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1. INTRODUCTION

Composite materials are materials composed of two or more materials of
significantly different properties. Most of the natural materials such as wood,
bones, etc. are composite materials. Artificial composites are widely used because
of their ability to obtain the overall required material properties by varying the
internal structure and the proportions of the constituting materials. Due to the good
weight and strength ratio, composite materials are widely used in manufacturing
aircraft parts, helmets, bullet-proof vests, medical equipment, etc.

Numerical simulation of the mechanical behavior of the objects and
constructions made of composites by taking into account their microstructure
requires unrealistically large computational resources which are not expected to
be available in the near future. That is why the multi-scale approach is applied.
This approach enables to define the analyzed object in different scales with the
respective assumptions. In terms of the research of the problem, the top-bottom or
bottom-top multi-scale method is applied [1]. In the top-bottom case, a small
region is analyzed in the minute scale with the boundary conditions (e.g.
displacements) transmitted from a large scale. In the bottom-top case, material
properties in a large scale are obtained from the representative areas in the minute
scale. The representative region is a small part of an object that can be treated as
a differential element of a large scale. Usually, it is a numerical model of a micro-
cube that is used to define the stress-strain relation for the average values
calculated in the volume of the representative region.

The bottom-top multi-scale model of unidirectional laminated textile is
analyzed in this research. The equivalent material parameters are calculated in the
minute scale with respect to the representative region that takes into account the
internal structure of the composite. The obtained parameters are used in the
analysis of the object in the largest scale. Due to the minute internal geometry, it
is assumed that the material is homogeneous in the largest scale.

In a small strain range where the stress-strain relation is linear equivalent
parameters can be obtained by asymptotic homogenization [2] or by using micro-
mechanical analysis of the representative region [3]. In a large strain, the range
material is additionally defined by the yield stress, the tangential modulus and the
strength limit. The equivalent strength limits in this research are obtained from the
analysis of the representative region with the increasing strains. If contact
problems are analyzed with the destruction of the object taken into account, it is
important to define the proper erosion criterion for the distorted elements so that
the deletion of the elements would take place neither too early nor too late. The
criterion for an element to be deleted if the effective erosion (ESD) is reached is
applied in numerical simulations. The algorithm enabling to define the ESD value
by analyzing rectangular regions with the rotated material system is suggested in
this research. This approach contains the capacity to take into account the load
combinations if the object is loaded multi-axially.
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1.1 The Object of the Research

1. Application of multi-scale models in the analysis of unidirectional composite
textiles at different levels of minuteness.

2. Models of unidirectional composite structures that are used to determine the
equivalent parameters of the representative internal structure defined by finite
element models in the minutest scale.

3. Transverse impact on the unidirectional composite plates defined by shell
elements with the material parameters obtained from the representative
element in the minutest scale.

1.2 The Aim of the Research

The aim of the research is to create multi-scale numerical models for the
dynamic analysis of unidirectional composite textiles and to determine the
parameters which would describe the behavior of a composite in the macro-scale
with respect to the detailed models of its internal structure.

1.3  The Tasks of the Research

In order to achieve the aim, the following tasks were outlined:

1. To develop multi-scale numerical models with the internal structure of the
unidirectional composite described by using two-dimensional and three-
dimensional finite elements in the minutest scale.

2. Todefine the appropriate constraints in order to identify the linear parameters,
the strength and the parameters for eroding elements.

3. To verify the developed multi-scale models by analyzing the shell element
model under the loads in the composite plane in the largest scale where the
material parameters used for the model are the equivalent parameters obtained
from the linear and non-linear analysis of the internal structure in the minutest
scale.

4. To verify the developed multi-scale models by analyzing the shell element
model under the transverse impact of the rigid sphere in the largest scale and
comparing the obtained results with the base model. The parameters applied
in the homogeneous model of the largest scale are obtained from the linear
and non-linear analysis of the internal structure in the minutest scale.

5. To verify the obtained numerical results experimentally by developing a two-
scale model applied to evaluate the strength of a 3D-printed item, to analyze
the influence of the internal structure and to compare the numerical and
experimental results of the tension and three-point bending tests.

1.4  The Methods of the Research

The finite element method is applied in order to obtain the linear and non-
linear parameters and the criterion for eroding elements by analyzing a numerical
model in the minutest scale. The static and dynamic analysis of the representative
6



structure is performed by employing the created programs and finite element
program LS-DYNA, the results are analyzed by using MATLAB. The
convergence of the models is attained by analyzing the finite element model with
meshes of different minuteness. The models in the largest scale are verified by
comparing them with the base models defining the same object with respect to its
internal structure.

1.5  Scientific Novelty and Practical Relevance

The main scientific novelty of this dissertation is the extension of the
methodology applied in order to obtain the equivalent parameters in the minutest
scale which allows to mathematically define the element erosion criterion. In the
earlier researches, multi-scale models were applied when striving to evaluate the
linear parameters, the non-linear parameters and the erosion criterion which was
usually chosen by empirically appealing to analogies or to scientific intuition. The
practical relevance is based on the extension of the application scope of numerical
models as practically acceptable results are obtained even for complex non-linear
contact problems with a small number of finite elements.

1.6 Approbation of the Research Results

The main results of the dissertation were published in 7 scientific
publications: 2 in the journals included into the list of scientific international
databases (Indexed in the Web of Science with Impact Factor) and 5 publications
were delivered in other international databases. The results were also presented in
6 international conferences.

1.7 The structure and Volume of the Dissertation

The dissertation consists of an introduction, 4 main chapters, conclusions,
a list of references, a list of the author’s publications and 2 appendices. The total
volume of the dissertation is 92 pages, including 39 figures, 15 tables and 125
references.

2. REVIEW OF RESEARCH RELATED TO MULTI-SCALE
MODELING OF UNIDIRECTIONAL COMPOSITE

Unidirectional composite textiles represent a group of composite materials
containing long parallel fibers bonded together by a matrix material. In order to
achieve a high strength-to-weight ratio, the fiber material is much stiffer than the
matrix material. According to the analysis level, models of unidirectional
composites are grouped into [4]:

e zero-order models — only fibers are taken into account; no matrix material
is considered.

o first-order models — fiber direction and proportions of the constituting
materials are considered (Figure 2.1, a).



e second-order models — the arrangement and shape (the cross-section) of
fibers and proportions of the constituting materials are considered (Figure
2.1, b).

e higher-order models — the interaction between the matrix and fibers,

defects and irregularities of arrangement are considered (Figure 2.1, c).

Figure 2.1. Models of unidirectional fiber composite: 1% order (a), 2" order (b), higher
than 2™ order (c) taking into account the interaction between the fiber and matrix
materials

Due to the complex internal micro-structure, modeling unidirectional
composites with respect to the internal geometry requires unreasonable
computational resources. That is why multi-scale approaches are employed in
order to analyze the behavior of composites. The multi-scale models are defined
by the number of scales, the relations between the scales and the modeling order
of the system [5].

Usually, mechanical constants of the constituting materials are known and
the bottom-top approach is applied where the parameters obtained from the
minutest scale model are used in the larger scale model [6]. Another multi-scale
approach is to revise the solutions obtained in a large scale by analyzing the model
of a particular region in a finer scale with the boundary conditions respective to a
larger-scale solution [7].

In the bottom-top model, the representative volume element containing all
the heterogeneities of the internal geometry is analyzed in the minutest scale [8].
Analytical formulas, micro-mechanical analysis of the finite element model and
asymptotic homogenization are applied in order to evaluate the linear elastic
parameters [2, 4, 9, 10]. Non-linear parameters are evaluated by using the
maximum stress criterion [11] or calculated analytically with respect to the
properties of the governing materials under the loading in the analyzed direction
[4]. For the models where the finite element method is applied, it is necessary to
define the proper boundary conditions for the representative element. Although
periodic boundary conditions are recommended [3, 12, 13], the main requirement
is that the analyzed region would reproduce the same behavior as a much larger
structure under the same boundary conditions [13].

Another parameter applied to determine the behavior of the composite
structure is the erosion strain. This proper value of the erosion strain is important
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in contact problems where late deletion of the element increases the stiffness of
the analyzed structure. On the other hand, if elements are deleted before their
strength values are reached, this results in a weaker structure [14, 15]. Usually,
elements are deleted if they cause the reduction of the time step size to the
determined value or meet other criteria based on the intuition of researchers.
However, no direct method is proposed when seeking to determine the criterion
for the deletion of the element from the model in the analyzed scholarly literature.

A structure manufactured with a 3D printer was chosen to analyze in the
experimental research due to the ability to govern the internal geometry of
samples. A 3D-printed structure is a composite structure of a complex geometrical
microstructure containing air gaps as well as intersections between fibers in the
adjacent layers and fibers in the same layer. In case of parallel fibers, the printed
structure can be regarded as a unidirectional composite material.

3. PRINCIPLES OF MODELING

The multiscale model bottom-top was applied in this research. The internal
structure of the composite layer and the properties of its materials are known in
the micro-scale and the internal structure is assumed to be ideally periodic without
overlaps. Two types of internal structure models regarding the first order (Figure
3.1 (a)) and the second order (Figure 3.1 (b)) are analyzed in the micro-scale in
order to determine equivalent parameters (Young’s moduli, Poisson’s ratios, shear
moduli, strength limits and erosion strain). A behavior of a structure in the largest
scale is modeled with the assumption that the material is a homogeneous
orthotropic material with the parameters evaluated in the finer scale.

SN

a b

Figure 3.1. Multi-scale models applied to modeling unidirectional fiber composites
with the structure of the composite defined in the minutest scale when using the 1
order composite model (a) or the 2" order composite model and the assumption that
the material in the largest scale is a homogeneous orthotropic material

The evaluation of linear parameters is based on analyzing the representative
material structure in the micro-scale. Effective stiffness tensor D is valid for small
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strains only and is obtained by linear relation of mean stresses over representative
element o and strains € [9]:

o = Deg, 1)

where o is a square matrix with columns representing weighted mean
stresses in Voigt’s notation respective to independent deformation modes, € is a
square matrix with columns representing strains of each deformation mode in
Voigt’s notation. Linear constants are obtained from compliance matrix S which
is the inverse of stiffness tensor D.

For the 1% order model, three pure strains are created for the representative
area by prescribing boundary conditions presented in Figure 3.2 and defined by
Equations (2-4). Similarly, for the 2" order model, six pure strains are created for
the representative model by prescribing boundary conditions presented in Figure
3.3 and defined by Equations (5-10). For both cases, if the strain is evaluated for
the corner nodes the shear strain is pure and the obtained constants show good
agreement with the values calculated by using the analytical approach or
asymptotic homogenization. If straight sides are required in the deformed
configuration, the calculated constants depend on the size of the analyzed region.

L u(,y)=0, u(a,y)=6, v(x0)=v(x,a)=0 (2)
I u(0,y) =u(a,y) =0, v(x,00=0, v(ay) =46 (3)
I u(x,0)=0, ulx,a)=4 v0,y)=0, v(a,y)=4 4)

where & is a magnitude of displacements, and a is the side length of the

representative element.
oAb

A

4 IS
N > [ <
. > K
FAiY e
a b c
Figure 3.2. Load schemes for the representative element: (a) | — longitudinal tension
mode, (b) Il — transverse tension mode, (c) 111 — shear mode without the requirement that

the sides of the element remain straight after deformation. The empty triangles define
constraints (symbols >< mean that the node is constrained in direction X whereas
symbols AV mean that the node is constrained in direction Y). The dotted lines
represent the deformed configuration

I. u(a,yz)=46 u(0,y2) =0,

v(x,0,2) =v(x,a,2) =0, w(xy,0) =wlxya)=0 ®)
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II: u(,y,2) =ula,y,z) =0 v(xaz) =34,

v(x,0,2) =0, w(xy0) =wlxya)=0 ©)

I u(0,y,z) =u(a,y,2) =0, v(x0,2z)=v(xaz) =0, @
w(x,y,a) =6, w(x,y,0)=0

IV: u(x,a,2) =6, u(x0,2) =0, v(ayz) =54, ®)

v(0,y,2) =0, w(x,y,0)=w(xya)=0
V: u(0,y,2) =u(a,y,z) =0, vix,y,a)=6 v(xy0) =0, ©)
w(x,a,z) =6, w(x02)=0

VI: u(x,y,a) =6, u(x,y,00=0, v(x,0,z)=v(x,a,z) =0,

w(a,y,z) =6 w(0,y2)=0 (10)

-

) &

L,

]

) &l
g

Figure 3.3. Schemes for creating pure strains: | — longitudinal strain mode, II, 111 —
transverse strain mode, 1V, V, VI — shear strain mode in XY, YZ, ZX planes
respectively. The grey lines define the deformed object

The Hashin’s failure criterion is employed in order to simulate the failure
of the individual layer of the shell for the material model used in numerical
experiments. This criterion determines the failure in longitudinal (fiber tension and
compression) and transverse (matrix tension and compression) modes [16]:

e The fiber tension and compression modes:

o2 . _ (=0, failed
(E) 1= {< 0, elastic (11
_ (XT,jeio, =20 - .
where XX_{XC,jei G, <0 XT, XC are longitudinal tensile and

compressive strengths.
e The matrix tension and compression modes:

(&)z + (Tﬂ)z 1= {2 0, failed (12)

YY sc < 0,elastic
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YT,if 0, =0
YC,if 6, <0’
compressive strengths, and SC is shear strength.

In order to apply the Hashin’s failure criterion in the macro-scale, XT, YT
and SC must be defined. These values are obtained by maximum stress criteria
(13-15) from the analysis of the representative element by prescribing linearly
increasing displacements with boundary conditions (2—-4) or (5, 6, 8) respective to
the order of the model. For the shear analysis, the internal structure model was
surrounded with a marginal zone with the significantly higher eroding strain and
width of one representative element in order to avoid the premature erosion of
corner nodes which are used when calculating the strain values.

where YYz{ YT, YC are transverse tensile and

XT = mtax(a,gt]), Exr = ej[f’], t': O',Et’] =XT (13)
t ¢t tr

YT = mtax(cr}[, ]), Eyr = s}[, 1t 03[, l=yr (14)

SC = mtax(r,[cﬂ), Ysc = y,g,’], t': T,[f;] =5C (15)

The different conditions for the deletion of the shell element can
significantly influence the stiffness of the structure in contact problems. The shell
element is deleted if the prescribed maximum effective strain (ESD) is reached.
Effective strain ED combines longitudinal, transverse and shear strains in the
material coordinate system [17]:

= F () + (52 s a

The unidirectional composite is considered as failed if the fibers of the
structure fail. This determines that the ESD values should be equal to the strain
value at longitudinal strength point ey, for the shell element under the longitudinal
tension. However, this ESD value results in inadequately low stiffness of the
structure in the model where the strains are combined. Similarly to the previous
example, the fibers do not fail under the transverse tensile loading, and the ESD
value for the elements under this type of loading should be equal to infinity. In
case of large ESD values, the stiffness of the mezzo model is overrated, and the
elements undergo unrealistically large deformations. In order to reduce the
adaptation of ESD to the loading conditions, the representative element should
exhibit combined strains. These conditions are created by performing explicit
analysis of material samples where the material and global coordinate systems
differ by various angles 6 (Figure 3.4) under the loading conditions described in
Figure 3.5 with increasing displacements. The sample intends to fail in the middle
zone, and the failure strain of the marginal zone is significantly higher in order to
avoid the material failure caused by the prescribed artificial displacements. The
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samples maintain periodicity and include all the heterogeneities of the rotated
micro-structure.

It is assumed that the size of the analyzed rotated element, the width of the
marginal region and the mesh of the finite element model is acceptable for the
evaluation of ESD values if stiffness tensor D? obtained for the model and rotated
to the material coordinate system differs from stiffness tensor D calculated for the
model without rotation less than the prescribed value € by the means of the normed
average square error:

n'maxD; ;
i Lj

R= , 17)

where n is the number of rows (columns) in a tensor.

Figure 3.4. Analyzed models for the ESD evaluation in the coordinate system (X-Y-Z)
with the material coordinate system (X’-Y’-Z). Axis Z coincides for both coordinate
systems

The mean stress—strain relations are calculated for the middle zone in the
global coordinate system. As the ESD is defined with respect to the direction of
the fibers, the calculated stress and strain values are transferred to the material
coordinate system (X', Y’, Z") by using the standard transformation [18]:

Ox Txy Txz

=A[Tyx Oy Tyz|AT (18)

Oxr Txryr Txrz
Tyrxr Ty, Tyrzi

Tzixt  Tziyr Oz Tzx Tzy O

where A is the direction cosine matrix.

As the erosion of elements results in a steep fall of stress—strain curves, the
maximum effective strain for each model is calculated at the time step before the
failure of the fibers takes place. The models are classified into two groups

13



regarding the governing material. If the model is governed by the fibers, the stress
in the fiber direction reaches the values which are close to the material strength in
the fiber direction. If the model is governed by the matrix material, the stress in
the transverse direction reaches the value close to the strength in the transverse
direction. It is recommended to use the largest ESD value obtained for the models
governed by the fibers.

(Z1,10) (r:-.!/z)

u=0,

v=0

.
(2, 1)

X
Figure 3.5. Boundary conditions for ESD evaluation
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i Simulate model under the loading

Material parameters. conditions in Figure 3.5
Internal geometry:

D. 6 A0: ¢ l

Compaosite fails due o NO

P A |

y failure of fibers ;
Calculate D, for the analyzed .
model l YES ESD

Transform D, to material tmusformed to material

Revise model coordinate system coordinate system

D" =TD:T' )
i i End

Calculate ESD

i Stresses and strains are l

Evaluate difference between D?
and D by the means of R

i Increase the angle between

material and global coordinate

NO YES systems by AG@
R<e —

Figure 3.6. ESD evaluation scheme

The scheme applied in order to evaluate the ESD value is provided in
Figure 3.6 and consists of two main stages defining the model creation and
analysis. The input parameters are the parameters which define the behavior of the
constituting materials; the internal geometry of the composite; stiffness tensor D
calculated for the model without rotation; the initial rotation angle of model 6 and
step A@; value e defining the similarity of tensors D and D?. It is required that the
behavior of the material sample rotated by initial angle 8 should be governed by
the fibers.

4. NUMERICAL EXPERIMENTS

Low density polyethylene matrix reinforced with aramid fibers was used
as a sample material combination in the micro-scale. The representative volume
element analyzed in numerical experiments consists of cylindrical aramid fibers
with the circular cross-section of radius r = 4.5E — 05m, and the distance
between the centers of adjacent fibers is a = 1E — 4 m. The share of fibers in the
material is ay ~ 0.6362, the matrix share is a,, ~ 0.3638. These share values are
applied to create a representative element for the first order models.

The *MAT_PLASTIC_KINEMATIC material model (MAT_003) is
employed in LS-DYNA in order to model the fiber and matrix materials with
parameters in Table 4.1. The stress—strain relation of the aramid fiber is almost
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linear until the failure. The matrix material, on the contrary, is elastic for small
deformations only, and it undergoes large plastic deformations.

Table 4.1. Mechanical constants of the fiber and matrix material.

Fiber Matrix
Young’s modulus, N/m? 9E+10 3E+08
Poisson’s ratio 0.3 0.2
Yield stress, N/m? 3.5E+09 2E+07
Density, kg/m? 1400 920
Failure strain 0.001 0.5

The layer of the unidirectional fiber composite in the macro scale is
simulated by using material model
*MAT_LAMINATED_COMPOSITE_FABRIC (MAT_58). The linear elastic
parameters, the strength points with the respective strains and the erosion strain
for this material model are evaluated by using RVE in the micro-scale.

The sphere is modeled by shell elements as a rigid body. The material
model *MAT_RIGID (MAT_020) is employed in order to define the sphere
material with the parameters as outlined in Table 4.2. All the displacements in X
and Y directions and all the rotations are constrained for the nodes of the sphere.
The translational mass of the sphere is equal to the mass of the solid sphere with
the mass density as indicated in Table 4.2. The
CONTACT_ERODING_SURFACE_TO_SURFACE type is employed in order
to define the contact interaction between the sphere and plies and between the
adjacent plies.

Table 4.2. Mechanical constants of the rigid sphere.

Young’s modulus, N/m? 1.7E+10
Poisson’s ratio 0.4
Density, kg/m? 11270

Two types of macro-scale models are analyzed in contact with the rigid
sphere and the in-plane load with the linear parameters in Table 4.3, and the strain
and the strength pairs in Table 4.4. The B and C types correspond to the
homogeneous orthotropic shell models with the parameters obtained while using,
respectively, the 1%t and 2" order representative elements.

As the stiffness in the fiber direction is governed by fibers, the Young’s
moduli in the fiber direction differ by less than 5%. The stiffness in the transverse
direction and the shear are governed by both constituting materials, and this results
in a significant difference between the Young’s moduli in the transverse direction
and the shear moduli. Moreover, the parameters respective to Z direction or YZ
and ZX planes are not obtained while using the first order representative model.
Due to the symmetric cross-section of the fibers in YZ plane of the 2™ order model,
the parameters in the transverse directions (Y and Z) are equal.
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Table 4.3. Linear parameters used in the macro-scale model.

B type C type
Young’s moduli E, 5.7368e+10 5.5882e+10
N/m2 ' E, 8.5338e+08 1.4315e+09
E, 1.4315e+09
Vyy 0.2636 0.2729
Poisson’s ratio Vyz 0.1098
Vax 0.0070
. Gy, 3.6963e+08 5.9152e+08
S,\rl'/eriz modult, G, 3.8500e+08
Gy 5.9152e+08

Similarly to the linear parameters, strength XT and strain ey in the fiber
direction obtained for the 1%t and 2" order models differ by less than 5%, yet their
values corresponding to the transverse direction and the shear differ significantly.

Table 4.4. Non-linear parameters used in the macro-scale model.

B type C type
XT, N/m? 2.2360e+09 2.2331e+09
YT, N/m? 3.1442e+07 5.5664e+07
SC, N/m? 1.9572e+07 1.3385e+07
Exr 0.0392 0.0392
Eyr 0.2295 0.0770
Ysc 0.3213 0.0861

Figure 4.1 and Figure 4.2 show the stress—strain relations of respectively
the 1% and 2" order models of the representative regions with the material
coordinate system rotated regarding the global coordinate system. The number
next to the letter corresponds to the magnitude of the angle in degrees between the
material and the global coordinate systems. Models B00O, B15, B30, B45, B60
(Figure 4.1, a) and C00, C15, C30, C45 (Figure 4.2, a) fail due to the erosion of
the fiber elements. This causes erosion in the matrix material. On the contrary,
after the matrix erosion in models B75, B90, C60, C75 and C90, fibers still
continue to deform. The ESD values for the models with the matrix erosion
followed by the fiber erosion are significantly higher.
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Figure 4.1. Longitudinal (a), transverse (b) and shear (c) stress — strain curves of the
1%t order models in the material coordinate system

Figure 4.2. Longitudinal (a), transverse (b) and shear (c) stress—strain curves of the 2™
order models in the material coordinate system

ESD values calculated from the stress—strain relations in Figure 4.1 and
Figure 4.2 are given in Table 4.5. For both order models, the ESD values
corresponding to the same rotation angles differ by less than 10% with the notable
exception of the model corresponding to 60°. Moreover, the fiber material fails
earlier than the matrix material for B60 in contrast to C60 where the matrix
material fails earlier. Regarding the criterion defined in Chapter 2, the ESD values
corresponding to models B60 and C45 should be used in the macro scale
simulations.

Table 4.5. ESD values.

15t order models
BOO B15 B30 B45 B60 B75 B90
ESD 0.048 0.057 0.084 0.142 0.269 1.275 3
2" order models
C00 C15 C30 C45 C60 C75 C90
ESD 0.045 0.055 0.083 0.142 0.407 1.258 3

Numerical axial tension tests (Figure 4.3 — in the fiber direction, Figure 4.4
— in the transverse direction) of the homogeneous shell model with various ESD
values are performed in order to verify whether the behavior of the homogeneous
shell element model matches the behavior of the respective model.
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Figure 4.3. Stress—strain curves under the tension load in the fiber direction

For both types, the homogeneous model with the ESD value corresponding
to 0° rotation angle matches the base model of the respective order best of all as
the boundary conditions closely match the boundary conditions which are used to
calculate the ESD values.

4.9 %10

Figure 4.4. Stress—strain curves under the tension load in the direction transverse to
the fibers

As the tension in the transverse direction is governed by the matrix
material, the models with the ESD values calculated for the regions governed by
the matrix material fit the base model the best. Moreover, the boundary conditions
used in this test are close to the boundary conditions applied when evaluating the
ESD for the models with 90° rotation angles.

& &

Figure 4.5. Base model (1% order model) (a) and homogeneous shell element model
(b) of 4 crossed plies in contact with a rigid sphere
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The impact of the sphere at a high initial velocity (440 m/s) to the
unidirectional composite is analyzed in numerical examples. Homogeneous shell
models with the parameters calculated while using the 1% (B) and 2" (C) order
models are analyzed in this research. The results of a sphere perforating 1-ply or
2, 4, 8 crossed plies of homogeneous shell models are compared with the 15 order
base model (Figure 4.5) by the means of the sphere velocity. The models are
reduced to the quarter with the appropriate symmetry conditions. In order to avoid
failure of fibers due to the boundary effects, the material in the marginal zone has
significantly higher erosion values.

What regards the variation of the sphere velocity at the last analyzed time
step, the models are classified in three groups. The first group corresponds to the
models that are too brittle, and the variation of the sphere velocity in contact with
the models is more that 10% compared with the base model. The second group
refers to the models with the sphere velocity in the 10% range of the base model.
Lastly, the third group corresponds to the model which is stiffer due to the late
deletion of elements, and the reduction of the sphere velocity is more than 10%
higher compared to the base model.

With respect to the classification described above, B type models are
grouped successively: | group — ERB00, ERB15; 11 group — ERB30, ERB45; 111
group — ERB60, ERB75, ERB90. Moreover, the sphere velocity is not leveled for
models ERB75 and ERB90 due to the late deletion of the elements in all the
analyzed cases (Figure 4.6). Model ERB45 showed the best agreement with the
base model in the transverse impact simulation of the B type models, although the
suggested criterion implied that the ERB60 value would fit the base model the
best.
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Figure 4.6. Comparison of the sphere velocity during the perforation of a single ply (a)
and 2 (b), 4 (c), 8 (d) crossed plies while using the 1% order model and homogeneous
shell models with the ESD values obtained while using the respective 1% order models

for evaluation

C type models are grouped successively: | group — ERC00, ERC15; I
group — ERC30, ERC45, ERC60; 11l group — ERC75, ERC90. Moreover, the
sphere velocity is not leveled for model ERC90 due to the late deletion of elements
in all the analyzed cases (Figure 4.7). For C type models, the ESD value
determined by using the criteria defined above is correct as in all the analyzed
cases of the transverse impact, the variation of the sphere velocity differed less

than 10% from the base model.

It is important to note that in order to identify the ESD properly, the global
dominant loading type should be taken into account. However, usually, it is not
known in advance. That is why, the ESD value should be as universal as possible.
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Figure 4.7. Comparison of the sphere velocity during the perforation of a single ply (a)
and 2 (b), 4 (c), 8 (d) crossed plies when using the 1 order model and homogeneous
shell models with the ESD values obtained when using the respective 2" order models
for evaluation

5. EXPERIMENTAL RESEARCH OF 3D-PRINTED ITEMS

The aim of this research is to investigate the influence of a geometrical
microstructure on the mechanical properties of the structures manufactured by
using the additive technology. A two-scale numerical model was created in order
to reproduce the tension and the three-point flexure experimental results.

The idealized situation is considered in this research by assuming the
representative volume element as a small periodical cell covering all the
heterogeneities of the internal structure corresponding to a different layer height.
The representative elements are designed after the analysis of the GCode
generated by slicing software Slic3r for the 3D printed item with the layer height
of 0.2 mm, 0.25 mm, 0.3 mm, 0.35 mm, 0.4 mm. Each micro-model consists of
one full fiber surrounded by a half of the adjacent inter and intra-layer fibers. The
cross-section of the fiber is approximated as a rounded rectangle (Figure 5.1).
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Figure 5.1. The geometry of the cross-section of 9 parallel fibers in the micro-scale
(h,— layer thickness, d — distance between the centers of the adjacent fibers)
The LS-DYNA *MAT_PLASTIC_KINEMATIC material model was

applied for FE models of the constant stress solid elements in the micro-scale with
the parameters listed in Table 5.1.

Table 5.1. Material constants of the micro-scale model.

Young’s modulus, N/m? 2.9E+009
Poisson’s ratio 0.32
Yield stress, N/m? 3E+007
Tangent modulus, N/m? 5E+008
Failure strain for eroding elements 0.07

In the macro scale, the orthotropic internal micro-structure of a 3D-printed
item is presented by the material model *MAT_NONLINEAR_ORTHOTROPIC
applied for solid elements. The material model in the small strains range is defined
by the linear stiffness tensor. At finite strains, the non-linear behavior of the
material is described by nominal stress versus the strain curves in three
perpendicular directions, such as the fiber direction, the transverse intra-layer
direction (perpendicular to parallel fibers within a layer) and the inter-layer
direction (perpendicular to the parallel adjacent layers). The shear behavior is
defined by the nominal shear versus the strain curves in three orthogonal material
planes.

The linear stiffness tensor was evaluated for each micro-model after
prescribing small displacements regarding Equations (5-10) for the rectangular
element and calculating stiffness matrix D from Equation (1). The stress-strain
curves were also calculated under the boundary conditions (5-10) adjusted for the
rectangular element. The experimental tests were performed at a low strain rate,
therefore no dynamic effects were considered. In order to avoid dynamic effects,
the quasi-static implicit finite element analysis of micro-models was applied in
order to determine the stress—strain relationships.

The two major groups of specimens were manufactured from PLA
(polylactic acid) — one group for the tensile test (a rectangular parallelepiped of
dimensions L = 150 mm, b = 10 mm, h = 4 mm), and the other group for the
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flexure test (ISO 178, a rectangular parallelepiped of dimensions L = 80 mm, b =
10 mm, h =4 mm). The flexure test sample group was divided into two
subgroups in accordance with the direction of the fibers in a layer. The two types
of the structure were considered where fibers filled the microstructure layer by
layer in the longitudinal or transverse directions.

The numerical and experimental results were compared with respect to the
value of stress & in the tensile test and & in the three-point bending test as:

— F

0= U]
~ 3-F-L.
G=m (®)

where b and h are the width and the height of the specimen, respectively, Ls
is the span length between the supporting cylinders, F is the force added to deform
the 3D-printed item.

In the numerical model of the tension test, the rectangular parallelepiped of
dimensions L = 80 mm, b = 10 mm, h = 4 mm corresponding to the section
between the two grips was analyzed (Figure 5.2). At a low elongation rate of 50
mm/min, no dynamic effects were taken into account. This enabled to perform
quasi-static implicit analysis with the increasing load.

—
\ —J

Figure 5.2. The finite element model for the tensile test (u,, u,, u, represents the
displacements of the respective boundary or face; v, represents the velocity of the
face)

The numerical results (Figure 5.3, b) show that the maximum & (Gyqx)
value was reached by the specimen with the parameters calculated for the micro-
model with the thinnest layer and & (G,,4,) Values decrease for the models
corresponding to the thicker layers. Although numerical simulations (Figure 5.3,
b) imply that the structure with the thinnest layer has the highest a,,,,, values, the
highest experimental &,,,, was reached for the specimen group with 0.25 mm
layer thickness (Figure 5.3, a).
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The tension test is governed by the fibers and the behavior of the numerical
model is similar to the input stress—strain curve obtained from the RVE in the fiber
direction. As the material model used in the RVE analysis is a rough
approximation of the PLA stress-strain relations, it was not possible to reproduce
the behavior after the maximum point has been reached.

x10”
—1, b,=0.2 mm
—1, ,=0.25 mm
T, hy=0.3 mm
—L, 1,=0.35 nm

—L, b,=0.4 mm

. N/’

[l
7
6
s
=4
3
2
1
[

Figure 5.3. Typical & versus the extension curves of experiments (a) and numerical
simulations (b) of the tensile test with &4, values marked for each curve

The three-point flexural test was used in order to determine the bending
stiffness of the structure (Figure 5.4). The supporting and bending cylinders of the
radius of 5 mm were composed of rigid shell elements (*MAT_RIGID).

120 mm/min

b,
Figure 5.4. The finite element model for the three-point bending (flexure) test

For the specimen of the longitudinal printing direction, the highest 6,4,
value was simulated for the model with the thinnest layer (Figure 5.5, b). This
contradicts the experimental results where the specimen with the layer height of
0.25 mm was strongest (Figure 5.5, a). The adhesion between the fibers in the
same layer was poor for the samples with thin layers and did not fit the finite
element model of the microstructure. However, the experimental & versus the
displacement curves for the other groups were arranged in the same order as the
curves obtained from the numerical simulations in the analyzed range.
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7, wim?
7, wim?

Figure 5.5. The typical & versus the deflection curves of experiments (a) and
numerical simulations (b) of the flexure test for the specimen with the longitudinal
printing direction with &,,,,, values marked for each curve

In case of a group of specimens with the transverse printing direction, the
tendency that the 6,4, value is higher for the specimen with the thinner layer was
sustained in the numerical simulation (Figure 5.6, b). This agrees with the
experimental results (Figure 5.6, a) although the experimental results for the
specimen with the layers of 0.2 mm and 0.25 mm height differed insignificantly.

Deflection, mm Deflection, mm

a b
Figure 5.6. Typical & versus deflection curves of experiments (a) and numerical
simulations (b) of the flexure test for a specimen with the transverse printing direction
Omax Values marked for each curve

Although the simulation results showed that the &,,,,, value of the model
increases if the structure is manufactured with a thinner layer, this contradicts the
experimental results implying that the strongest structure is printed with the layer
height of 0.25 mm. The limitation of the thinnest layer can be created by
imprecisions of the printer and the fact that a fused material is not spread widely
enough to ensure the adhesion between parallel fibers in the same layer. Moreover,
the experiments demonstrated that the influence of overlaps was strongly
expressed in the cases of the thinnest and the thickest layers.
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CONCLUSIONS

The multi-scale finite element model for unidirectional composite textiles

was created in this research. After conducting theoretical and experimental
analysis, the following conclusions were outlined:

1.

Two-scale numerical models were created in order to analyze the
unidirectional composite. In order to determine the parameters in the minutest
scale, two models of internal composite structure respective to the first order
(shell-element) model and the second order (solid-element) model were used.
In the largest scale, the homogeneous shell element model is analyzed. The
parameters in the fiber direction evaluated using both models differ by less
than 10%, and in the transverse direction by more than 10%. That is why it is
important to determine the level of minuteness in the composite analysis.

The boundary conditions applied in order to determine the linear parameters,

the strength and the erosion strain were identified:

2.1. Linear elastic parameters can be identified by analyzing the
representative region under pure strain boundary conditions (without the
straight-side restriction in the shear mode).

2.2. Axial non-linear parameters are identified by using pure axial strain
conditions with the increasing displacements. For the shear analysis, the
internal structure model is surrounded with a marginal zone with
significantly higher eroding strain. This modification allows to avoid the
premature erosion of the corner nodes which are used to calculate the
strain values.

2.3. In order to evaluate erosion strains, models respective to the rotated
material samples are analyzed. The models are surrounded with a
marginal zone with significantly higher eroding strains. The axial
loading test is performed for the whole structure by prescribing
displacements for the wall in the loading direction and sides.

Axial in-plane numerical experiments in the largest scale show that the linear

parameters, the strength and the effective strain value used in the element

erosion criterion (calculated from the model rotated by 45° for the first order
models and 60° for the second order models) were chosen properly as those
models correspond to the behavior of the base model.

The homogeneous shell model with the eroding strain obtained when using a

45° rotated representative model showed the best agreement with the base

model in the numerical analysis of transverse impact under the contact with
the rigid sphere.

The behavior of a numerical 3D-printed item model agrees with the

experimental results until the maximum stress values have been reached for

the items with the mean layer heights where the appropriate adhesion between
parallel printing lines is guaranteed.
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REZIUME

Kompozicinémis vadinamos medziagos, sudarytos i$ keliy medziagy, kuriy
savybés reik§mingai skiriasi tarpusavyje. Nataralioje aplinkoje (gamtoje) daugelis
medziagy yra kompozicinés — medis, kaulai ir pan. Dirbtinés kompozicinés
medziagos placiai naudojamos dél galimybés kombinuojant keleta medziagy ir
parenkant tinkamg viding struktiira gauti pageidaujamas visumines medziagos
savybes. Dél parinkto gero masés ir stiprumo santykio kompozicinés medziagos
taikomos daugelyje sri¢iy — léktuvy, Salmy, neperSaunamy drabuziy, sporto ir
medicininiy jrenginiy gamyboje.

Skaitiniy modeliy, kuriais i§samiai apraSoma kompoziciniy kiny bei
konstrukcijy  fizikiné elgsena, mikrolygmenyje (t. y. modelyje smulkiai
pavaizduojant jy mikrostruktiirg) panaudoti praktiskai nejmanoma dél riboty
kompiuteriniy iStekliy. Kompiuterio iStekliai, reikalingi realiy sistemy
modeliavimui mikrolygmenyje, yra tiek dideli, kad netgi aprépiamoje ateityje
tokiy uzdaviniy iSspresti  greiCiausiai nepavyks. Todél praktiskai taikomi
daugiaskaliai modeliai. Juose tiriami objektai pavaizduojami skirtingose skalése,
kiekvienoje jy taikant skalés skiriamaja geba atitinkancias prielaidas. Gali biti
modeliuojama nuo smulkiausios skalés iki stambiausios, arba atvirk§¢iai [1].
Modeliuojant nuo stambiausios skalés smulkiausios link, smulkesnéje skaléje
nagriné¢jamas nedidelis posritis. Jam taikomos krastinés salygos pagal stambioje
skalé¢je gaunamus sprendinius. Pavyzdziui, smulkioje skal¢je tiriamy posricio
krastiniy poslinkiai gali biiti priimami pagal stambioje skaléje gautus atitinkamy
taSky poslinkius. Modeliuojant nuo smulkiausios skalés stambiausios link,
medziagos savybés stambioje skaléje nustatomos pagal smulkesnéje skaléje gauty
tos medziagos reprezentatyviyjy posriciy (RP) sprendinius. Kino
reprezentatyviuoju posri¢iu (RP) vadinama mikroskaléje pavaizduota kiino dalis,
kurig apytiksliai galime traktuoti kaip jo diferencialinj elementa stambioje skaléje.
Dazniausiai tai biina mikrokubo geometrinés formos skaitinis modelis, pagal kurj
nustatomas jtempiy ir deformacijy vidutiniy reikSmiy rySys, kai vidurkiai
apskaiciuojami RP tiirio ribose.

Siame darbe tiriamas daugiaskalis vienkryp&io lankstaus kompozito
modelis, kai i§ medziagos struktiira smulkioje skal¢je jvertinan¢io RP modelio
apskai¢iuojami medZziagos savybes apibiidinantys parametrai, kurie véliau taikomi
modeliui stambioje skaléje nagrinéti. Tariama, jog medziagos vidinés sandaros
mikrogeometrija tiek smulki, kad stambioje skal¢je medziaga galima apytiksliai
nagrinéti kaip homogening.

Tiesinio tamprumo ribose, kai struktiira patiria mazas deformacijas, o
jtempius ir deformacijas tiesiskai sieja apibendrintasis Huko désnis, medziagos
parametrus galima nustatyti taikant asimptotinj homogenizavima pagal baigtiniy
elementy (BE) metodu gautus sprendinius [2] arba taikant mikromechaning
modelio analiz¢ [3]. Esant dideléms deformacijoms bei netiesinéms kompozita
sudaranciy medziagy savybéms, medZiagos elgsena stambioje skal¢je gali buti
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papildomai apibudinama takumo riba, stipréjimo moduliu bei stiprumo riba.
Siame darbe sitiloma ekvivalenty medZiagos stipruma nustatyti pagal RP tyrimo
rezultatus, laipsniskai sukeliant didesnes RP deformacijas. Sprendziant medziagos
suirimo uzdavinius svarbu parinkti tinkama algoritma pernelyg deformuotiems
baigtiniams elementams panaikinti. Kriterijus parenkamas taip, kad elementas
nebity panaikinamas per anksti. Siame darbe elementy panaikinimui jvedamas
kriterijus, kai efektyvioji deformacija pasiekia nustatyta ribg — efektyviajg suirimo
deformacija (ESD). Sj parametra siiiloma jvertinti i§ jvairiais kampais globaliojoje
koordinaciy sistemoje pasukto tempiamo medziagos fragmento modelio. Taip
gaunamos galimos deformacijy kombinacijos, kai struktiira veikiama
nepagrindinémis medziagos koordinaciy asiy kryptimis.

UZdavinio formulavimas (tyrimo objektas)

1. Daugiaskaliai modeliai, skirti nagrinéti lanksty vienkryptj kompozita
skirtingos skiriamosios gebos skalése.

2. VienkrypCiy kompozity struktiiros modeliai, skirti stambioje skaléje
taikomy ekvivalenCiyjy medZiagos parametry nustatymui pagal
reprezentatyvyjj posritj smulkioje skaléje vaizduojanéius baigtiniy
elementy modelius.

3. Smiuginio poveikio vienkryp¢io kompozito ploksteléms, apraSomoms
kevalo elementais, tyrimas taikant sukurtus daugiaskalius modelius.

Tyrimo tikslas

Sukurti lanks¢iy vienkrypciy kompozity dinamikos analizei skirtus
daugiaskalius modelius, kurie leisty nustatyti parametrus, apibiidinanéius
kompozito elgseng stambioje skalé¢je pagal kompozito struktiiros modelius
smulkiausioje skaléje.

Tyrimo uZdaviniai

Darbo tikslui pasiekti iSkelti tokie uzdaviniai.

1. Sudaryti daugiaskalius skaitinius modelius, kai smulkiausioje skaléje
nagrinéjama vienkryp¢io kompozito struktiira apraSoma dvimaciais ir
trimaciais baigtiniais elementais.

2. Apibrézti tinkamas krastines salygas tiesiniy tamprumo, stiprumo ir
suirimo parametry nustatymui.

3. Verifikuoti sukurtus daugiaskalius modelius, plok§tumoje tiriant
stambioje skaléje kevaliniais baigtiniais elementais aprasyta modelj,
kuriame panaudoti pagal smulkiausios skalés modelio tiesinés ir
netiesinés analizés rezultatus gauti ekvivalenCiosios medZziagos
parametrai.

4. Verifikuoti sukurtus daugiaskalius modelius, sprendziant absoliuciai
kietos sferos ir stambioje skal¢je pavaizduoto kompozito smiigio sgveika

32



bei sulyginant rezultatus su rezultatais, gautais naudojant smulkioje
skaléje pateiktg atskaitos modelj.

5. Eksperimentiskai patikrinti, Kaip skai¢iavimai atitinka tikrove, sudarant
dviejy skaliy modelj trima¢iu (3D) spausdintuvu pagaminto objekto
stiprumo tyrimui, iStirti mikrostruktiros jtaka bei sulyginti gautus
rezultatus su fizikiniy eksperimenty rezultatais.

Tyrimy metodika

Baigtiniy elementy metodu i$ smulkiausios skalés modelio apskai¢iuojami
tiesiniai ir netiesiniai tamprumo parametrai, parenkamas baigtiniy elementy
panaikinimo kriterijus. Statiné ir dinaminé reprezentatyvaus elemento analizé
atliekama taikant sukurtas programas bei baigtiniy elementy programa LS-DYNA,
rezultatai apdorojami MATLAB programa. Modeliy konvergavimas tiriamas
kei¢iant baigtiniy elementy skaidymo smulkuma. Modeliai verifikuojami lyginant
modelius, kai ta pati konstrukcija pateikiama skirtingos skiriamosios gebos
skalése.

Darbo mokslinis naujumas ir praktiné reikSme

Svarbiausias darbo mokslinio naujumo elementas yra ekvivalenéiyjy
kompozicinés medziagos parametry nustatymo metodo iSplétimas, leidZiantis
matematiSkai nustatyti jos suirimo kriterijus. lki Siol zinomuose darbuose
daugiaskalés analizés biidu biidavo apskai¢iuojami tiesiniai tamprumo parametrai,
0 netiesiniai — dazniausiai parenkami empiriskai, remiantis analogijomis bei
moksline intuicija. Prakting reikSme salygoja kompozity skaitiniy modeliy
galimybiy iSplétimas. Net ir sudétingy netiesinés sgveikos uzdaviniy atveju
sutaupomi skaiciavimo iStekliai, kadangi praktiskai priimtino tikslumo rezultatai
gaunami esant palyginti nedideliam baigtiniy elementy skaiciui.

ISVADOS

Sukurtas daugiaskalis skaitinis modelis lanksé¢iy vienkrypéiy kompozity
analizei. Atlikus teorinius tyrimus ir skaitinius eksperimentus suformuluotos
iSvados.

1. Darbe sudaryti dviejy skaliy skaitiniai modeliai vienkrypcio kompozito
tyrimui. Smulkioje skaléje vienkryp¢io kompozito parametry nustatymui
i§ reprezentatyviojo elemento taikomi du i$samumo lygiai — sudaromi
pirmos (dvimaciy elementy) ir antros eilés (tliriniy elementy) kompozito
modeliai. Stambioje skal¢je homogeninés medziagos modelis sudaromas
i§ kevalo elementy. Pagal skirtingy eiliy modelius nustatyti parametrai
gijy kryptimi skiriasi maziau nei 10 %, statmenomis kryptimis — daugiau
nei 10 %. Todél kompozito struktiiros analizéje svarbu tinkamai parinkti
smulkiausios skalés iSsamumo lygj.
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2. Apibréztos reprezentatyvios srities modelio krastinés salygos tiesiniy,

stiprumo ir suirimo parametry nustatymui smulkioje skaléje.
2.1. Tiesiniai tamprumo parametrai gali buti vertinami i
reprezentatyviojo modelio, kuriam sukurtos grynosios deformacijos
(Slyties deformacijos atveju nereikalaujant, kad krastinés po
deformacijos islikty tiesios), analizés.
2.2. ASiniai netiesiniai parametrai jvertinami sukuriant grynasias
aSines deformacijas su didéjanciais poslinkiais. Slyties stiprumui
nustatyti modelis turi biiti papildytas aplinkinés srities elementais su
kur kas didesnémis itrynimo deformacijomis i§vengiant ankstyvo
kampiniy mazgy iStrynimo.
2.3. Suirimo parametry nustatymui taikomi pasukty medziagos
fragmenty modeliai, patalpinti j aplinking sritj su kur kas didesnémis
deformacijomis. ~ Siems  modeliams  sukuriamos  grynosios
deformacijos, kai poslinkiai nurodomi tempiamai ir §oninéms sienoms,
taip iSvengiant jtempiy koncentracijos reprezentatyvios srities viduje.
I$ kompozito ploksteliy asiniy tempimo eksperimenty stambioje skaléje
nustatyta, kad Siems testams tiesiniai tamprumo, stiprumo parametrai ir
suirimo kriterijui taikoma deformacijos verté parinkta tinkamai (pirmos
eilés modeliams — i§ modeliy, pasukty 60°, antros eilés — i§ modeliy,
pasukty 45° kampu), nes modeliai atitinka atskaitos modelio elgsena.
IS absoliuciai kietos sferos kontakto su kompozito plokstelémis skaitiniy
eksperimenty nustatyta, kad geriausiai sferos greicio kitima dél kontakto
su atskaitos modeliu atitinka modeliai, kuriy i$trynimo deformacija
apskaic¢iuojama 45° kampu pasuktam medziagos fragmentui.
EksperimentiSkai nustatyta, kad skaitinis trimaciu (3D) spausdintuvu
pagaminto objekto modeliavimas atitinka eksperimentinius rezultatus iki
maksimalios jtempiy ribos vidutinio sluoksnio storio objektams, kuriy
atveju  uztikrinamas  tinkamas ~ gretimy  gijy  susiliejimas
eksperimentiniuose gaminiuose.
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