the programming language is object-oriented, as shown in
Figure 3.21, then this code is divided into classes, where the class name is
the node name, as shown in Figure 3.22. Each class will be exported as an
individual file where the output file name will be the same as the class name.
The generated code files are treated as the code framework which is used for
the IoT-based application implementation.

The output of the generation phase is the code framework for the IoT
application implementation. The generated framework contains methods which
are not interconnected; thus the framework is not a fully functional application.
A fully functional application will be implemented in the implementation phase

82

Figure 3.22. Generated framework for IoT application.

(see Chapter 3.7). All the necessary logical links and extends will be added
which are needed according to the requirements of the application in order to
get a fully functional IoT application.

3.6.1. Code template repository

The code template repository contains the code template libraries where
every code template library is as an individual file for a different hardware
platform where each code template library is named according to a hardware
platform’s name. Each library contains the code methods which are used to
describe the performance of the specific hardware components.

The code template library is created by application engineers and can be
reused for different implementation of the IoT application where the hardware
platform is used whose methods this particular library contains. Each library
should contain as many methods as possible for each specific hardware unit.
In Figure 3.23, we present the structure of each code template library. Such
a structure allows extending the code template library with new methods at

83

any time. All the methods which are put into the code template library are
fully implemented according to the requirements of the programming language
of the hardware platform.

The code template library is an XML document whose structure is shown
in Figure 3.23. The four parts of the code template library from the sug-
gested structure can be distinguished: meta-data, action_module, communica-
tion_module and communication_type. The first part describes the meta-data
information about the programming language of the hardware platform. As it
can be seen from Figure 3.23, this information shows what type of programming
language is used in the selected hardware platform, and what file extension is
used by hardware platform programming language for the output files. This
meta-data information is used to determine the structure of generated frame-
work.

The second part of the code template library contains methods and vari-
ables which describe the performance of action modules. The methods which
describe one action module’s performance would be grouped by using an XML
tag where the tag would be named according to the module name; this tag name
in Chapter 3.6 is treated as a description parameter. From Figure 3.23, it can
be seen that the methods which describe CP1_1 action module’s performance
are grouped by using a tag with CP1_1 name. We suggest that, for tag naming,
one should use action module names exactly the way they are presented in the
components database (see Chapter 3.5.3).

The third part of the code template library contains the methods and vari-
ables which describe the communication module’s operation. The grouping of
methods of the communication modules is the same as that of the action mod-
ules. The methods are grouped by the communication module’s name whose
functionality they describe, and where name is the same as in the component’s
database. Most methods which are used to describe the functionality of commu-
nication modules have a parameter which allows to assign the security level in
which the modules must communicate. We suggest that this parameter would
be marked as Sec_L, and in the implementation phase this parameter would be
a change in the security level which is presented in the specialized configuration
by the application developer. For example, for CP1_1 communication module
which is presented in the specialized configuration (see Figure 3.18), such a
parameter would be SecL_1. However, not all communication modules allow
such methods which can control the security level of the communication module
because these modules must be preconfigured by using specific software. Thus,
the application developers must configure such communication modules to use
security level which is presented in specialized configuration.

We suggest that the fourth part of the code template library should contain
methods and variables which describe data transferring. Our analysis showed
that two different communication modules which operate in the same commu-

84

<Platform name="HVP">
<Meta>
<Output f i l e ="ext "/>
<Class type = " yes "/>
</Meta>
<Code>

<N1_1>
method1_N1_1
method2_N1_1

</N1_1>
<N2_1 >

method1_N2_1
method2_N2_1

</N2_1>
</Code>
<Communication_module>

<CP1_1>
method1_CP1_1
method1_CP1_1(Sec_L)

</CP1_1>
<CP2_1 >

method1_CP2_1
method1_CP2_1(Sec_L)

</CP2_1>
</Communication_module>
<Communication_type>

<OW pro t o co l s="CP1, CP3" >
method1_OW
method2_OW

</OW >
<OW pro t o co l s="CP2">

method1_OW
method2_OW

</OW >
</Communication_type>
</Platform>

Figure 3.23. Fragment of a code template library

nication protocol use the same methods for data transmission. In addition,
our analysis showed that different communication protocols could use the same
methods for the same type of data transferring but the methods which describe

85

one-way and two-way data transferring are different for the same protocol. Due
to these facts, for the description of data transferring methods, the extended
XML tag notation must be used where the XML tag would be concluded from
the tag name and attribute and should look as follows: <OW protocols="">.
The tag name should represent for which data transferring type the grouped
methods are used, and the protocol attribute should present for which protocols
these methods can be used. We suggest that for such a tag name we should be
used abbreviations: OW for one-way and TW for two-way. Moreover, not all
the methods and attributes are known when the methods which describe data
transferring are added to the code template library as these methods contain
such parameters as IP addresses, the socket port and other which are changing
depending on the network configuration of the IoT application. Thus, we sug-
gest, that these parameters would be marked as ??? (e.g. SERVER_IP = ???)
so that they would be easier to find for the system developer(s) and change
them at the implementation steps of the generated framework.

The suggested code template library consists from the following elements:

Platform specifies an attribute which is used to present a hardware platform
whose code components are saved in the code library

name presents the name of the hardware platform whose code components are
saved in code library, e.g. as HVP in Figure 3.23.

Meta specifies the code template part which is used to present information
about the programming language.

Output specifies an attribute which is used to describe an extension of the
output file of the programming language.

file is an attribute which describes the programming language output file(s)
extension whose code components are saved in the code library, e.g. as
ext in Figure 3.23.

Class specifies an attribute which is used to demonstrate if the programming
language requires classes.

type is an attribute which describes if the programming language whose code
components are stored in code library requires classes or not. This at-
tribute can have two values: yes – the programming language requires
classes; no – the programming language does not require classes.

Code specifies the code template part which is used to store the programming
methods of sensors, actuators, and other hardware. N1_1 specifies the
name of the action module whose programming methods are included in
the code library. The action module names are the same as they are

86

described in they components database. In Figure 3.23 are presented to
action modules: N1_1 and N2_1.

Communication_module specifies the code template part which is used to
present the communication module’s programming methods of the hard-
ware platform.

CP1_1 specifies the name of a communication module whose programming
methods are included in the code library. Communication module names
are the same as they are described in the components database. In Figure
3.23 are presented to action modules: CP1_1 and CP2_1.

Communication_type specifies the code template part which is used to store
the programming methods which are used for the data transfer of various
communication protocols.

OW specifies what type of communication is used to present the programming
methods. We distinguished between two types of communication: OW –
one-way and TW – two-way.

protocols are attributes showing for which communication protocol(s) data
transfer methods are used. As it was mentioned earlier, the same data
transfer methods can be used for several different communication proto-
cols.

3.7. Implementation phase

At this phase of the proposed IoT applications development methods, the
working applications are created by extending the generated IoT application
framework with the necessary functionally which was not generated in the gen-
eration phase of the proposed IoT application implementation method. All
the actions which are done at the implementation phase are based on widely
used application project management steps. We think that the closing pro-
cess [Li and Tang, 2014] of application management processes describes the ac-
tions of the implementation step best. In order to describe the actions which
are performed in the implementation phase, we divide them into three steps:
framework testing, application implementation, and application testing.

Framework testing. In the proposed implementation phase, the
framework-testing step is used to check if all the components of the IoT applica-
tion are generated in the generation phase. If the components are missing, they
should be implemented in the next step of the implementation phase. In other
words, the system developer checks that the code generated at the generation
phase is correct for the specialized model (see Figure 3.13) and the specialized
configuration(see Figure 3.18). Thus this step of the implementation phase can
be understood as the generated code verification which is done by the system
developer.

87

Figure 3.24. Implementation phase

Application implementation. This step of the implementation phase is
used to create a fully functional IoT application. In order to carry out this
action, a logical connection must be added between the methods of generated
code framework of IoT application. Furthermore, this step is responsible for
the extension of the generated framework. We understand extension as an
implementation of IoT application component(s) which have been determined
during the framework-testing step.

Application testing. Testing activities are aimed at discovering errors in
the applications after they have been created so that the action can be taken
to remove them. Further, testing also checks if all the functionalities of the
IoT-based application are implemented and operating as they should. There
are many testing techniques, but at this point we do not suggest any particular
techniques, and we think that the testing technique must be chosen by the
application tester according to which parts of the application s/he wants to
test.

The implementation phase is the last phase of the proposed IoT applica-
tion implementation method (Figure 3.2), after which we get a fully working

88

IoT application.

3.8. Conclusions

1. The IoT application implementation method based on feature modelling
has been presented. The presented method consists of five phases which
cover the development of the application from modelling to code applica-
tion implementation.

2. The method models the possible variability (PLs) of the application im-
plementation in its domain. In order to do that, the basic structure of
the functional and non-functional requirements feature models has been
proposed which is used in the analysis of the application domain and cov-
ers the following aspects of IoT application development: security, energy
consumption and the heterogeneity of devices and communication proto-
cols. The variability is presented in the aggregated feature model of the
IoT application domain.

3. When using the presented specialization steps, an aggregate feature model
can be adapted to the specifications of the specific IoT application. To
achieve that, the aggregated feature model and specifications of the IoT
application are merged. The output of the merging process is the special-
ized feature model of the specific IoT application.

4. A methodology to analyse the configurations presented by the special-
ized feature model according to the IoT application requirements for QoS
with respect to heterogeneity, security and energy consumption has been
presented. The proposed evaluation methodology enables to suggest com-
munication protocol(s), specific hardware and the working mode of com-
munication module(s) which should be used for IoT application imple-
mentation.

5. The code framework generation process from the specialized configuration
based on the code template library has been presented.

89

4. DEVELOPMENT OF IoT-BASED HEALTHCARE APPLIAC-
TION

This chapter is dedicated to the development of an IoT-based application
by using the proposed IoT application development method. For the purpose of
proof-of-concept, we use an IoT-based healthcare-oriented application. During
the case study, all the phases of the proposed IoT application development
methods were implemented.

4.1. Software tools

This section describes the software tools used for modelling, verification
and the experimental set-up of the feature models.

The S.P.L.O.T. tool (Software product lines on-line tools)
[Mendonca et al., 2009] allows creating feature models. Feature models
can be created by using Feature-RSEB notation (see Appendix B). This tool
has additional functionalities which provide information about the created
feature model, such as if the model does not have any dead feature (see
Definition 14 in Appendix A), how many configurations (product line) are
presented by this model as well as other important information. The created
feature model is presented in the textual format, which makes it harder to
read when the model has a huge number of features. By using S.P.L.O.T.
software, the created feature model can be exported as an SXFM file which
can be imported in other software. S.P.L.O.T. was used for the verification of
feature models.

The FAMILIAR (for FeAture Model script Language for manipulation
and Automatic Reasoning) is a language for importing, exporting, composing,
decomposing, editing, configuring, reverse engineering, testing, and reasoning
about (multiple) feature models. The creators of this language also proposed
a software tool, which supports this language and ensures all the features of
this language. The tool allows to create feature models in the graphical mode
which is more user-friendly if compared with S.P.L.O.T. because it is better
readable when the feature model has a huge number of features. The graphical
notation of this tool is based on Feature-RSEB notation. The FAMILIAR tool
also has an option which provides information about the feature model, just like
S.P.L.O.T., but the amount of information is significantly smaller. However,
this tool can import and export the created feature models in different formats,
including an SXFM which is used by S.P.L.O.T. FAMILIAR software and has
been used for the modelling of feature models.

4.2. Case study: IoT-based healthcare application

This case study presents our proposed IoT application development
method (see Figure 3.2) for the developing of the IoT-based healthcare appli-
cation. The proposed method was used to implement an application, which

90

performs measurements of vital information about humans and sends this
information for further processing. In order to ensure heterogeneity, differ-
ent communication protocols and sensors were used. This chapter is based
on [Jusas et al., 2016, Venckauskas et al., 2016a, Venckauskas et al., 2016b,
Venckauskas et al., 2016c]

4.2.1. Introduction

According to [Hussain et al., 2015, Kamel Boulos and Al-Shorbaji, 2014,
Mukherjee et al., 2014], IoT-based healthcare application can be presented as
three-level architecture. Figure 4.1 presents the architecture of IoT-based
healthcare application. Each architecture layer of the application describes
different levels of the application development. The healthcare-oriented ap-
plication module containing adequate facilities (such as the patients’ health
histories database, the patients’ database and the application server) repre-
sents the highest level. The standard Internet module with connecting facilities
represents the intermediate level. The distributed sensors network represents
the lowest level; in fact, it represents a sub-net of a distributed sensors network
along with additional facilities. In terms of the application, we treated it as a
body area network (BAN) [Filipe et al., 2015]. Our proposed IoT application
implementation method is oriented towards the opportunity to present the vari-
ability of configurations which can be used for the creation of the BAN layer of
healthcare application; thus the BAN layer is the layer of interest in this case
study. This layer is responsible for providing the initial data.

In the healthcare applications, there is a need to collect a huge number
of data from different parts of the patient’s body [Memon et al., 2014]. The
collected data from different sensors is to be combined and presented as a com-
mon structure before being transferred to the healthcare-oriented application
module. As the modules BAN and healthcare-oriented application typically are
located in the remote places, the sub-module heterogeneous network concen-
trator (see Figure 4.1) also ensures the interfacing facilities with the standard
Internet module.

In addition, measured data protection during the transfer is also an impor-
tant aspect of the IoT-based healthcare application. Typically, the measured
data is private and not to be allowed for capturing and tampering. Commonly,
for data protection, communication protocols and their security mechanisms
are responsible; however, the security level may be different for various ap-
plications or for the specific cases of the same application, e.g. for different
BAN. Therefore, the healthcare applications are concerned with choosing the
adequate protocol from the set of available ones. As it is highlighted in the
structure of BAN, the different sensors may require the different protocols.
Typically, multi-functional sensors require more advanced protocols, because
they generate more data, which requires a bigger data transfer rate in compar-

91

Figure 4.1. Three-level architecture of the IoT-based healthcare application

ison to simple sensors. Therefore, the sensor’s type predefines the use of the
adequate protocol.

The procedure of obtaining the initial data and then transferring it ac-
cording to the selected protocol is also concerned with energy consumption.
The latter highly depends on the mode of using BAN (intensiveness of the data
stream, sensor type, protocol to be used, the state of the environment, such
as the level of noise, etc.). For telemedicine applications, energy issues are im-
portant too, because there are many battery-charged medical devices in use.
All these factors in building the healthcare application should be taken into
account at the initial phase when the requirements for the application are to
be stated. Therefore, the requirements fall into two categories: non-functional
(related to the energy and security, environmental factor) and functional (re-
lated to the measured data and its transfer). We should note that the medical
interpretation and the use of the data is not the concern of this case study.

Now, we have a description of the reference architecture of the IoT-based
healthcare application. This information is sufficient to start describing the
implementation of our IoT application implementation method.

4.2.2. Modelling of IoT-based healthcare BAN layer domain

As it was mentioned in Chapter 3.3, this phase of the proposed IoT appli-
cation implementation method is responsible for the analysis and modelling of

92

the IoT application domain. In our case, this domain is an IoT-based healthcare
BAN layer. For modelling purposes, we will be using the proposed functional
and non-functional requirements feature models (see Chapter 3.3 and Figure
3.6).

As it was mentioned above, our proposed method is oriented towards a
BAN layer of the IoT-based healthcare application. As can be seen from Figure
4.1, two main components can be distinguished which must be analysed in this
domain and which are important for the application. The first component is
sensors, actuators and other action modules which are or can be used in this
domain and are necessary for the implementation of the IoT-based healthcare
application. Secondly, these are the communication protocols which are or
can be used to transfer data from action modules to the heterogeneous network
concentrator. These two components of the body area network application were
components of interest during the processes of analysis of IoT-based healthcare
BAN domain. Moreover, domain analysis was oriented towards information
which could help feature models adhere to the proposed functional and non-
functional requirements.

According to the proposed non-functional requirements feature model,
information about the hardware platforms and the working distance of the ac-
tion modules is the most important in order to complete this model. Domain
analysis was oriented towards analysis of this information as other features of
the model remain the same as proposed in Chapter 3.3. The domain analy-
sis shows that there are many hardware platforms which can be used for the
development of the IoT-based healthcare BAN layer. Therefore, in order to
reduce the number of possible hardware platforms for the application develop-
ment, we chose platforms according to several criteria: the hardware platform
must be open source and must present an opportunity to connect possible sen-
sors and actuators which can be used for application development. By using
these criteria, five most popular hardware platforms were chosen (see Figure
4.2a). Moreover, the domain analysis shows that the body area network action
modules are usually concentrated in a small area. Action modules can be lo-
cated directly on a patient or on his clothes, from where the measured data is
sent to e.g. a smartphone; also, this area can be all the house of the patient.
Due to this fact, the working distance of action modules, we have chosen from
0.2m to 10m as it is shown in Figure 4.2a. In Figure 4.2a, we present the
feature model that specifies a set of non-functional requirements of IoT-based
healthcare-used BAN layer’s domain. In Table 6, we present the constraints re-
lationships between the features of non-functional requirements feature model.
At the domain analysis stage, constraints between features come from the anal-
ysis itself or expert knowledge. Constraints among features of non-function
requirements feature model, which are presented in case study, are based on
[Venckauskas et al., 2014a, Venckauskas et al., 2014b]. Table 5 shows the cre-

93

(a) Non-functional requirements feature model of IoT-based healthcare application

(b) Functional requirements feature model of IoT-based healthcare application

Figure 4.2. The created functional and non-functional requirements feature
models of IoT-based healthcare applicationn

94

ated model’s characteristics where we can see that the created feature model
covers 562,185 non-functional configurations (PLs), which can be used for the
development of IoT-based healthcare BAN layer.

Table 5. Functional, non-functional and aggregated feature model characteris-
tics. Models statistics obtained using the S.P.L.O.T. tool. * - Variability Degree
is the number of valid configurations divided by 2n,where n is the number of
features in the model

No. Data Non-
functional
model

Functional
model

Aggregated
model

Statistics
1 Features 29 54 83
1.1 -Optional 0 0 0
1.2 -Mandatory 6 18 26
1.3 - Grouped 22 35 57
1.4 - Groups 5 11 16
2 Tree Depth 4 6 7
3 Extra constraints 9 10 27
4 Distinct extra con-

straints variables
12 12 24

5 Clause Density 0.8 0.8 1.7
6 CNF Clauses 49 99 173

Results
1 Consistency Consistent Consistent Consistent
2 Dead Features 0 0 0
3 Common Features 7 7 19

Metrics
1 Count Configurations 562185 1568352 4.34E7
2 Variability Degree* (%) 1.0472E-1 8.7061E-9 1.4352E-14

The creation of the functional requirements feature model of the IoT-based
health-care BAN layer domain requires more extensive analysis. All the low-
est layer features must be established while in the non-functional model case
some of the features remain the same as they are presented in Figure 3.6a.
Healthcare BAN layer domain analysis has shown that action modules for the
communication between each other and heterogeneous concentrators, most of
the time, use the wireless communication protocols. After conducting analysis
of the wireless communication protocols which can be or are used in IoT-based
healthcare BAN layer, we have chosen only three most popular standard pro-
tocols nowadays. More theoretically possible wireless communication protocols
are presented in Table 1. The data sending frequency feature shows how often

95

Table 6. Constraints relationships of the functional and non-functional re-
quirements feature models of the IoT-based healthcare BAN layer domain

Functional model constraints Non-functional model constraints
No. Feature Constraint Feature No. Feature Constraint Feature
1 Temperature Requires ZigBee 1 U Requires PMin

2 Gas Requires ZigBee 2 SU Requires PMin

3 SLM Requires Bluetooth 3 R Requires PAver

4 EEG Requires Bluetooth 4 C Requires PAver

5 Pulse Requires Wi-Fi 5 S Requires PMax

6 CBP Requires Wi-Fi 6 TS Requires PMax

7 Bluetooth Excludes 5 Mb/s 7 POMin Requires PMin

8 ZigBee Excludes 2 Mb/s 8 POAver Requires PAver

9 ZigBee Excludes 1 Mb/s 9 POMax Requires PMax

10 ZigBee Excludes 0.5 Mb/s

the measured data must be transferred, and this feature depends on the ap-
plication requirements. Thus, we have chosen five times in seconds, which, we
think, is most relevant for the healthcare BAN layer (see Figure 4.2b). The data
amount feature shows how much data is generated by the sensor or actuator
performing one action. This is closely related to action modules’ actions which
are performed by them, moreover, this depends on the type of action modules
as it was mentioned before. In order to cover this feature, we have chosen sev-
eral possible data amounts from very small to very big, and the possibilities
are shown in Figure 4.2b. The data transfer rate depends on the data amount
and data sending frequency features; thus, we have chosen such data transfer
rates which cover all the possible configurations of the data amount and the
data sending frequency features.

The domain analysis of the IoT-based healthcare BAN layer shows that
there are many action modules which can be or are actually used for the de-
velopment of such kind of applications. These action modules can measure
various parameters and perform various actions. From these numerous possi-
bilities, we have chosen six most popular ones, and these sensors and actuators
cover all the possible types of functionalities which were mentioned above. The
communication protocol and type of communication must be assigned to every
sensor and actuator. Because, at this stage of application, we do not know this
information, and in order to fill the communication feature we choose the most
frequently occurring communication protocols for such types of sensors and ac-
tuators whereas the type of the communication feature is left exactly as it is.
In Figure 4.2b, we present a feature model of the functional requirements of
the IoT-based healthcare BAN layer. The constraints of the functional feature
model are based on Table 1 and [Venckauskas et al., 2014b]. In Table 5 we show

96

the characteristics of the created functional requirements model, where we can
see that the created feature model covers 1,568,352 functional configurations
(PLs) which can be used for the development of the IoT-based healthcare BAN
layer.

From the characteristics of created functional and non-functional require-
ments feature models (Chapter 3.3 and Figure 3.6), we can see that by using the
proposed feature models with minor extensions, especially it can be seen from
the non-functional requirements feature model, the IoT-based application do-
main can be analysed fully. Both models describe many possible variants (the
variability of PLs) of functional and non-functional requirements which can
be used for the IoT-based healthcare BAN layer implementation. From these
different configurations, we think, it is possible to choose at least one configu-
ration which fully describes the IoT-based healthcare BAN layer in functional
and non-functional aspects.

The created non-functional and functional requirements models (see Fig-
ure 4.2) present the IoT-based healthcare BAN layer domain from functional
and non-functional perspectives. In order to get all the possible configurations
so that to implement the application in this domain, these two models must
be combined. This is performed during the aggregation phase of the proposed
IoT application development method. Also, the created feature models can be
reused for the creation of other applications which are in the same or in similar
domain to the case study by using models as they are presented in Figure 4.2
or employing minor changes.

4.2.3. Aggregated model of healthcare BAN domain

In Figure 4.3, we present the aggregated feature model which combines
both functional and non-functional requirements of feature models. As it can
be seen, this new feature model has a new root feature (see Definition 3 in
Appendix A), which now is "Healthcare" according to the application type (see
more in Chapter 3.4).

The aggregated feature model describes all the possible configurations
(PLs) which can be used for the development of the IoT-based healthcare BAN
layer according to the information which was collected during the analysis of
the BAN domain. As can be seen from Figure 4.3, all the features presented
by the created non-functional and functional requirements feature models are
presented by the aggregated feature model. Aggregation of two models leads to
the fact that new constraints can be distinguished between the features of the
non-functional and functional requirements of feature models. The aggregated
feature model contains all the former constraints between the non-functional
model features and the functional requirements model features. The constraints
between the features of the newly created feature model are shown in Table 7.
As can be seen from Tables 7 and 6, the aggregated feature model contains

97

Table 7. Relationships between the features of the aggregated feature model

No. Feature Constraint Feature No. Feature Constraint Feature
1 Temperature Requires ZigBee 15 U Requires PMin

2 Gas Requires ZigBee 16 SU Requires PMin

3 SLM Requires Bluetooth 17 R Requires PAver

4 EEG Requires Bluetooth 18 C Requires PAver

5 Bluetooth Excludes TS 19 S Requires PMax

6 Bluetooth Excludes C 20 TS Requires PMax

7 Bluetooth Excludes 5 Mb/s 21 POMin Requires PMin

8 ZigBee Excludes 2 Mb/s 22 POAver Requires PAver

9 ZigBee Excludes 1 Mb/s 23 POMax Requires PMax

10 ZigBee Excludes 0.5 Mb/s 24 Wi-Fi Requires PMax

11 Bluetooth Requires PAver 25 ZigBee Requires PMin

12 ZigBee Excludes TS 26 Pulse Requires Wi-Fi
13 Bluetooth Excludes S 27 CBP Requires Wi-Fi
14 TS Requires Wi-Fi

more constrains, which shows that the functional and non-functional features
are closely related and required or excluded by each other.

The appearance of a new constraint requires that the aggregated feature
model must be verified so that to ensure that it is correct. After the verifica-
tion, we get an aggregated feature model which is correct (see Table 5) and
presents the domain of the IoT-based healthcare BAN layer fully, according to
the collected information during the model’s development phase. For model
verification, we have used the S.P.L.O.T. tool which automatically searches for
the dead features and identifies them. The S.P.L.O.T. tool for the search of dead
features uses the binary decision diagram (more see at [Mendonca et al., 2009]).

98

Figure 4.3. Aggregated and verified feature model of IoT-based healthcare application domain

99

In Table 5,we present the characteristics of the aggregated and verified fea-
ture model of the IoT-based healthcare application domain. From Table 5, we
can see that by using the developed aggregated feature model, the great number
of possible configurations which can be used to implement the IoT-based health-
care application are presented, and all these configurations combine functional
and non-functional requirements. At this point, the aggregated feature model
describes all the IoT-based healthcare BAN layer domain. Most configurations
presented by this model are not relevant for the application which is bound to
be created. Therefore, these irrelevant configurations must be removed, and,
in order to do that, the aggregated feature model must be merged with the ap-
plication specifications which must be implemented and whose code framework
will be generated during the generation phase of the proposed IoT application
development method. The merging of specifications of an application and the
aggregated feature model creates a specialized feature model of the IoT-based
healthcare application. Merging is performed during the specialization phase
of the proposed IoT application development method. Moreover, the created
aggregated feature model can be used for the development of other applications
which are in the same domain or in similar domains. Due to the fact that this
model presents a great number of configurations (PLs) to implement the BAN
layer in its domain, the re-usability of the model is thus ensured.

4.2.4. Specialization of healthcare applicaiotn’s BAN layer

The first step of the specialization phase of the proposed IoT-based ap-
plication development method is the aggregated feature model merging with
the IoT-based healthcare BAN layer’s specifications. For example, the purpose
case study application must ensure the following specifications:

1. Action modules: temperature, gas and pulse;

2. Hardware platform: Gadgeteer;

3. For the implementation of the application, Wi-Fi, Bluetooth and ZigBee
communication protocols can be used;

4. The security level must be no lower than restricted (or R);

5. The action module’s working distance: Pulse up to 10 meters, Gas up to
5 meters, Temperature up to 1 meter;

6. The data amount generated by the action modules: pulse up to 2 MB,
gas up to 25 KB, temperature up to 1.5 MB;

7. The action module’s data sending frequency: pulse 0.5 s, gas 2 s, temper-
ature 5 s;

100

8. The action module’s communication type: pulse: two way, gas and tem-
perature: one way.

After outlining the BAN layer requirements which must be implemented,
the next step is to check if the aggregated feature model can cover these speci-
fications. According to the specifications, three types of sensors and actuators
must be used for the development of the IoT healthcare application’s BAN layer.
These sensors and actuators do not have any assigned specific communication
protocols, and, at this stage, each sensor and actuator can be implemented by
using all the three communication protocols. As it can be seen from Figure 4.3,
in the aggregated feature model, these components are presented as if they are
only using one communication protocol. In other words, the aggregate feature
model presents only one opportunity to choose communication protocols for
the temperature sensor while, according to the application specification, there
should be three of them. Therefore, the Node feature of the aggregated feature
model should be extended in order to fulfil all the possible specifications of
the IoT healthcare BAN layer. This fact leads to the extension of the aggre-
gated feature model because during the modelling phase we only used the most
common communication protocol for certain action module. In Figure 4.4, we
present only the Node feature of the aggregated model after extension. Only
three IoT-based healthcare application action modules are shown in Figure 4.4,
because other sensors and actuators presented in the aggregated feature model
are irrelevant according to the specifications of the case study application. Af-
ter the extension, all the specifications of the IoT-based healthcare application
can be covered by using other features of the aggregated feature model.

After the extension of the necessary features of the aggregated model of the
IoT-based healthcare application’s BAN layer, we can cover all the application
specifications for the BAN layer. The next step of the specialization phase
after the aggregated feature model extension is the specialization process of
the extended aggregated feature model. Specialization is performed according
to the rules presented in Chapter 3.5.1. After completing specialization, we
get a specialized feature model which describes all the possible configurations
(PLs) to implement the IoT-based healthcare application’s BAN layer according
to whose specifications it was created. In Figure 4.5, we present the created
specialized feature model of the IoT-based healthcare BAN layer; this model
presents all the possible correct configurations allowing to implement the BAN
layer.

Relationships between the features of the specialized feature model are
shown in Table 8. As it can be evidently seen, some of the constraints re-
main the same as in the aggregated feature model (see Table 7) while others
come from the application specifications. Due to application’s specifications,
some features are not present in the specialized feature model because it was
not necessary for application development. A good example of such feature is

101

Figure 4.4. Extended Node feature of the aggregated feature model

Physical obstacle, in the aggregated model it has three features while in the
specialized model it has only one feature. Similar aspects may be noted with
Node feature, in Figure 4.4 it is shown that Pulse sensor can be implemented
by using all the three communication protocols, while in the specialized model
only Wi-Fi protocol was preserved. Such elimination was performed due to the
application specifications for the pulse sensor and the limitation of the data
transfer rate of other communication protocols. Afterwards, the specialization
model was verified to ensure that the created model is correct.

The created specialized feature model of the IoT-based healthcare appli-
cation presents all the possible configurations (the variability of possible PLs)
which can be used for the development of the BAN layer of the application. In
Table 9, we present characteristics of the specialized feature model. As it can
be seen from Table 9, the specialized feature model presents 120 configurations
which fully cover all the requirements of the IoT-based healthcare application.
Thus we can see that the specialization dramatically decreases the number of
configurations which can be used for an IoT-based healthcare application and
which were presented by the aggregated feature model. Each configuration pre-
sented by a specialized feature model (see Figure 4.5) can be divided into two
parts: the part which is the same for all the configurations and the part which
changes. In our case, the part which changes describes the communication pro-
tocols which can be used by action modules, and the security levels which can be
used by the communication protocol for data protection during the data trans-
fer. For example, from the IoT-based healthcare application specifications and
Figure 4.5, we can see that the gas sensor can be implemented by using three

102

Table 8. Relationships between features of the specialized feature model

No. Feature Constraint Feature No. Feature Constraint Feature
1 Pulse Requires Wi-Fi 14 0.5

MB
Requires 1.5

Mb/s
2 Temperature Requires 5 s 15 2 MB Requires 5 Mb/s
3 Temperature Requires Wi-Fi 16 25 KB Requires 150

Kb/s
4 Temperature Requires Bluetooth 17 Gas Requires 25 KB
5 Temperature Requires 1 m 18 ZigBee Excludes TS
6 Temperature Requires 0.5 MB 19 Pulse Requires 5 MB/s
7 Bluetooth Excludes C 20 Pulse Requires 0.5 s
8 Bluetooth Excludes S 21 Gas Requires 150

Kb/s
9 Bluetooth Excludes TS 22 Gas Requires Wi-Fi
10 Temperature Requires 1.5 Mb/s 23 Pulse Requires 10 m
11 Gas Requires Bluetooth 24 Gas Requires 2 m
12 Pulse Requires 5 Mb/s 25 Gas Requires 2 s
13 Gas Requires ZigBee

different communication protocols where each protocol can ensure a different
security level. A similar situation is with other action modules, as well.

Therefore, from 120 configurations which are presented by the specialized
feature model, we must select one. All these configurations are understood as a
design space of the IoT-based healthcare application’s BAN layer. The selected
configuration from the design space should present the IoT-based healthcare
BAN application best. We used several criteria for the selection of a config-
uration; these criteria present QoS requirements for the IoT-based healthcare
application which were not described in the application specialization. More-
over, from the selected configuration code framework, an application which
controls action and communication modules of the case study application will
be generated in the generation phase of the proposed IoT-based application
development method.

103

Figure 4.5. Specialized feature model of IoT-based healthcare application

104

Table 9. Specialized feature model characteristics

No. Data Specialized feature model
Statistics

1 Features 64
1.1 -Optional 0
1.2 -Mandatory 51
1.3 - Grouped 12
1.4 - Groups 4
2 Tree Depth 6
3 Extra constraints 25
4 Distinct extra constraints variables 26
5 Clause Density 0.41
6 CNF Clauses 1.08

Results
1 Consistency Consistent
2 Dead Features 0
3 Common Features 49

Metrics
1 Count Configurations 120
2 Variability Degree (%) 6.505E-18

For the selection of the best configuration when striving to implement the
IoT-based healthcare application from which the code framework will be gener-
ated, we used multi- criteria optimization as a DSE process solution (see Chap-
ter 3.5.2). To perform optimization, we used QoS requirements as optimization
parameters and information from the components database (see Chapter 3.5.3).

In Figure 4.6, the DSE process is shown which was used to get the spe-
cialized configuration. As it can be seen, the DSE process takes the specialized
feature model, components database and optimization parameters as inputs. At
first, the DSE process takes the inputs and transmits them to the optimization
algorithm. After the optimization has been completed, the DSE process gener-
ates the specialized configuration of the IoT-based healthcare BAN application
as an output. This generated configuration describes the IoT-based healthcare
application’s BAN layer according to QoS requirements best. At this point,
configuration is understood as a list of exact sensors, actuators, communication
modules and these communication modules working modes which, basically,
present a security level which must be used by the communication module for
data transferring (see Figure 4.8).

As it can be seen from Figure 4.6, for the DSE process, a specialized feature
model has been used. This model can be presented in graphical or textual
formats. For the DSE process and the selection of the best configuration to

105

Figure 4.6. Design space exploration

implement the IoT-based healthcare application, we use the specialized feature
model which is presented in the textual format; the SXFM format is used to
present feature models in the textual format. In Chapter 3.5.2, we presented
which features are used for multi-criteria optimization from the aggregated
model and which information comes from the components database. As the
DSE process uses the specialized feature model in the SXFM format to select
the features which are used in optimization, the specialized feature model must
be parsed. For parsing of the specialized feature model, we used the SMFM
format parser library 1 presented by the S.P.L.O.T. tool creators

There are many QoS parameters which are important for the IoT-based
healthcare application’s BAN layer. These different parameters describe differ-
ent performance of the application. Thus, for example, for the purpose we have
chosen energy, security and data transfer rate as the main criteria of QoS,
according to which, the configuration must be chosen and which, we think,
are the most important for the IoT-based healthcare application. The selected
QoS parameters indicate that the security level must be as high as possible with
the absolutely minimum energy consumption. As it was mentioned in Chapter
3.5.2, for the optimization, we use the weighted sum method. This method re-
quires that each parameter must have some assigned value, which is presented
as a weight. For example, for the purpose, the weights for the QoS service were
assigned as follows: security – 0.4, energy – 0.4 and the data transfer rate – 0.2.

As can be seen from Figure 4.6, in order to perform DSE, the compo-
nents database must be used. As it was mentioned in Chapter 3.5.3, the
components database contains information about the component character-
istics, and some of these characteristics for communication modules must be
calculated in order to perform the DSE more accurately. Therefore, in order
to create the components database and to calculate the required character-

1http://ec2-52-32-1-180.us-west-2.compute.amazonaws.com:8080/SPLOT/sxfm.jar

106

Figure 4.7. Design space exploration of the IoT-based healthcare application’s
BAN module

istics, we have used a methodology presented in [Venckauskas et al., 2014a,
Venckauskas et al., 2014b]. The following communication modules of Gad-
geteer platform have been included into the components database: Wi-
Fi RS21, Wi-Fi RN171, Bluetooth, XBee Pro and XBee (the latter two
are used for ZigBee protocol); hereby characteristics of these communi-
cation modules have been calculated. Some of the calculated character-
istics are presented in [Venckauskas et al., 2014a, Venckauskas et al., 2014b,
Venckauskas et al., 2016a]. Also, Pulse Oximeter, Temp and GasSence sen-
sors were included into the components data base, with their parameters (see
3.19). In order to evaluate the security levels, the following estimates were
assigned: R-1, C-2, S-3, TS-4.

The design space (different PLs) intended to implement the IoT-based
healthcare application is created when all the data has been passed to the de-
sign space exploration process. As it was mentioned earlier (see Chapter 3.5.2),
the design space exploration process performs the evaluation of configurations
which are presented in the specialized model according to the QoS require-
ments of applications and selects one which describes the performance of the
application best. In our case, these requirements are security, energy and data
transfer rate; due to this fact, the design space can be presented as a cube graph
(see Figure 4.7) where each axis represents athe different requirement of QoS.
Due to its readability, Figure 4.7 presents just a part of the design space. In
Figure 4.7, each point presents a different configuration which can be used to
implement the IoT application. At this point, each configuration presents a dif-
ferent set of hardware components with their characteristics as it is presented in

107

the components database (see Chapter 3.5.3), which can be used to implement
nodes of the IoT-based healthcare application’s BAN layer. In Figure 4.7, for
example, A configuration presents the following components which can be used
for the implementation of nodes of the IoT application (further on, only the
names of components, without their characteristics are presented): Pulse node:
Pulse_oximeter sensor, Wi-Fi_RS21 communication module, WEP_128 work-
ing mode, temperature node: Temp sensor, Bluetooth communication module,
Mode3 working mode, Gas node: GasSence sensor, ZigBee communication mod-
ule, ENC-MIC-64 working mode. B configuration: Pulse node: Pulse_oximeter
sensor, Wi-Fi_RS21 communication module, WEP_128 working mode, tem-
perature node: Temp sensor, Bluetooth communication module, Mode3 work-
ing mode, Gas node - GasSence sensor, Wi-Fi_RN171 communication module,
WEP_128 working mode. In addition, components’ names are presented as
described in Chapter 3.5.3, and each component is described by the same char-
acteristics as it is presented in Chapter 3.5.2. As it was mentioned in Chapter
3.5.2, these characteristics are used for the evaluation of configurations and
the selection of the configuration which describes the QoS requirements best
of all. Thus in order to evaluate these characteristics according to the QoS
requirements, the Pareto optimality method is used (see Chapter 3.5.2).

In Figure 4.8, we show the generated specialized configuration which was
created by using the DSE process (see Figure 4.6), the components database,
security and power as QoS parameters, and the specialized feature model. This
configuration will be used for the development of the IoT-based healthcare ap-
plication. The generated specialized configuration is presented in XML format.
As it can be seen from the generated configuration, for each node which is used
in the IoT-based application development, specific action modules are assigned
which should be used for the action performance of the node. From the spe-
cialized configuration, we can see that, for example, the Pulse node is assigned
the Pulse_oximeter sensor. Also, as it can be evidently seen, for this sen-
sor, the specific communication module has been assigned, this communication
module is used for data transferring, also, the working mode of this commu-
nication module is presented. For the remaining nodes which are used for the
development of the IoT-based healthcare application’s BAN layer, similar in-
formation is assigned: the action module, the communication module, and the
communication module’s working mode derived from the components database
and the optimization process while the type of communication comes from the
specialized feature model.

Now, when we know which action and communication modules should be
used for the development of each node of the IoT-based healthcare applica-
tion’s BAN layer. The real structure of the IoT-based healthcare application’s
BAN layer can be distinguished from the specialized configuration. In Figure
4.9, we present the BAN layer’s structure, for which, a code framework will

108

<Healthcare>
<Hardware plat form> Gadgeteer</Hardware plat form>
<Pulse>

<Action_module>Pulse_oximeter</Action_module>
<Communication module_name = "WI−Fi_RS21 " >
<Secu r i t y_ l eve l>WEP_128</ Secu r i t y_ l ev e l>
</Communication>
<TypeOfCommunication>TW</TypeOfCommunication>

</Pulse>
<Temperature>

<Action_module>Temp</Action_module>
<Communication module_name = " Bluetooth " >
<Secu r i t y_ l eve l>Mode3</ Secu r i t y_ l ev e l>
</Communication>
<TypeOfCommunication>OW</TypeOfCommunication>

</Temperature>
<Gas>

<Action_module>Pulse_oximeter</Action_module>
<Communication module_name = "ZigBee_XBee " >
<Secu r i t y_ l eve l>ENC−MIC−64</ Secu r i t y_ l eve l>
</Communication>
<TypeOfCommunication>OW</TypeOfCommunication>

</Gas>
</ Heal thcare>

Figure 4.8. The selected specialized configuration IoT-based healthcare BAN
module

109

Figure 4.9. BAN structure after the specialization phase

be generated in the generation phase of the proposed IoT-based application
development method.

4.2.5. Framework generation for IoT-based healthcare application’s
BAN layer

In this chapter, we present code framework generation from the optimized
configuration. For code generation, we created a code generator whose work
processes are presented in Figure 3.6. The code generator is based on code tem-
plate libraries. Since a large part of the code generation is plain text matching,
replacement and XML processing, a scripting language is more suitable for the
creation of the code generator. For the implementation of the code generator,
we used Python programming language. It is denoted by convenient libraries for
text processing, file system operations, regular expression matching, and XML
processing. In general, any programming language is suitable to implement the
proposed code generator.

The code generator is designed to connect programming components from
the code template library with hardware components which are presented in the
specialized configuration. The code generator defines which code’s template li-
brary must be used and how to link the source code according to the specialized
configuration. The input for the code generator is the specialized configuration
of the IoT-based healthcare application’s BAN layer implementation as it is
presented in Figure 4.8 and the code template library (see Figure C.1 in Ap-
pendix C); whereas the output of the generator is a generated code framework
which will be used to implement the IoT-based healthcare BAN application. In
Figure 4.10, we present the basic structure of code generation processes.

For the parsing of the specialized configuration, we used XML processing
libraries which are implemented by Python programming language. By using
our code generator, the XML file of the specialized configuration which was

110

Figure 4.10. Generation of code framework

Figure 4.11. The parsing process of specialized configuration

created in the specialization phase is divided into two lists (see Figure 4.11 and
Chapter 3.6): the nodes information and the information about the hardware
platform. The additionally created node list is divided into attributes for each
node (see Figure 4.11) whereas the attributes are used for code selection from
the code template as it is presented in Chapter 3.6.

As it is presented in Chapter 3.6, the first step of the created code gen-
erator is the determination which hardware platform must be used for the
implementation of the IoT-based healthcare application’s BAN layer. By using
this information, the necessary code template library from the code template
repository is selected. Code template libraries are one of the core features of our
proposed code generator. Therefore, for example, the purpose code template
library was created. The code template library is created by using the rules
described in Chapter 3.6.1. In Figure C.1 (Appendix C), we present a fragment
of the created code template library. As it can be seen, this created code tem-
plate library contains programming components of Gadgeteer platform which
describe the performance of hardware components of this platform. Figure C.1

111

(Appendix C) presents only the source code which describes such Pulse sen-
sor’s actions as the pulse measurement performance and checking if the pulse
sensor is correctly attached. The same is with other methods describing the
components of the Gadgeteer platform.

The next step of the code generator after the necessary code template
library is selected is the node information extraction from the specialized con-
figuration. From Figure 4.11, it can be seen that for the implementation of the
BAN layer of the IoT-based healthcare application, three nodes are used where
each node’s description contains attributes which are used for code generation.
For each node, the source code is generated separately. As it was mentioned in
Chapter 3.6, the attributes of code generation and the source code are linked
through the names of modules which are presented in a specialized configuration
and the tag name of the code template library. During the code generation pro-
cess, all the source codes which describe the node performance are selected. For
example, during the code generation for Pulse node, all the methods describing
the Pulse_oximeter, and Wi-Fi_RS21 module’s performance and two-way data
transferring for the Wi-Fi protocol are selected.

Due to the fact that code generator, search source code for each node,
which is used to implement IoT-based healthcare application’s BAN layer, sep-
arately, we get three different lists of methods, where each is created for specific
node according attributes presented in the specialized configuration. Methods
in these sets can repeat oneself, because the same methods can be used by dif-
ferent nodes for implementation. Such methods can describe the performance
of communication module or data transfer. Figure C.3 (Appendix C), presents
three lists of methods for each application node, which were done by code gen-
erator using created code template library and code generation information.
Presented code sets show only method names, without source code, which were
selected from code template library.

The last step of the created code generator is to determine the output
format of the selected code and output file extension. In the case study, the code
selected from the code template library must be exported by using classes as the
Gadgeteer platform requires an object-oriented programming language. This
information comes from the code template library. In Figure C.2 (Appendix
C), we show the selected code’s transformation from the methods list to the
class for the Pulse node. Figure C.2 (Appendix C) presents just a fragment
of the generated class. The same transformation is performed with other lists,
as well. All the created classes in the case study (three classes in total) are
exported in different files having the .cs extension where the file name is the
same as the class name.

These three generated classes create a code framework which is used for
the implementation of the BAN layer of the IoT-based healthcare application
whose structure is shown in Figure 4.9.

112

4.2.6. Implementation of IoT-based healthcare application’s BAN
layer

The implementation phase is the last phase of the proposed IoT-based
application’s implementation method. This phase is used for the creation of a
fully functional application by extending the generated IoT-based application
framework with the necessary methods and logical connections. In our case,
the fully functional application is an application which performs pulse, temper-
ature and gas concentration measurements and sends the obtained data to the
heterogeneous concentrator. The concentrator gathers this data and sends it to
the healthcare-oriented application module via standard Internet as it is shown
in Figure 4.1.

(a) Gas sensor
•

(b) Temperature sensor (c) Pulse sensor

Figure 4.12. Implemented hardware of all three sensors of IoT-based health-
care BAN application

In the case study, according to the specifications of the IoT-based health-
care application, the Gadgeteer hardware platform for application implemen-
tation must be used. Therefore, we used Microsoft Visual Studio tools for the
IoT-based healthcare application implementation from the generated framework
as these tools offer opportunities to program the Gadgeteer hardware platform
and support C# programming language in which the IoT-based healthcare ap-
plication framework is generated. The generated code framework consists of
three different code files, where each one contains a different class. These dif-
ferent classes describe different nodes of the IoT-based healthcare application’s
BAN layer. Therefore, for each class file, we created a project file where the
generated class file served as a main; after that we implemented the generated
framework to fully operating IoT-based healthcare application, until it matches
the presented specifications (see Chapter 4.2.4). Thus we checked what pro-
gramming components and logical links between them must be added. The

113

programming components which we added into the generated framework were
as follows: namespaces, data sending intervals (which come from the specialized
feature model, Figure 4.5), the IP address and port number of the remote server
where the data must be sent (in this case of usage, it is heterogeneous concen-
trator, see Figure 4.1) and the methods are to be called at the right place. As it
was mentioned before, this step of the implementation phase can be understood
as verification of the generated code. After the implementation of the gener-
ated framework, we have fully functional body area application which performs
temperature, pulse and gas measurements and sends the measurement data to
the heterogeneous concentrator.

Figure 4.13. The view of real time measurements of the implemented BAN
application

The nodes which are used for the IoT-based healthcare application’s im-
plementation consist of two main components: software and hardware. The
software part was generated at the generation phase and extended until work-
ing on this. In order to obtain a fully working IoT-based healthcare application,
we need Gadgeteer hardware components which must be used for the applica-
tion’s implementation and where the created software part would be uploaded.
We may wonder which Gadgeteer hardware platform components must be taken
are presented in the specialized configuration (see Figure 4.8). By using these
components, we implemented the hardware part of each node which was pre-
sented in the specialized optimized configuration. The implemented hardware
components with the uploaded software are shown in Figure 4.12.

114

In order to ensure that the generated and extended framework is working
properly, we created an experimental BAN application whose basic structure is
presented in Figure 4.1. In order to implement the healthcare-oriented appli-
cation module, we created and launched a web-based service which collects the
measured data and presents it in real time by using a web browser. We used
standard Internet to send data from the BAN application to the healthcare-
oriented application module. For this to be carried out, we used a laptop as
a heterogeneous concentrator which supports all the three (Wi-Fi, ZigBee and
Bluetooth) communication protocols. The test results of the measured data are
shown in Figure 4.13.

4.3. Discussion

Below we discuss why we believe that the proposed IoT application de-
velopment method can be applied to other application developments in other
domains and not only for the body area network by using the same objectives
as for the creation of the BAN application. We may wonder why the proposed
methods can ensure the re-usability of components and code generation and
why it differs from other similar methods. In addition, the evaluation of QoS
of IoT applications can be performed at an early stage of its design process.

First of all, by using feature-based modelling, the complexity of the IoT-
based application and the variability (the product line) to implement the ap-
plication in its domain can be presented. In general, the feature models enable
to capture the essential attributes of the applications to be modelled and to
express them through the features and their relationships in the development
cycle as early as possible. As systems (such as the IoT) are indeed very complex,
the feature models fit well to represent the initial requirements of the domain
under consideration. Features are abstract entities and, therefore, by using the
feature-based notation, it is possible to represent the domain attributes of the
different levels of abstraction and to model the domain variability explicitly.
Here, by ’domain’ we mean a possible set of systems within the IoT applica-
tions. As it has been shown, even in the case of the introduced body area
network application, we had 120 different configurations, each of which was
represented as a feature model for further analysis and implementation. These
configurations were getting through the model specialization which is model
transformation which does not depend on the specific domain. Therefore, they
can be used for various IoT-based application developments.

Second, we are able – already in the early design stages (requirements
modelling) – to analyze the system at the highest level of abstraction and thus
to understand its core functionality features, to introduce changes into its func-
tionality, and to model changes not from the scratch but systematically while
bearing reuse and automation in mind. It is possible to reason about the bottle-
necks of the system to be mitigated and to exclude them with much less effort

115

and resources. Furthermore, we are able to collect a set of approved artefacts
(models are syntactically correct for the explicit variability management) for
future applications. That is so because the models are the value per se. They
can be used in multiple cases (as the tested knowledge units for experimentation
or decision making). This way, the re-usability of the created feature models is
ensured.

As the feature models also have the textual representation in some lan-
guage (in our case, SXFM), it makes the lower-level transformations possible.
Next, we are able to achieve a high reuse extent through automation by using
the available transformations and the proposed generation tool because used
model transformations, code template libraries and the code generator are not
specific to the application domain.

Most technologies used in the development of the proposed IoT appli-
cation development methods are well understood and have been widely used
in other similar approaches, such as [Riedel et al., 2010, Grace et al., 2016,
Patel and Cassou, 2015]. Compared with them, the proposed method is dif-
ferent because it treats the IoT application as a combination of software and
hardware. Thus it enables us to evaluate the QoS of IoT application and pro-
poses specific hardware which should be used to implement the application and
generates code framework for this hardware.

The feature models enable us to represent the requirements uniformly, de-
spite their quite different nature (energy, security, environmental factors), which
enables us to determine and evaluate QoS attributes of IoT-based applications
despite its domain only being in the early stage of the application creation.
From the QoS perspective, we can evaluate the given application through the
required level of security [Pastore and Dulaney, 2006], the required level of en-
ergy and the required level of performance. In order to do that we use a compo-
nents database, which allows not only the evaluation of QoS, but also suggests
the hardware components which should be used for the application implementa-
tion which is independent from the application and its domain. The evaluation
of QoS at an early stage of the application design ensures the possibility to
suggest the best configuration of the IoT-based application implementation as
it has been shown in the investigation of use.

As a result of the provided case study, we have also identified some lim-
itations of the proposed IoT application development method. First, for the
seamless integration of model-to-model and model-to-program transformations,
the adequate tools should be compatible. That was not the case with the tools
we used because the modelling and verification tools are experimental. There-
fore, in order to close this incompatibility gap, human interaction and additional
software were required (for transforming the aggregated feature model SXFM
(the output of S.P.L.O.T.) into the specialized configuration XML format that
is supported by the proposed code generator). Therefore, the choice of the

116

available tools is an issue. Even though the use of the more powerful tools
can increase the automation level, the methodology we propose does not suffer
from the capabilities of the adequate tools. The other issue is the code template
repository because the amount of the generated code depends on the particu-
larity of the code template libraries. If the particularity of the code template is
small (i.e. very few methods are presented in it), application developers must
complete a lot of coding manually. Therefore, the need for manual interactions
decreases the level of automation. These are purely technical limitations. They
restrict, to some extent, the experimental investigation, we were able to pro-
vide. However, even the restricted experiment has enabled us to achieve the
aim of the research and approve the soundness of our approach.

117

5. CONCLUSIONS

In this thesis, we have studied the model-driven method for Internet of
things applications development, which is characterized by the opportunity to
evaluate the following challenges of such applications: security and privacy;
energy-awareness; environmental factors; diversity of sensors, actuators, com-
munication protocols.

The relevant solution as the response to the emerging challenges is the use
of prototyping combined with modern model-driven methodologies in designing
the systems. Due to these facts, we have proposed a multi-layered IoT-based
application development method which uses feature models.

1. The proposed IoT applications development method based on feature
models is used to present possible configurations (different product lines)
which can be used for the development of the IoT application in the spe-
cific IoT domain. Thus, the final application can be customized to meet
the specifications of specific requirements.

2. The proposed IoT applications development method based on feature
models is used to present possible configurations (different product lines)
which can be used for the development of the IoT application in the spe-
cific IoT domain. Thus, the final application can be customized to meet
the specifications of specific requirements.

3. The proposed generic feature models (functional and non-functional re-
quirements) allow us to present: the variability of configurations (dif-
ferent PLs) to implement the application in a specific domain and the
complexity of IoT-based applications with respect to security and energy
requirements, environmental factors and the heterogeneity of devices and
communication protocols.

4. Narrowing the variability space (PLs) of the aggregated feature model
through the model specialization enables us to adapt configurations to
the needs of the developing application requirements. This results in the
creation of the specialized feature model, which presents the design space
of configurations (PLs) meeting the specifications of IoT application which
can be used for the implementation of the specific IoT-based application.

5. The result of design space exploration presented by the specialized feature
model is a Pareto optimal feature model which presents the application
which should be developed best and is used to generate a framework of
the IoT application.

6. The proposed method is different from the analyzed IoT applications
development methods presenting the variability of configurations (PLs)

118

which can be used for the implementation of the specific IoT application,
evaluating each configuration according to the QoS requirements of appli-
cation and providing a single best configuration to implement the given
application.

7. Feature modelling and model transformations used in the proposed
method, are independent from the IoT applications. Thus, the created
aggregated feature models can be reused to implement other applications
in the same domain or similar applications in other domains by skipping
the modelling layer which decreases the application development time.

8. The proposed generic functional and non-functional requirements feature
models were used in the case study for the development of the IoT-based
healthcare BAN application. The experiment results showed that the
complexity of the BAN layer and configurations (PLs) variability to im-
plement the IoT-based healthcare application’s BAN layer could be pre-
sented by using the proposed generic models. In addition, the Pareto
optimal model for IoT-based healthcare BAN application framework gen-
eration could be created by using the proposed feature models.

119

References

[Abbas and Yoon, 2015] Abbas, Z. and Yoon, W. (2015). A Survey on Energy
Conserving Mechanisms for the Internet of Things: Wireless Networking
Aspects. Sensors, 15(10):24818–24847.

[Acher, 2011] Acher, M. (2011). Managing Multiple Feature Models: Foun-
dations, Language and Applications. PhD thesis, UNIVERSITÉDE NICE-
SOPHIA ANTIPOLIS - UFR Sciences École Doctorale de Sciences et Tech-
nologies de l’Information et de la Communication (STIC).

[Acher et al., 2010a] Acher, M., Collet, P., Lahire, P., and France, R. (2010a).
Comparing Approaches to Implement Feature Model Composition. In 6th
European Conference on Modelling Foundations and Applications (ECMFA),
volume LNCS, page 16. Springer.

[Acher et al., 2010b] Acher, M., Collet, P., Lahire, P., and France, R. (2010b).
Composing Feature Models. Lecture Notes in Computer Science, pages 62–
81.

[Acher et al., 2013] Acher, M., Collet, P., Lahire, P., and France, R. B. (2013).
Familiar: A domain-specific language for large scale management of feature
models. Science of Computer Programming, 78(6):657–681.

[Alam and Noll, 2010] Alam, S. and Noll, J. (2010). A Semantic Enhanced
Service Proxy Framework for Internet of Things. In Green Computing and
Communications (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l
Conference on Cyber, Physical and Social Computing (CPSCom), pages 488–
495.

[Almeida et al., 2015] Almeida, A., Bencomo, N., Batista, T., Cavalcante, E.,
and Dantas, F. (2015). Dynamic decision-making based on NFr for manag-
ing software variability and configuration selection. Proceedings of the 30th
Annual ACM Symposium on Applied Computing - SAC’15, pages 1376–1382.

[Alves et al., 2006] Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P.,
and Lucena, C. (2006). Refactoring product lines. Proceedings of the 5th
international conference on Generative programming and component engi-
neering - GPCE-06, pages 201–210.

[Andrews, 1991] Andrews, G. R. (1991). Paradigms for Process Interaction in
Distributed Programs. ACM Comput. Surv., 23(1):49–90.

[Anon et al., 2014] Anon, F., Navarathinarasah, V., Hoang, M., and Lung,
C. H. (2014). Building a Framework for Internet of Things and Cloud
Computing. In 2014 IEEE International Conference on Internet of Things

120

(iThings), and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom), pages 132–139.

[Apel and Kästner, 2009] Apel, S. and Kästner, C. (2009). An Overview
of Feature-Oriented Software Development. Journal of Object Technology,
8(5):49–84. (column).

[Atzori et al., 2010] Atzori, L., Iera, A., and Morabito, G. (2010). The Internet
of Things: A survey . Computer Networks, 54(15):2787 – 2805.

[Ayala et al., 2015] Ayala, I., Amor, M., Fuentes, L., and Troya, J. M. (2015).
A Software Product Line Process to Develop Agents for the IoT. Sensors,
15(7):15640–15660.

[Babar et al., 2010] Babar, S., Mahalle, P., Stango, A., Prasad, N., and Prasad,
R. (2010). Proposed Security Model and Threat Taxonomy for the Internet
of Things (IoT). Communications in Computer and Information Science,
pages 420–429.

[Berger et al., 2013] Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M.,
Czarnecki, K., and Wąsowski, A. (2013). A Survey of Variability Modeling
in Industrial Practice. In Proceedings of the Seventh International Workshop
on Variability Modelling of Software-intensive Systems, VaMoS ’13, pages
7:1–7:8, New York, NY, USA. ACM.

[Bhaddurgatte and Kumar, 2015] Bhaddurgatte, R. and Kumar, V. (2015). A
Review: QoS Architecture and Implementations in IoT Environment. Re-
search & Reviews: Journal of Engineering and Technology, pages 23–28.

[Brunet et al., 2006] Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu,
N., and Sabetzadeh, M. (2006). A manifesto for model merging. Proceedings
of the 2006 international workshop on Global integrated model management
- GaMMa’06.

[Capilla et al., 2013] Capilla, R., Bosch, J., and Kang, K.-C., editors (2013).
SYSTEMS AND SOFTWARE VARIABILITY MANAGEMENT. Springer:
Berlin, Germany.

[Chen et al., 2006] Chen, B., Wu, M., Yao, S., and Binbin, N. (2006). ZigBee
Technology and Its Application on Wireless Meter-reading System. In Indus-
trial Informatics, 2006 IEEE International Conference on, pages 1257–1260.

[Chen et al., 2014] Chen, S., Xu, H., Liu, D., Hu, B., and Wang, H. (2014).
A Vision of IoT: Applications, Challenges, and Opportunities With China
Perspective. IEEE Internet Things J., 1(4):349–359.

121

[Chen et al., 2009] Chen, X., Makki, K., Yen, K., and Pissinou, N. (2009).
Sensor network security: a survey. IEEE Communications Surveys Tutorials,
11(2):52–73.

[ClauB and Jena, 2001] ClauB, M. and Jena, I. (2001). Modeling variability
with UML. In In GCSE 2001Young Researchers Workshop.

[CoIoToTPC, 2013] CoIoToTPC (2013). Conclusions of the Internet of Things
public consultation. Technical report, EUROPEAN COMMISSION.

[Conejar and Kim, 2016] Conejar, R. J. and Kim, H.-K. (2016). Conceptual
Framework for Mobile Device Product Line Security based on Internet of
Thing. International Journal of Hybrid Information Technology, 9(7):411–
418.

[Czarnecki et al., 2005a] Czarnecki, K., Antkiewicz, M., Kim, C. H. P., Lau, S.,
and Pietroszek, K. (2005a). Model-driven Software Product Lines. In Com-
panion to the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’05, pages
126–127, New York, NY, USA. ACM.

[Czarnecki et al., 2012] Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid,
K., and Wąsowski, A. (2012). Cool Features and Tough Decisions: A Com-
parison of Variability Modeling Approaches. In Proceedings of the Sixth In-
ternational Workshop on Variability Modeling of Software-Intensive Systems,
VaMoS ’12, pages 173–182, New York, NY, USA. ACM.

[Czarnecki and Helsen, 2003] Czarnecki, K. and Helsen, S. (2003). Classifica-
tion of Model Transformation Approaches. In OOPSLA’03 Workshop on
Generative Techniques in the Context of Model-Driven Architecture, pages
1–17.

[Czarnecki and Helsen, 2006] Czarnecki, K. and Helsen, S. (2006). Feature-
based survey of model transformation approaches. IBM Systems Journal,
45(3):621–645.

[Czarnecki et al., 2005b] Czarnecki, K., Helsen, S., and Eisenecker, U. (2005b).
Formalizing cardinality-based feature models and their specialization. Soft-
ware Process: Improvement and Practice, 10(1):7–29.

[Dalgarno, 2007] Dalgarno, M. (2007). Software Product Line Engineering with
Feature Models. Overload Journal, 78:5–8.

[Davies, 2002] Davies, A. (2002). An overview of Bluetooth wireless technology
and some competing LAN standards. ICCSC’02. 1st IEEE International
Conference on Circuits and Systems for Communications. Proceedings (IEEE
Cat. No.02EX605), pages 206–211.

122

[de Fuentes et al., 2015] de Fuentes, J. M., Peris-Lopez, P., Tapiador, J. E., and
Pastrana, S. (2015). Probabilistic yoking proofs for large scale IoT systems.
Ad Hoc Networks, 32:43–52.

[Echeverria et al., 2015] Echeverria, J., Font, J., Pastor López, O., and
Cetina Englada, C. (2015). Usability evaluation of variability modeling by
means of common variability language. In Complex Systems Informatics and
Modeling Quarterly, number 5, pages 61–81. RTU Press.

[Eisenhauer et al., 2010] Eisenhauer, M., Rosengren, P., and Antolin, P. (2010).
HYDRA: A Development Platform for Integrating Wireless Devices and Sen-
sors into Ambient Intelligence Systems. The Internet of Things, pages 367–
373.

[Filipe et al., 2015] Filipe, L., Fdez-Riverola, F., Costa, N., and Pereira, A.
(2015). Wireless Body Area Networks for Healthcare Applications: Protocol
Stack Review. International Journal of Distributed Sensor Networks, 2015:1–
23.

[France and Rumpe, 2007] France, R. and Rumpe, B. (2007). Model-driven
Development of Complex Software: A Research Roadmap. In 2007 Future of
Software Engineering, FOSE ’07, pages 37–54, Washington, DC, USA. IEEE
Computer Society.

[Franky and Pavlich-Mariscal, 2012] Franky, M. C. and Pavlich-Mariscal, J. A.
(2012). Improving implementation of code generators: A regular-expression
approach. In Informatica (CLEI), 2012 XXXVIII Conferencia Latinoameri-
cana En, pages 1–10.

[Friedman et al., 2011] Friedman, R., Kogan, A., and Krivolapov, Y. (2011).
On power and throughput tradeoffs of WiFi and Bluetooth in smartphones.
In INFOCOM, 2011 Proceedings IEEE, pages 900–908.

[Fuentes et al., 2009] Fuentes, L., Nebrera, C., and Sanchez, P. (2009). Feature-
Oriented Model-Driven Software Product Lines: The TENTE approach. In
Proceedings of the Forum of the 21st International Conference on Advanced
Information Systems (CAiSE), volume 453, pages 67–72.

[Fukui et al., 2013] Fukui, T., Matsuura, S., Inomata, A., and Fujikawa, K.
(2013). A Two-tier Overlay Publish/Subscribe System for Sensor Data
Stream Using Geographic Based Load Balancing. In Advanced Information
Networking and Applications Workshops (WAINA), 2013 27th International
Conference on, pages 749–756.

[Garćıa et al., 2014] Garćıa, C. G., Espada, J. P., Valdez, E. R. N., and Dı́az,
V. G. (2014). Midgar: Domain-Specific Language to Generate Smart Objects

123

for an Internet of Things Platform. 2014 Eighth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing, pages
352–357.

[Garcia-Dominguez and Kolovos, 2016] Garcia-Dominguez, A. and Kolovos,
D. S. (2016). Models from code or code as a model? In 16th International
Workshop in OCL and Textual Modeling,.

[Gass and Saaty, 1955] Gass, S. and Saaty, T. (1955). The computational al-
gorithm for the parametric objective function. Naval Research Logistics,
2(1-2):39–45.

[Ge and Whitehead Jr., 2008] Ge, G. and Whitehead Jr., E. J. (2008). Rhi-
zome: A Feature Modeling and Generation Platform. 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering, pages 375–
378.

[Glass, 2001] Glass, R. L. (2001). Frequently forgotten fundamental facts about
software engineering. IEEE Software, 18(3):112–111.

[Grace et al., 2016] Grace, P., Pickering, B., and Surridge, M. (2016). Model-
driven interoperability: engineering heterogeneous IoT systems. Annals of
Telecommunications, 71:141–150.

[Greenfield and Short, 2003] Greenfield, J. and Short, K. (2003). Software Fac-
tories: Assembling Applications with Patterns, Models, Frameworks and
Tools. In Companion of the 18th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOP-
SLA ’03, pages 16–27, New York, NY, USA. ACM.

[Griss et al., 1998] Griss, M. L., Favaro, J., and Alessandro, M. d. (1998). In-
tegrating feature modeling with the RSEB. In Proceedings of the 5th Inter-
national Conference on Software Reuse, ICSR ’98, pages 76–85, Washington,
DC, USA. IEEE Computer Society.

[Guan et al., 2006] Guan, Y., Ghose, A., and Lu, Z. (2006). Using constraint
hierarchies to support QoS-guided service composition. 2006 IEEE Interna-
tional Conference on Web Services (ICWS’06), pages 743–752.

[Gubbi et al., 2013] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M.
(2013). Internet of Things (IoT): A Vision, Architectural Elements, and
Future Directions. Future Gener. Comput. Syst., 29(7):1645–1660.

[Hachem et al., 2011] Hachem, S., Teixeira, T., and Issarny, V. (2011). Ontolo-
gies for the Internet of Things. In ACM/IFIP/USENIX 12th International
Middleware Conference, page 3, Lisbon, Portugal. Springer.

124

[Han et al., 2013] Han, C., Jornet, J. M., Fadel, E., and Akyildiz, I. F. (2013).
A cross-layer communication module for the Internet of Things. Computer
Networks, 57(3):622–633.

[Haugen, 2012] Haugen, Ø. (2012). Common Variability Language (CVL) -
OMG revised submission.

[Heer et al., 2011] Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S. L.,
Kumar, S. S., and Wehrle, K. (2011). Security Challenges in the IP-based
Internet of Things. Wirel. Pers. Commun., 61(3):527–542.

[Hemel et al., 2009] Hemel, Z., Kats, L. C. L., Groenewegen, D. M., and Visser,
E. (2009). Code generation by model transformation: a case study in trans-
formation modularity. Software & Systems Modeling, 9(3):375–402.

[Hong-You and San-Ping, 2012] Hong-You, W. and San-Ping, Z. (2012). The
Predigest Project of TCP/IP Protocol Communication System Based on
{DSP} Technology and Ethernet. Physics Procedia, 25:1253 – 1257. In-
ternational Conference on Solid State Devices and Materials Science, April
1-2, 2012, Macao.

[Honkanen et al., 2004] Honkanen, M., Lappetelainen, A., and Kivekas, K.
(2004). Low end extension for Bluetooth. In Radio and Wireless Confer-
ence, 2004 IEEE, pages 199–202.

[Hu, 2015] Hu, P. (2015). A System Architecture for Software-Defined Indus-
trial Internet of Things. 2015 IEEE International Conference on Ubiquitous
Wireless Broadband (ICUWB), pages 1–5.

[Huang et al., 2013] Huang, X., Li, Y., and Jin, S. (2013). A control system
based on data exchange using ethernet and CANBUS for deep water AUV.
In Control Conference (ASCC), 2013 9th Asian, pages 1–5.

[Hussain et al., 2015] Hussain, A., Wenbi, R., da Silva, A. L., Nadher, M., and
Mudhish, M. (2015). Health and emergency-care platform for the elderly
and disabled people in the smart city. Journal of Systems and Software,
110:253–263.

[Iec, 1995] Iec, I. (1995). Open Distributed Processing- Reference Model -
Part 2: Foundations International Standard 10746-2 Itu-T Recommendation
X.902.

[IERC, 2009] IERC (2009). Internet of Things Strategic Research Roadmap.
Technical report, European Research Cluster on the Internet of Things.

125

[INFSO, 2008] INFSO (2008). Internet of Things in 2020, Roadmap for the
Future. Technical report, INFSO D.4 Networked Enterprise & RFID INFSO
G.2 Micro & Nanosystems, In: Co-operation with the Working Group of
European technology platform onsmart systems integration (EPoSS).

[ITU, 2005] ITU (2005). The Internet of Things. Technical report, Interna-
tional Telecumunication Union.

[ITU-T, 2005] ITU-T (2005). ITU Strategy and Policy Unit (SPU) ITU Inter-
net Reports 2005: The Internet of Things. Technical report, International
Telecommunication Union (ITU).

[ITU-T, 2012] ITU-T (2012). Overview of the Internet of things. Technical
report, International Telecommunication Union.

[Jakob and Blume, 2014] Jakob, W. and Blume, C. (2014). Pareto Optimiza-
tion or Cascaded Weighted Sum: A Comparison of Concepts. Algorithms,
7(1):166–185.

[Jin et al., 2012] Jin, J., Gubbi, J., Luo, T., and Palaniswami, M. (2012). Net-
work architecture and QoS issues in the internet of things for a smart city. In
Communications and Information Technologies (ISCIT), 2012 International
Symposium on, pages 956–961.

[Jouault et al., 2008] Jouault, F., Allilaire, F., Bezivin, J., and Kurtev, I.
(2008). ATL: A model transformation tool. Science of Computer Program-
ming, 72(1-2):31–39.

[Jouault and Bezivin, 2006] Jouault, F. and Bezivin, J. (2006). KM3: A DSL
for Metamodel Specification. In Proceedings of the 8th IFIP WG 6.1 Inter-
national Conference on Formal Methods for Open Object-Based Distributed
Systems, FMOODS’06, pages 171–185, Berlin, Heidelberg. Springer-Verlag.

[Jusas et al., 2016] Jusas, N., Venckauskas, A., and Stuikys, V. (2016). Model
driven framework to develop the IoT-based healthcare applications. In Pa-
panikos, G. T., editor, 12th annual international conference on information
technology and computer science, 16-19 May 2016, Athens, Greece : abstract
book, page 19. Athens Institute for Education and Research.

[Kalnins et al., 2010] Kalnins, A., Kalnina, E., Celms, E., and Sostaks, A.
(2010). A model-driven path from requirements to code. Computer Science
and Information Technologies, 756:33–57.

[Kamel Boulos and Al-Shorbaji, 2014] Kamel Boulos, M. N. and Al-Shorbaji,
N. M. (2014). On the Internet of Things, smart cities and the WHO Healthy
Cities. Int J Health Geogr, 13(1):10.

126

[Kamyabpour and Hoang, 2010] Kamyabpour, N. and Hoang, D. B. (2010).
Modeling Overall Energy Consumption in Wireless Sensor Networks. In Pro-
ceedings of the 2010 International Conference on Parallel and Distributed
Computing, Applications and Technologies, PDCAT ’10, pages 273–279,
Washington, DC, USA. IEEE Computer Society.

[Kang et al., 1990] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and
Peterson, S. (1990). Feature-oriented domain analysis (FODA) feasibility
study. Technical report, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh.

[Kang et al., 1998] Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh,
M. (1998). Form: A feature-oriented reuse method with domain-specific
reference architectures. Annals of Software Engineering, 5:143–168.

[Karimpour and Ruhe, 2017] Karimpour, R. and Ruhe, G. (2017). Evolution-
ary robust optimization for software product line scoping: An explorative
study . Computer Languages, Systems & Structures, 47, Part 2:189 – 210.

[Khanduri and S. Rattan, 2013] Khanduri, R. and S. Rattan, S. (2013). Per-
formance Comparison Analysis between IEEE 802. 11a/b/g/n Standards.
IJCA, 78(1):13–20.

[Kim et al., 2014] Kim, J., Lee, J., Kim, J., and Yun, J. (2014). M2M Service
Platforms: Survey, Issues, and Enabling Technologies. IEEE Communica-
tions Surveys Tutorials, 16(1):61–76.

[Kotha and Pine, 1994] Kotha, S. and Pine, B. J. (1994). Mass Customization:
The New Frontier in Business Competition. The Academy of Management
Review, 19(3):588–592.

[Labiod et al., 2007] Labiod, H., Hossam, A., and Santis, C. D. (2007). Wi-Fi,
Bluetooth, Zigbee and WiMax. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

[Lanzisera et al., 2014] Lanzisera, S., Weber, A. R., Liao, A., Pajak, D., and
Meier, A. K. (2014). Communicating Power Supplies: Bringing the Internet
to the Ubiquitous Energy Gateways of Electronic Devices. IEEE Internet of
Things Journal, 1(2):153–160.

[Lee et al., 2013] Lee, G. M., Crespi, N., Choi, J. K., and Boussard, M. (2013).
Internet of Things. Lecture Notes in Computer Science, pages 257–282.

[Lee et al., 2002] Lee, K., Kang, K. C., and Lee, J. (2002). Concepts and Guide-
lines of Feature Modeling for Product Line Software Engineering, pages 62–
77. Springer Berlin Heidelberg, Berlin, Heidelberg.

127

[Li et al., 2014] Li, L., Rong, M., and Zhang, G. (2014). An Internet of things
QoS estimate approach based on multi-dimension QoS. In Computer Science
Education (ICCSE), 2014 9th International Conference on, pages 998–1002.

[Li et al., 2015] Li, L., Rong, M., and Zhang, G. (2015). An Internet of Things
QoE evaluation method based on multiple linear regression analysis. In Com-
puter Science Education (ICCSE), 2015 10th International Conference on,
pages 925–928.

[Li and Tang, 2014] Li, L. and Tang, S. (2014). Some Reform Ideas for the
Software Project Management Course. Proceedings of the 3rd International
Conference on Science and Social Research.

[Libelium, 2014] Libelium (2014). Bluetooth Low Energy Networking Guide.
Technical report, Libelium Comunicaciones Distribuidas S.L.

[Lockheed and U.S. Navy, 2013] Lockheed, M. and U.S. Navy (2013). A Glos-
sary of Product Line Engineering. Technical report, ;BigLever Software Inc.:
Austin, TX, USA,.

[Lopez et al., 2014] Lopez, L., Ozdemir, O., Kuemper, D., Stanca-Kaposta, B.,
Chainho, P., De, S., and Sasu, L.-M. (2014). Internet of Things Environment
for Service Creation and Testing. Technical report, European Commission.

[Maazoun et al., 2016] Maazoun, J., Bouassida, N., and Abdallah, H. B.
(2016). Variability modeling with a SPL-UML profile. In 2016 IEEE 14th In-
ternational Conference on Software Engineering Research, Management and
Applications (SERA), pages 201–207.

[MacDonald et al., 2005] MacDonald, A., Russell, D., and Atchison, B. (2005).
Model-driven development within a legacy system: an industry experience
report. In Software Engineering Conference, 2005. Proceedings. 2005 Aus-
tralian, pages 14–22.

[Mahalank et al., 2016] Mahalank, S. N., Malagund, K. B., and Banakar, R. M.
(2016). Design space exploration for IoT based traffic density indication
system. In 2016 International Conference on Recent Trends in Information
Technology (ICRTIT), pages 1–6.

[Marler and Arora, 2004] Marler, R. and Arora, J. (2004). Survey of multi-
objective optimization methods for engineering. Structural and Multidisci-
plinary Optimization, 26(6):369–395.

[Mattern and Floerkemeier, 2010] Mattern, F. and Floerkemeier, C. (2010).
From Active Data Management to Event-based Systems and More. chapter
From the Internet of Computers to the Internet of Things, pages 242–259.
Springer-Verlag, Berlin, Heidelberg.

128

[Memon et al., 2014] Memon, M., Wagner, S., Pedersen, C., Beevi, F., and
Hansen, F. (2014). Ambient Assisted Living Healthcare Frameworks, Plat-
forms, Standards, and Quality Attributes. Sensors, 14(3):4312–4341.

[Mendonca et al., 2009] Mendonca, M., Branco, M., and Cowan, D. (2009).
S.P.L.O.T. - Software product lines online tools. Proceeding of the 24th ACM
SIGPLAN conference companion on Object oriented programming systems
languages and applications - OOPSLA09, pages 761–762.

[Mernik et al., 2005] Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and How to Develop Domain-specific Languages. ACM Comput. Surv.,
37(4):316–344.

[Miao and Siek, 2014] Miao, W. and Siek, J. (2014). Compile-time Reflection
and Metaprogramming for Java. In Proceedings of the ACM SIGPLAN
2014 Workshop on Partial Evaluation and Program Manipulation, PEPM
’14, pages 27–37, New York, NY, USA. ACM.

[Mukherjee et al., 2014] Mukherjee, S., Dolui, K., and Datta, S. K. (2014).
Patient health management system using e-health monitoring architecture.
In Advance Computing Conference (IACC), 2014 IEEE International, pages
400–405.

[Nanevski, 2002] Nanevski, A. (2002). Meta-programming with Names and
Necessity. SIGPLAN Not., 37(9):206–217.

[Neufeld and Goldberg, 1990] Neufeld, G. W. and Goldberg, M. W. (1990).
A request/response protocol for ISO remote operations. In Computer and
Communication Systems, 1990. IEEE TENCON’90., 1990 IEEE Region 10
Conference on, pages 623–627 vol.2.

[Nikiforova et al., 2009] Nikiforova, O., Cernickins, A., and Pavlova, N. (2009).
Discussing the Difference between Model Driven Architecture and Model
Driven Development in the Context of Supporting Tools. In Software En-
gineering Advances, 2009. ICSEA ’09. Fourth International Conference on,
pages 446–451.

[Pastore and Dulaney, 2006] Pastore, M. and Dulaney, E. (2006). CompTIA
Security+ Deluxe Study Guide. John Willey & Sons.

[Patel and Cassou, 2015] Patel, P. and Cassou, D. (2015). Enabling high-level
application development for the Internet of Things. Journal of Systems and
Software, 103:62–84.

[Patel et al., 2013] Patel, P., Kattepur, A., Cassou, D., and Bouloukakis, G.
(2013). Evaluating the Ease of Application Development for the Internet of
Things. Technical report.

129

[Patel et al., 2015] Patel, P., Luo, T., and Bellur, U. (2015). Evaluating a
Development Framework for Engineering Internet of Things Applications.
arXiv preprint arXiv:1606.02119.

[Patel et al., 2011] Patel, P., Pathak, A., Teixeira, T., and Issarny, V. (2011).
Towards application development for the Internet of Things. In ACM/I-
FIP/USENIX 12th International Middleware Conference, page 5, Lisboa,
Portugal.

[Peng and Ruan, 2012] Peng, D. and Ruan, Y. (2012). AHP-based QoS Evalua-
tion Model in the Internet of Things. In Parallel and Distributed Computing,
Applications and Technologies (PDCAT), 2012 13th International Confer-
ence on, pages 578–581.

[Poruban et al., 2014] Poruban, J., Bacikova, M., Chodarev, S., and Nosal, M.
(2014). Pragmatic model-driven software development from the viewpoint of
a programmer: Teaching experience. In Computer Science and Information
Systems (FedCSIS), 2014 Federated Conference on, pages 1647–1656.

[Riebisch et al., 2004] Riebisch, M., Streitferdt, D., and Pashov, I. (2004).
Modeling Variability for Object-Oriented Product Lines. Lecture Notes in
Computer Science, pages 165–178.

[Riedel et al., 2010] Riedel, T., Yordanov, D., Fantana, N., Scholz, M., and
Decker, C. (2010). A model driven Internet of Things. In 2010 Seventh
International Conference on Networked Sensing Systems (INSS), pages 265–
268.

[Roman et al., 2013] Roman, R., Zhou, J., and Lopez, J. (2013). On the fea-
tures and challenges of security and privacy in distributed internet of things
. Computer Networks, 57(10):2266 – 2279. Towards a Science of Cyber Se-
curitySecurity and Identity Architecture for the Future Internet.

[Rugaber and Stirewalt, 2004] Rugaber, S. and Stirewalt, K. (2004). Model-
driven reverse engineering. IEEE Software, 21(4):45–53.

[Saha et al., 2017] Saha, H. N., Mandal, A., and Sinha, A. (2017). Recent
trends in the Internet of Things. In 2017 IEEE 7th Annual Computing and
Communication Workshop and Conference (CCWC), pages 1–4.

[Salihbegovic et al., 2015] Salihbegovic, A., Eterovic, T., Kaljic, E., and Ribic,
S. (2015). Design of a domain specific language and IDE for internet of
things applications. In Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), 2015 38th International Convention
on, pages 996–1001.

130

[Sallai, 2014] Sallai, G. (2014). Future Internet Visions and Research Clusters.
Acta Polytechnica Hungarica, 11(7):5–24.

[Sancho, 2009] Sancho (2009). Definition for the term (software) service, sector
abbreviations and definitions for a telecommunications thesaurus oriented
database. Technical report, ITU-T.

[Schmidt et al., 2007] Schmidt, D., Kramer, M., Kuhn, T., and Wehn, N.
(2007). Energy modelling in sensor networks. Advances in Radio Science,
5:347–351.

[Shaoshuai et al., 2011] Shaoshuai, F., Wenxiao, S., Nan, W., and Yan, L.
(2011). MODM-Based Evaluation Model of Service Quality in the Internet
of Things. Procedia Environmental Sciences, 11:63–69.

[Shoshani et al., 2010] Shoshani, G., Mitschke, S., and Stephan, S. (2010). In-
dustrial Fieldbus technology and Fieldbus cable overview - Cable standards
and electrical qualifications. In Petroleum and Chemical Industry Confer-
ence (PCIC), 2010 Record of Conference Papers Industry Applications Soci-
ety 57th Annual, pages 1–10.

[Skarmeta et al., 2014] Skarmeta, A. F., Hernandez-Ramos, J. L., and Moreno,
M. V. (2014). A decentralized approach for security and privacy challenges in
the Internet of Things. In Internet of Things (WF-IoT), 2014 IEEE World
Forum on, pages 67–72.

[Slavin et al., 2014] Slavin, R., Lehker, J. M., Niu, J., and Breaux, T. D. (2014).
Managing security requirements patterns using feature diagram hierarchies.
In Requirements Engineering Conference (RE), 2014 IEEE 22nd Interna-
tional, pages 193–202.

[Smith, 2012] Smith, I. (2012). The Internet of Things 2012: New Horizons.
Technical report, European Research Cluster on the internet of thongs.

[Streitferdt et al., 2003] Streitferdt, D., Riebisch, M., and Philippow, K.
(2003). Details of formalized relations in feature models using OCL. In
Engineering of Computer-Based Systems, 2003. Proceedings. 10th IEEE In-
ternational Conference and Workshop on the, pages 297–304.

[Stuikys and Damasevicius, 2013] Stuikys, V. and Damasevicius, R. (2013).
Meta-programming and model-driven meta-program development. Advanced
Information and Knowledge Processing.

[Sun et al., 2008] Sun, Y., Demirezen, Z., Mernik, M., Gray, J., and Bryant, B.
(2008). Is my DSL a modeling or programming language. In in: Proceedings
of 2nd International Workshop on Domain-Specific Program Development
(DSPD), pages 1–4.

131

[Swamy et al., 1995] Swamy, S., Molin, A., and Covnot, B. (1995). OO-VHDL.
object-oriented extensions to VHDL. Computer, 28(10):18–26.

[Tabish et al., 2013] Tabish, R., Mnaouer, A. B., Touati, F., and Ghaleb, A. M.
(2013). A comparative analysis of BLE and 6LoWPAN for U-HealthCare
applications. In 2013 7th IEEE GCC Conference and Exhibition (GCC),
pages 286–291.

[Teixeira et al., 2011] Teixeira, T., Hachem, S., Issarny, V., and Georgantas, N.
(2011). Service Oriented Middleware for the Internet of Things: A Perspec-
tive. In Proceedings of the 4th European Conference on Towards a Service-
based Internet, ServiceWave’11, pages 220–229, Berlin, Heidelberg. Springer-
Verlag.

[Thibault and Consel, 1997] Thibault, S. and Consel, C. (1997). A framework
for application generator design. Proceedings of the 1997 symposium on Soft-
ware reusability - SSR ’97, 22(3):131–135.

[Thum et al., 2009] Thum, T., Batory, D., and Kastner, C. (2009). Reasoning
about edits to feature models. 2009 IEEE 31st International Conference on
Software Engineering, (254–264).

[Vanderperren and Mueller, 2006] Vanderperren, Y. and Mueller, W. (2006).
UML and model-driven development for SoC design. In Hardware/Software
Codesign and System Synthesis, 2006. CODES+ISSS ’06. Proceedings of the
4th International Conference, pages 1–1.

[Venckauskas et al., 2014a] Venckauskas, A., Jusas, N., Kazanavicius, E., and
Stuikys, V. (2014a). Identification of Dependency among Energy Consump-
tion and Wi-Fi Protocol Security Levels within the Prototype Module for the
IoT. ElAEE, 20(6):132–135.

[Venckauskas et al., 2014b] Venckauskas, A., Jusas, N., Toldinas, J., and
Kazanavicius, E. (2014b). Security Level versus Energy Consumption in
Wireless Protocols for Internet of Things. Information and Software Tech-
nologies, pages 419–429.

[Venckauskas et al., 2016a] Venckauskas, A., Stuikys, V., Damasevicius, R.,
and Jusas, N. (2016a). Modelling of Internet of Things units for estimating
security-energy-performance relationships for quality of service and environ-
ment awareness. Security and Communication Networks, 9(16):3324–3339.

[Venckauskas et al., 2016b] Venckauskas, A., Stuikys, V., Jusas, N., and Bur-
baite, R. (2016b). Model-Driven Approach for Body Area Network Applica-
tion Development. Sensors, 16(5):670.

132

[Venckauskas et al., 2016c] Venckauskas, A., Stuikys, V., Toldinas, J., and
Jusas, N. (2016c). A Model-Driven Framework to Develop Personalized
Health Monitoring. Symmetry, 8(7):65.

[Vermesan and Friess, 2014] Vermesan, O. and Friess, P., editors (2014). Inter-
net of Things - From Research and Innovation to Market Deployment. River
Publishers.

[Vermesan et al., 2013] Vermesan, O., Friess, P., Guillemin, P., Sundmaeker,
H., Eisenhauer, M., and Moessner, K. (2013). Internet of Things - Converg-
ing Technologies for Smart Enviroments ans Integrated Ecosystems, chapter
Internet of Things Strategic Research and Inovation Agenda, pages 7–152.
River Publishers.

[Weber, 2010] Weber, R. H. (2010). Internet of Things - New security and
privacy challenges. Computer Law & Security Review, 26(1):23–30.

[Yassein et al., 2016] Yassein, M. B., Mardini, W., and Khalil, A. (2016). Smart
homes automation using Z-wave protocol. In 2016 International Conference
on Engineering MIS (ICEMIS), pages 1–6.

[Zachariah et al., 2015] Zachariah, T., Klugman, N., Campbell, B., Adkins, J.,
Jackson, N., and Dutta, P. (2015). The Internet of Things Has a Gateway
Problem. In Proceedings of the 16th International Workshop on Mobile Com-
puting Systems and Applications, HotMobile ’15, pages 27–32, New York, NY,
USA. ACM.

[Zheng et al., 2014] Zheng, X., Martin, P., Brohman, K., and Xu, L. D. (2014).
Cloud Service Negotiation in Internet of Things Environment: A Mixed Ap-
proach. IEEE Transactions on Industrial Informatics, 10(2):1506–1515.

[Zhou et al., 2011] Zhou, H.-Y., Luo, D.-Y., Gao, Y., and Zuo, D.-C. (2011).
Modeling of Node Energy Consumption for Wireless Sensor Networks. WSN,
03(01):18–23.

[Ziadi and Jézéquel, 2006] Ziadi, T. and Jézéquel, J.-M. (2006). Product Line
Engineering with the UML: Deriving Products. In Pohl, K., editor, Software
Product Lines, pages 557–588. Springer Verlag.

[Zionts, 1988] Zionts, S. (1988). Multiple Criteria Mathematical Programming:
an Updated Overview and Several Approaches. Mathematical Models for
Decision Support, pages 135–167.

133

134

P U B L I C A T I O N S L I S T B Y T H E A U T H O R

Indexed in the Web of Science with Impact Factor

1. Venčkauskas, Algimantas; Jusas, Nerijus; Kazanavičius, Egidijus; Štuikys, Vytautas.

Identification of Dependency among energy consumption and Wi-Fi protocol security
levels within the prototype module for the IoT // Elektronika ir elektrotechnika =
Electronics and electrical engineering. Kaunas: KTU. ISSN 1392-1215. 2014, Vol. 20,
no. 6, p. 132-135. [Science Citation Index Expanded (Web of Science); Inspec;
Computers & Applied Sciences Complete; Central & Eastern European Academic
Source] [Sc. fields: 01T]. [Contribution: 0.250]. [IF (E): 0.561 (2014)]

2. Venčkauskas, Algimantas; Jusas, Nerijus; Kazanavičius, Egidijus; Štuikys, Vytautas.
An energy efficient protocol for the Internet of Things // Journal of electrical
engineering-Elektrotechnický časopis. Berlin: De Gruyter. ISSN 1335-3632. 2015, vol.
66, iss. 1, p. 47-52. [Science Citation Index Expanded (Web of Science); Scopus;
Inspec] [Sc. fields: 07T]. [Contribution: 0.250]. [IF (E): 0.407 (2015)]

3. Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata. Model-
driven approach for body area network application development // Sensors. Basel: MDPI
AG. ISSN 1424-8220. 2016, vol. 16, iss. 5, Article 670, p. [1-22]. [Science Citation
Index Expanded (Web of Science); Academic Search Complete] [Sc. fields: 07T].
[Contribution: 0.250]. [IF (E): 2.033 (2015)]

4. Venčkauskas, Algimantas; Štuikys, Vytautas; Toldinas, Jevgenijus; Jusas, Nerijus. A
model-driven framework to develop personalized health monitoring // Symmetry. Basel:
MDPI AG. ISSN 2073-8994. 2016, vol. 8, iss. 7, article 65, p. [1-18]. [Science Citation
Index Expanded; Current Contents (Physical, Chemical & Earth Sciences); Academic
Search Alumni Edition; Academic Search Complete; Academic Search Elite; Academic
Search Premier; Academic Search Research & Development] [Sc. fields: 07T].
[Contribution: 0.250]. [IF (E): 0.841 (2015)]

5. Venčkauskas, Algimantas; Štuikys, Vytautas; Damaševičius, Robertas; Jusas, Nerijus.
Modelling of Internet of Things units for estimating security-energy-performance
relationships for Quality of Service and environment awareness // Security and
communication networks [electronics resource]. Hoboken, NJ: John Wiley & Sons.
ISSN 1939-0114. 2016, vol. 9, iss. 16, p. 3324-3339. [Science Citation Index Expanded
(Web of Science); Current Contents (Engineering, Computing & Technology)] [Sc.
fields: 07T]. [Contribution: 0.250]. [IF (E): 0.806 (2015)]

Publications in other international databases

1. Venčkauskas, Algimantas; Jusas, Nerijus; Toldinas, Eugenijus; Kazanavičius, Egidijus.

Security Level Versus Energy Consumption in Wireless Protocols for Internet of Things
// Information and software technologies: 20th international conference, ICIST 2014,
Druskininkai, Lithuania, October 9-10, 2014 : proceedings / Giedre Dregvaite; Robertas
Damasevicius (eds.) ; Kaunas University of Technology. Cham: Springer, 2014.
(Communications in computer and information science, 465, ISSN 1865-0929), ISBN

135

9783319119571. p. 419-429. [Conference Proceedings Citation Index; SpringerLINK]
[Sc. fields: 07T]. [0.250]

OTHER PUBLICATIONS
1. Jusas, Nerijus; Venčkauskas, Algimantas; Štuikys, Vytautas. Model driven framework

to Develop the IoT-based Healthcare Applications // 12th annual international conference
on information technology and computer science, 16-19 May 2016, Athens, Greece :
abstract book / edited by Gregory T. Papanikos. Athens: Athens Institute for Education
and Research, ISBN 9789605980474. p. 24. [Sc. fields: 07T]. [0.333]

SL344. 2017-05-15, 17,75 leidyb. apsk. l. Tiražas 12 egz. Užsakymas 169.

Išleido Kauno technologijos universitetas, K. Donelaičio g. 73, 44249 Kaunas
Spausdino leidyklos „Technologija“ spaustuvė, Studentų g. 54, 51424 Kaunas

APPENDIX

A. DEFINITIONS OF MAIN CONCEPTS OF FEATURE MODEL

The following definitions are used to describe the feature models
[Venckauskas et al., 2016c, Venckauskas et al., 2016a]:

Definition 1 (Feature model). Feature model (FM) is the directed graph G(X,
V). The latter represents the composition of the feature tree T(X, U) and a
set of edges B specifying constraints between nodes Xb ⊂ X where U is a set
of directed edges (arcs) representing parent-child relationships among a pair of
nodes; V = U ∪ B. Feature model is a tuple 〈G(X,V), FMcons〉, FMcons is a
list of feature model constraints (include and exclude).

Definition 2 (Feature). A feature is a node xi(xi ∈ X) of the feature graph
G(X,V) where X is a set of features, and V is set of edges that represent
relationships among features.

Definition 3 (Root feature). The top-level feature that has no parents is the
root feature. Graph G has only one root feature.

Definition 4 (Relationship between features) A relationship between features is
a sub-graph Gr(Xr, Ur) with properties (i)-(iv) as follows: (i) Xr = xp ∪Xd is
a set of vertices, (ii) xp ∈ X is a parent vertex, (iii) Xd ⊆ X is a set of vertices
(grouped features) that are descendants (children) of xp, (iv) Ur ⊆ U ⊆ V is a
set of edges that connect xp to each member of Xd.

Definition 5 (Mandatory feature). Mandatory feature is such a feature that
is always selected if its parents are selected.

Definition 6 (Optional feature). Optional feature is such a feature that may
or may not be selected if its parents are selected.

Definition 7 (Varian point). A feature that is a parent of either an optional
or an alternative feature group.

Definition 8 (Alternative feature, XOR). An alternative feature of the feature
grouped features is the only one feature that must be selected if its parent is
selected.

Definition 9 (OR). An optional feature of the grouped features is one or more
features that may be selected if its parent is selected.

Definition 10 (Constraint). A constraint is a predicate of a prescribed type
between two vertices-variants xi and xj in G. Formally, bt : (xi, xj) →
{true, false}, bt ∈ B;x,xj ∈ X. If the constraint exists, the predicate evalu-
ates to true; otherwise the predicate evaluates to false.

Definition 11 (Requires constraint). A constraint indicating that the choice
of one feature variant requires that another variant must be chosen is called
require constrain. Formally, it is defined as breq(xi, xj)→ true.

Definition 12 (Excludes constraint). A constraint indicating that the choice of
one feature variant excludes another variant from being chosen is called exclude
constraint. Formally, it looks like: bexc(xi, xj)→ false.

Definition 13 (Dead feature). Feature f of FM is dead if it cannot be part of
any of the valid configuration of FM.

Definition 14 (Core feature). Feature f of FM is a core if it is part of all the
valid configuration of FM.

Definition 15 (Configuration). Feature model configuration is the model that
contains all the mandatory nodes of the given feature model, may contain op-
tional nodes, and includes variation points, but only one variant for each vari-
ation point is selected.

Definition 16 (Valid configuration). A valid configuration is the configuration
that takes into account the constraints among variation points and variants.

Definition 17 Feature path is the path tree T p(T p ⊂ G) that contains the only
vertices selected by the analyser while travelling from the root to the selected
leaves.

Definition 18 Feature path is the complete path. The complete feature path
is formed from feature graph G when analysers make all the selections of the
alternative and optional features.

Definition 19 Configuration K is a multi-set of all the features (vertices) in
the feature path T p .

Definition 20 Configuration K is a valid configuration if (i) it is not
empty, (ii) it contains no variation points, (iii) the multiplicities (i.e. OR-
relationships) of elements belonging to the multi-set are equal to 1, i.e., it con-
tains only unique features, (iv) all the features in the multi-set satisfy a set of
constraints B in the graph G.

Definition 21 (Correct feature model). A model that does not have dead fea-
ture and all configurations K are valid.

Definition 22 Feature model is said to be:

i Abstract if some feature has no atomic features with concrete values or, in
another context, some features may decompose into parts;

ii Aggregated if it consists of two or more abstract feature models where some
feature has no atomic features with concrete values;

iii Specialized if it is derived from its ancestor feature model through removing
some features (if a parent feature is removed, all of its children features are
removed, too), and the atomic features have concrete values.

B. FEATURE MODEL EXAMPLE

Security methods are key parts of today’s network applications. Security
enables to ensure the secure data transmission from one part of an application
to another or between different applications (secure communication, data en-
cryption, and others). The security methods embedded in an application are
determined by the application’s features. Each distinct set of features defines
a unique application in an application product line. Let us suppose that we
only consider the features of encryption algorithms (symmetric, asymmetric and
hybrid) and cypher key type (private and/or public). Figure B.1 represents a
feature model of possibility to choose the necessary encryption algorithm and its
parameters by using the basic feature model notation. Security methods (root
feature, see Definition 3) consist of an encryption type, key type, security level
and optionally a key exchange. A security level can be unprotected, protected
and highly protected (choose one, XOR, see Definition 8), and the encryption
algorithm is symmetric, asymmetric, hybrid, or all the possible options (OR,
see Definition 9). As it can be seen from Figure B.1, any asymmetric feature
requires a key exchange feature, while a symmetric feature excludes any public
feature.

Figure B.1. Feature model of security methods

C. FRAGMENT OF CODE TEMPLATE AND OUTPUTS OF
CODE GENERATOR

<plat form name=" Gadgeteer ">
<meta>
<output f i l e=" cs " />
<c l a s s name = "Yes " />
</meta>
<code>

<Pulse_Oximeter >
bool IsConnected = nu l l ;

void pulse_Oximeter_ProbeDetached (PulseOximeter
sender)

{
IsConnected = f a l s e ;

}

void pulse_Oximeter_ProbeAttached (PulseOximeter
sender)

{
IsConnected = true ;

}

void pulse_Oximeter_Heartbeat (PulseOximeter sender ,
PulseOximeter . Reading read ing)

{
MeasuredPulse = read ing . PulseRate . ToString
("F1") ;

}

</Pulse_oximeter>
. . . .
. . . .
. . . .

</ plat form>

Figure C.1. Code template fragment presenting action methods of the Pulse
sensor

Figure C.2. Code class generation from the selected code fragment

Figure C.3. Selected methods from the code template library

	Introduction
	Relevance of the work
	Object of the thesis
	Aim of the thesis
	Tasks of the thesis
	Scientific novelty
	Practical value
	Thesis statements
	Scientific approval
	Thesis organization

	The Internet of Things
	Introduction to Internet of Things
	IoT applications
	Communication between 'Things' in IoT
	Energy issues within IoT
	Security and privacy challenges within IoT
	Quality of service of IoT
	QoS evaluation and optimization

	Methods of IoT applications development
	MDD and IoT applications
	Modelling languages

	Product line and IoT applications
	Variability modelling
	Model transformation
	Code Generation

	Conclusions

	Feature model-based development of IoT applications
	Proposed IoT application development method
	Relationship between phases of proposed method
	Development of domain models
	Aggregation phase
	Specialization phase
	 Creation of specialized model
	Design space exploration
	Components database

	Generation phase
	Code template repository

	Implementation phase
	Conclusions

	Development of IoT-based healthcare appliaction
	Software tools
	Case study: IoT-based healthcare application
	Introduction
	Modelling of IoT-based healthcare BAN layer domain
	Aggregated model of healthcare BAN domain
	Specialization of healthcare applicaiotn's BAN layer
	Framework generation for IoT-based healthcare application's BAN layer
	Implementation of IoT-based healthcare application's BAN layer

	Discussion

	Conclusions
	Definitions of main concepts of feature model
	Feature model example
	Fragment of code template and outputs of code generator

